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A B S T R A C T

We present a theoretical and empirical model which (1) shows that the demand for energy is shifted down
by innovations in energy intensive sectors and (2) highlights the drivers of innovative activity in these sec-
tors. The theoretical model and the empirical analysis of patent and energy data indicate that the level
of innovative activity is determined by energy expenditure as well as international and inter-temporal
spillovers. The solution of the theoretical model along the balanced growth path suggests that in general
equilibrium the level of innovative activity depends on the growth rate of energy generation cost. The model
predicts also that a level increase in the cost of energy does not alter the long-run energy share of income.
Finally, we show that our results can be used to calibrate Integrated Assessment Models to project energy
efficiency growth.

© 2017 Published by Elsevier B.V.

1. Motivation

Addressing global environmental problems such as climate
change without impairing economic growth requires the develop-
ment of technologies that do not increase the demand for dirty
factors, and specifically dirty energy inputs. In the past, the process
of technological change has not always satisfied this criterion: e.g.
the first wave of industrialization brought about massive deforesta-
tion and pollution. In recent years, new extraction technologies from
shale reservoirs have increased the supply of natural gas and oil.
Partly in response to this increased supply, the oil price has plum-
meted between mid-2014 and the end of 2016, rising only slowly and
sluggishly until early 2017, with yet unclear consequences on energy
demand and greenhouse gas emissions.1 In face of this market and
policy uncertainty, characterizing under what conditions technolog-
ical progress will follow a resource efficient and green trajectory is
an important research and policy question.

Therearetwowaystodecoupleeconomicgrowthfromgreenhouse
gas (GHG) emissions. The first is to innovate in cost-competitive
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1 See for instance https://www.vox.com/2016/1/12/10755754/crude-oil-prices-

falling.

pollution-free alternatives which can substitute the dirty energy
inputs, such as solar or wind technologies. This green channel of tech-
nological progress has received increased attention in the latest years.
Acemoglu et al. (2012, 2014a,b) and Acemoglu (2014), for instance,
formally describe it in a Directed Technical Change (DTC) framework,
which combines the intuition of earlier works on price-induced inno-
vations (Hicks, 1932) with the micro-foundations of the endogenous
growth theory (Romer, 1990; Grossman and Helpman, 1991; Aghion
and Howitt, 1992) and allows to model innovations in a given sector
as the endogenous outcome of agents’ optimization. In their model,
innovation can be directed at one of two substitute types of technolo-
gies: those using the “dirty” input or those using the “clean” input.
They show that, under some conditions, environmental policy can
push economies on a greener path by encouraging innovation in the
clean substitute.

The second way to reduce GHG emissions is through innova-
tions improving the efficiency of production of energy-intensive (and
hence, carbon-intensive) intermediate goods, such as for instance
cement or metals. Increased efficiency allows to reduce the quantity
of dirty input for every unit of the intermediate good. This would
reduce total emissions from the sector under the condition that the
demand for the carbon-intensive intermediate good is price inelas-
tic. If this were not the case, the reduction in the use of dirty resource
per unit of the intermediate good will be over-weighted by the
increase in demand for the intermediate good brought about by a
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drop in its price (see the discussion of the rebound effect in Sorrell,
2009).2

If the condition of inelastic demand is satisfied, the dirty sector
could follow the path of 20th century American agriculture recently
highlighted in Stiglitz and Bilmes (2012, online):

Agriculture had been a victim of its own success. In 1900, it took a
large portion of the U.S. population to produce enough food for the
country as a whole. Then came a revolution in agriculture that would
gain pace throughout the century - better seeds, better fertilizer, better
farming practices, along with widespread mechanization. Today, 2
percent of Americans produce more food than we can consume.

A comparable productivity revolution in the energy-intensive
sector may indeed drastically reduce its carbon footprint and the
costs of climate change mitigation. Moreover, efficiency gains would
also reduce the environmental impact on local air quality, water,
and land. This clearly emphasizes the importance of understanding
and quantifying the process of endogenous technological progress in
price-inelastic pollution-intensive sectors. Yet, the literature focus-
ing on this topic remains scarce. The notable exceptions are the
model by Goulder and Schneider (1999) and the recent contributions
by André and Smulders (2014) and Hassler et al. (2012), which we
review below.

This paper contributes to the literature by developing a theoret-
ical model to study endogenous technical change in price-inelastic,
CO2-intensive sectors and testing the model’s predictions using his-
torical data for OECD countries. Using this extended framework, we
(1) examine the determinants of R&D investment in energy-intensive
sectors and (2) study the impact of efficiency-improving innovations
on energy demand. By deriving the dynamics of the model along and
in the neighborhood of the Balanced Growth Path (BGP), we (3) char-
acterize the determinants of the energy share in GDP in the long run.
Further, we (4) provide an empirical application to demonstrate how
the calibrated equations can be used in an Integrated Assessment
Model to project future improvements in energy efficiency.

Our theoretical model unveils several important dynamics. We
show that, if the goods generated in the energy-intensive and non-
energy-intensive sectors are complements, innovation in the energy-
intensive sector shifts down the Marshallian demand for energy. In
line with the DTC theory, the innovative effort in energy-intensive
sector depends on the value of this sector: the bigger the market,
the higher the inventive effort. Thus, the effort to develop technolo-
gies which economize on energy depends on the value of spending to
purchase this energy. Regarding the long-run prediction of the theo-
retical model, we show that along the balanced growth path the level
of innovative activity depends on the growth rate of energy cost. We
show also that a level increase in the cost of energy does not alter
the long-run energy share of income. As we discuss, this prediction
helps to explain historical observations regarding the dynamics of
the share of energy and of energy prices.

To provide insights on the importance of properly calibrating
innovation in price-inelastic carbon-intensive sectors, we provide an
empirical evaluation of the proposed model as well as a modeling
implementation in the WITCH integrated assessment model (Bosetti
et al., 2009). To this end, we first estimate an econometric model
using data on energy-efficient patents and energy use in a sample
of OECD countries. Based on our theoretical model, the estimation

2 The intuition in this respect is as follows: the growth of efficiency in the produc-
tion of the dirty intermediate good has two effects: (i) less dirty resources are used
to produce each unit of the dirty intermediate good and (ii) the price of the dirty
intermediate good decreases; this in turn increases the quantity demanded for the
dirty intermediate good and thus pushes up the demand for dirty resources. When the
demand for the dirty intermediate good is price inelastic, the second effect is relatively
small and the net effect of efficiency growth is a reduction of the use of dirty resource.

strategy follows a two-stage estimation procedure. The first stage
examines the effect of energy expenditures and spillovers on patents
in energy intensive industries and technologies; the second stage
uses the predicted innovation values from the first stage to study the
impact of induced innovation on the energy demand. Our model is
purposefully set up in a way that allows to disentangle and estimate
the contribution of the forces determining energy efficiency growth
rates. The streamlined modeling framework we adopt permits the
use of the point estimates from our regression in WITCH to forecast
future energy efficiency growth.

The rest of the paper is organized as follows: Section 2 reviews
the relevant literature and highlights the original contribution of this
paper. Section 3 focuses on modeling the link between R&D spend-
ing and energy expenditure, while Section 4 on the link between
efficiency growth and energy demand. In Section 5, we set up the
empirical model, present the data, discuss the empirical results and
we show the potential of our streamlined modeling framework for
Integrated Assessment Models by using the point estimates from our
regression to calibrate the WITCH model with respect to forecasting
future energy efficiency growth. Section 6 concludes.

2. Related literature

This study sits at the crossroad of several theoretical and empiri-
cal contributions investigating the determinants of energy efficiency.

The first group of contributions includes those papers which
study growth and the environment through analytical DTC models.
Acemoglu et al. (2012) and Acemoglu et al. (2014a,b), for instance,
apply the DTC framework of Acemoglu (1998) to a growth model
with environmental constraints to characterize how economies can
be pushed on sustainable paths (namely, away from dirty and toward
clean inputs). They show, among other things, that when inputs are
sufficiently substitutable, sustainable growth can be achieved with
temporary subsidies that redirect innovation toward clean inputs.
Clean technological progress induced by the policy allows firms
to reduce the price of the clean good, incentivizing consumers to
switch away from the consumption of the dirty good. André and
Smulders (2014) recently presented a general equilibrium model
that embraces DTC framework to predict the dynamics of energy
consumption and energy share. They solve the model analytically
and show, among other results, that an increase in scarcity of energy
drives up the share of energy spending in GDP which promotes
energy saving innovations. Hassler et al. (2012) develop a DTC model
with a trade-off between energy-saving and capital/labour-saving
technological progress. The model allows to determine the long-run
income share of energy.

Second, this analysis is linked to the literature which estimates
the parameters of the endogenous growth models. Specifically, our
effort is similar in spirit to the seminal contribution of Caballero and
Jaffe (1993) and Porter and Stern (2000) but with a focus on endoge-
nous technological change in energy intensive industries rather than
on estimating an endogenous growth of Total Factor Productiv-
ity (TFP). The appropriate calibration of endogenous technological
change is particularly important for studying climate change mit-
igation strategies, since scientists often need to evaluate in which
scenarios emission reduction proceeds fast enough to keep the
cumulative CO2 levels below the threshold of environmental disaster
described in Alley et al. (2003).

A third strand comprises the empirical papers testing the DTC
hypothesis in the context of green innovation: Aghion et al. (2016)
first describe the theoretical link between fuel prices and innovation
in clean automotive technologies and test the implications of their
model using patent data for car manufacturers. Noailly and Smeets
(2013) focus instead on innovation in renewable and fossil-based
technologies for energy production. Hassler et al. (2012) provide
evidence of DTC with energy saving strongly responding to oil price
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shocks and being negatively correlated to capital and labour saving
technical change.

The fourth group of relevant literature are the calibrated general
equilibrium models that rest on the induced innovation hypothesis
to study the dynamics of emission reductions. A few examples in this
respect are Goulder and Schneider (1999), Popp (2004), Bosetti et
al. (2009). In these numerical models, the central planner is allowed
to choose optimal level of R&D investment which determines the
rate of energy efficiency improvement. To take into account the
inter-temporal spillover effects, the productivity of this R&D process
depends on the past level of investment. Furthermore, in Bosetti et
al. (2009) the role of international knowledge spillovers is captured
by conditioning energy efficiency improvements in one region on
the distance to the frontier and knowledge stock of other regions.
However, to date the calibration of these models was not based on a
consistent estimation strategy. In addition to the integrated assess-
ment modeling, the technological change which reduces carbon-
intensity of the economy has been examined by computable general
equilibrium (CGE) models (see, for instance, Otto et al., 2008)

The fifth strand of studies includes contributions estimating a
knowledge production function for energy-related innovation, such
as Popp (2002) and Verdolini and Galeotti (2011). Using patent data,
these studies find that inter-temporal and international spillovers
as well as energy prices are key determinants of the innovation
level in energy technologies. However, these analyses focus solely
on the determinants of innovation, and do not provide evidence on
how “induced” energy innovation impacts energy demand, generat-
ing energy savings. Moreover, they test reduced form relationships
which have not been formally derived from models. As a result, the
estimates from the studies cannot be easily used to calibrate models.

Finally, our contribution is linked to the literature studying the
impact of energy efficiency improvements on energy consumption.
Popp (2001), for instance, examines the effect of energy intensive
patents on energy savings. The technologies considered within this
work are however different from those of Popp (2002) on which
it builds. Hence, it is difficult to judge to what extent it is really
price-induced innovation that increases efficiency.

Our paper encompasses all these different strands of literature
and extends them. We differ from Acemoglu et al. (2012) and
Acemoglu et al. (2014a,b) in that we apply our model to price inelas-
tic goods. In contrast to André and Smulders (2014), we concentrate
on energy efficiency of the economy. André and Smulders focus
their long-run analysis on the case in which the growth of prices of
exhaustible (i.e. non-renewable) resources increases. Their model is
not able to (and, indeed, does not aim to) predict the dynamics of
energy-efficiency if the growth of energy cost is constant (e.g. due
to advancement of resource-efficient or resource-free energy gen-
eration technologies). We attempt to fill this gap. Regarding, the
short-term analysis, our model supplements André and Smulders
(2014) by exploring the predictions of the theoretical model with
panel data regressions.3 Regarding the model by Hassler et al. (2012),
our model differs in two important respects. First, the model is solved
in competitive equilibrium and second, we allow for free flow of
labour between research and production activities.

We show that the empirical approach of Popp (2002) and
Verdolini and Galeotti (2011) needs to be modified in order to study
and test the DTC hypothesis. Specifically, innovation (patents) in
energy saving industries is modeled as a function of energy expen-
ditures rather than energy prices. More importantly, the analysis
of induced innovation dynamics is supplemented by and coupled

3 André and Smulders (2014) perform a ‘qualitative calibration’ — i.e. they ensure
that the predictions of their model matches a list of stylized empirical facts. By
performing quantitative calibration we are able to quantify the predictions of our
model.

with the investigation of whether innovations that were induced by
increases in energy expenditure indeed resulted in energy savings
for the economy. To do so, we employ a two stage estimation strat-
egy: in the first stage we examine the effects of energy expenditure
and spillovers on energy saving patents. In the second stage, we use
predicted values from the first stage to study the impact of induced
innovation on the energy demand.

We extend the analysis of Popp (2001) to a multi-country setting
and estimate an innovation production function and the resulting
changes in efficiency on a consistent set of technologies and using
more recent data. This is important since starting from 2000 energy
prices have fluctuated significantly.

Finally, our theoretical and empirical set up is streamlined so that
the empirical result can be directly fed into the quantitative models
used to evaluate climate change policies, such as Bosetti et al. (2009).
Though the impact of energy efficiency is known to be a major driver
of results (Kriegler et al., 2014), the majority of the models featured
in the Intergovernmental Panel on Climate Change (IPCC) assess-
ments take energy saving technical change as exogenous, due to
lack of soundly calibrated reduced form equations. To date, most
papers which ground their predictions on the DTC assumption, such
as Bosetti et al. (2009), invoke the evidence of Popp (2002), whose
limitations we described above.

This paper may hence be considered a bridge between the the-
oretical literature on DTC in energy use, the empirical literature on
innovation and efficiency dynamics in energy intensive industries
and the quantitative modeling of climate change and energy poli-
cies. The following two sections detail our theoretical model. The
empirical strategy, data description and results follow.

3. R&D spending and energy expenditure

In this section, we present a model that explores the role of
energy expenditure in determining energy saving R&D effort and the
resulting level of innovation output.

3.1. Firms and sectors

Following other models of directed technological change (e.g.
André and Smulders, 2014), we assume that output is produced using
an energy intensive good x̃ and non-energy-intensive good, z̃, as
follows:

y = (x̃q + z̃q)
1
q . (1)

We assume that the energy-intensive good is produced using
labour input, lx, energy input, x and a range of capital goods
(machines), vxq. The production function takes the form:

x̃ = xa l1−a−b
x

⎛
⎝ 1∫

0

Aqvb
xqdq

⎞
⎠ (2)

where A represents the productivity of machines. Note that this
functional form assumes a unit elasticity between energy and the
composite of machines. This assumptions allows us to consider a
technological change which plays the role of TFP in the energy-
intensive sector: a continuous innovation leads to a constant growth
of factors productivity.

The machines are supplied by monopolists. The assumption of
monopolistic competition is borrowed from the endogenous growth
literature (e.g. Romer, 1990). There are two important implications of
this assumption. The first is that, after compensating for the factors of
production, firms indeed have resources left to finance R&D invest-
ments. The second is that the R&D investment is proportional to the
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revenue of the firms. The crucial role of the monopolistic competition
setup for DTC models is discussed in Acemoglu (2007).

We assume that the production of non-energy-intensive good
does not use any energy. The production function of the non-
energy-intensive good is

z̃ = l1−b
z

⎛
⎝ 1∫

0

Bqvb
zqdq

⎞
⎠

where lz denotes the labour input, B denotes the productivity of non-
energy-intensive machines and vzq denotes machines, which also
in this case are supplied by the monopolists. In what follows, we
analyze the dynamics of R&D investments in the energy-intensive
sector. Conversely, we assume that the productivity of machines in
this sector is exogenous. In this respect, we depart from the standard
directed technological change theory which endogenizes technolog-
ical progress in both sectors. In the context of the current article,
we interpret the non-energy-intensive sector as the composite of all
sectors which are not energy-intensive and includes activities such
as financial or business services. Endogenizing the productivity of
these sectors would provide little insight as it is difficult to justify its
dependence on energy prices or energy efficiency.

3.2. Research effort

Producers of the energy-intensive good choose energy, labour and
machine inputs to maximize their profit, taking the prices of these
inputs as given. The solution to this maximization problem deter-
mines the demand for the machines in the energy-intensive sector:

bpx̃xa l1−a−b
x Aqvb−1

xq = pq (3)

where pq is the price of machine q.
Monopolists can produce the machines at a constant marginal

costs, normalized to 1. They can also hire researchers, R, in order
to improve the efficiency of their machines (the productivity of
researchers is described in the following subsection). As in the model
by Grossman and Helpman (1991), researchers are hired at wage w,
which is also the wage of non-research workers. This captures the
intuition that the research sector needs to compete for the labour
force with the non-research (production) sectors. One important
implication of this assumption is that the growth of wages in the
production sectors will be followed by the growth of wages in the
research sector.

The monopolists’ maximization problem can thus be stated as
follows:

max
pq ,vxq ,Rq

pqvxq − vxq − wRq (4)

subject to Eq. (3)
Given that the elasticity of demand for each machine with respect

to its price is constant, each monopolist charges the same mark-
up over marginal costs (equal to unity).4 The price of a machine is
therefore

pq = l

4 This results from assuming that the elasticity of substitution between machines
is constant (as in, among others, Romer, 1990; Grossman and Helpman, 1991; Young,
1998). The assumption implies that the demand function for the machines is log-
linear. The great benefit of such approximation is that it allows to find a closed form
solution to the model thus making it tractable.

where l = 1
b . The instantaneous profit of machine monopolist is

given by

p(q) = (1 − b) pqvxq

In line with the assumptions in DTC models (Acemoglu et al.,
2014a,b), we assume free entry of firms: at the beginning of each
period any firm can produce any machine given the best available
technology from the previous period. However, investment in R&D
effort results in new machines which are not available to the other
firms for the duration of that period. The free entry condition implies
that a firm invests all its available profit in this R&D activity. Other-
wise, there will be another firm which invests more in R&D, offers a
more productive machine and hence wins the entire market.5 Inte-
grating the free entry condition over all varieties of the machines and
using Eq. (3) implies that the total spending on R&D is given by

Rw =

1∫
0

pxqdq = (1 − b)

1∫
0

pqvxqdq = (1 − b)bpx̃x̃

where R =
∫ 1

0 Rqdq.
Next, from the demand for energy by the producer of energy-

intensive good, we can derive

apx̃x̃ = cx (5)

where c denotes the price of energy.
Combining this with the previous result brings the total spending

for R&D equal to

Rw =
(1 − b)b

a
cx. (6)

Proposition 1. R&D spending in energy-intensive industries is
proportional to the value of energy expenditure in these industries.

Proof. in the text.

3.3. Generation of inventions

Following standard endogenous growth models, we assume that
the growth of productivity for a machine depends on the number of
innovations, Pq:

DAqt

Aq,t−1
= htPqt

where h can be interpreted as a size of an innovation. To account for
positive spillover (“standing on the shoulders of the giants”) or neg-
ative spillover (“fishing out”) effects (Jones, 1995), we assume that
the size of innovation, h, depends on the total number of past inno-
vations (knowledge stock, K, which is defined as the discounted sum
of previous innovations6). Specifically, we let

ht =
v

Kt
t

(7)

5 Similar free entry condition is present in the model by Young (1998).
6 Note that in a multi-region model, one could distinguish between the home and

foreign innovations. In the theoretical section we do not make this distinction since
it greatly complicates the analysis and it does not change the qualitative predic-
tions. However, in the empirical section, taking advantage of the available data, we
will estimate separately the effects of the home and foreign knowledge stocks. See
Section 5.



J. Witajewski-Baltvilks et al. / Energy Economics 68 (2017) 17–32 21

where t is the parameter that determine the size of the fishing out
(or standing on shoulders of giants).

The “fishing out effect” predicts that the innovative content of
a given patent and the knowledge stock (i.e. number of previous
patents) are inversely related. The former is larger when the latter
is smaller. As the stock grows, it becomes more and more difficult
to produce a truly innovative machine, namely an innovation that
would significantly impact A. Conversely, the “standing on the shoul-
ders of giants” effect would imply that a larger knowledge stock leads
to an increase in the value of subsequent patents. The knowledge
stock is defined as

Kt = Pt + (1 − d) Kt−1 (8)

with Pt =
∫ 1

0 Pq,tdq.
Note that in this set up, we are assuming symmetry of sectors,

a frequent approach in endogenous growth theory models — see
e.g. Dixit and Stiglitz (1977) and subsequent models built on their
framework, such as Romer (1987) and Young (1998). This implies
that we abstract from the uncertainty associated with the innovation
process, which instead is present in the Schumpeterian endogenous
growth models such as Grossman and Helpman (1991) or Aghion
and Howitt (1992). This is necessary if one wishes to allow for a
free flow of labour between production and research activities while
maintaining the tractability of the model.7

In symmetric equilibrium the innovations are uniformly spread
across energy intensive intermediates. This implies that the average
productivity of a machine, defined as A =

∫ 1
0 Aqdq follows:

At = (1 + htPt) At−1 (9)

where Pt = Pq,t due to symmetry between machines.
In this framework, the final good producer can increase the inflow

of new innovative ideas, Pq, but this will require hiring research
labour Rq. The relation between innovations and research effort is as
follows:

Pq = aR01−1K02 Rq

where R =
∫ 1

0 Rqdq is the total employment of research labour and K
is the stock of patents following Eq. (8).

We allow the productivity of researchers, dPq
dRq

to depend on two
effects. First, generation of ideas, P, may also involve additional
spillover effects to those described in Eq. (7): a higher number of past
innovations may help (or make it more difficult for) researchers to
generate an innovation. To accommodate this possibility, we again
let P depend on the knowledge stock available to the firm, K. Note
that by doing so, we allow for the second layer of spillovers. Before
we have allowed the effect of one innovation on the growth of effi-
ciency to depend on the stock of knowledge K. Now, we allow the
quantity of innovations generated by the firm, to depend on the stock
of knowledge. Introducing these two layers of spillovers allows us to
fully control for spillover effects in the two regressions of the empiri-
cal section. The first regression will examine the effect of spillover on
the number of patents generated, the second regression will examine
the effect of spillover on the value of a patent.

Second, we allow for “stepping on” effects — namely the fact that
a larger pool of researchers may lower productivity of individual
researchers in generating original innovations. One reason for this

7 Note, for instance, that the asymmetry between machines allowed in Acemoglu et
al. (2014a,b) requires a random distribution of research labour across machines. This
cannot however be reconciled with the assumption that each firm choose how much
research labour they wish to hire.

could be that researchers can duplicate the effort of each other (see,
for instance, Dasgupta and Maskin, 1987; Jones, 1995). As a result at
the aggregate level the production of ideas is not proportional to the
amount of research effort. The stepping on toes effect is measured by
the 01 parameter in the expression above.

Integrating over machines gives:

P = aR01 K02 (10)

Note that Eqs. (9) and (10) encompass various approaches from
the endogenous growth and DTC literature (Romer, 1990; Aghion
and Howitt (1992); Jones, 1995; Caballero and Jaffe, 1993; Acemoglu
et al., 2012; André and Smulders, 2014). In particular, note that the
specification with t = 0, 02 = 0 and 01 = 1 would approximate
the standard specification of Romer (1990) with DA = aR ∗ A while
the specification with t = 1, d = 0 and v = a (which allows K and
A to follow the same path) would be an equivalent of the general
specification (3) in the article by Jones (1995)

Combining Eqs. (6) and (10) allows to relate the flow of innova-
tions in energy-intensive sectors to the energy expenditure in the
equilibrium. Log-linearizing:

log(P) = 01 log(cx) − 01 log(w) + 02 log(K) + constant. (11)

4. Efficiency growth and energy demand

In the previous section, we showed that the R&D effort of
monopolists aimed at improving the energy efficiency of technolo-
gies depends on the energy expenditure of these producers. In this
section, we analyze when improvements in the energy-augmenting
technology can decrease the energy intensity of the economy and
shift down the Marshallian demand for energy. We also analyze the
BGP of the model and its dynamics in the BGP’s neighborhood. This
allows us to show that the level of innovative activity depends on the
growth rate of energy cost. Furthermore, we show that, according to
the model’s predictions, a level increase in the cost of energy does
not alter the long-run energy share of income.

This last result is particularly helpful to explain, for instance, the
pattern of energy share and energy prices observed in US since the
second half of 20th century. Fig. 1 reveals that the energy share in
2011 was the same as in 1970 despite a substantial growth in energy
prices over the period. A disconnect between growth of the energy

Fig. 1. The dynamics of energy share (the ratio of energy expenditure to GDP) and
energy prices (the ratio of energy expenditure to energy consumption) in US between
1970 and 2010.
Source: own elaboration based on 2011 Annual Energy Review by U.S. Energy Infor-
mation Administration (EIA, 2012).
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Fig. 2. The dynamics of energy share (the ratio of energy expenditure to GDP) and
energy prices in European members of the OECD between 1978 and 2010.
Source: energy prices taken from IEW Energy Prices and Taxes Statistics; energy share
of GDP: own elaboration based on energy prices, GDP and total final consumption of
energy from IEW World Energy Indicators.

share and that of the energy price can be observed if one looks at
the higher frequencies: for instance, the rapid growth of the energy
price since the late 90s was only initially accompanied by an increase
in the energy share. From 2005, one can observe a stabilization of
the energy share despite the fact that energy prices continued to
increase. A similar pattern can be observed in the case of European
members of the OECD (Fig. 2). Indeed, our model explains these pat-
terns by allowing for the endogeneity of technological change, which,
in the steady state, offsets the effect of an increase in energy prices.

4.1. Energy demand

The optimization of the final good producer determines the
demand for the energy intensive good. Recalling that the price of
final good is normalized to unity, the First Order Condition (FOC) of
final good producer maximization problem implies:

px̃x̃ = p
−q

1−q

x̃ y. (12)

Producers of the energy-intensive good, x̃, do not have a
monopoly power and thus the price they charge is equal to marginal
cost8, which, by duality, is given by

px̃ =
lbcaw1−a−b

A
∗ constant.

8 This assumption is analogous to the assumption in Acemoglu et al. (2012), where
producers of the intermediate goods do not hold monopoly power (only the produc-
ers of machines can be monopolists). Relaxing this assumption could be an interesting
experiment, which is left for future research. Indeed, one could consider an exten-
sion in which the producers of energy intensive good charge a mark-up over their
marginal costs. This would imply that the fraction of revenue in the energy-intensive
good which goes to the innovators is smaller. However, we argue that such modifica-
tion would not affect the dynamics of the model along the balanced growth path. The
condition for the BGP is that there are enough innovators in the energy-intensive sec-
tor to ensure that the productivity of machines in this sector grows at the same rate as
the growth of B. This prediction will be maintained because smaller share in revenue
in energy intensive sector devoted to research will be compensated by higher value
of this revenue (relative to GDP) compared to the case with no monopoly power of
energy-intensive good producer.

The Marshallian demand for energy in the economy can then be
derived from the FOC of the optimization problem of the energy-
intensive good producers with respect to energy:

x = ac−1px̃x̃ = ac−1

(
lbcaw1−a−b

A

) −q
1−q

y ∗ constant. (13)

Simplifying and taking logs we obtain the Marshallian demand for
energy:9

log(x) = log( y) −
(

1 +
aq

1 − q

)
log(c) − (1 − a − b)q

1 − q
log(w)

+
q

1 − q
log(A) + constant. (14)

Combining this with Eqs. (9) and (7), we can conclude with the
proposition:

Proposition 2. An increase in the level of innovative activity in energy-
intensive sector shifts the Marshallian demand for energy down if the
energy good is complementary to the non-energy good, that is, if q < 0.

Proof. in the text.

4.2. Endogenous wage

In equilibrium, the energy share is affected not only by shifts in
the demand for energy due to a growth of A, but also due to adjust-
ments of wages. From Eq. (12) and from the analogous FOCs for
labour inputs, we can express the incomes share of energy, income
share of labour in energy-intensive sector and income share of labour
in non-energy-intensive sector as:

senergy =
cx
y

= ap
−q

1−q

x̃

wlx
y

= (1 − a − b) p
−q

1−q

x̃

wlz
y

= (1 − b) p
−q

1−q

z̃ .

Since the price of final good p = p
−q

1−q

x̃ + p
−q

1−q

z̃ is normalized to
unity, the income shares of the factors of production adds up to:

cx
y

+
wlx
y

+
wlz
y

= 1 − b. (15)

Noting that wlx
y = 1−a−b

a senergy, and that, by duality, pz̃ = lbw1−b

B ,
we can restate Eq. (15) as

1
a

senergy +

(
lbw1−b

B

) −q
1−q

= 1.

9 We focus on the technological impacts on Marshallian demand because a sim-
ilar function has been used in the literature to forecast future energy demand (e.g.
Schmalensee et al., 1998; Webster et al., 2008).
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This allows to express wage, w, as a function of B (the productivity
of the non-energy intensive sector, assumed exogenous in the
model) and of the energy share. Hence, Eq. (14) can be restated as:

log (senergy) = −
(

aq

1 − q

)
log(c) (16)

+
1 − a − b

1 − b

[
log

(
1 − senergy

a

)
− q

1 − q
log(B)

]

+
q

1 − q
log(A) + constant.

In equilibrium, the effect of a change in the productivity of the
energy intensive sector on the share of energy is thus given by:

d log (senergy)

d log(A)
=

(1 − b)

(
1 − senergy

a

)
1 − b − senergy

(
q

1 − q

)

which is negative for q < 0. The technology improvement in energy-
intensive sector will exert a negative force on the energy share of
income. As we will see in the next subsection, along the Balanced
Growth Path, this negative force adjusts to exactly balance out any
level increase in energy prices. As a result, the level increase of the
energy price has no effect on energy share in the long-run.

4.3. Balanced growth path

Let a hat denote the balanced growth path value of a variable.
Along the balanced growth path, ŝenergy = cx

y and ŝlabour = w(lx+lz)
y

are constant. As a result, Eq. (16) can be reduced to:

D log
(

Â
)

= aD log(c) +
1 − a − b

1 − b
D log(B). (17)

Growth of Â depends on the number of innovations according
to Eq. (9). Combining this with Eq. (7) and using the approximation
D log(A) = DA

A for simplicity brings:

D log
(

Â
)

=
v

K̂t
P̂. (18)

The flow of innovation is specified with Eq. (10) and again
restated below for convenience:

log
(

P̂
)

= 01 log
(

R̂
)

+ 02 log
(

K̂
)

+ constant. (19)

Since energy expenditure grows at a constant rate, along the
balanced growth path Eq. (6) becomes:

log
(

R̂
)

= log
(

cx
w

)
+ constant.

Noting that cx
w = cx

w(lx+lz) (lx + lz) = senergy
slabour

(L − R) where L is

the total (fixed) supply of labour in the economy, we can express
research expenditure in terms of the energy share:

log
(

R̂
)

= log
(

ŝenergy

1 − b − ŝenergy

)
+ log

(
L − R̂

)
+ constant. (20)

Finally, along the Balanced Growth Path, the discounted stock of
innovations is constant. Since DK̂ = 0, Eq. (8) predicts

P̂
d

= K̂. (21)

The system of Eqs. (17)–(21) defines the Balanced Growth Path of
the economy.

4.4. Comparative statics for the Balanced Growth Path

In this section, we analyze the changes to the Balanced Growth
Path following a change in growth rate of energy prices, gc = Dlog(c).

From Eqs. (17), (18) and (21), it is clear that an acceleration in
the growth of energy prices requires faster technological progress

in the energy-intensive sector,
(

dD log(A)
dgc

, =,a
)

and, subsequently, a

larger inflow of innovations
(

dD log(A)
dgc

= (1 − t)
vdt

Pt
dP
dgc

)
. Next, total

differentiation of the system Eqs. (18) – (21) results in:

dP̂
dgc

1

P̂
= 01

dR̂
dgc

1

R̂
+ 02

dK̂
dgc

1

K̂
(22)

dR̂
dgc

1

R̂
=

1 − b

1 − b − ŝenergy

dŝenergy

dgc

1
ŝenergy

− R̂

L − R̂

dR̂
dgc

1

R̂
(23)

dP̂
dgc

1

P̂
=

dK̂
dgc

1

K̂
. (24)

This enables us to derive the following conclusions: First, Eq. (24)
implies that the increase in the Balanced Growth Path flow of inno-
vation which follows an increase in gc results in an increase in the
Balanced Growth Path discounted stock of innovations. Second, by
combining Eqs. (22) and (24), we get:

dP̂
dgc

1

P̂
=

01

1 − 02

dR̂
dgc

1

R̂

that is, an increase in the flow of innovation must mean an increase
in R&D expenditure.

Finally,

dR̂
dgc

1

R̂
=

(
L − R̂

L

)
1 − b

1 − b − ŝenergy

dŝenergy

dgc

1
ŝenergy

which implies that higher R&D expenditure must result from a
larger energy share. Putting these results together we arrive to the
following proposition:

Proposition 3. Under the specification presented in Sections 3 and 4

(a) the long run level of innovative activity, P̂ depends positively
on the long-run growth of energy cost;

(b) the long run energy share of income, ŝenergy, depends posi-
tively on the long-run growth of energy cost.

Proof. See the discussion above.

One of the implications of part (b) of Proposition 3 is that if there
is a one-time jump in energy cost, i.e. if growth of energy cost is
high in only one period but returns to the long-run rate in the sub-
sequent period, the long-run energy share of income is not altered.
This prediction is also reflected in US data: a 50% increase in the price
of energy between early 1970s and late 1980s did not result in an
increase in energy share between these two periods.

While Proposition 3 focuses on the long-run, the model does pre-
dict a temporary increase in the energy share — similar to the one
observed in United States in 1970s. We examine the dynamics of
such a situation in the subsequent section.
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4.5. Neighborhood of the Balanced Growth Path

The log-linearization of Eqs. (10), (9), (11), (16), and (8) results in
the following dynamic system of differential equation:

Ds̃energy =
(1 − b)

(
1 − ŝenergy

a

)
1 − b − ŝenergy

q

1 − q

gA

1 + gA
[−tK̃ + P̃]

P̃ =
01

(
L − R̂

)
L

(
1 − b

1 − b − ŝenergy

)
s̃energy + 02K̃

DK̃ = d
(

P̃ − K̃
)
.

where gA=agc+(1-a-b)/(1-b)*gB

The corresponding phase diagram is depicted in Fig. 3:
The phase diagram, together with the predictions of the previous

subsection on comparative statics, allow us to describe the dynam-
ics of the system following a one period level increase in cost of
energy. Following the one-period level increase, the cost of energy
returns to the previous growth rate. When the increase in energy cost
takes place (and before any changes in the speed of technological
change) the share of energy suddenly increases. This directs labour
toward research in energy-saving innovation. As the number of inno-
vations grows, two effects can be observed: first, the knowledge
stock starts to raise and, second, a higher speed of energy-saving
technologies reduces the income share of energy. In subsequent peri-
ods, the accumulation of knowledge stock improves the productivity
of researchers, leading to an even faster decline in the energy share
of income. At point V, the decline of the energy share reaches its peak
speed. However, as the energy share falls, the incentive to innovate
also declines. As a result, compared to the first periods after the tem-
porary price increase, the inflow of innovation is reduced. Around
point V the inflow of innovation falls below the depreciation of the
knowledge stock and thus the stock of innovations starts to fall. A
falling number of innovations and a deceleration of the energy share
decline eventually bring the economy to the old equilibrium on the
Balanced Growth Path.

Fig. 3. Phase diagram for the neighborhood of the balanced growth path.

5. Empirical application

The model above provides interesting insights which have wide
applicability, for instance they can help to calibrate energy efficiency
improvements in IAMs. In this section, we illustrate its applicabil-
ity to model energy efficiency improvements to the WITCH model
(Bosetti et al., 2009). To this end, the model is first estimated using
historical data (Sections 5.1 and 5.2). The estimated parameters are
then used to calibrate the model (Section 5.3).

5.1. Setup of the empirical model

We use the data on patents in energy-intensive industries and
macroeconomic data on energy use to estimate the key parameters
of the energy-saving knowledge generation process: the elasticity of
innovativeness with respect to R&D spending, the spillover param-
eters and the average effect of one innovation on energy demand.
Through estimation, we also shed light on the presence of any
fishing-out or standing on the shoulders of the giant effects i.e.
whether t > 0 or t < 0. The estimated equations are derived from
the theoretical model presented in the previous sections.

In estimating the model, we assume that the knowledge stock is
composed of home (own) patents and foreign patents. Specifically,
Kt = KOt + KFt where

KOt+1 = Pt + (1 − d) KOt (25)

is the domestic stock of knowledge,

KFt+1 = sPF
t + (1 − d) KFt (26)

is the foreign stock of knowledge. In the latter, the flow of new
patents is weighted by a factor s , to take into account that for-
eign innovations are less productive than domestic ones for future
domestic innovators. This is in line with the evidence presented in
Peri (2005) for the whole economy and in Verdolini and Galeotti
(2011) for the energy sector in particular. Hence, Eq. (11) becomes:

log (Pt) = 01 log (ctxt) − 01 log (wt) +

+02ũt log (KOt) + 02 (1 − ũt) log (KFt) + constant (27)

where ũt = KOt
KOt+KFt

is a share of domestic knowledge in total
knowledge stock, which is assumed to be constant over time (an
assumption which is common in the literature, for instance it is
implicit in Porter and Stern (2000) and Verdolini and Galeotti
(2011)).

Such specification allows us to estimate directly the parameters
of the research process: the elasticity of innovation flow with respect
to R&D effort (01) and with respect to knowledge stock (02). Note
that, if instead we used energy price as explanatory variable, its coef-
ficient would confound 01 and the price elasticity of energy demand,
which determines the relation between energy price and energy
expenditure.10

Finally, by combining Eqs. (9) and (7) and using the log-linearizing
approximation D log(A) = DA

A , we find the impact of innovations on
energy efficiency growth can be described with a function:

D log (At) =
v

Kt
t

PT
t (28)

where PT = P + sP f.

10 The results of regressions using energy price is available from the authors upon
request.
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Together with Eq. (14) this results in:

D log(x) = D log( y) −
(

1 +
aq

1 − q

)
D log(c) − (1 − a − b)q

1 − q
D log(w)

+
q

1 − q

v

Kt
t−1

PT
t + constant. (29)

The two stage approach described above, which first estimates
the patent Eq. (27) and then uses the fitted values to estimate
Eq. (29), allows us to interpret the coefficient in front of PT as
the impact of induced innovations on energy demand. Notice that
this specification resembles the one in Peri (2005) and Verdolini
and Galeotti (2011), but has been derived from different micro-
foundations.

To estimate the model, we make two additional assumptions
which are common in the literature on patent data as proxy of inno-
vative output. First, we assume that P is distributed Poisson with
Poisson Arrival Rate k = aR01 K02e. Second, we assume that the Pois-
son Arrival Rate is itself a random variable. Its distribution is given by
k ∼ Gamma

(
v, aR01 K02

v

)
where v is a distribution parameter which

can be estimated. These two assumptions imply (1) that the distri-
bution of patents is negative binomial, which is considered a good
approximation of the patent count distribution observed in the data
(for instance, Hausman et al., 1984) and that (2) Eq. (27) can be
estimated using Maximum Likelihood. The estimated model is:

Pist = exp [b0 + b1 log (cistxist) (30)

+b3 log (KOist) + b4 log (KFist) + x] e + g

where i indexes countries, s — patents categories and t — a year of
patent application. x is a vector of controls, which includes GDP as a
control for wages, a proxy for the stringency of environmental pol-
icy and a full set of country, time and patent category fixed effects.
Eq. (27) allows to write b3 = ũ02. Therefore, the parameter b3 can
be interpreted as the effect of the total knowledge stock weighted by
the contribution of the home knowledge stock in the total knowledge
stock. Analogously, b4 can be interpreted as the effect of the total
knowledge stock weighted by the contribution of the foreign knowl-
edge stock in the total knowledge stock. In the empirical estimation
of the model, we do not put any restrictions on these two parameters.

Next, we turn to Eq. (29), which links number of patents and
improvements in energy efficiency. As described in the theoretical
section, log(h) can be interpreted as the innovative content of patent
and depends on energy-efficient innovations produced in the past. As
already mentioned, the fishing out effect would predict a very large
innovative content of each patent if the stock of the previous patents
is small; as the stock grows it is more and more difficult to produce a
truly innovative patent. Conversely, the standing on the shoulders of
the giant effect would indicate that a larger stock of knowledge leads
to larger innovations. To discriminate between these two possibili-
ties, we include the interaction term between the stock of patents
and the number of new patents, i.e. we assume

log(v)
Kt

t−1
= d1 + d2TSit

where TS = KO + KF is the total stock of patents.
Combining this result with Eq. (14):

D log(x) = D log( y) +
q

1 − q
d1PT

it +
q

1 − q
d2PT

itTSit

−
(

1 +
aq

1 − q

)
D log (ct) − (1 − a − b)q

1 − q
D log(w) (31)

We also assume that the price of the non-energy intensive inputs,
z̃, is equal to wages of labour and that it grows at the same rate
as the GDP. This is in line with the long-run dynamics of the Bal-
anced Growth Path, which we discussed in Section 4. Based on this
discussion, the empirical model becomes:

D log(x) = a1D log( y) + a2PT
it + a3PT

itTSit + a4D log (ct) (32)

where the coefficient on GDP is given by a1 = 1 − (1−a)q
1−q . This spec-

ification allows us to examine the effect of energy saving patents on
the energy consumption holding total production and the price of
energy constant.

5.2. Data and descriptive statistics

We use patent data as the empirical proxies for the flow of new
knowledge in energy intensive goods, P, in the estimation of the first
stage regression. The data is sourced from the PATSTAT database
(EPO, 2014). We select patent applications by inventor country and
priority year, as customary in the literature, for technologies that
reduce the demand for energy. These include Buildings, Cement com-
bustion, Continuous casting, Fuel cells, Fuel injection, Heat exchange,
Heat pump, Lighting, Metallurgical processes, Paper production, Stir-
ling engines and Waste heat recovery. The detailed list of IPC codes
is presented in Appendix A.5. Our sample includes 25 countries over
the years 1978–2010.

Patents are imperfect proxies of the output of innovative activ-
ity. Indeed, the use of patent data as proxy of innovation has several
drawbacks (Griliches, 1990), which need to be carefully considered
in an empirical investigation, First, note that not all innovations are
patented. Rather, patent statistics capture only “codified” innovation,
and often other means of protecting an innovation (such as secrecy)
are used by the inventor. For the specific sector of energy production,
concerns regarding strategic patenting or the importance of secrecy
as opposed to the patent system are low. For instance, as argued in
Verdolini and Bosetti (2017), there is strong evidence that energy
firms patent to protect their innovations in markets where demand
will be high. Second, another relevant problem in our case is that
patents greatly differ in their quality (or inventive step), with the
majority of patent having little value and a few having very high
value. The skewed distribution of patent quality has been widely
discussed in the literature. To address the concern that patent indi-
cators in general may reflect innovation of low quality, in this paper
we select patent applications to the European Patent Office (EPO).
Patent protection at the EPO is indicative that the patent applicant
would like to exploit the innovation in more than one EPO member
state, as application fees to the EPO are generally higher than those at
national offices, but lower than filing in multiple countries. Consid-
ering EPO applications hence provides a quality threshold to proxy
for innovation (see for instance Mancusi, 2008). In any case, we pro-
vide robustness checks by considering applications to the USPTO and
through the Patent Cooperation Treaty.

Own and foreign knowledge stocks are created using the perpet-
ual inventory method as in Peri (2005), in accordance with Eqs. (25)
and (26) with a discount rate of 0.15: KOt+1 = PO

t + (1 − d) KOt

and KFt+1 = sPF
t + (1 − d) KFt . In the latter, PF

t is the flow of for-
eign patents which we compute as the weighted sum of patents
from other countries. The weights are constructed using the interna-
tional knowledge spillovers parameters estimated in Verdolini and
Galeotti (2011).11 Note that KFt is unobservable since parameter s is
unknown. However, using the perpetual inventory method we can

11 Applying weights to patents from different countries is effectively accounting for
the presence of parameter s in Eq. (26).
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Table 1
Descriptive statistics I: mean, standard deviation and minimum and maximum values
of the key variables. The data covers the period 1978–2010.

Variable Mean Std. Dev. Min Max

Energy consumption [ktoe] 126,985 274,550 2214 1,581,622
Energy price index [2010 = 100] 81.68 14.13 37.91 137.36
Real GDP per capita [2005 Int$] 26,620 10,335 5051 80,215
Patents count 112 255 0 1784
Policy index 2.99 3.09 0 9

compute KFt
s = PF

t−1 + (1 − d)
KFt−1
s . Under the assumption that s

is constant, the coefficient on log(KFt) is equal to the coefficient on
log

(
KFt
s

)
in the econometric model. We lag knowledge stocks by one

year to control for the non-immediate diffusion of knowledge and to
reflect the time lag between the year researchers work on innovation
and the year in which patent is applied for.

For our empirical estimation we compute energy expenditures
using information on energy price indexes and energy consumption.
We also create variables to proxy for the own and foreign knowledge
stocks.

The proxy for expenditures is constructed as the product of total
final energy consumption and energy price. In the regression this
value is lagged one year. We lag energy expenditure to take into
account that the decision on R&D investment is based on past data.
Energy price indexes for household and industry are taken from
the IEA Energy Prices and Taxes Database (IEA, 2013a), while data
on Total Final Energy Consumption in ktoe is taken from the IEA
World Energy Balances Database (IEA, 2013b). GDP per capita in PPP
taken from the Penn World Tables version 7.1 and converted in con-
stant prices. In the first stage regression we also include a variable
proxying for the stringency of policies supporting increases in the
efficiency of energy use in a given country in a given year. This is
built using data from the WEO Energy Efficiency Policy Database (IEA,
2014). Specifically, we collect information on what type of policy
instrument is used to target energy efficiency in any given country at
a given time. The type of instruments considered are: Investments,
Feed-in-Tariffs, Taxes, Certificates, Educational programs, General
policies, Obligations, R&D investments and Voluntary measures.12

We assign a value of 1 to each indicator once it is implemented. We
then sum the indicators for each country and each year. We resort to
such indicator due to the difficulty of building more complex numer-
ical measures of environmental policy stringency which cover a wide
range of different policy instrument. While very crude, similar prox-
ies have been used in the literature (see for instance Nesta et al.,
2014) and arguably capture a signal given to investors that govern-
ments are committing to tackling energy efficiency by increasing the
complexity of the policy portfolio. Indeed, while the policy index
which we use in our estimation cannot identify the effect of particu-
lar policies, it still allows, in our view, to approximate the differences
in policy stringency between countries and across time.

Tables 1 and 2 provide descriptive statistics of the main variables
for each country in our sample.

Finally, in the second stage regressions GDP per capita and second
stage energy price and consumption are smoothed using HP filter to
remove short term variation. The number of patents is lagged five
years to allow the time for the implementation of a new technology.
Estimating Eq. (30) with knowledge stock variables in logs means

12 Note that the categories of the several policy instruments were originally pro-
vided in the WEO by the IEA. We simply build our indicators based on the information
contained in the database. In this respect, for instance, the application of the EU
ETS scheme is included by the IEA in the database, and considered as a “certificate”
scheme. Consequently, information about the EU ETS is captured by our policy proxy.

Table 2
Descriptive statistics II: average values of the variables by country. The data covers the
period 1978–2010.

Country Energy consumption Real GDP per capita Patents count

AT 22,206.58 29,604.4 47
AU 60,449.03 30,142.7 18
BE 36,319.11 27,697.6 23
CA 172,168.40 29,662.3 40
CH 18,688.10 33,944.5 76
CZ 27,319.48 17,758.5 3
DE 238,071.60 27,614.5 677
DK 14,350.03 28,553.2 13
ES 70,184.00 21,893.7 9
FI 22,716.21 25,277.5 19
FR 152,292.30 26,540.2 201
GB 141,185.00 25,531.4 118
GR 15,769.13 19,871.1 1
HU 19,381.93 13,146.7 3
IE 8752.0010 25,084.9 2
IT 118,070.40 25,155.1 78
JP 297,755.60 26,731.9 791
KR 89,797.69 14,605.5 20
LU 3049.21 51,321.4 5
MX 89,503.13 10,352.5 1
NL 54,755.84 30,063.6 39
NO 18,380.55 38,202.5 6
NZ 10,371.44 21,991.4 2
SE 34,049.97 27,576.3 56
US 1,402,793 33,953.7 526

that if the stocks are zero, the log is not defined. To address this,
we introduce two dummy variables which takes the value 1 if the
respective stock of knowledge is zero.13

5.3. Results

The results emerging from the estimations of Eq. (30) are sum-
marized in Table 3. All models include technology, country and time
fixed effects, as well as the dummy variables accounting for instances
where the knowledge stocks are zero. All of these are not reported
but available from the authors upon request. Column 1 shows the
results of a reduced model where patent counts is regressed on
expenditure. The coefficient on energy expenditure is above unity
and highly statistically significant. Inclusion of GDP per capita as a
control variable (column 2) slightly lowers this estimate, but does
not alter it drastically.

Column 3 shows the results of the model including all determi-
nants of innovation as emerging from our theoretical model: energy
expenditure, own knowledge stock and foreign knowledge stock. The
coefficient on energy expenditure falls to 0.53, that a 10% increase in
energy expenditure is associated with a 5.3% increase in number of
patents. The coefficient remains significant at 1% significance level.
The estimated coefficients for the own knowledge are in line with
the findings of Popp (2002), Verdolini and Galeotti (2011) and Porter
and Stern (2000) and suggest that a 10% increase in the domestic
knowledge stock is associated with a 6.3% increase in patented ideas.
This estimate is indeed very similar to that obtained by Popp (2002),
which ranges between 7% and 9%. The model also confirm the role of
foreign knowledge spillovers for the domestic innovation process. A

13 Own knowledge stocks are zero for each country until that country obtains a least
one patent in each technology. Foreign knowledge stocks are zero if no country i�=j
has patents in a given technology. Over the whole sample period, the percentage of
observations for which the foreign knowledge stock is zero is 1.3%. On the contrary,
the percentage of observations for which the own knowledge stock is zero is much
higher, around 41%. This emerges because certain countries have low patenting levels
(see Tables 1 and 2).



J. Witajewski-Baltvilks et al. / Energy Economics 68 (2017) 17–32 27

Table 3
The dependent variable is the count of patents in energy intensive technologies. ***,
**, * indicate significance of the coefficients at the 1%, 5% and 10% levels, respectively.
All regressions contain full set of country, time and patents category dummy variables.
All variables are transformed with a log function. The estimations are obtained using a
Maximum Likelihood estimator. The probability distribution assumed is the negative
binomial. Standard errors clustered at the country level are reported in parenthesis.

Granted EPO

(1) (2) (3) (4) (5)

Energy expenditure 1.523*** 1.113*** 0.532*** 0.363*** 0.378***
[0.111] [0.131] [0.0903] [0.102] [0.102]

Own knowledge 0.655*** 0.656*** 0.656***
[0.0135] [0.0136] [0.0136]

Foreign knowledge 0.182*** 0.180*** 0.179***
[0.0314] [0.0314] [0.0313]

GDP per capita 1.549*** 0.787*** 0.786***
[0.225] [0.171] [0.171]

Policy index 0.0192**
[0.00898]

Number of observation 10,400 10,244 10,400 10,244 10,244

10% increase in foreign knowledge is associated with a 1.8% increase
in domestic innovation.

To test the robustness of this results to issues of omitted variable
bias, in columns 4 and 5 we include GDP per capita and a pol-
icy index built following Verdolini and Bosetti (2017) which counts
major environmental policies present in a country at given point in
time. The inclusion of these two regressors neither changes the signs
nor the significance level of the coefficients associated with energy
expenditures, although they reduce its size. As expected, both GDP
and policy index have a positive and significant effect on energy-
saving innovation. We also provide some robustness checks by run-
ning similar regression with different patent counts (see Table 6 in
the Appendix). Specifically, we use the count of PCT applications and
the count of patents granted by the USPTO. Results are similar to
those presented in Table 3 although in the specification using USPTO
the coefficient on energy expenditures is very small and not precisely
estimated.

To get a flavor of the economic implications of this result, we
combine them with the predictions of the U.S. Energy Information
Administration (EIA, 2012). The EIA predicts that the real energy
expenditure will increase by 21% between 2005 and 2040. According
to our estimates, this would induce the total annual flow of patents
available for US economy by 7%, on average, from 1298 to 1393 (i.e.
95 more patents).

The models presented so far use dynamics in economy-wide
energy expenditures as a proxy for the dynamics in energy expen-
ditures of energy intensive sectors. The assumption behind such an
empirical choice is that energy consumed in energy intensive pro-
cesses is proportional to total energy consumption in the economy,
hence using the second can inform on the effect of the first on inno-
vation. To test the robustness of this assumption, we disaggregate
our data in industrial patents14on and household-related patents.15

For the former, we then use a variable measuring industrial energy
use, while for the latter we use household energy use. The results
of this exercise are reported in Table 4. The signs of all coefficients
are in line with the theoretical predictions. A 10% increase in indus-
trial energy expenditure is associated with an increase in the patents
count by 2.2%. The effect is lower then predicted in the regression

14 The patent’s categories included in this group are Continues Casting, Cement pro-
duction, Combustion, Fuel Cell, Heat Exchange, HeatPump, Injection, Metallurgical
processes, Paper production, Stirling engines, recovery of waste heat.
15 The patent’s categories included in this group are buildings and lighting.

Table 4
The dependent variable is the count of patents in energy intensive technologies. ***, **,
* indicate significance of the coefficients at the 1%, 5% and 10% levels, respectively. All
regressions contain full set of country, time and patents category dummy variables. All
variables are in logs. The estimations are obtained using a Maximum Likelihood esti-
mator. The probability distribution assumed is the negative binomial. Standard errors
clustered at the country level are reported in parenthesis.

Granted EPO

Aggregate Industry Household

(1) (2) (3)

Energy expenditure 0.363*** 0.222*** 0.156
[0.102] [0.0604] [0.442]

Own knowledge 0.656*** 0.666*** 0.442***
[0.0136] [0.0143] [0.0584]

Foreign knowledge 0.180*** 0.207*** 0.385***
[0.0314] [0.0326] [0.141]

GDP per capita 0.787*** 0.874*** 1.996***
[0.171] [0.158] [0.704]

Number of observations 10,244 8668 1576

with aggregated expenditure, but its economic significance remains
substantial. We also find that residential energy expenditure is pos-
itively correlated with household related energy patents. However,
the coefficient is not statistically significant.

We now move to examining the effect of induced innovation
on energy savings. In this second stage regression, we use the pre-
dicted innovation levels fitted using the model specified in Column
4 of Table 3. The estimates, reported in Table 5 indicate that a thou-
sand additional “induced” patents, which is approximately the total
annual flow of new patents available for US economy in 2010, lead
to a 0.52% decline in energy demand. Note that the average annual
decline of US energy intensity in years 2009–2011 was 1.87%. Our
results then imply that induced directed technological change can
explain around one third of the total decline in US energy intensity.
The effect is statistically significant at the 10% level. Using different
patent counts as proxies for innovation, we find similar results. For
PCT applications, the magnitude is similar, but the coefficient more
precisely estimated (Table 8 in the Appendix, columns (1) and (2)):
a thousand induced patents are associated with a 0.60% decline in
energy intensity. The estimated effect in the USPTO specification is
0.18% (Table 8 in the Appendix, columns (3) and (4)).

Putting this in perspective, using the EIA predictions, we find
that an additional 95 patents per year induced by increased energy
expenditure by 2040 (which we calculated from the first stage
regression) would translate into an increase in the annual energy
efficiency growth rate by 0.05 percentage points. This implies that,
if growth of GDP and growth of energy price in 2040 is the same as
in 2011, the energy intensity decline would increase from 1.87% to
1.92% per annum. Again, this simple calculations ignore the effect of
spillovers. They also do not take into account that energy efficiency
growth would reduce the consumption of energy and energy expen-
diture. Accounting for these effects is not easy through a simple cal-
culation. Hence, we accounted for this effects in the counter-factual
exercise presented in Section 5.4.

In Table 5 column (2), we test whether the data shows evidence
for the “fishing out effect” in energy saving R&D, i.e. whether the
effect of patents decline with the accumulation of world knowledge
stock. Since the coefficient on the interaction term between the stock
and patents has a negative sign we conclude that there is no evidence
for the fishing out effect. This means that the effect of a patent on a
growth of energy efficiency does not depend on how many patents
have been invented in past. In other words, patent in 2005 has the
same effect of energy efficiency growth rate as the patent invented
in 80s. Note that our result is restricted to the patents in energy
intensive sectors and may not hold in the entire economy.
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Table 5
The dependent variable is the first difference in (logged) energy consumption. GDP growth and Price growth stand for the first difference in (logged) GDP and energy price index,
respectively. Energy consumption, GDP series and energy price series are smoothed with an HP filter. ***, **, * indicate significance of the coefficients at the 1%, 5% and 10%. The
total patent count is a weighted sum of home and foreign patents predicted from the first stage regression. The term patents X Stock is an interaction term between total patent

count and the demeaned sum of home and foreign knowledge stocks. Standard errors are computed using the formula for the two-stage linear models: Var(a) = s2
(

X̂T X̂
)−1

where s2 = (y − Xa)T( y − Xa)/(n − 1). In our case y is the dependent variable, X is the vector of observed explanatory variables and X̂ has the same elements as X except for the
total patent counts which are replaced by the fitted values from the first stage. Total patent counts and knowledge stock are in thousands patents. Standard errors are adjusted
for the inclusion of generated regressors.

Energy demand

Total Industry Household

(1) (2) (3) (4) (5) (6)

GDP growth 0.499*** 0.494*** 0.499*** 0.494*** 0.503*** 0.505***
[0.0792] [0.0802] [0.0791] [0.0802] [0.0789] [0.0788]

Price growth −0.0953** −0.102*** −0.0949** −0.102*** −0.104*** −0.103***
[0.0349] [0.0356] [0.0351] [0.0359] [0.0335] [0.0332]

Total patents count −0.00518* −0.000107 −0.00535* 1.35e−05 −0.162 −0.206*
[0.00274] [0.00352] [0.00279] [0.00362] [0.1207] [0.1185]

Patents × Stock −0.00322 −0.00338 0.515
[0.00220] [0.00214] [1.1095]

Constant 0.00523** 0.00350 0.00525** 0.00345 0.00457** 0.00493**
[0.00207] [0.00212] [0.00206] [0.00213] [0.00206] [0.00199]

Number of observations 688 688 688 688 688 688
R2 0.430 0.437 0.430 0.437 0.427 0.428

Finally, as for the first stage regression, we present the results
of the disaggregated analysis for industry and household samples.
For industry, the estimates imply that one thousand additional
patents arising due to energy expenditure growth lead to a 0.535%
decline in energy consumption. The effect is statistically significant
at 10% significance level. For the household data, the effect is much
more substantial: a hundred patents “induced” patents decrease
the energy demand by 16.2%, although it is not statistically signif-
icant. One potential explanation for this pattern is that the effect
in industry is limited by the effect of patents on international com-
petitiveness: an increase in efficiency in energy intensive sectors
in one country implies that these sectors become more competi-
tive relative to similar sectors in other countries. This leads to an
increase in global market share of the more efficient firms, in the
production and hence in the demand for energy. As a result ini-
tial energy savings may be partly offset and the total effect is weak.
Testing this hypothesis is indeed an important avenue of future
research.

5.4. Integrated assessment model

Here, we demonstrate how the theoretical model and its cali-
bration could be used in large scale Integrated Assessment Models
(IAMs). The reduced form of the model we estimated above allows
to translate changes in energy expenditure to the shifts of the
Marshallian demand for energy. For this reason, it can be used to
endogenize energy efficiency improvements in IAMS, which are cur-
rently modeled as exogenous in most IAMs . This is clearly a major
limitation of these modeling tools. Endogenizing energy efficiency
improvement thus represents an important improvement of IAMs,
as it would allow to produce more reliable projections on mitigation
costs.

The implementation of this idea will be demonstrated by embed-
ding our model in the WITCH model (Bosetti et al., 2009) . WITCH is
an Integrated Assessment Model which allows to project the conse-
quences of climate and energy policies on macroeconomic variables
such as GDP, consumption and investment as well as on the struc-
ture of production in the energy sector. The model assumes that
there are 12 macro-regions of the world. In each region, there is a
distinct central planner who maximizes the welfare of consumers by

choosing, among other variables, the optimal level of investment in
energy technologies, the quantity of resources used, the aggregate
investment and the R&D effort, subject to a range of economic and
physical constraints. The central planners do not take into account
the externalities of their actions. For instance, use of coal in Western
Europe produces CO2 emissions which reduce the welfare in other
regions, but in the Business As Usual scenario the central planner
in Western Europe does not take this effect into account. The most
important feature of the WITCH model from the perspective of this
study is that it endogenizes the growth of energy prices, which we
have treated as an exogenous variable in the previous sections. A key
feature of the model is a detailed structure of the energy generation
sector with endogenous costs of primary non-renewable resources
(oil, gas, coal, uranium) and secondary electricity generating tech-
nologies. For wind and solar technologies, the costs of installations
falls over time due to learning-by-doing effects (large scale deploy-
ment of a technology brings cost reduction). For advanced energy
generation technologies, the costs depend both, on learning by doing
and learning by searching (i.e. a central planner may reduce the costs
of installation by devoting resources to R&D effort on developing
these technologies).

To link our theoretical model with WITCH, we insert its cali-
brated reduced form (Eqs. (11) and (14)) as additional constraints in
the WITCH model. The constraints have to be observed by the cen-
tral planner in the equilibrium. Consequently, the prediction of the
amended WITCH are designed to agree with the prediction of the
model discussed in Sections 3 and 4: an increase in energy expendi-
ture will result in the acceleration of energy efficiency growth.

The strategy of including the reduced form models in IAMs is not
new. The most common example in this respect is the use of learn-
ing curves. IAMs do not model the learning process explicitly as in
the seminal model by Arrow (1962). However, they can take into
account the main prediction of Arrow’s model simply by including an
equation which relates the cost of a technology and the cumulated
installed capacity of that technology. A similar approach is used in
Witajewski-Baltvilks et al. (2015).

Eq. (27) is inserted in the WITCH model in the form of first dif-
ference (every variable is replaced by the difference between the
value of this variable at time t and at time t − 1). Since WITCH
does not predict growth of wages, we replaced growth of wage in
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this equation with the growth of GDP. This equation predicts the
inflow of innovations based on the information from WITCH on the
change in energy expenditure and GDP. The coefficients in these
equations take the values estimated in Column 4 from Table 3 except
that, in line with the prediction of the theoretical model, we assume
that the coefficient on GDP is equal to the coefficient on energy
expenditure.

Next, we evaluate the effect of innovation inflow on energy effi-
ciency in the WITCH model. WITCH assumes that the final good is
produced using energy and the composite of capital and labour:

y =
(
(A ∗ EN)

q + (B ∗ KL)q
) 1
q .

This specification has two implications. First, since A represents
a unit productivity of energy both in our theoretical model present
above and in the WITCH model, we allow it to evolve according to
the specification in Eq. (28) in Section 3: D log (At) = v

Kt
t

(
Pt + sPf

t

)
.

Second, the demand for energy in the theoretical model (Eq. (14))
has exactly the same functional form as the demand for energy in
the WITCH model. Thus we can use the estimates of coefficients in
Eq. (14) obtained in the empirical section to calibrate specification
Eq. (28). The coefficient on patents in Marshallian demand regres-
sion in column 1 from Table 5 corresponds to the term q

1−q log(v)
(assuming t = 0, as suggested by the empirical results and a = 1
as assumed in WITCH production function). To recover parameter v,
we have two options: one is to take q estimated in the regression,
however this would not be consistent with the remaining calibration
of WITCH. The alternative, which we follow, is to assume q = −1, in
line with WITCH calibration.

We run two simulations: in the first simulation, in line with the
predictions of our model, we allow induced innovations to affect
energy demand. In the second simulation, we run a counter-factual
experiment and study what is the predicted path of energy efficiency
growth if the induced technological change is switched off, i.e. if
induced innovations has no impact on energy demand.

The results are presented in Fig. 4 The figure plots the energy
efficiency growth – defined as the growth of GDP to energy ratio –
over time for the USA. In the case of Induced Technological Change
(ITC) switched off, except for the first periods marked by the reces-
sion and the recovery, the model predicts a slowly declining growth

Fig. 4. Effect of induced innovations on energy efficiency (annualized growth rate of
GDP/primary energy). The 1995-2005 historical average is computed from the data in
2011 Annual Energy Review by U.S. Energy Information Administration (EIA, 2012).

of energy efficiency. In contrast, the model with ITC predicts a sta-
ble growth of energy efficiency, oscilating around the value of 2.15%
annual growth and reaching 2.3% annual growth in 2085. This steady
increase in the distance between the two scernarios results from
the stable increase in energy expenditures predicted by WITCH,
given the rising extraction costs of non-renewable fossil resources.
Increase in energy system costs leads to a stable increase in marginal
benefit to energy saving R&D investment and increase in the flow
of energy saving patents. Greater innovativeness translates into sig-
nificantly higher energy efficiency growth: endogenizing technical
change essentially doubles the rate of energy efficiency, allowing for
a much smaller energy system for the same economy, with major
benefits for emissions and climate change.

The prediction of stable increase in growth rate may resemble the
scale effect which has been noted and criticized by Jones (1995) in
the context of TFP growth. Jones argued that while the first genera-
tion of endogenous growth models predicted an increase in the TFP
growth rate after increase in the size of population, no such effect
was observed in the data. Jones then suggested that the mispre-
diction of endogenous growth models originates from ignoring the
fishing-out effect, i.e. fall in the quality of innovations over time. Note
however, that we did allow for fishing out effects in our regressions
and we did not find any evidence for the decrease in the value of
past innovations despite the fact that number of patents in our sam-
ple was growing over time. This may suggest that energy efficiency
growth, in contrast to TFP growth, is robust to Jones’ criticism and
may feature scale effect.

6. Conclusions

The aim of this paper was to study the drivers and consequences
of price-induced technological change in the efficiency of energy use.
To this end, we propose a model with is related to the DTC model by
Acemoglu et al. (2012) and Acemoglu et al. (2014a,b) but differs from
these contributions because it focuses on endogenous technologi-
cal change in energy-intensive industries supplying a price inelastic
good. In the theoretical part of the paper we show the following
results. First, the equilibrium choice of spending in R&D devoted to
innovations in energy-intensive industries is proportional to energy
expenditure. Second, if energy-intensive goods face inelastic demand
then any productivity improvement in energy-intensive sector shifts
the Marshallian demand for energy down. Third, in the long run,
the innovative activity in the energy-intensive sector depends pos-
itively on the long-run growth of energy cost (and not on its level).
Finally, the long run energy share of income, depends positively on
the long-run growth of energy cost. Level-increase in energy cost has
no effect on the long-run energy share of income. The reason for this
last result is that higher energy costs temporarily increase energy
spending, inducing more innovations and shifting the demand for
energy down until the initial (steady state) level of energy share is
restored.

In the second part of the paper, we show how these insights from
our theoretical model can be used to improve the calibration of the
models with endogenous technological change such as Popp (2004)
and Bosetti et al. (2007 and 2009). To this end, we first estimate the
key parameters of the model through a two-stage estimation proce-
dure. The first stage examines the effect of energy expenditures and
spillovers on energy saving patents. This stage is similar to the empir-
ical model used in Popp (2002) and Verdolini and Galeotti (2011),
although our econometric specification is directly derived from a
structural model. The second stage uses the predicted innovation val-
ues from the first stage to study the impact of induced innovation
on the energy demand. The result for the first stage of our pre-
ferred specification (column 4, Table 3 predicts that a 10% increase
in energy expenditure leads to a 3.6% increase patents. The result
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is robust to changes in the empirical specification. The model pre-
dicts a statistically significant relation between production of patents
and accumulation of past knowledge, both within the country and
abroad. A 10% increase in the stock of past patents increases the
probability of patenting by 6.6%. Regarding the second stage, the
flow of patents is negatively correlated with the growth of energy
demand. The point estimates suggest that an increase in number of
patents by a thousand leads to a 0.52% reduction in energy use. We
do not find any evidence for the fishing-out effect: increase in the
stock of past patents does not have any negative effect on the energy-
saving impact of new patents. Plugging in the empirically calibrated
model into a large scale integrated assessment model, we are able to
numerically show that DTC exerts a major influence on the growth
of the energy system.

Our study suggests that the induced technological change in
energy intensive industries has the potential to reduce energy
demand and can thus play an important role in the transition to
the low-carbon future. However, the topic clearly requires further
investigation. For instance, one can explore how the energy-saving
research effort in one country depends on the energy prices (and
perhaps also environmental taxes) in the other countries. Can the
countries which are not on the technological frontier freely use
the energy-saving innovation induced by the restrictive environ-
mental policy and high energy prices in the frontier countries?
Or, as proposed in the recent paper by Acemoglu et al. (2014a,b),
do they need to invest in their own energy-saving R&D in order
to acquire a capacity to adapt new innovations? We believe that
understanding the causal chain linking energy prices and taxes,
technological change and energy intensity as well as the analysis
of the spillover and research complimentarity effects between sec-
tors and countries will mark an interesting path of economic
research.
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Appendix A

A.1. IPC codes

• Waste heat:

– F01 K 17 Steam engine plants; Steam accumulators; Engine
plants not otherwise provided for; Engines using spe-
cial working fluids or cycles/Use of steam or condensate
extracted or exhausted from steam engine plant

– F01 K 19 Steam engine plants; Steam accumulators; Engine
plants not otherwise provided for; Engines using special
working fluids or cycles/Regenerating or otherwise treating
steam exhaust from steam engine plant

– F01 K 23 Steam engine plants; Steam accumulators; Engine
plants not otherwise provided for; Engines using special
working fluids or cycles/Plants characterized by more than
one engine delivering power to the plant, the engines being
driven by different fluids

– F02G Hot gas or combustion product positive-displacement
engine plants; Use of waste heat of combustion engines, not
otherwise provided for

• Heat Pumps:

– F25B 13 Refrigeration machines, plants or systems; Com-
bined heating and refrigeration systems, e.g. heat pump
systems/Compression refrigeration machines, plants, or sys-
tems, with reversible cycle, e.g. for use as heat pumps

– F25B 29 Refrigeration machines, plants or systems; Com-
bined heating and refrigeration systems, e.g. heat pump
systems/Combined heating and refrigeration systems, e.g.
heat-pump systems

• Heat exchange:

– F28 Heat exchange in general

• Continuous casting:

– B22D 11 Casting of metals; Casting of other substances by
the same processes or devices/Continuous casting of metals,
i.e. casting in indefinite lengths

• Metallurgical processes:

– C21D Modifying the physical structure of ferrous metals;
General devices for heat treatment of ferrous or non-ferrous
metals or alloys; Making metal malleable by decarburisation,
tempering, or other treatments

– C22B 4 Production or refining of metals; Pretreatment of raw
materials/Electrothermal treatment of ores or metallurgical
products for obtaining metals or alloys

– C23C Coating metallic material; Coating material with
metallic material; Surface treatment of metallic material by
diffusion into the surface, by chemical conversion or substi-
tution; Coating by vacuum evaporation, by sputtering, by ion
implantation or by chemical vapour deposition, in general

– C25C Processes for the electrolytic production, recovery or
refining of metals; Apparatus therefor

– C25D Processes for the electrolytic or electrophoretic pro-
duction of coatings; electroforming; apparatus therefor Pro-
duction of aluminum:

– C22B 21 Production or refining of metals; Pretreatment of
raw materials/Obtaining aluminum

• Paper production:

– D21C 11 Production of cellulose by removing non-cellulose
substances from cellulose-containing materials; Regenera-
tion of pulping liquors; Apparatus therefor/Regeneration of
pulp liquors

• Combustion:

– F02 Combustion engines; Hot-gas or combustion-product
engine plants

– F02B 19 Internal-combustion piston engines; Combustion
engines in general/Engines with precombustion chambers

– F23 Combustion apparatus; Combustion processes
– F23L 7 Air supply; Draught-inducing; supplying non-

combustible liquid or gas/Supplying non-combustible liquid
or gases, other than air, to the fire, e.g. oxygen, steam
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– F23L 15 Air supply; Draught-inducing; supplying non-
combustible liquid or gas/Heating of air supplied for
combustion

– F23N 5 Regulating or controlling combustion/Systems for
controlling combustion

A.2. Additional empirical results

Table 6
The dependent variable is count of patents related to one of demand for energy patent
categories. ***, **, * indicate significance of the coefficients at the 1%, 5% and 10%
levels, respectively. All regressions contain full set of country, time and patents cate-
gory dummy variables. All variables are in logs. The estimations are obtained using a
Maximum Likelihood estimator. The probability distribution assumed is the negative
binomial. Standard errors clustered at the country level are reported in parenthesis.

Granted Applications Granted
EPO PCT USPTO

(1) (2) (3)

Energy expenditure 0.363*** 0.264** 0.0263
[0.102] [0.110] [0.0775]

Own knowledge 0.656*** 0.629*** 0.741***
[0.0136] [0.0130] [0.0114]

Foreign knowledge 0.180*** 0.0923*** 0.183***
[0.0314] [0.0267] [0.0251]

No past patents. −0.602*** −1.031*** −1.195***
[0.0645] [0.0633] [0.0801]

No for. knowledge −0.887*** −0.0430 −1.038*
[0.259] [0.178] [0.599]

GDP per capita 0.787*** 0.350* 0.405***
[0.171] [0.187] [0.139]

Number of observations 10,244 10,244 10,244

Table 7
The dependent variable is count of patents related to one of demand for energy patent
categories. ***, **, * indicate significance of the coefficients at the 1%, 5% and 10% lev-
els, respectively. All regressions contain full set of country, time and patents category
dummy variables. All variables are transformed with a log function. The estimations
are obtained using a Maximum Likelihood estimator. The probability distribution
assumed is the negative binomial. gTS × Expenditure stands for the interaction term
between energy expenditure and the growth of the total knowledge stock (the sum of
own and foreign knowledge stocks). ‘Share of own ideas’ stands for the share of home
ideas in the total inflow of new knowledge. Standard errors clustered at the country
level are reported in parenthesis.

Granted EPO

(1) (2) (3) (4)

Energy expenditure 0.363*** 0.211** 0.210** 0.218**
[0.102] [0.102] [0.102] [0.103]

Own knowledge 0.656*** 0.704*** 0.704*** 0.701***
[0.0136] [0.0140] [0.0140] [0.0140]

Foreign knowledge 0.180*** 0.214*** 0.215*** 0.198***
[0.0314] [0.0333] [0.0333] [0.0330]

No past patents. −0.602*** −0.780*** −0.779*** −0.816***
[0.0645] [0.0723] [0.0723] [0.0723]

No for. knowledge −0.887*** −0.278 −0.278 −0.378
[0.259] [0.585] [0.585] [0.522]

GDP per capita 0.787*** 0.654*** 0.655*** 0.663***
[0.171] [0.171] [0.171] [0.172]

gTS × Expenditure 0.0128*** 0.0128***
[0.00270] [0.00270]

Share of own ideas 6.50e−05 6.64e−05
[8.04e−05] [8.11e−05]

Number of observations 10,244 9812 9812 9884

Table 8
The dependent variable is a first difference of (logged) energy consumption. Energy
consumption, GDP series and energy price series are smoothed with an HP filter. ***,
**, * indicate significance of the coefficients at the 1%, 5% and 10%. The total patent
count is a weighted sum of home and foreign patents predicted from the first stage
regression. The term patents × Stock is an interaction term between total patent count
and the demeaned sum of home and foreign knowledge stocks. Standard errors are
adjusted for the inclusion of generated regressors. Total patent counts and knowledge
stock are in thousands.

Energy demand

Applications Granted
PCT USPTO

(1) (2) (3) (4)

GDP growth 0.484*** 0.485*** 0.495*** 0.490***
[0.0809] [0.0809] [0.0815] [0.0825]

Price growth −0.0980*** −0.0913*** −0.107*** −0.114***
[0.0322] [0.0320] [0.0323] [0.0332]

Total patents count −0.00602** −0.00850* −0.00180 −4.45e−05
[0.00280] [0.00462] [0.00127] [0.00145]

Patents × Stock 0.00237 −0.000602***
[0.00280] [0.000199]

Constant 0.00502** 0.00554** 0.00494** 0.00342
[0.00195] [0.00200] [0.00233] [0.00228]

Number of observations 688 688 688 688
R2 0.435 0.435 0.429 0.434
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