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Marinemicro-organisms have been playing highly diverse roles over evolutionary time: they have defined the
chemistry of the oceans and atmosphere. During the last decades, the bioreactors with novel designs have
become an important tool to study marine microbiology and ecology in terms of: marine microorganism
cultivation and deep-sea bioprocess characterization; unique bio-chemical product formation and
intensification; marine waste treatment and clean energy generation. In this review we briefly summarize
the current status of the bioreactor technology applied in marine microbiology and the critical parameters to
take into account during the reactor design. Furthermore, when we look at the growing population, as well as,
the pollution in the coastal areas of the world, it is urgent to find sustainable practices that beneficially
stimulate both the economy and the natural environment. Here we outlook a few possibilities where
innovative bioreactor technology can be applied to enhance energy generation and food production without
harming the local marine ecosystem.
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1. Introduction

Themarine environment is the largest habitat on earth, accounting
for more than 90% of the biosphere by volume, 71% by area and
harbouring micro-organisms responsible for about 50% of the total
global primary production (Lauro et al., 2009). Marine micro-
organisms have defined the chemistry of the oceans and atmosphere
over evolutionary time: they are playing highly diverse roles in terms
of ecology and biochemistry. However, mainly because of their
extreme living environments compared with terrestrial bacteria, the
vast majority of marine microbes have not yet been cultured (Alain
and Querellou, 2009; Lang et al., 2005; Vartoukian et al., 2010).
Especially, the micro-organisms living in marine sediments usually
have a very small niche for survival, under defined physico-chemical
conditions. Only under these specific conditions, the thermodynamic
energy gained from their metabolic reactions is sufficient to sustain
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themselves. This means that in terms of maintaining or cultivating
these organisms one has to take notice of these specific conditions
with respect to temperature, pressure and fluid/gas flux (Amend and
Shock, 2001). During the last decades, the bioreactors with novel
design elements have been applied for studying and even enriching
marine microbes (Aertsen et al., 2009; Lang et al., 2005). For this
purpose, the bioreactors (as opposed to (fed)-batch incubations) are
the only tools to simulate the natural conditions to a certain extent
with a good control of the environmental factors.

Besides the fundamental research of the marine micro-organisms,
the bioreactor technology has been applied to study water treatment,
the production of bioactive compounds and clean energy (Bond et al.,
2002; Lang et al., 2005). Firstly, the marine micro-organisms have
developed unique cellular properties such as high salt tolerance,
hyperthermo-stability, piezophilicity, and cold adaptivity, due to their
extreme living conditions (Debashish et al., 2005). Their special
Box 1
Bio Electrochemical Systems.

Here, a brief description of a BES with examples applicable to a marin
functioning can be found elsewhere (Logan et al., 2006; Pham et al.,
capable of harvesting electrons from microbial respiration. When curren
current is supplied to the system to stimulate an electrochemical re
electrons can be done because some micro organisms are able to respir
instance Geobacter species are able to respire with Fe3+ hydroxides. O
Organisms that have this trait can also respire with electrodes made of
of micro-organisms is able to use suspended electron shuttles for thei
manganese or other ionic species but can also be indigenously produce
liberated from the anaerobic degradation of organic matter, are deposite
the cathode electrode where they are used for a reduction reaction. In
most common reduction reaction in the cathode is O2 reduction to H
separated in a space to prevent a short circuit. The separation is achiev
separation a pH gradient can develop (acidic in the anode environmen
slower movement of the protons compared to the electrons. This mov
reaction. No research has been presented up till now that investigated
for BES functioning. The amount of energy that can potentially be harve
et al. (2006). The true energy produced is also heavily dependent on
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P and49.3 kgNare released into thewater columnevery year (Caoet al.,
2007). This can lead to eutrophication and an alteration of the
indigenous aquatic ecosystem. Therefore treatment of aquaculture
wastes in marine ecosystems needs to be better managed. Pioneer
works have demonstrated that the reactor technology can be used for
land based aquaculture wastewater treatment on a small scale (Crab
et al., 2007; Lezama-Cervantes and Paniagua-Michel, 2010). However, it
remains challenging to transfer those technologies to marine environ-
ments. Finally, a certain typeof bioreactors, Bio Electrochemical Systems
(BES), are capable of harvesting energy from microbial metabolism by
separating oxidation and reduction reaction in space and time (Box 1).

Over half of the global human population lives and works in a
coastal strip just 200 km wide (Hinrichsen, 1998). Nevertheless the
bioreactor technology for marine (eco)systems has not been well
explored compared to the terrestrial (eco)systems. The purpose of
this review is to give an overview of the possibilities of marine reactor
engineering for an improved use of coastal areas for the production of
valuables and cleaning of wastes, thereby using the present natural
resources in a better and more sustainable fashion for future
generations in the highly populated coastal areas.

2. Bioreactor construction and operation

An overview of 6 types of conventional reactor designs suited for
marine ecosystem research has been summarized in Table 1. Accord-
ing to the research purpose, modifications and combinations of
different configurations in one reactor setup are commonly found.
Regarding the specific characteristics of marine microbial processes,
Table 1
Bioreactor configurations and their applications.

Bioreactor configuration Characteristics

Stirred tank reactor (STR) Batch and continuous fed mode cultivation

Rotating disk bioreactor (RDBR) Bio-film formation on the disk
Collect/remove fast growing/bio-film forming
biomass from the disk
Mimic the environments with interval of oxic/ano

Gas-lift reactor (ALR) Gas-form substrate is fed from the bottom to indu

Membrane reactor (MR) Selective membrane is applied to keep biomass
Continuous high-pressure reactor
(CHPR)

High-pressure pump needed to induce
high-hydrostatic-pressure

High-pressure gas or a compressor can be combin
to induce high-gas-pressure

Bio Electrochemical System (BES) Separation of bioelectrochemical reactions in spac
and time

Clauwaert, P., Verstraete, W. Methanogenesis in membraneless microbial electrolysis cells.
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Pradillon, F., Shillito, B., Chervin, J.C., Hamel, G., Gaill, F. Pressure vessels for in vivo studies
Sarkar, S., Saha, M., Roy, D., Jaisankar, P., Das, S., Roy, L.G., Gachhui, R., Sen, T., Mukherjee, J. E
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Zeng, X., Birrien, J.L., Fouquet, Y., Cherkashov, G., Jebbar, M., Querellou, J., Oger, P., C
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3132–3138.
Zuo, Y., Xing, D.F., Regan, J.M., Logan, B.E. Isolation of the exoelectrogenic bacterium Ochrob
Microbiology, 2008; 74, 3130–3137.
there are special requirements for bioreactor construction and
operation.

2.1. In situ incubations and enrichments

The most straightforward option to enrich and cultivate micro-
organisms of interest is to use the local environment as a “natural lab”
and take the enriched culture for analysis. This approach is mainly
suited for marine micro-organisms whose optimal growth conditions
are not well defined but whose growth locations are. Moreover, these
micro-organisms need to have a natural tendency to attach to surfaces
and grow on them, like some groups of microalgae and anammox
bacteria (Moreno-Garrido, 2008). For example, in order to enrich
marine anammox bacteria, a non-woven fabric was fixed on the
seabed and used as a support surface for the anammox bacteria to
grow (Nakajima et al., 2008). Another example entails the addition of
substrates to an existing sediment-BES for increasing power output
and enriching the microbial community (Rezaei et al., 2007). Besides,
a precise monitoring of the in situ environmental parameters that are
present in the “natural lab” can provide a better understanding of the
relation between the marine micro-organisms and their living
conditions and thus enhance the chances for ex-situ lab cultivation
(de Beer et al., 1997; Wieland et al., 2001).

2.2. Sampling biological resources for marine biotechnology

In the oceanographic literature, different regions of the ocean are
divided into distinct provinces based upon their general physical and
Applications

Bioactive compounds production in large scale (Muffler and Ulber,
2008; Sarkar et al., 2008)
Bioactive compound production (Konopka, 2000)
Cultivation of oligotrophiles/slow-growing bacteria (Konopka, 2000)

xic
ce mixing Characterization of processes with gas substrate involved

(Meulepas et al., 2009)
Cultivation of slow growing bacteria (Meulepas et al., 2009)
Characterization of processes under high-hydrostatic-pressure
(Parkes et al., 2009; Pradillon et al., 2004; Wright et al., 2003;
Zeng et al., 2009)

ed Increase gas-form substrate concentration (Deusner et al., 2009;
Y. Zhang et al., 2010)

e Production of direct electricity or energy carriers (Clauwaert and
Verstraete, 2009; Logan et al., 2006).
Isolation of organisms capable of extracellular electron transfer (EET)
(Zuo et al., 2008).

Applied Microbiology and Biotechnology, 2009; 82, 829–836.
ncubation of enrichedmarinemicrobial communities performing anaerobic oxidation of

systems. Current Opinion in Microbiology, 2000; 3, 244–247.
raete, W., Rabaey, K. Microbial fuel cells: methodology and technology. Environmental Science &

Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.

ng immobilized substrate and purification of sulfite oxidase by application of membrane

le prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-
G). Environmental Microbiology, 2009; 11, 3140–3153.
of deep-sea fauna. High Pressure Research, 2004; 24, 237–246.
nhanced production of antimicrobial compounds by three salt-tolerant actinobacterial
008; 10, 518–526.
the biosynthesis of natural products. Biomolecular Engineering, 2003; 20, 325–331.
ambon-Bonavita, M.A., Xiao, X., Prieur, D. Pyrococcus CH1, an obligate piezophilic
2009; 3, 873–876.
hane rate in a continuous high-pressure bioreactor. Bioresource Technology, 2010; 101,

actrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental
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chemical characteristics (Schrenk et al., 2010). In each province there
are distinct groups of micro-organisms living 1) in free suspension; 2)
attached to flocculated material; 3) in the sediment; 4) on animate
and inanimate surfaces; and 5) as partners in symbiosis or in
commensalism with other marine organisms (DeLong, 1997; Lang
et al., 2005). Depending on the origin, specific sampling strategies
have to be taken into account to ensure the successful extraction of
themixedmicrobial cultures. One research line is to develop sampling
devices to take the sediment or water out of the ocean without
changing the conditions, for example keep the same pressure and
temperature as in situ. For this purpose, themost challenging task is to
take samples from the deep-sea where the pressure is highly elevated
and plays an important role on the microbial diversity (Box 2). Parkes
and co-workers have developed a system to perform sampling,
cultivation, isolation and sub-sampling without depressurization
(Parkes et al., 2009). The success of this system opens new
possibilities to study the depressurization-sensitive, anaerobic, piezo-
philic prokaryotic communities. Another research line is to develop
techniques to separate different species from each other starting from
the original mixed-culture samples. For this purpose, methods based
on the “dilution-to-extinction” concept are commonly applied. One
example is the so-called high-throughput culturing (HTC) method,
which was to dilute natural communities of micro-organisms to a
known number, ranging from 1 to 10 cells per well, and then examine
the potential microbial growth in each well (Connon and Giovannoni,
2002). This HTC approach has been successfully applied to isolate
marine bacterial from SAR11 clade, the marine group I Crenarchaeota
and the OM43 clade (Connon and Giovannoni, 2002; Konneke et al.,
2005; Stingl et al., 2007).
2.3. Nutrient level

Composing a correct growthmedium remains a difficult task when
aiming at the maintenance of a high activity and/or at the enrichment
of specific species. Special attention has to be given to the fact that for
some marine species a high activity is not necessarily linked with a
high growth rate because of their low biomass yield. For example, the
marine anaerobic methane oxidizing consortia, achieve a biomass
yield per mol of the methane oxidized which is 23 times lower
compared to the aerobic methane oxidizing consortia from a
wastewater treatment plant (Nauhaus et al., 2007; van der Ha et al.,
Box 2
Thermodynamic parameters of deep sea live.

One essential physical parameter determining live in marine ecosystem
with water depth in the sea: there is about 0.1 MPa pressure additional
almost linear correlation with the hydrostatic pressure. For example, a
are atmosphere (0.1 MPa) and 10 MPa; resulting in the saturation con
(Duan and Mao, 2006). The pressure is also directly influencing the ty
bacteria are living at the surface or in shallow water; piezophilic bacte
piezo-tolerant bacteria are living in between. Another essential parame
penetrate a few to hundreds of meters down in the seawater, therefore
at different water depths, different compounds are available as electr
microbial growth. The standard Gibb's free energy (4G°0) is in the firs
(Eq. (1)). Microorganisms prefer to carry out the reaction with the highe
first; below a few centimetres in the sediment, the anaerobic zone sta
dominant electron acceptors to support the growth of the local ecosy

Reference

Duan, Z.H., Mao, S.D. A thermodynamic model for calculating methane
aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochim C
2010). Nutrient levels in pelagic waters are not uniform. Large
expanses of water are relatively nutrient depleted (e.g. open Atlantic
Ocean water), whereas other zones are relatively nutrient rich (e.g.
Pacific Ocean coastal water) (Lauro et al., 2009). Manymarine bacteria
have evolved to grow optimally at either high (copiotrophic) or low
(oligotrophic) nutrient concentrations, enabling different species to
colonize distinct trophic habitats in the ocean (Lauro et al., 2009).
Most of the micro-organisms found in the sea are halophiles, which
have a specific requirement for the sodium ion (about 3% or even
higher) and other minerals as the trace elements to maintain their
metabolic activity (Lang et al., 2005). To neutralize the sodium ion, a
chloride ion is often used. Minimal salt medium does not always
suffice for growing or maintaining certain species. Some marine
species also have a requirement for complex carbon sources, including
proteins or polysaccharides (Lang et al., 2005). Finally, experimental
evidence showed that mixed substrates improve the metabolic
flexibility of the microorganisms toward changes in the environment
and promote a faster growth in an oligotrophic environment (Egli,
2004). Therefore a complex medium composition, but not necessarily
at a high concentration of each substrate (in the order of mg/L),
appears to be appealing for slow-growing marine microbes (Law and
Button, 1977).

On the other hand, if the harvesting of secondarymetabolites is the
main purpose, the specific nutrient supply to sustain growth (e.g.
carbon or nitrogen source) sometimes has to be limited to keep the
cells in the stationary phase, while the substrate needed for the
formation of the desired product has to be present in excess. The cells
at tropophase (or growth phase) generally have their secondary
metabolism, such as antibiotic production, “switched off” until they
reach the idiophase (or production phase) (Marwick et al., 1999).
2.4. Temperature

Almost 95% of the seafloor lies in water depths where the
temperatures are close to freezing (−1 °C to 4 °C) (Jorgensen and
Boetius, 2007). Despite the low global temperature in the deep sea,
the hydrothermal vents are hotspots, where the temperature can
reach up to 1000 °C, these were discovered some 30 years ago
(Jorgensen and Boetius, 2007). Water remains liquid in these regions
due to the high hydrostatic pressure (Rothschild and Mancinelli,
2001) (see also Box 2 on thermodynamics). Although the temperature
s is the hydrostatic pressure. The hydrostatic pressure correlates
from 10 m water. At the same time, the dissolvability of gas has an
t the water surface and at a water depth of 1000 m, the pressures
centrations of methane 1.3 mM and 127 mM in seawater at 4 °C
pes of bacteria habituating different water depths: non-piezophilic
ria are living at the bottom of the sea and in the sediment; while
ter is the light density: depending on water turbidity, sunlight can
phototrophic and non-phototrophic zones are also defined. Besides,
on acceptors in the microbiological reactions to supply energy for
t order of the standard redox potential (4E°0): 4G°0=−nF4E°0,
st possible redox potential difference. Generally oxygen is depleted
rts. After oxygen, iron, manganese, nitrate and sulfate became the
stems.

solubility, density and gas phase composition of methane-bearing
osmochim Acta 2006; 70, 3369-3386.



Fig. 1. The scheme of a typical high-pressure bioreactor system (modified from Y. Zhang
et al. (2010)).
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close to the thermal vents decreases fast because of the high thermal
conductivity of water (0.6 W/m/K), cell growth over 100 °C can be
found close to the vents. The thermophilic vent archaea strain 121 is
able to grow at 121 °C at ambient pressure (Kashefi and Lovley, 2003).
Recent study has demonstrated that the elevated hydrostatic pressure
extends the temperature maximum for possible cell proliferation of a
hyperthermophilic methanogen (Methanopyrus kandleri strain 116)
from 116 °C at 0.4 MPa to 122 °C at 20 MPa (Takai et al., 2008). To
maintain the correct incubation temperature of the marine organisms
in the lab, either the reactor is placed inside a thermal controlled
incubator (Y. Zhang et al., 2010) or surrounded by a layer filled with
temperature-controlled water (Meulepas et al., 2009). Thesemethods
can normally control the temperature in a range of 1–80 °C. If the
incubation temperature has to be even higher, which is not feasible by
hot water, a hot air incubator can be applied (Kashefi et al., 2002;
Reysenbach et al., 2006).

2.5. Pressure

Pressure is another important thermodynamic parameter, espe-
cially at higher depths in themarine environment (Box 2). Indeed, the
largest fraction of the ocean is at depths of more than 200 m
(Whitman et al., 1998) and 75% of the marine biosphere is located
below 1000 m depth (Aertsen et al., 2009). Marine micro-organisms
can live up to about 110 MPa hydrostatic pressure which is three
orders of magnitude higher than the atmospheric pressure (Aertsen
et al., 2009; Lauro and Bartlett, 2008; Simonato et al., 2006; Zeng et al.,
2009).

Regarding the design of a high-pressure reactor, both high-
hydrostatic-pressure and high-gas-pressure need to be considered.
For the piezophilic bacteria whose substrates are easily dissolved at
atmospheric conditions, hydrostatic pressurization is sufficient to
alter their gene expression to achieve maximum cell growth. High-
hydrostatic-pressure can easily be built up with a standard high-
pressure liquid chromatography (HPLC) pump, and released by a
back-pressure regulator (BPR) (Fig. 1). Depending on the research
purpose, different types of high-hydrostatic-pressure reactors have
been constructed: the pressurized chemostat (Grossart and Gust,
2009; Jannasch et al., 1996), pressurized thermal gradient block
(Kallmeyer et al., 2003), and continuous-mode high-hydrostatic-
pressure reactor (Parkes et al., 2009). For certain piezophilic
microorganisms, their main substrates are under gaseous form and
as a consequence in most cases poorly dissolvable under atmospheric
pressure (such as methane or hydrogen). Hence an in vitro high-gas-
pressure is needed to enhance their metabolic activity and growth
rate. For example, anaerobic methanotrophs have an apparent affinity
(KM) of 37 mM for methane, which equals about 3 MPa methane
partial pressure (Y. Zhang et al., 2010). To obtain a high dissolved gas
concentration, two approaches can be considered: a free gas-phase in
the high-pressure incubation vessel with biomass (Nauhaus et al.,
2002); or pre-dissolve gas under high-pressure in a conditioning
vessel before transferring the saturated medium to the incubation
vessel (Y. Zhang et al., 2010) (Fig. 1). In the latter case there is no free
gas-phase in the incubation vessel where the biomass is located
(Deusner et al., 2009; Y. Zhang et al., 2010).

2.6. Materials

Numerous parameters have to be taken into account when
choosing reactor materials, such as chemical composition, surface
morphology, and mechanical and chemical stability. As discussed
before, some marine micro-organisms specifically require high
concentrations of the sodium ion for their growth (Kogure, 1998).
High salt levels (in terms of Cl−, which is commonly the counterpart
of the sodium ion) in combination with aeration may cause corrosion
problems on austenitic steels. For the cultivation of aerobic marine
bacteria, molybdenum is additionally added for pitting resistance (i.e.
with grade 316 stainless steel) (Kielemoes et al., 2002). Another type
of corrosion is caused bymicroorganisms, either by their end products
or by their enzymatic catalysis (Scotto et al., 1985). For example,
denitrification (Kielemoes et al., 2000) and sulfate reducing processes
(Muyzer and Stams, 2008) influence the corrosion of iron and
stainless steel by using the cathodically produced hydrogen when
iron is immersed in anoxic aqueous liquids. This microbiologically
influenced corrosion has been well reviewed by Landoulsi et al.
(2008) and Kielemoes et al. (2002). For high-pressure incubations,
materials like PEEK plastic (Houghton et al., 2007), stainless steel
(Deusner et al., 2009; Parkes et al., 2009; Y. Zhang et al., 2010) and
titanium (Deusner et al., 2009; Y. Zhang et al., 2010) have been used
for the vessels and the tubing. For the corrosion information on these
materials, detailed information is available on the website of Parr
Instrument Company (Parr). For incubations at atmospheric pressure,
glassware has been widely used, as it is inert to any corrosion. Photo-
transparency of the reactor (incubation vessel) is sometimes required
for photo-synthetically active cells (Meunier et al., 2010). Inside the
reactors, carrier materials, for example different polymer materials
(Meulepas et al., 2009; Sudarno et al., 2010), have been tested to
provide sufficient surface to form a biofilm.

Materials used in a BES in a marine setting are not different from
the materials that are used in the BES in other environments. This is
due to the intrinsic nature of a BES, which actually promotes
‘corrosion’ i.e. redox reactions to happen. Therefore materials that
are useful as electrodes in a BES are conductive but stabile, as they do
not participate in the redox reactions. For the BES housing, the
materials need to be isolated to prevent a short circuit from occurring.
Examples of conductive materials are graphite granules, felt and rods
with different porosities and surface characteristics (Clauwaert et al.,
2008; Scott et al., 2008a, 2008b). Stainless steel and other materials
have also been used in a BES (Dumas et al., 2007; Thrash and Coates,
2008). A special note is in its place for the cathode, where in lab scale
reactors platinum is often used for catalyzing a high rate oxygen
reduction reaction (ORR). This is however not needed when a
biological oxygen-reducing cathode is used (Clauwaert et al., 2007a,
2007b; Cournet et al., 2010; He and Angenent, 2006).

image of Fig.�1


Table 2
In vitro simulations of marine microbial processes and environments.

Processes and
environments

Reactors and references

Intertidal estuarine Rotating disk bioreactor (Sarkar et al., 2008)
Sinking from surface
water to deep ocean

Pressurized microcosm (Grossart and Gust, 2009)

Cold water seeps Continuous flow-through reactor (Girguis et al., 2003);
Continuous high-pressure reactor (Y. Zhang et al., 2010)
Membrane bioreactor (Meulepas et al., 2009)

Hydrothermal vents Continuous high-pressure reactor (Houghton et al., 2007;
Imai et al., 1999)
Gas-lift bioreactor (Postec et al., 2007)
Fermentor (Mukhopadhyay et al., 1999)

Hyperbaric
environment

A diamond anvil cell (Aertsen et al., 2009)

Reference:
Aertsen, A., Meersman, F., Hendrickx, M.E.G., Vogel, R.F., Michiels, C.W. Biotechnology
under high pressure: applications and implications. Trends in Biotechnology, 2009; 27,
434–441.
Girguis, P.R., Orphan, V.J., Hallam, S.J., DeLong, E.F. Growth and methane oxidation rates
of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Applied and
Environmental Microbiology, 2003; 69, 5472–5482.
Grossart, H.P., Gust, G. Hydrostatic pressure affects physiology and community
structure of marine bacteria during settling to 4000 m: an experimental approach.
Marine Ecology-Progress Series, 2009; 390, 97–104.
Houghton, J.L., Seyfried, W.E., Banta, A.B., Reysenbach, A.L. Continuous enrichment
culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-
sea hydrostatic pressures. Extremophiles, 2007; 11, 371–382.
Imai, E., Honda, H., Hatori, K., Brack, A., Matsuno, K. Elongation of oligopeptides in a
simulated submarine hydrothermal system. Science, 1999; 283, 831–833.
Meulepas, R.J.W., Jagersma, C.G., Gieteling, J., Buisman, C.J.N., Stams, A.J.M., Lens, P.N.L.
Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.
Biotechnology and Bioengineering, 2009; 104, 458–470.
Mukhopadhyay, B., Johnson, E.F., Wolfe, R.S. Reactor-scale cultivation of the
hyperthermophilic methanarchaeon Methanococcus jannaschii to high cell densities.
Applied and Environmental Microbiology, 1999; 65, 5059–5065.
Postec, A., Lesongeur, F., Pignet, P., Ollivier, B., Querellou, J., Godfroy, A. Continuous
enrichment cultures: insights into prokaryotic diversity and metabolic interactions in
deep-sea vent chimneys. Extremophiles, 2007; 11, 747–757.
Sarkar, S., Saha, M., Roy, D., Jaisankar, P., Das, S., Roy, L.G., Gachhui, R., Sen, T., Mukherjee,
J. Enhanced production of antimicrobial compounds by three salt-tolerant
actinobacterial strains isolated from the Sundarbans in a niche-mimic bioreactor.
Marine Biotechnology, 2008; 10, 518–526.
Zhang, Y., Henriet, J.-P., Bursens, J., Boon, N. Stimulation of in vitro anaerobic oxidation
of methane rate in a continuous high-pressure bioreactor. Bioresource Technology,
2010; 101, 3132–3138.
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3. Current status of reactor technology

The processes that have already been simulated in vitro by a
reactor system are listed in Table 2. The choice of the most suitable
system is situation-dependent. Depending on the research question,
three different best practices can be distinguished for 1) mimicking
the natural environment, 2) stimulating the uncultured or producing
metabolites of interest and 3) controlling redox conditions on the
sediment/water interface.

If the research goal is to mimic the natural environmental
conditions as precise as possible, the high-pressure bioreactor system
should be applied since most of the marine environment is under
pressure (Fig. 1; Table 1). However, the cost for materials and
operation, together with the safety training for operational personnel
are the main difficulties when scaling up. For an accurate simulation,
biogeochemical in situ measurements need to be as detailed as
possible. This is not always easy, since the environmental parameters
are highly location-dependent and the sites, such as hydrothermal
vents, are difficult to access with sophisticated instruments for precise
measurements. Nowadays, video-guided in situ analytical instru-
ments, such as sensors for temperature, pH, metals, CO2 and sulphide,
are widely used (de Beer et al., 1997; Lichtschlag et al., 2010; Wieland
et al., 2001). The concept of underwater modules that autonomously
measure and record data electronically is already successfully
demonstrated (Jorgensen and Boetius, 2007). However, their appli-
cation for scientific interests and their influence on the ecosystems
need to be better explored.

If the research aim is to stimulate, enrich or cultivate previously
uncultured micro-organisms and/or produce metabolites of interest,
the use of relatively low substrate concentrations, long incubation
periods, and even additional signalling compounds are advantageous
to increase the cultivability and improve the recovery of prokaryotes
from the different natural samples (Alain and Querellou, 2009). The
rotating disk bioreactor (RDBR) has successfully been applied for
these purposes (Table 1). In order to ensure economically viable
metabolite production, the concentration and purity of the product of
interest are the two key criteria to take into account for reactor design
and operation. New strategies need to be developed to up-concentrate
valuable products (involving novel reactor designs) and to increase
the immobilization of active cells in the reactor (use of carrier
materials). These are the two elements that need better investigation
(Meunier et al., 2010).

A third path of marine (sediment) reactor technology can be found
in the Bio Electrochemical Systems (BES). This technology has been an
unconventional one in marine research but is gaining more and more
attention. This technology hasmainly been researched for wastewater
treatment and other freshwater applications but the high ionic
strength and thus high conductivity and low ohmic resistance of
marine and brackish waters are favourable attributes for high electron
transfer (Box 1). Detailed descriptions regarding the application of
BES in marine settings can be found elsewhere (Reimers et al., 2001;
Tender et al., 2002). It has already been shown that this technology
can power remote sensors (Donovan et al., 2008) and meteorological
buoys (Tender et al., 2008) in the field. On the anode side different
(polluting) compounds can be bio-electrochemically removed such as
organic sediments (i.e. anodic dredging) (Hong et al., 2010), aromatic
hydrocarbons (T. Zhang et al., 2010;), azodyes (Mu et al., 2009) and
halogenated compounds (Pham et al., 2009). The anode can thus be
used to stimulate anaerobic degradation processes by offering an
alternative electron acceptor, i.e. the electrode. This electrode can be
poised at a set potential, thus selecting for specific reactions (not) to
occur or for different microbial consortia to establish themselves on the
anode (Aelterman et al., 2008). The same concept goes for the cathode
where electrons can be provided from an alternative source, also at a
given potential. Other than producing power or anodically oxidizing
compounds, a BES operated under electrolysis conditions can also
efficiently make several products such as, but not limited to, H2

(Rozendal et al., 2008), CH4 (Clauwaert and Verstraete, 2009; Villano et
al., 2010) and ethanol (Steinbusch et al., 2010) by choosing the right
conditions in the cathode.

4. Outlook and opportunities

Since the development of the bioreactor technology, marine
microbiology has not been limited anymore to in situ observation
and quantification. It has been intensively studied in vitro in which the
bioreactor has been proven as a good tool to: simulate the various
natural environments (Y. Zhang et al., 2010); to support the growth of
marine microbes (Meulepas et al., 2009; Nakajima et al., 2008); to
industrialize the production of bioactive compounds (Lang et al.,
2005) and to control the Eh of marine sediments while harvesting
energy or making a product (Bond et al., 2002; Timmes et al., 2010).
The research focus has shifted from in situ to in vitro, from exploration
to experimentation. However, bioreactors are not restricted to be
placed in labs or on site in factories. To tackle future technological
and/or biological challenges a solution can be found in the application
of the bioreactor technology in situ. Pioneer work has demonstrated
the success of underwater modules, which were placed on the
seafloor by submersibles, for autonomously measuring and recording
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data electronically (Alain and Querellou, 2009; Jorgensen and Boetius,
2007). From our point of view, the following lines of research and
development can be of great interest to apply bioreactor technology in
natural marine environments:

1) BES and controlling the marine redox environment.
As discussed above a BES in the MFC mode is able to provide long-
term low power outputs to remote sensing systems (Donovan
et al., 2008; Tender et al., 2008). It is, however, not able to sustain
large power outputs for use in urban or industrialized areas.
Therefore we propose to use a BES in a different fashion near
human occupied coastal areas. Usually in these areas there is a
degree of hypoxia caused by eutrophication (Levin et al., 2009;
Paerl, 2006; Rabalais et al., 2010). This eutrophication is due to
increased primary production due to the anthropogenic release of
nutrients (nitrogen, phosphorus and trace elements) and COD
(chemical oxygen demand) into the coastal waters. Subsequent
aerobic decay of all this organic matter leads to hypoxia, which in
its turn leads to a drop in higher marine life and food (fish, shrimp,
and crustaceans) and an increase in jellyfish which can have an
even more detrimental effect on the ecosystem functioning and
economic services of the marine coastal area (Purcell et al., 2007).
With a BES, it is possible to introduce an alternative electron
acceptor to the benthic zone and thus decreasing the dependence
on oxygen as a terminal electron acceptor for the decay of organic
matter in the sediment. This proposal has never been tested in
practice or in a lab scale experiment. One can envision that by
providing an alternative electron acceptor, possibly seeded with a
Fig. 2. The use of natural water de
suitable active biofilm, metabolic process will take a different
route. A comparable process, illustrating the principle with other
reactants, has been seen in a lab scale BES where providing an
electrode to a methanogenic anaerobic environment, electricity is
produced in conjunction with a drop in methane production
(Pham et al., 2006). Also the reverse is true, a BES with a high
organic load will revert to methanogenesis when the substrate
transfer to the anodic biofilm is limited (Freguia et al., 2008; Pham
et al., 2006). However for applying such a system of redox control,
a suitable cathodic reaction needs to be found. An oxygen
reduction reaction is not a solution as this will be counterproduc-
tive towards mitigation of the eutrophication. However a long
distance cathode (Williams et al., 2010) can be used when it is
placed on the water surface where there is a lot of photosynthetic
oxygen production. Another possibility is to make use of a nitrate
reducing biocathode reaction (Clauwaert et al., 2007a, 2007b).
Nitrate is one of the nutrients causing the eutrophication (Rabalais
et al., 2010) thus the mitigation of the eutrophication can work
two ways. The first is to lessen the dependence on oxygen to break
down organic matter; the second is to lower the availability of the
nitrate which is a cause of eutrophication.

2) BESs for product formation.
Another application for a BES is to operate it in an electrolysis mode
(microbial electrolysis cell, MEC). In this mode gaseous energy
carriers can be produced or even better, when focusing on the
mitigation of anthropogenic effects, CO2 can be captured and
sequestered in the form of CH4 (Cheng et al., 2009; Clauwaert and
Verstraete, 2009). Methane is also a greenhouse gas but not directly
pth to pressurize a bioreactor.

image of Fig.�2
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involved in ocean acidification. When it is produced in a controlled
environment, it can be harvested and put to good use as a bio-fuel.
Producing and harvesting the CH4 is enhanced by the lower
solubility of CH4 as compared with CO2 (approximately 10×less
soluble at all depths (Duan and Mao, 2006; Duan and Sun, 2003)).

3) Using the deep sea as natural pressuring device.
We also envision the possibility to use the water pressure at
increasing depths to grow piezophillic organisms and to speed up
the piezophillic reactions. Although high-pressure bioreactors
have been shown to be the best tool to simulate deep-sea
environments, they are still not in a large-scale application after
20 years of development. Safety reasons put restrictions on
operation of a large-scale high-pressure (bio)reactor on land
(especially when a pressurized gas phase is included). Cost issues
have also played a major role in hampering the use of large scale
pressurized (bio)reactors on land. Twomajor costs occurred in the
pressurizing of a large volume and cooling the whole system. A
solution is to construct a piston-based bioreactor, which can be
sent into the deep water (Fig. 2). The reactor is pressurized by the
spontaneous increase of hydrostatic pressure while it is sinking to
the required depth. This is especially interesting for the production
of bioactive compounds from piezophilic bacteria at low temper-
ature. The challenge is to load the module and collect the module
or the products cost efficiently. Selective membranes can be
applied to allow natural seawater to penetrate the reactor housing
and serve as a substrate for micro-organismswhile simultaneously
locking the product inside the module. This allows the device to be
immobilized for a longer period to reduce the cost of loading and
unloading.

4) A self-powered deep sea digester for biochemical production.
Another possibility to sustainably exploit the natural resources of
the ocean, is to develop an on site bioreactor producing valuables
from planktonic biomass. The bioreactor would be operated in a
similar way as the reactor described in Fig. 2. The biomass can be
harvested actively or passively through a microfiltration mem-
brane unit. After filtration this planktonic biomass is further
transferred to an anaerobic digester to produce fatty acid and
protein, with the same approach as applied in wastewater
treatment (Verstraete et al., 2005, 2009). These products can
serve as building blocks for the production of bio-products, like
polyhydroxyalkanoates (PHA) (Rehm, 2007). In view of the
transition from an oil based economy to a green economy (Jones
and DeMeyere, 2009), these PHA can be used for the production of
biopolymers and bioplastics (Morgan-Sagastume et al., 2010).
Ecological considerations were made that “green bioplastics” like
PHA are gaining popularity as alternatives to common polymeric
materials (Martin et al., 2007). Furthermore, to be sustainable the
above-described bioreactor needs to be self-powered. To meet the
energy requirement for self-powering, the organic carbon not used
for PHA production can be reduced to methane. The in situ high
pressure keeps methane compressed into the liquid phase and is
thus easily stored. Once in a while, this bioreactor travels from the
deep water to the sea surface, where methane can be combusted
with air. The energy derived from the combustion is transferred as
electricity and stored in a battery.

5. Conclusions

The application of the bioreactor technology in and/or for marine
(eco)systems has been implemented in various research fields: blue
biotechnology, such as marine micro-organism cultivation and deep-
sea bioprocess characterization; white biotechnology, such as bioac-
tive compound production and green biotechnology, such as marine
waste treatment, and energy generation. For future applications, it is
promising to combine organic matter removal with food production
and even energy generation by using off shore in situ bioreactors. The
BES has a great potential to be applied in coastal areas or in sediments
for energy harvesting and controlling marine sediment Eh. The
application of the bioreactor technology has allowed us to switch
our research strategy from in situ exploration to in vitro experimen-
tation. Now is the time to bring the bioreactor technology back to the
sea, to provide the coastal populations with technology for sustainable
utilization of the natural resources of the sea.
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