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Regulatory attainment demonstrations in the United States
typically apply a bright-line test to predict whether a control
strategyissufficient toattainanairqualitystandard.Photochemical
models are the best tools available to project future pollutant
levels and are a critical part of regulatory attainment
demonstrations. However, because photochemical models are
uncertain and future meteorology is unknowable, future
pollutant levels cannot be predicted perfectly and attainment
cannot be guaranteed. This paper introduces a computationally
efficient methodology for estimating the likelihood that an
emission control strategy will achieve an air quality objective
in light of uncertainties in photochemical model input parameters
(e.g., uncertain emission and reaction rates, deposition
velocities, and boundary conditions). The method incorporates
Monte Carlo simulations of a reduced form model representing
pollutant-precursor response under parametric uncertainty to
probabilistically predict the improvement in air quality due
to emission control. The method is applied to recent 8-h ozone
attainment modeling for Atlanta, Georgia, to assess the
likelihood that additional controls would achieve fixed (well-
defined)orflexible (duetometeorologicalvariabilityanduncertain
emission trends) targets of air pollution reduction. The
results show that in certain instances ranking of the predicted
effectiveness of control strategies may differ between
probabilistic and deterministic analyses.

Introduction
The United States Environmental Protection Agency (U.S.
EPA) sets national ambient air quality standards (NAAQS)
for ozone (O3) and other criteria pollutants. States with
ambient monitors violating those standards must develop
State Implementation Plans (SIPs) for attaining the NAAQS
by a future date. Recent proposed rules to tighten the NAAQS
for O3 and fine particulate matter (PM2.5) will likely prompt
a wave of new SIP development (1, 2).

In order to demonstrate future attainment, states use
photochemical models to simulate the response of ambient

pollution to projected reductions at emission sources. The
current framework for SIP attainment demonstrations applies
a bright-line test to deterministically evaluate whether an
emission control program is sufficient (3). In this process,
photochemical models simulate pollutant concentrations
under ‘controlled’ (future-year) and ‘base’ (base-year) emis-
sion rates, applying identical base-year meteorological
episodes in each case. The ratio of future to base pollutant
concentrations is termed the relative reduction factor (RRF).
This process enables the use of model results in a relative
rather than an absolute sense. The RRF is then multiplied by
the measured base-year design value (DVB) for each monitor
to estimate the future design value (DVF), which determines
whether the monitor is projected to attain the NAAQS with
the considered set of control measures (3). Although U.S.
EPA also advocates consideration of other “weight of
evidence” factors in close cases, the deterministic bright-line
test forms the core of most SIP attainment demonstrations.

However, photochemical model results are known to be
uncertain due to uncertain model formulation (structural
uncertainty) and uncertain input parameters (parametric
uncertainty) (4-6). Thus, RRFs computed by photochemical
models will be uncertain (7). Moreover, future meteorology
will differ from the past, and those changes will impact
pollutant concentrations (8). Whether a given control strategy
will be sufficient is thus a probabilistic rather than a
deterministic question, but the current bright-line test fails
to quantify the likelihood that attainment will actually be
achieved. In fact, many regions have failed to attain NAAQS
by the targeted year despite SIP modeling that predicted
attainment (9).

Hogrefe and Rao (2001) suggested that probabilistic
analyses should supplement the pass/fail test of current
regulatory practice (10). However, most previous efforts to
characterize the probabilistic response of air pollutants to
emission controls have relied upon numerous Monte Carlo
photochemical model simulations (11-13), which is im-
practical for extensive SIP modeling. New methods would
be needed to enable states to objectively characterize the
attainment likelihood of various potential control packages
in a computationally efficient manner.

This manuscript introduces methods for estimating the
likelihood that a given level of emission reductions will
achieve a targeted improvement in air quality, in light of
parametric uncertainties in the photochemical model. Two
types of targeted pollutant reduction are considered: a fixed
amount of air pollution reduction needed at a monitor and
a flexible function acknowledging that unknown future
meteorology and uncertain projections of emission trends
generate uncertainty in how much additional improvement
is needed. The new methods are applied to recent attainment
modeling from the Atlanta, Georgia, 8-h O3 SIP to assess the
likelihood that additional emission controls would achieve
targeted amounts of air quality improvement.

Methodology
Reduced Form Models. Recent work has shown that high-
order sensitivity analysis of a photochemical model can be
applied to construct reduced form models (RFMs) that
represent how perturbations in multiple input parameters
(e.g., emission rates, reaction rate constants, boundary
conditions, and deposition velocities) influence the respon-
siveness of pollutant concentrations to precursor emissions
(14, 15). These RFMs provide analytical representations for
the amount of ambient pollutant reduction that would be
achieved as a function of the fractional changes (εj) in targeted
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emission rates j ) 1,2,...,J and the fractional perturbations φk

needed to adjust uncertain parameters k ) 1,2,...,K to their
‘actual’ values. Digar and Cohan (2010) introduced methods
for efficiently computing the impacts of emissions perturba-
tions while input parameters are perturbed (14). The
Continuum RFM considers adjustable fractional perturba-
tions in emissions, while the Discrete RFM is applicable when
the tonnage of emission perturbation is predetermined (e.g.,
a specific control technology at a point source).

For the Continuum RFM, the change in concentrations
(∆C*) resulting from fractional emission perturbation (εj)
while input parameters Pk are perturbed by fractions φk is
given by

where CφkPk denotes concentrations under the input
perturbations, and CφkPk,εjEj are the corresponding con-
centrations when emission rate Ej is perturbed by fraction
εj. Sj

(1)() ∂C/∂εj) and Sj
(2)() ∂2C/∂εj

2) are the local first- and
second-order sensitivity coefficients of ‘C’ to the targeted
emission rate, and Sj,k

(2)() ∂2C/∂εj∂�k) is the cross-sensitivity
between parameter j and k. These coefficients are computed
using the high-order decoupled direct method (HDDM)
(16, 17), except for Sj,k

(2) involving deposition velocities, which
is computed by finite differencing of model runs. If the
targeted emission rate Ej is also uncertain, then eq 1a can be
rewritten as

The (1 + φj) terms accounts for the influence of the
uncertain emission inventory on the amount of tons con-
trolled by fractional perturbation εj. For our analysis, εj

represents emission control (i.e., εj < 0), so CφkPk,εjEj is typically
less than CφkPk, and positive values of ∆C* indicate pollutant
reduction. Extensive testing of eq 1 (a and b) showed that
∆C* is accurately predicted (normalized mean bias ≈ 6%,
normalized mean error ≈ 10%) even for 50% emission
controls under 50% simultaneous perturbations in 3 pa-
rameters (14).

The Discrete RFM allows accurate (normalized mean bias
≈ 3% and error ≈ 13% for 50% perturbations in 3 input
parameters (14)) and efficient estimation of concentration
response under input uncertainty when the magnitude of
the emission reduction is predetermined. It computes the
error-adjusted concentration response ∆C* to an emission
control by computing a function Fk that represents how
concentration response to targeted emission change εjEj

varies with change φk in parameter k (14)

where ∆Cperturbed() CφkPk - CφkPk,εjEj) and ∆Cbase() Cbase - CεjEj)
represent concentration response under perturbed and base
input conditions, respectively. Finite differencing of model
runs with 10% input perturbations (φk ) 0.1) was used to
compute Fk. ∆C* is then calculated by the following Discrete
RFM

in which input perturbations can be set by Monte Carlo
sampling of φk.

Probabilistic Framework and Reduction Targets. The
Continuum (eq 1) and Discrete (eq 3) RFMs are analytical
equations that can be evaluated readily for any perturbations
φk in uncertain parameters k, in contrast to direct Monte
Carlo simulation of a photochemical model (11-13). Here,
we conduct Monte Carlo simulations of these RFMs, treating
each input parameter as an independent log-normally
distributed random variable with 1σ uncertainty listed in
Table 1 based on earlier studies (13, 14, 18-20). The basis
for selecting the input parameters is explained later. One
million Monte Carlo sampling of φk are made to generate
a probability distribution of the concentration reduction
resulting from each targeted emission perturbation εj

(Figure 1).
Our goal is to estimate the probability that a control

strategy would actually achieve an air quality target in light
of parametric uncertainty in the photochemical model. In
this study, two types of pollutant reduction targets are
considered:

(A) A fixed reduction target (Tfixed) which assumes that the
amount of additional pollutant reduction needed for achiev-
ing the air quality improvement target is perfectly known,
and only the impact (∆C*) of the control measures is uncertain
due to input uncertainty. Thus, likelihood of attainment (Lfixed)
is simply the probability that ∆C* is greater than or equal to
Tfixed, i.e.

(B) A flexible reduction target (Tflexible) which recognizes
that the needed amount of ambient pollutant reduction (∆C*)
cannot be predicted perfectly because factors such as future
weather and emission trends are unpredictable. In this case,
likelihood of attainment (Lflexible) is assumed to be a function
that increases with the amount of pollutant reduction (∆C*)
that is achieved. Though various target functions could be
posited, for analysis purposes we define a target function,
T(∆C*), based on a cumulative distribution (cdf) of a Gaussian
function as follows

where N(x))e(-(x-µ)2/2σ2)/(σ(2π)1/2). The mean reduction target
µ (at which a strategy would have 50% likelihood to be
sufficient) and standard deviation(σ can be assigned values
depending on the case under consideration. In this study,
an uncertainty of(3 ppb (95% confidence interval) has been
used, because current EPA methodology requires weight of
evidence analysis if the deterministic attainment modeling
results are within 3 ppb of the standard (3). Moreover,
uncertainties in O3 DVFs have been estimated to be 3-5 ppb
due to variation in emission inventories and photochemical
models (21) and 2-4 ppb due to variability in meteorology
and chemical mechanisms (7). The final likelihood of
attainment (Lflexible) for given emission controls under
parametric uncertainty with the flexible reduction target
(Figure S-1) can then be calculated using the probability
density as

Application
Photochemical Modeling Episode. We demonstrate this
method by applying it to reconsider attainment modeling
from a recent 8-h O3 SIP for Atlanta, Georgia (22). Modeling
is conducted for an 18-day summer episode (May 30 to June
16, 2002; first three days discarded for model initialization)
for a southeastern U.S. modeling domain with 12 km grid
resolution and 19 vertical layers of increasing thickness,

∆C* ) C�kPk
- C�kPk,εjEj

≈ -[εjSj
(1) + 1

2
εj

2Sj
(2) + εj ∑

k

�kSj,k
(2)]
(1a)

∆C* ) -[(1 + �j)εjSj
(1) + 1

2
(1 + �j)

2εj
2Sj

(2) +

(1 + �j)εj ∑
k

�kSj,k
(2)] (1b)

Fk ) (∆Cperturbed - ∆Cbase)/�k (2)

∆C* ≈ ∆Cbase + ∑
k

�kFk (3)

Lfixed ) p(∆C* g Tfixed) (4)

T(∆C*) ) ∫-∞

∆C*
N(x)dx (5)

Lflexible ) ∫-∞

+∞
P(∆C*)T(∆C*)d∆C* (6)
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covering Alabama, Georgia, Mississippi, South Carolina,
Tennessee, and parts of Kentucky, North Carolina, and
Florida. The episode is a subset of the full ozone season
simulated for the Georgia SIP. Otherwise, modeling methods
mimicked those of the Georgia SIP, including use of the
Community Multiscale Air Quality (CMAQ) Model v4.5 (23)
with Carbon Bond 4 (CB-IV) mechanism (24) with aerosol
and aqueous updates; input meteorological conditions from
the fifth generation Mesoscale Model (MM5) (22, 25, 26)
simulations; and input emissions from Visibility and Im-
provements State and Tribal Association of the Southeast
(VISTAS) year 2009 projections (projected from a 2002 base
inventory) (27, 28), with updates to Georgia emissions
projections based on GA EPD SIP modeling (22). Accuracy
of O3 predictions for the 2002 base case was thoroughly tested
in Georgia SIP modeling and found to be well within U.S.
EPA benchmarks (22).

Control Strategies. Ozone in Georgia is predominantly
sensitive to NOX emissions because of the dense forest cover
leading to high biogenic VOC emissions (29); our modeling

showed O3 in the region to be at least an order of magnitude
more sensitive to NOX than to VOCs, consistent with earlier
studies (30). Hence, for the selection of control options, NOX

emission reductions were emphasized. For simplicity, Geor-
gia is divided into three broad regions (see Figure 2): Atlanta
(the 20 county O3 nonattainment region), Macon (7 counties),
and the Rest of GA () Georgia - Atlanta - Macon).

Our analysis sought to identify scenarios of control
measures that could be implemented at the state level within
a SIP time frame. These scenarios were constructed by
applying AirControlNET v. 3.2 (31) to identify potential control
options for the emission inventory. [A limited list of control
technologies and associated control efficiencies obtained
from AirControlNET is furnished as Supporting Information
(Table S-1). Additional potential measures were also incor-
porated as described in Table S-2.] The maximum percent
emission reduction from applying all identified control
options in each region is tabulated in Table 2.

Power plant emissions are excluded from the regional
categories and considered separately. Specifically we consider
five large coal-fired power plants, which are among the largest
NOX point-sources near Atlanta and lacked selective catalytic
reduction (SCR) control for NOX when the Georgia SIP was
being developed. Potential emission reductions at the power
plants were computed by applying control efficiencies from
U.S. EPA Integrated Planning Model methodology (32) to
the inventoried emission rates, accounting for pre-existing
control technologies where applicable (Table 2). Note that
power plant controls are based on fixed tonnage reductions,
whereas regional emission controls are based on percentage
reductions.

Parameters for Uncertainty Analysis. Table 1 shows the
input parameters that were targeted for uncertainty analysis
due to the following reasons. Uncertainties in domain-wide
NOX and VOC emissions rates and in boundary conditions

TABLE 1. Selection of Uncertain Input Parameters for Monte Carlo Analysis Based on the Impact Analysis by Digar and Cohan
(2010) (14)

parameter uncertainty in parametera (1σ) cross-sensitivityb (ppb) impact on O3 sensitivityc

Emission Rates
domain-wide NOX 0.336 -32.92 -0.762
domain-wide biogenic VOC 0.405 17.58 +0.491
domain-wide anthropogenic VOC 0.336 4.70 +0.109

Reaction Rate Constants
all photolysis frequencies 0.347 16.45 +0.393
R(OH+NO2) 0.131 -9.30 -0.084
R(NO+O3) 0.095 -9.39 -0.061
R(all VOCs+OH) 0.095 8.24 +0.054
R(NO+HO2) 0.095 5.48 +0.036
R(C2O3+NO) 0.182 1.98 +0.025
R(PAN decomposition) 0.262 1.33 +0.024
R(C2O3+HO2) 0.294 -0.67 -0.014
R(RO2+HO2) 0.262 -0.54 -0.010
R(RO2+NO) 0.262 0.40 +0.007
R(HO2+HO2) 0.095 -0.86 -0.006
R(NO3+NO) 0.294 -0.10 -0.002
R(HCHO+NO3) 0.294 0.00 +0.000

Boundary Conditions
boundary cond. O3 0.203 0.41 +0.006
boundary cond. NOY 0.549 -0.10 -0.004

Others
dry deposition velocity (all gaseous species) 0.223 -2.42 -0.037

a All distributions are log-normal (13, 14, 18-20). b Cross-sensitivity of O3 to Atlanta anthropogenic non-EGU NOX

emissions and each uncertain parameter, evaluated at the grid-cell with maximum daily 8-h average O3 in a 3 × 3
array centered on the Confederate Avenue monitor, averaged over the episode. c Impact factor: The fractional change in
first-order sensitivity of ozone to emissions, due to a 1σ change in an input parameter. Computed as Impact Factor )
σSj,k

(2)/Sj
(1) where Sj

(1) is the first-order sensitivity of O3 to Atlanta NOX and Sj,k
(2) is the cross sensitivity of Sj

(1) with an uncertain
parameter. Bolding indicates parameters selected for analysis in this study.

FIGURE 1. Probabilistic framework for characterizing ozone
response to a control strategy under model parametric
uncertainty.
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of O3 and total reactive nitrogen (NOY)NOX and its oxidation
products) have been shown to substantially influence the
sensitivities of O3 to NOX emissions (4, 5, 11-13, 33). Past
studies have also shown that reaction rates for NO2+OH

(34-36) and the photolysis reactions (37, 38) and several
other uncertain reactions (13, 18) can also significantly
influence ozone sensitivity (Table 2). We also consider dry
deposition velocities of all gaseous species jointly as an
uncertain input parameter (39).

Our previous study evaluated the relative impacts of the
19 input parameters in Table 1 on estimates of O3-precursor
sensitivity in this region (14). For this study, we consider 10
of the 19 uncertain parameters marked in bold in Table 1,
limiting the uncertain reaction rate constants to the four
that most influenced O3 sensitivity.

Results and Discussion
Based on the standard U.S. EPA attainment demonstration
methodology (3), Georgia’s 2009 SIP modeling predicted that
one monitor (Confederate Avenue, AIRS ID: 13-121-0055,
for location see Figure 2) would exceed the 1997 8-h O3 NAAQS
of 84 ppb (Ref Table 6-1 on page 133 of ref 22). The SIP
reports additional modeling and weight of evidence analyses
to argue that attainment would actually be achieved.
However, it can be computed that an additional 1.5 ppb
reduction in modeled 2009 8-h O3 would have been needed
to reduce the relative reduction factor (RRF) in the Georgia
SIP (Ref Table 6-1 on p 133 of ref 22) sufficiently to
demonstrate NAAQS attainment using the standard meth-
odology (Supporting Information). Hence for this study, we
consider the hypothetical scenario that an additional 1.5 ppb
of improvement is necessary at this monitor and explore
various control scenarios available in Georgia for reaching
that target.

Likelihood To Achieve a Fixed Target. We first assess the
likelihood that each control scenario will achieve at least 1.5
ppb reduction in 8-h O3 at the grid-cell corresponding to the
Confederate Avenue monitor, averaged over the six days with
O3 in the base year 2002 exceeding 80 ppb (Table 3). The
deterministic results are from the base model (φk ) 0), with
the standard deviation of the daily O3 reductions shown as
an indicator of the variability in results due to day-to-day
changes in emissions and meteorology. The probabilistic

FIGURE 2. Point sources and emission regions in Georgia considered for control strategy analyses.

TABLE 2. Hypothetical NOX Emission Control Options in
Georgia

control
scenario description

emission controlleda

fixed % reduction
of total emission

Regional Sources
ATL(12) maximum available

anthropogenic NOX control
in Atlanta

12% (42.7 tpdb)

ATL(6) half of available
anthropogenic NOX control
in Atlanta

6% (21.3 tpd)

MAC maximum available
anthropogenic NOX control
in Macon

20% (10.7 tpd)

REST maximum available
anthropogenic NOX control
in Rest of Georgia (i.e.,
Georgia - Atlanta - Macon)

15% (81.5 tpd)

control
scenario description

emission controlleda

fixed tonnage
reduction

Point Sources (EGU)
EGU(M) convert Plant McDonough

from coal to gas plus SCRc
10.0 tpd (85%)

EGU(S) add SCR at Plant Scherer 26.5 tpd (50%)
EGU(Y) add SCR at Plant Yates 29.8 tpd (80%)
EGU(H) add SCR to units 1-3 at

Plant Hammond
11.6 tpd (63%)

EGU(B) add SCR at Plant Branch 51.7 tpd (80%)
a The basis for emission control estimates is explained

in Tables S-1 and S-2. b tpd - tons per day. c SCR -
Selective Catalytic Reduction.
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results reflect 1 million Monte Carlo samplings of the input
φk’s for the RFMs. A Continuum RFM was constructed to
predict the impact of each regional control scenario and a
Discrete RFM for each power plant option, under parametric
uncertainties in the 10 selected parameters from Table 1.
Impacts of jointly controlling NOX from multiple regions or
power plants were assumed to be additive. This is a
conservative assumption that may slightly underpredict joint
impacts, since controlling NOX in one place makes O3 more
sensitive to NOX from elsewhere (30). The error caused by
this assumption is small for controls of these magnitudes
(14).

Table 3 presents deterministic and probabilistic estimates
of the impacts of 14 hypothetical control strategies; Figure
3 shows how results vary as greater amounts of Atlanta
emission reductions are applied. We focus on the extent to
which the probabilistic methods influence the rankings of
strategy impacts, to explore the importance of these methods
to control strategy prioritization. The control options that
achieve the 1.5 ppb O3 reduction target under deterministic
modeling (underlined) exhibit a range of likelihood for
achieving this target when parametric uncertainties are
considered (Table 3). The deterministic rankings of control
strategy impact, indicated by the listing order in Table 3 and
the ranking-scale in Figure 3(a), are largely preserved in the
probabilistic modeling but with notable differences. Maximal
Atlanta-only controls (C7) yield more O3 reduction than SCRs
at three distant power plants (C5) in the deterministic
modeling (2.3 ppb vs 1.7 ppb) but a smaller likelihood of
achieving the fixed target (Lfixed)71.7% vs 77.9%). Meanwhile,
strategies C1 (Atlanta-only partial control) and C2 (two power
plants) are reversed in the deterministic and probabilistic
rankings, and strategy C8 (four power plants) fares very
differently between the rankings.

These ranking reversals occur in part because the
parametric uncertainty analysis methods applied here show
regional NOX controls to have more uncertain O3 impact
than power plant-only controls (as indicated by the 90%
confidence intervals for O3 reduction in Table 3) for three
reasons. First, the tonnage reduced is assumed to be perfectly
known for the power plants (whose baseline emissions are
well-established by continuous emission monitors (40)) but
to vary with uncertainty in domain-wide NOX for the regional
controls, which are set on a percentage basis. Second, power
plant controls have a consistently positive impact on O3

reduction at a faraway monitor because aged, diluted NOX

plumes produce O3 under a wide range of input parameter
conditions. By contrast, local emissions can have a titrating
or inhibiting effect on urban O3 under certain input per-
turbations, especially if domain-wide NOX emissions are
much larger than originally modeled (Figure S-1). Finally,
the likelihood calculations considered uncertainty in model
parameters but not in meteorology and used results averaged
over all high O3 days of the episode. Distant power plant
plumes have greater day-to-day variability in impacts
(indicated by standard deviation in column 4 of Table 3)
than regional sources because fluctuating wind fields de-
termine whether the plume reach the monitor. For example,
the C5 strategy controlling three distant power plants exhibits
more than twice the day-to-day variability of C7, which
controls only local Atlanta emissions. Longer episodes with
classification and regression tree analysis (41) could be used
to ensure that a representative range of high O3 meteoro-
logical conditions have been modeled.

Likelihood to Achieve Flexible Target. The impacts of
the control packages are reassessed for a flexible air pollutant
reduction target, corresponding to eq 6 and Figure S-1, to
reflect the fact that meteorological variability and other factors
may make the needed amount of improvement uncertain.
The results in Table 3 and Figure 3 show that when the
reduction target is not accurately known, the chances of
attainment are less responsive to the amount of emission
control. For example, strengthening Atlanta NOX controls
from 6% to 12% (strategies C1 and C7) increases the Lfixed by
52 percentage points but increases Lflexible by only 25
percentage points (Table 3). Similar trends can be seen in
the flatter lines of Figure 3c than Figure 3b. This occurs
because a flexible reduction target blurs the distinction
between strategies that achieve just more or just less than
1.5 ppb of reduction. However, the results approach the fixed
target results as the σ used to define Tflexible is narrowed (Table
S-3).

The likelihood rankings remain largely consistent under
the flexible and fixed reduction targets but with some
exceptions (Table 3 and Figure 3). For example, strategy C8
(four power plant controls) ranks second under the fixed
reduction target but only sixth under the flexible reduction
target. The relatively narrow uncertainty of power plant
control impacts, modeled to occur for reasons explained

TABLE 3. Reduction in 8-h Ozone at Atlanta Confederate Avenue Monitor Due to Each Emission Control Package

control
strategya description

deterministic O3
reductionb (ppb)

day-to-day variation
(σ) of deterministic
O3 reductionc (ppb)

O3 reduction
under parametric

uncertainty, mean (5th,
95thpercentiles)d (ppb)

likelihood to
achieve Tfixed

e
likelihood to

achieve Tflexible
f

C1 ATL(6) 1.1 0.4 1.0 (-0.7, 2.1) 19.6% 37.5%
C2 EGUs (B, S) 1.2 1.1 1.2 (0.7, 1.7) 4.4% 41.1%
C3 ATL(6) + MAC + REST 1.4 0.4 1.2 (-0.4, 2.5) 37.1% 44.9%
C4 ATL(6) + EGU(M) 1.7 0.8 1.5 (-0.6, 3.2) 57.8% 52.5%
C5 EGUs (B, S, H) 1.7 1.7 1.7 (1.2, 2.3) 77.9% 56.1%
C6 ATL(6) + EGUs (B, S) 2.2 1.3 2.1 (0.1, 3.6) 78.4% 63.5%
C7 ATL(12) 2.3 0.8 2.0 (-1.2, 4.5) 71.7% 62.6%
C8 EGUs (M, B, H, S) 2.3 1.1 2.4 (1.5, 3.3) 94.4% 70.6%
C9 ATL(12) + MAC + REST 2.6 0.8 2.3 (-0.9, 5.0) 78.0% 67.8%
C10 ATL(12) + EGU(M) 2.8 1.2 2.7 (-1.1, 5.6) 79.9% 71.9%
C11 EGUs (M, B, H, S, Y) 2.9 2.8 2.9 (1.2, 7.6) 99.9% 81.7%
C12 ATL(12) + EGUs (B, S) 3.4 1.6 3.2 (-0.3, 6.0) 86.6% 79.0%
C13 ATL(12) + EGUs (B, H, S) 4.0 2.1 3.7 (0.3, 6.4) 90.3% 84.5%
C14 ATL(12) + EGUs (M, B, H, S, Y) 5.1 3.2 5.0 (1.1, 8.1) 94.0% 91.5%
a In ascending order based on deterministic O3 reduction. b Mean of the impacts among the high ozone days in episode;

underlining indicates O3 reduction g1.5 ppb. c Standard deviation of the daily impacts within the high O3 days of the
episode. d 90% confidence intervals. e Fixed reduction target of 1.5 ppb. f Flexible reduction target of 1.5 ppb with 3 ppb
uncertainty.
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above, is more helpful in achieving a fixed than a flexible
reduction target, provided that the mean impact is above 1.5
ppb.

Relevance of Results. The approaches introduced here
enable probabilistic prediction of the likelihood that a control
package will be sufficient to achieve a fixed or flexible air
quality improvement target in the presence of parametric
uncertainties in the photochemical model. Both targets may
usefully inform environmental decision-making, depending
on how the policy issue is framed. The fixed target is apt if
the needed amount of additional ozone reduction is clearly
defined; for example, if regulatory approval of an attainment
plan depends on demonstrating an additional increment of
ozone abatement. A flexible target, meanwhile, is more
attuned to predicting the likelihood of future attainment at

monitors, which increases with the amount of control but
is also influenced by external factors such as meteorological
variation. Although the flexible target may obscure the
distinctions between relative efficacies of control strategies,
it avoids unrealistic expectations that a state’s control choices
could be so determinative of future attainment at monitors.

Results from these approaches could be linked with
control cost estimates to maximize the likelihood of attain-
ment, subject to practical or budgetary constraints, or may
supplement deterministic approaches to inform the priori-
tization of control strategies (42). Actual selection of control
measures depends upon a whole host of practical, economic,
and political considerations, but our approaches could
usefully inform strategy selection. Probabilistic approaches
may also be used as additional ‘weight of evidence’ analyses

FIGURE 3. Predicted future O3 design values (a) and likelihood of achieving a fixed (1.5 ppb) (b) or flexible (1.5 ( 3.0 ppb, 95% CI) (c)
reduction target at Confederate Avenue monitor as a function of the percentage of Atlanta NOX that is controlled under various
scenarios for reducing NOX emissions from other sources. Red stars denote control strategies detailed in Table 3.
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in attainment demonstrations. However, probabilistic ap-
proaches are unlikely to supplant deterministic bright-line
tests as the primary arbiter of attainment plan sufficiency
because to do so would require subjective judgments about
which model uncertainties to consider, the form of the target
function, and what likelihood of attainment is sufficient.

Although only 8-h O3 attainment was considered here,
this method can also be applied for assessing control
strategies for other pollutants. Application to particulate
matter (PM) would need to account for differences in model
performance among PM species and use an alternative
method to compute sensitivity coefficients, since high-order
DDM is currently unavailable for PM in CMAQ.

This analysis represents an important yet incomplete step
toward comprehensive likelihood assessment because it
considered uncertainties only in the photochemical model
parameters and in the reduction target. The specific flexible
target considered here is just one of many ways that such a
target could be formulated. Structural uncertainties in the
photochemical model, uncertainties in the meteorological
inputs, and the representativeness of the meteorological
episode were overlooked. Additional important uncertainties
include control measure effectiveness (i.e., the percent or
tons of emissions actually reduced by the abatement
measures) and the accuracy of predicted baseline emission
trends (e.g., due to economic and population growth, vehicle
fleet turnover, etc.). Future work could incorporate these
uncertainties into the likelihood assessments and explore
alternate formulations of the target functions.
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