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Abstract
State and regional climate policies in theUnited States are becomingmore prevalent. Quantifying
these policies’health co-benefits provides a local and near-term rationale for actions that alsomitigate
global climate change and its accompanying harms.Here, we assess the health benefits of a carbon fee-
and-rebate policy directed at fuel use in transport, residential and commercial buildings and industry
inMassachusetts.We find that the air pollution reductions from this policy would save 340 lives (95%
CI: 82–590), 64%ofwhichwould occur inMassachusetts, and reduce carbon emissions by 33million
metric tons, with 2017 as an implementation year, through 2040.Whenmonetized, the benefits to
healthmay be larger than the benefits from climatemitigation, but are sensitive to valuationmethods,
discount rates, and the leakage rate of natural gas, among other factors. These benefits derive largely
from lower transportation emissions, including volatile organic compounds from gasoline combus-
tion. Reductions in oil and coal use have relatively large benefits, despite their limited use in
Massachusetts. This studyfinds substantial health benefits of a proposed statewide carbon policy in
Massachusetts that carries near-term and direct benefit to residents of the commonwealth and
demonstrates the importance of co-benefitsmodeling.

Introduction

The transportation and building sectors contribute
heavily to greenhouse gas emissions that drive climate
change, and to other harmful air pollutants. In 2015,
the transportation sector emitted 1700 million metric
tons of CO2–32% of total US CO2 emissions. Residen-
tial and commercial buildings emitted 570 million
metric tons of CO2–10% of total US CO2 emissions
(US Environmental Protection Agency 2017). Road
transportation is the largest contributor to air pollu-
tion-related mortality in the US (Caiazzo et al 2013),
followed by electric power generation and commer-
cial/residential buildings. Residential combustion
alone has been associated with 10 000 deaths per year
in the US (Penn et al 2017). Policies that mitigate
climate change by reducing fossil fuel consumption
can also have health benefits, often termed ‘health co-

benefits’, by improving air quality (Wilkinson et al
2009, Nemet et al 2010, Perry et al 2014, Plachinski
et al 2014, Mittal et al 2015, Thompson et al 2016,
Haines 2017, Li et al 2018).

Research on co-benefits of carbon policies has
found that health benefits can be substantial. The
magnitude depends on sectors affected, policy design,
and the geographical relationship between source
locations and populations exposed to air pollution. In
the electrical sector, health co-benefits are greatest for
policies that principally displace coal (Siler-Evans et al
2012, Driscoll et al 2015, Buonocore et al
2015, 2016a, 2016b, Li et al 2018). Other studies have
modeled hypothetical nation, state, or province-level
carbon policies and found that policies targeting mul-
tiple economic sectors can have higher co-benefits
than policies targeting just one sector, and that health
benefits are generally higher if high-emission sources
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are reduced (Saari et al 2014, Thompson et al 2016, Li
et al 2018). While these studies provide insight into
drivers of benefits, they do not examine the benefits of
specific state-level policies. This may become increas-
ingly relevant, since with the proposed US withdrawal
from the Paris Agreement, 11 states and 271 cities and
counties have committed to actions that will meet or
exceed greenhouse gas targets required to meet the
Paris goals (Sanderson and Knutti 2016, Hep-
burn 2017, Tollefson 2017, weAre Still In n.d.).

Here, we assess the climate and health benefits of a
model carbon fee-and-rebate bill applied to fossil fuel
consumption in the transportation, residential, com-
mercial, and industrial sectors in Massachusetts. The
fee schedule starts at $10/ton in 2017, and increases by
$5 yr−1, until it reaches a plateau price of $40 per ton
in 2023, a price similar to many other carbon prices
worldwide (Benson n.d., Barrett n.d., TheWorld Bank
n.d.). These bills, and our study, exclude electrical gen-
eration, since the electrical grid in Massachusetts is
covered by the Regional Greenhouse Gas Initiative.
We assess benefits from 2017 through 2040, assuming
that the carbon price was implemented in 2017. We
quantify the health co-benefits in economic terms and
comparewithmonetized climate benefits.

Methods

We developed a model framework that links the
following components (figure 1):

• CO2 emissions and fuel use reductions for Massa-
chusetts from the Carbon Tax Assessment
Model (CTAM).

• Emissions of SO2, NOx, PM2.5, and VOCs for
relevant sectors withinMassachusetts.

• A Community Multi-Scale Air Quality Model
Direct Decoupled Method (CMAQ-DDM)-based
impact-per-ton methodology providing state-reso-
lution health benefits per ton of emissions reduced.

Using this framework, we estimated the reduc-
tions in fossil fuel use, CO2 emissions reductions, the
reductions in emissions of NOx, SO2, PM2.5, and
VOCs and the consequent health benefits, comparing
a ‘business-as-usual’ (BAU) scenario with a policy sce-
nario, put in monetary terms using standard valuation
methodologies.

Modeling the reductions in fuel use andCO2

emissions
To estimate reductions in fossil fuel use and CO2

emissions, we used output from CTAM (Nystrom and
Zaidi 2013, Breslow et al 2014). CTAM is an economic

Figure 1. Flow diagram showingmodel components and linkages.
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model that uses price elasticities, differing by fuel type
and sector, along with state-specific economic data,
including GDP growth, number of households, and
existing policies, to estimate how fuel use will change,
sector-wide, in response to changes in the price of the
fuel. This model relies on future energy use forecasts
from the National Energy Modeling System from the
US Energy Information Administration, and existing
literature on price elasticities of energy.

The carbon emissions from each fuel type and sec-
tor are calculated using standard emissions factors.
The carbon fee is then applied to these carbon emis-
sions under a BAU scenario, and the expected reduc-
tion in fuel consumption in response to the increase in
price is calculated using the price elasticity—how fuel
consumption changes in response to the change in
price. From this fuel use reduction, we calculate the
emissions reductions and health benefits of those
reductions. To estimate the monetary value of the
reductions in CO2 emissions, we use the social cost of
carbon (SCC), ametric formeasuring benefits of redu-
cing carebon emissions, and put them in monetary,
net-present-value terms. The specific values used here
change over time to account for the increase in the
marginal impact per ton of carbon emitted in future
years, due to nonlinear response of the climate system
to increased emissions. They start at $45 per ton (2017
USD) in 2017, and end at $70 per ton (2017 USD) in
2040 (Interagency Working Group on Social Cost of
Carbon 2016). We present the benefits of CO2 reduc-
tions undiscounted and discounted at 3% yr−1, to be
consistent with the discount rate of future impacts
internal to each year’s estimate of the SCC of an emis-
sion in that year.

Estimating reductions in emissions of non-GHGair
pollutants, and health benefits
To estimate the reductions in PM2.5, SO2, NOx, and
VOCs from the carbon fee-and-rebate policy, we used
emissions data from the US EPA National Emissions
Inventory (NEI) from 2014 as our BAU emissions. We
used these emissions data along with the BAU fuel
consumption from CTAM to create sector-and-fuel
type-wide emissions factors for fuel use within Massa-
chusetts. We then used these emissions factors to
calculate BAU emissions in future years. Thematching
between CTAM and NEI fuel types and sectors are
described in detail in the supplemental (table S1 is
available online at stacks.iop.org/ERL/13/114014/
mmedia). To estimate the health benefits of the
emissions reductions, in terms of mortality avoided,
we used a CMAQ-based impact-per-tonmethodology
that gives source state-resolution estimates of mortal-
ity avoided per ton of pollutant reduced, across multi-
ple source sectors (Levy et al 2016, Penn et al 2017).
CMAQ is a complex atmospheric chemistry, fate, and
transport model that is often used by the US EPA to
simulate the air quality impacts of air pollution and

energy policies, and is commonly used for research
purposes (Buonocore et al 2014, Stackelberg et al 2013,
Roy et al 2007, Foley et al 2010, US Environmental
Protection Agency, Office of Air Quality Planning and
Standards, Air Quality Assessment Division 2012,
Fann et al 2011, Appel et al 2017, Arunachalam et al
2011, Byun and Schere 2006).

This impact-per-ton methodology is based on a
series of runs with the CMAQ-DDM (Levy et al 2016,
Penn et al 2017). DDM allows for the influence of
given emissions sources and pollutants across the
modeling domain to be tracked within a given simula-
tion (Napelenok et al 2006, Wagstrom et al 2008, Ita-
hashi et al 2012). The impact-per-ton methodology
used here was developed using CMAQ-DDM to indi-
vidually model the sensitivities of ambient concentra-
tions of PM2.5 and ozone to emissions of SO2, NOx,
PM2.5, and VOCs in both winter and summer formul-
tiple sectors within each source state in the US (Cohan
et al 2005, Bergin et al 2012, Itahashi et al 2012, Levy
et al 2016, Penn et al 2017). These sensitivities, provid-
ing estimates of the air quality impact per ton emitted
for each precursor pollutant, were then used to model
the health impacts using a concentration-response
function of a 1% increase in all-cause mortality per 1
μg m−3 increase in annual average ambient PM2.5

levels (95% CI: 0.2–1.8) and a 0.4% increase in daily
mortality per 10 ppb increase in ozone concentrations
(95% CI: 0.14–0.66), population data from the US
Census, and baseline mortality data from the Centers
for Disease Control and Prevention. These concentra-
tion-response functions were similar to those used in
previous studies (Roman et al 2008, Driscoll et al 2015,
Levy et al 2016, Buonocore et al 2016a, Penn et al 2017,
Centers for Disease Control and Prevention n.d.,
Bell 2004, Bell et al 2005, Schwartz 2005), and the 95%
confidence intervals encompass the variability in con-
centration-response functions from major epidemio-
logical studies of air pollution (Bell 2004, Bell et al
2005, Schwartz 2005, Lepeule et al 2012, Driscoll et al
2015, Levy et al 2016, Penn et al 2017). For transporta-
tion-related sources, we applied the average of the
summer and winter sensitivities; for building-related
sources, we used the sensitivities for winter, which
assumes that most of the fuel use in these sectors is for
heating (US Energy Information
Administration 2018).

To put a monetary value on the lives saved from
the emissions reductions, we used the value of statis-
tical life (VSL) (Dockins et al 2004). This is a will-
ingness-to-pay methodology commonly used in
regulatory impact analysis and other policy research
applications that captures most of the value of the
health benefits from emissions reductions (Dockins
et al 2004, US Environmental Protection Agency
Office of Air Quality Planning and Standards 2011,
Siler-evans et al 2012, Thompson and Selin 2012,
Siler-Evans et al 2013, Thompson et al 2014, US Envir-
onmental Protection Agency, Office of Air and
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Radiation, Office of Air Quality Planning and Stan-
dards 2015, Thompson et al 2016, Buonocore et al
2016a). To account for the delay between PM2.5 expo-
sure andmortality, we use a standard cessation lag (US
Environmental Protection Agency Office of Air Qual-
ity Planning and Standards 2011, US Environmental
Protection Agency, Office of Air and Radiation, Office
of Air Quality Planning and Standards 2015). The VSL
for PM2.5-relatedmortality is $8.5 million; the VSL for
an ozone-related mortality case is $9.4 million, since
there is not a significant lag between ozone exposure
andmortality. We calculate the stream of health bene-
fits both undiscounted and discounted at 3% yr−1, to
be consistent with the values used in the SCC. All
monetary values are presented in 2017USD.

Results

Changes in fuel use and emissions reductions
Transportation had the highest reduction in energy
use, followed by residential buildings. Gasoline was
the fuel type with the highest reduction in use,
followed by natural gas (figure 2). Reductions vary
over time given the increasing carbon price through
2023, with differential responses to rising carbon
prices among sectors. Peak reductions in motor
vehicle gasoline use occur in 2025 and begin to

decrease after 2025. For other affected sources, this
peak occurs in 2035 (figure 2).

The air pollutant with the most reductions is NOx,
followed by VOCs (figure 3(a)). Reductions in all air
pollution emissions except VOCs grow rapidly until
2023, grow more slowly between 2023 and 2025, pla-
teau or decrease between 2025 and 2035 (figure 3(a));
VOCs reach their peak in reduction in 2025 and taper
off afterwards (figure 3(a)). The CO2 reductions follow
a time trend where they reach a peak in 2025, plateau
from 2025 to 2035, and then begin to taper off after
2035 (figure 3(b)). Reductions in NOx and primary
PM2.5 emissions are largely from reduced use of gaso-
line, oil, and diesel in the transportation sector
(figure 3(a)). Reductions in SO2 are largely from
reduced oil use in residential and commercial build-
ings, and from reduced coal use in the industrial sector
(figure 3(a)). VOC reductions are mostly from
reduced gasoline use in the transportation sector
(figure 3(a)). CO2 emissions reductions are largely dri-
ven by reductions in gasoline use in the transportation
sector from implementation to 2025 (figure 3(b)). CO2

reductions from gasoline use taper off after 2025,
while reductions from reduced natural gas use grow,
becoming roughly equal to reductions from gasoline
use in 2035 (figure 3(b)).

Figure 2.Reductions in fuel use due to amodel carbon fee-and-rebate bill inMassachusetts, by source category and fuel type.
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Figure 3. (a): Emissions reductions ofNOx, PM2.5, SO2, andVOCs due to amodel carbon fee between 2017 and 2040, by source sector
and fuel type. (b): Emissions reductions of CO2 due to amodel carbon fee between 2017–2040, by source sector and fuel type.
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Figure 4. (a): AggregateNOx, PM2.5, VOCs, and SO2 emissions reduced per unit energy consumption reduced, by source sector and by
fuel type. (b): Aggregate CO2 emissions reduced per unit energy consumption reduced, by source sector and by fuel type.
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Emissions avoided per unit of energy use reduced
are very high for the use of oil in transportation, and
high across all other sectors (figure 4(a)). Coal has the
highest SO2 emissions reductions per unit energy
reduced (figure 4(a)). Gasoline and diesel use in the
transportation sector also had fairly high VOC emis-
sions avoided per unit energy reduced (figure 4(a)).
CO2 reductions per unit of energy reductions are
much more even across fuel types and source sectors
than for air pollutants (figure 4(b)).

Health and climate benefits
Between 2017–2040, this policy saves approximately
340 (95% CI: 82–590) lives (table 1, figure 5). The
health benefits roughly parallel emissions reductions
over time, with a value of $2.9 billion (95% CI: $0.71–
$5.2 billion) undiscounted, and a value of $2.0 billion
($0.49–$3.5 billion) when discounted at 3% yr−1

(table 1, figure 6). The health benefits of this policy are
mainly driven byNOx reductions contributing to both
ozone and PM2.5, primary PM2.5, and emissions from
VOCs, which contribute to both PM2.5 and ozone
formation (figure 5). Reductions in SO2 emissions had
a comparatively small contribution (figure 5). Emis-
sions reductions in the transportation sector were the
largest contributor (85%) to total health benefits, with
health benefits initially driven by reductions in gaso-
line, but gradually becoming nearly evenly split among
diesel, gasoline, and oil as the carbon fee goes into
effect (figure 5, table 2). The lives saved mainly
occurred within Massachusetts, with 63%, and in the
surrounding states–12% in New Hampshire, 8% in
New York, 4% in Rhode Island, 4% in Connecticut,
4% inNew Jersey, and 2% inMaine (table 2).

Reduction in oil use, largely in buildings and in
transportation, also contributed highly to health bene-
fits. Reductions in NOx emissions from buildings, lar-
gely from lesser oil and natural gas use, predominantly
occurred in the winter and produced slight increases
in ozone. This slightly reduced the total health co-ben-
efits (figure 5). Reduced oil consumption for transpor-
tation also generally has the highest lives saved per unit
of energy reduced, especially in transportation, but
reduced coal use in industry is also high, largely driven

by SO2 reductions (figure 7). When monetized, oil
generally has the highest benefits per unit of energy
consumption reduced, especially in transportation.
Between 2017–2040, the policy would reduce CO2

emissions by approximately 33 million metric tons
(figure 2(b)). The CO2 reductions have a value of $2.0
billion undiscounted, and $1.3 billion when dis-
counted at 3% yr−1 (table 1,figure 2(b)).

The monetized benefits are slightly higher for
health than for climate, with marked variation across
sectors and fuel types (table 1, figure 6). The mon-
etized benefits are largely driven by transportation,
followed by the buildings sectors. The benefits of
reduced fuel consumption in transportation were dri-
ven by health, with a more even split between health
and climate for commercial buildings. Residential and
industrial benefits were mostly based on greenhouse
gas mitigation (figure 6). Across fuel types, the leading
contributor to benefits is reductions in gasoline use,
followed by diesel, oil and natural gas (figure 6).
Health benefits generally contributed more to total
benefits than climate for gasoline, diesel, and oil, while
climate benefits were greater for natural gas than
health (figure 6).

Discussion

A model carbon fee-and-rebate bill in the state of
Massachusetts would advance greenhouse gas emis-
sions’ reductions, while providing substantive, health
gains, mainly within state, that have comparable
magnitude to the climate benefits whenmonetized.

The peak reductions occur after the peak price due
to the time required for turnover, which is longer for
buildings than the vehicle fleet. Reductions in fuel
consumption and pollutant emissions reach a plateau
and then fall since the model carbon fee is not tied to
inflation.

Our results here indicate that whenmonetized, the
health benefits are fairly similar in magnitude to the
climate benefits, comparable to findings in previous
studies focusing on renewable energy and energy effi-
ciency (Siler-Evans et al 2012, 2013, Buonocore et al
2015, 2016b, Levy et al 2016). Between 2017–2040, this
policy has approximately $88 in health benefits per ton
of CO2 reduced, and saves 10.3 lives permillion tons of
CO2 reduced, similar to estimates from an economy-
wide cap-and-trade program implemented in the
northeast US (Thompson et al 2016), and slightly
higher than a carbon standard in the electrical sector in
theUS (Driscoll et al 2015).

The model framework developed here has a num-
ber of limitations. The CTAM model does not fully
capture spillover effects (like purchasing fuel out-of-
state), effects of technology change, or effects of future
regulations. There are a number of actions that can be
taken to reduce emissions, including transportation
mode-shifting, purchasing vehicles with higher fuel

Table 1.Total climate and health benefits of a carbon fee and rebate
policy inMassachusetts from2017–2040.

Benefit type Benefits (95%CI)

Total lives saved 340 (82–590)
Value of health benefits,

undiscounted

$2.9 billion ($0.66–$5.2
billion)

Value of health benefits, discounted at

3% yr−1

$2.0 billion ($0.45–$3.5
billion)

Total reductions inCO2 emissions 33millionmetric tons

Value of climate benefits,

undiscounted

$2.0 billion

Value of climate benefits, discounted

at 3% yr−1

$1.3 billion

7

Environ. Res. Lett. 13 (2018) 114014



economy, and energy efficiency in buildings, but
CTAM also does not model how the changes in fuel
demand are being implemented, what the costs are,
and which actors incur those costs (Washington State
Department of Commerce n.d., Breslow et al 2014).
CTAM does employ a lag structure in the price elasti-
city, so it is able to appropriately reflect longer-term
changes due to, for example, turnover time of building
stock or vehicle fleet (Washington State Department
of Commerce n.d., Breslow et al 2014). Since CTAM
does not explicitly model how the reductions in fuel
use are occurring, it cannot model what changes are
temporary and reversible, like switching from driving
a personal vehicle to using public transportation or
maintaining buildings at a lower indoor temperature;
or permanent, like purchasing a more fuel-efficient
vehicle or improving home insulation (Washington
State Department of Commerce n.d., Breslow et al
2014). Future changes in emissions due to air quality
regulations, changes in combustion efficiency or fuel
mix, changes in the use of air pollution controls or
other technology changes are not captured. While the
use of CTAMand reliance on emissions fromNEImay
not capture all relevant economic, regulatory, and
technological effects that may determine emissions
reductions and health gains from a carbon price, the
basic framework does reasonably at capturing the

main drivers of the benefits of a carbon fee-and-rebate
policy, including economic effects associated with
price elasticity (Nystrom and Zaidi 2013, Breslow et al
2014). This modeling framework here is fairly similar
to the economic modeling in previous studies
(Thompson et al 2016, Li et al 2018). Although these
studies contain more explicit linkages to other ele-
ments of the economy, linkages to trade, and other
economic factors, while the model used here exclu-
sively uses in-state changes (Thompson et al 2016, Li
et al 2018). Use of CTAM alone is also insufficient to
understand broader economic impact of a carbon pol-
icy, in part, because the economic effects of a carbon
price depend on what is done with the revenue
(Nystrom and Zaidi 2013, Breslow et al 2014, Ambasta
and Buonocore 2018, California Air Resources
Board 2018).

Our healthmodel operates at state-level resolution
with average values for winter and summer, so may
not perfectly capture effect variability due to popula-
tion proximity to sources, timing of emissions, or
changes in population or baseline population health
status over time. Across Massachusetts, the county-
level mortality rate varies by a factor of two (872 to
1662 per 100 000), and the social costs of NOx, SO2,
and PM2.5 emissions also do not vary substantially
(Centers for Disease Control and Prevention n.d., Heo

Figure 5. Lives saved per year due to amodel carbon fee between 2017–2040, by emission type and resulting pollutant, by source
sector, and fuel type.
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et al 2016a, 2016b). The model may still not perfectly
capture possible geographical clustering of emissions
reductions and areas with high population or more
vulnerable populations, introducing some uncer-
tainty. Additionally, the use of residential combustion
impact-per-ton values is an imperfect proxy for trans-
portation-related emissions, but the county-level
emissions from each source type are reasonably corre-
lated (Pearson correlation coefficients: 0.65 for SO2,
0.71 for VOCs, 0.73 for PM2.5, and 0.98 forNOx).

Using emissions and impact rates from a historical
base year to estimate the impacts of future changes in
air pollution is common (Buonocore et al
2014, 2015, 2016a, 2016b, Driscoll et al 2015, Levy et al
2016, Heo et al 2016a, 2016b, 2017, Penn et al 2017).

Ignoring population growth and aging would likely
result in an underestimate of benefits. Technology
changes over time could result in reduced emissions
per unit energy and a corresponding overestimate of
the total climate and health benefits. The model fra-
mework employed here does not have as high spatial
and temporal resolution as other research, but our
impact-per-ton functions are based on an advanced
atmospheric modeling platform and allow for decom-
position of benefits by sector and by emission type.

This analysis excludes several morbidities asso-
ciated with air pollution including, like cardiovascular
and respiratory disease, asthma, heart attacks, stroke,
premature birth, low birth weight, lost days of school
and work, and neurocognitive diseases (Gilliland et al

Figure 6.Aggregatemonetized and undiscounted benefits of a carbon fee for different affected sectors (2017USD), broken out by
whether the benefits are due to climatemitigation or health, and by fuel type and source sector.

Table 2.Proportion of health benefits from air pollution reductions from a carbon fee and rebate policy inMassachusetts from2017–2040,
by state and by source sector.

Percentage of source sector benefits occurringwithin state

Source sector Total lives saved in all states MA NH NY RI CT NJ ME All others

Commercial 7% 57% 14% 10% 4% 5% 4% 4% 2%

Industrial 4% 54% 14% 11% 4% 5% 5% 4% 2%

Residential 4% 51% 14% 12% 4% 5% 6% 4% 3%

Transportation 85% 65% 12% 7% 4% 4% 3% 2% 3%

Total from all sectors 63% 12% 8% 4% 4% 4% 2% 3%
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2001, Zanobetti and Schwartz 2009, Zanobetti et al
2009, Darrow et al 2010, Anderson et al 2011,Mustafić
et al 2012, Levy et al 2012, Kloog et al 2012,Madrigano
et al 2013, Jacquemin et al 2015, Talbott et al 2015,
Jung et al 2015, Li et al 2016, Chen et al 2017, Cacciot-
tolo et al 2017). We also do not include ecological ben-
efits of reduced air pollution, like increased
productivity for crops and timber, and decreases in
eutrophication (Jaworski et al 1997, Aldy and Kra-
mer 1999, Wittig et al 2007, Van Dingenen et al 2009),
or health impacts from the reduction in hazardous air
pollutant (Sunderland et al 2016). We also do not
include other health and environmental impacts of
extraction of the fuels whose use is avoided, including
methane leaks from natural gas infrastructure, strain
on underground natural gas storage facilities, air and
water pollution and consequent health impacts from
natural gas extraction, and possible impacts from acci-
dents in oil and gas extraction or transportation
(Adgate et al 2014, Brandt et al 2014, McKenzie et al
2014, Subramanian et al 2015, Brandt et al 2016, Peres
et al 2016, Torres et al 2016, Butkovskyi et al 2017,
Harriman et al 2017,Michanowicz et al 2017).

The climate benefits may be quite sensitive to
methane leakage across the natural gas supply chain. A
leak rate of 2.3% and a social cost of methane of $1200
per ton would result in an additional∼$138 million in

benefits from climate mitigation, increasing the total
benefits due to reduction in natural gas consumption
by around 18% (Interagency Working Group on
Social Cost of Carbon 2016, Phillips et al 2013, Alvarez
et al 2018). Using the global average social cost of
methane of $4600 per ton, which incorporates health
impacts, makes benefits of reduced leakage closer to
$530 million, or a 31% higher (Shindell 2015). Higher
leakage rates, or higher weighting of near-term climate
impacts would increase this sensitivity substantially.
Our SCC may be an underestimate, as it may miss
some important health impacts, effects on economic
growth, and not appropriately deal with the distribu-
tion of climate impacts across space or time (Arrow
et al 2013, Diaz andMoore 2017).

This study adds to existing literature on the health
co-benefits of efforts to mitigate climate change. We
examine the effects of a multi-sector fee-and-dividend
bill, not including electricity, whereas much of the
existing health co-benefits literature applies to elec-
tricity generation. It also examines an individual state
plan, as opposed to regional or national policies. That
said, the benefits of applying a carbon price to elec-
tricity generation can be around 3.9 lives per million
tons of CO2 emissions reduced (Driscoll et al 2015).
Another study examining nationwide clean energy
standards found that the value of the health benefits

Figure 7.Aggregate lives saved per unit energy consumption reduced, by source sector, fuel type, and emission type and resulting
pollutant pair.
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can exceed the policy implementation costs (Thomp-
son et al 2014).

With two years remaining to change the global tra-
jectory of carbon emissions to meet the goals set for-
ward by the Paris Agreement (Figueres et al 2017), and
the US having announced its intent to leave the agree-
ment (Tollefson 2017), regional, state, and local car-
bon pricing initiatives have become more important
to the nation as a whole (Hepburn 2017). Under-
standing the health co-benefits of different policy
options can aid in the design of policies, help incenti-
vize their implementation (Petrovic et al 2014, Bain
et al 2015), and help sub-national governments con-
tribute to the world achieving the goals of the Paris
Agreement.
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