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A B S T R A C T

The land cover types in a 4 km by 4 km space centered around an air quality monitoring station in the city of
Tianjin were classified using the e-Cognition software. We identified 23 air quality monitoring sites and their
surrounding land cover types. The suitability of using land cover types to predict traffic-related air pollution
Nitrogen Dioxide (NO2) was tested through a machine learning land use regression (LUR) modeling technique.
We found that vegetation was significantly but negatively associated with air pollution levels (correlation
coefficient r = −0.5, p < 0.01) while highways and major roadways were positively and significantly asso-
ciated with air pollution levels (r = 0.60, p < 0.01). The LUR model explained 84% of the total variance in
measured NO2 concentrations. The associations of the land cover types with NO2 concentrations were then used
in land cover retrofitting strategies to quantify the potential for reducing traffic-related air pollution. We
identified that the improvements in air quality could reach 25% if specific urban greening strategies were fully
implemented. The results of the study can help policy makers and environmental designers adopt effective air
pollution reduction policies to improve air quality and protect public health in Tianjin and other urban regions in
China.

1. Introduction

Air pollution has become a global problem and according to a report
by the World Health Organization (WHO), 92% of the global population
had elevated air pollution exposure based on the air quality standard
proposed by WHO (World Health Organization, 2016). Air pollution is
found to be associated with cardiovascular diseases, respiratory disease
and diabetes (Bentayeb et al., 2015; Chen et al., 2016; Guan et al.,
2016; Ma et al., 2017; Turner et al., 2017; Villeneuve et al., 2014).
According to WHO, in 2012, three million people died prematurely due
to air pollution (World Health Organization, 2016). The European En-
vironment Agency estimated that the European countries alone had
more than 20,000 premature deaths annually. Compared with the West,
China has far worse air pollution (He et al., 2016; Li, 2016; Shostya,
2016; Song et al., 2017). According to the 2016 China Environmental
State Bulletin published by the country’s Ministry of Environmental
Protection (Ministry of Environmental Protection, 2016), 78.4% of the
nation’s cities had air pollution levels that exceeded the Ministry

standards. Moreover, a growing number of days per year were char-
acterized as severely polluted. The issue was much more serious in the
Beijing-Tianjin-Hebei Region than in the other cities and regions of
China (Chen et al., 2017; Gao et al., 2017; Liu et al., 2017; Sun et al.,
2013; Wang et al., 2017a,b).

Earlier studies focused on whether tree leaves could dissolve and
block air pollutants (Currie and Bass, 2008; Fantozzi et al., 2015;
Nowak, 1994, 2002; Rao et al., 2014; Selmi et al., 2016; Smith, 2012;
Tallis et al., 2011). Some research revealed that plants were effective in
reducing air pollution – not only trees, but also the leaves of shrubs,
hedges, or multi-species green roofs, which could filter or deposit gas-
eous air pollutants via their leaf stoma (Gallagher et al., 2015; Nowak
et al., 2006, 2014; Setälä et al., 2013; Tong et al., 2016). Studies
showed that by selecting the optimal species of trees, air pollutants
could be effectively reduced (Beckett et al., 2000; Morani et al., 2011).
In addition, Abhijith and Gokhale (2015) found that selecting trees that
were medium-sized and with a higher degree of surface porosity, and
planting them in a less dense way, could reduce their blocking effects
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and help improve air quality. However, no absorption effect could be
expected of some plant varieties when air pollution was characterized
by high concentrations of volatile organic compounds (VOC) or ozone.

Some studies have identified the associations between air pollution
and land cover types including vegetation (Dadvand et al., 2015; Su
et al., 2010, 2009, 2011; Villeneuve et al., 2018); however, those stu-
dies are largely used for air pollution exposure assessment in an effort
to identify the general positive impacts of vegetation on reducing air
pollution and improving health. They are not aimed at urban greening
applications which focus on location specific strategies to increase ve-
getation. No studies have been done to identify the amount of reduction
in pollutant concentrations in a region that could be attributed to a
specific urban greening strategy.

We assume that urban greening strategies generally have a positive
impact on reducing local air pollution and the specific reductions can be
quantified through the identification of the marginal effects of vegeta-
tion in air pollution, through land cover modeling techniques such as
land use regression. To fill the gap, we first identified whether vege-
tation including trees, shrubs and grasslands had a positive effect on
reducing air pollution from nitrogen dioxide (NO2) in Tianjin. Based on
the marginal effects of vegetation on reducing air pollution as estimated
through land use regression modeling technique, we then identified the
specific quality of NO2 concentration reduction delivered by per unit
increases in vegetation cover. Through object-based classification of
sub-meter remote sensing data, we identified the current status of urban
green cover and the potential for increases in green cover given ap-
proaches to urban greening design. The potential increases in green
cover from urban greening strategies were then applied to the land use
regression modeling results to identify potential reductions in air pol-
lutant concentration. The results of the study can help policy makers
and environmental designers adopt effective air pollution reduction
policies to improve air quality and protect public health in Tianjin and
other urban regions in China.

2. Materials and methods

Using information released by the Tianjin Municipal Government,
we identified 23 monitoring stations in the city through their location
information (latitude and longitude). Using Google Aerial Maps and
Baidu Aerial Maps, we captured an aerial image within a 4 km by 4 km
square range surrounding each monitor. The image data were then geo-
referenced in ArcGIS and imported into e-Cognition™ (Trimble
GeoSpatial, Munich, Germany). Each image of a 4 km by 4 km area was
segmented into 80,000∼220,000 units of objects. By applying the
standard nearest neighborhood classification algorithm, we classified
each object into one of 16 land cover types. The classified land cover
images were then imported into R statistics analysis for land use re-
gression (LUR) modeling. The bivariate relationships between NO2 and
land cover types and the developed full LUR model were used to
identify improvements in air quality given the greening strategies
planned by the City.

2.1. Study area

Tianjin (38°34′N ∼ 40°15′N, 116°43′E ∼ 118°40′E) is situated on
the North China Plain, with the Bohai Sea to the east and the Yanshan
Mountains to the north (Fig. 1). The city is located at the confluence of
the five major tributaries of the Haihe River—the South Canal, the Ziya
River, the Daqing River, the Yongding River and the North Canal—that
ultimately flows into the Bohai Sea. Tianjin is a primary international
shipping node for North China. The climate is temperate semi-humid,
and temperature varies noticeably between four seasons. The average
annual temperature is around 14 °C and the average precipitation is
550 mm∼680 mm, with average wind speed at 2.5 m/s. In 2015, the
city had a population of 15,470,000, of which 12,780,000 was classi-
fied as urban and 2,690,000 classified as rural. By 2015, Tianjin had a

total green area of 28,400 ha, with 8,900 ha in public ownership; 102
parks had been established with a total area of 2,300 ha; and green
cover reached 36.4%.

In recent years, air pollution in Tianjin has become severe.
According to the Environmental Quality Report published by the Tianjin
Municipal Government in 2015, the city’s major air pollutants are NO2

(with an annual average concentration of 42 μg/m3), particulate matter
with aerodynamic diameter ≤10 microns (PM10) (annual 116 μg/m3),
particulate matter with aerodynamic diameter ≤2.50 microns (PM2.5)
(annual 70 μg/m3) and ozone (O3) (annual daily eight hour maximum
142 μg/m3). These concentrations are far above the standards set by
WHO, which are respectively 40 μg/m3, 10 μg/m3, 10 μg/m3 and
100 μg/m3.

2.2. Identification of land cover types

We aimed to identify land cover types that either increase or de-
crease air pollution. Extensive research has shown that increases in
building heights can restrict urban air circulation. Specific building
configurations were shown to have a strong impact on the wind flow
patterns, influencing the dispersion of pollutants. High-rise buildings in
particular create street canyon effects and lead to heightened air pol-
lution levels on the street (Allegrini, 2018; Liu et al., 2011; Peng et al.,
2018). Vegetated areas, by contrast, have the potential to purify air and
help reduce pollutant concentrations in the urban areas (Currie and
Bass, 2008; Janhäll, 2015; Speak et al., 2012; Yang et al., 2008). We
also aimed to identify types of land cover that are modifiable, i.e., have
potential for planting vegetation. Areas with many high-rise buildings
are difficult to augment with green cover. By contrast, bare soil and
some public open spaces could be modified to increase vegetative cover
and help decrease urban air pollution. Based on these principles, we
divided the land cover in the City into five major categories, including
buildings, vegetation, roadway/railway, water, and open space. These
five categories were further separated into 16 land cover types as listed
in Table 1 and further explained in the following paragraphs.

2.2.1. Buildings
Buildings above 10 stories are categorized as high-rise buildings and

these high-rise buildings include both residential and commercial
buildings. Buildings with less than 10 stories were further classified as
residential and public buildings. Industrial buildings refer to factories
and some temporary buildings. We specifically created a high-rise
building category for the purpose of identifying potential traffic canyon
effects, and also because there is limited ability to add vegetation to this
type of land use. Another reason for creating a land cover type for high-
rise building was due to the fact that it could be effectively identified in
remote sensing imagery through its areal shadows (Su et al., 2008).

2.2.2. Vegetation
We classified vegetation into trees/forests, shrublands and grass-

lands. This classification was based on the impact of plants on air
pollutant concentrations (Vieira et al., 2018). Plants may attenuate air
pollution because the stomata on their leaves can absorb pollutants
(Fellet et al., 2016; Mori et al., 2018; Nowak et al., 2018). Moreover,
the overall morphology of plants affects the diffusion of air pollutants
(Pandey et al., 2016). Herbaceous plants were included in the grassland
category. Woody plants like trees and shrubs differ greatly from their
form to their capacity to absorb air pollutants than those of herbaceous
plants (Fellet et al., 2016; Nowak et al., 2006). Cultivated lands are part
of the urban ecosystem that generates a range of ecosystem services
including air purification (Bolund and Hunhammar, 1999). We thus
included cultivated lands in the study area as a separate land cover type
in the vegetation category.

2.2.3. Roadway and railway
Roads are a very important part of the urban and suburban
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landscape, with roads and air pollution from vehicles being closely
related (Massoli et al., 2012; Su et al., 2015a,b; Su et al., 2010, 2009).
Based on the functions of roadways and potential for retrofitting, we
used the following classifications: Highways and major roadways are
the main sources of traffic-related air pollution and were treated as one
class. Roadway overpasses with hardscaped shoulders can be effectively

redesigned with vegetation. Local roadways mostly refer to park paths,
residential area paths, and the paths in front of buildings. Used for
walking, they typically do not contribute to air pollution. Railways are
part of the city’s public transportation system. Although they contribute
to air pollution, due to their special construction standards and forms,
land used for rail transportation was identified as a separate category.

Fig. 1. The City of Tianjian and its air quality monitoring stations.

Table 1
The list of the land cover categories and types used in the study.

Category Classification Description

Buildings Public building Public buildings including government agencies, hospitals, schools and universities, and gymnasia.
Residential building Housing clustered in residential areas.
Industrial
Building

Industrial construction, such as workshops or factories.

High-rise building Buildings with ten stories or more.
Vegetation Farmland Paddy fields and croplands.

Grasslands Grasslands in city or suburbs.
Tree plants / Forests Ligneous plants with a certain height (vines excluded).

Road/Rail Highways and major roadways Arterial and secondary roads, freeways, expressways, etc.
Local roadways Paths in parks and communities; sidewalks.
Roadway overpass Overpasses.
Railway Subway and high-speed rail.

Water Waterbody (non-linear feature) Water systems of the city (rivers excluded), such as lakes, fountains and reservoirs.
River (linear feature) Rivers in the city.

Open Space Bare soil Earth, sands and construction sites.
Urban open space / Public use Urban square, parking lots

Others – Land type unidentified.
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2.2.4. Waterbody
Waterbodies are key parts of urban and suburban land cover

and have a significant impact on reducing air pollution through
their absorption of air pollutant particles through air deposition
(Environmental Protection Agency, 2000; Slinn and Slinn, 1980). Also,
they do not themselves produce air pollution emissions.

2.2.5. Open space
Open space includes urban public space and bare soil (Stanley et al.,

2012). Urban open use space refers to designated areas designed to
serve the general public, and includes public activity spaces (e.g., parks
and outdoor public recreation and entertainment sites) and parking
lots. Bare soil refers to lands that are yet to be developed or are located
in the midst of ongoing urban development, such as vacant construction
sites and sand lots. Compared to other land cover types, bare soil is
more easily modified and is thus central to greening efforts designed to
reduce air pollution.

2.3. Land cover classification with e-cognition

We used aerial photos provided by the Baidu aerial maps (http://
map.baidu.com/) or Google aerial maps (https://www.google.com/
maps) for land cover classification. The highest spatial resolution of
the Baidu and Google maps are 0.3 m. Dozens of screenshots were
captured for each of the 23 monitoring stations within a 4 km by 4 km
square, and mosaicked into a larger image through Photoshop (Adobe,
San Jose, CA). The monitoring stations were situated at the center of the
corresponding merged images. All the air quality monitoring stations
and associated images were calibrated and geo-referenced through
ArcGIS (ESRI, Redlands, CA). In geo-referencing, more than six geo-
referencing points were used in aligning each of the 23 images to the
calibrated images in ArcGIS. These geo-referenced TIF images were
then used in an e-Cognition environment for land cover classification.

Urban space consists of many small objects which complicates
urban features in spectral responses. Traditional pixel-based spectral
algorithms are not sufficient for classifying these spectrally hetero-
geneous land-cover data (Johansen et al., 2010). In addition, many
different urban features might share the same or very similar spectral
signals and thus be impossible to classify through pixel-based spectral
analysis alone (De Pinho et al., 2012). The availability of high resolu-
tion spatial remote sensing data (e.g., sub-meter resolution) gives us the
capability to identify and classify those small objects through advanced
object-based classification algorithms. E-Cognition (Trimble GeoSpa-
tial, Munich, Germany) is one of the leading object-based remote sen-
sing data processing software platforms successfully used to conduct
complex intra-urban land cover classifications (De Pinho et al., 2012;
Tehrany et al., 2013; Tijjani Baba, 2015; Xu et al., 2016). In this study,
we used e-Cognition to identify objects through a knowledge-based
flow chart (De Pinho et al., 2012). First, we applied the fractal net
evolution approach (i.e., multi-resolution segmentation algorithm) to
generate objects at different scales (e.g., starting from 100 and going
smaller by 10) and selected an optimal level for object recognition.
Second, we applied a membership function and the nearest neighbor-
hood classifier method to classify the segmented objects into the 16
classes defined in Section 2.5. This approach was applied separately to
each of the 23 sites in a 4 km by 4 km square area. Based on the com-
plexity of the land cover surrounding each monitoring site, 80,000 ∼
220,000 image segments were generated. In the process of membership
definition, we first classified each segmented object based on their
spectral information (i.e., layer values – e.g., green, red, and vegetation
index). Spectral information was useful to identify spectrally different
objects like vegetation vs. impervious surface vs. water. We then added
geometry information into the knowledge base, including extent (e.g.,
length/width for roads and rivers) and shape (e.g., rectangle for
building tops). Merging small size objects into nearest neighborhood
and other functions were also used to enhance object classification.

To verify the accuracy of image classification in a 4 km by 4 km
scope, we randomly selected 100 classified objects for a detailed as-
sessment, using its sub-meter remote sensing imagery. If a chosen object
could not be clearly identified through the areal photo, fieldwork was
conducted to assist assessment. In addition, we visually inspected each
4 km by 4 km square area thoroughly to identify potential classification
inaccuracy. For the 23 sites, there were 13 urban sites and 10 rural
sites. The mean classification accuracy for the urban areas was 75% and
the corresponding mean accuracy for the rural areas was 95% (typically
agriculture fields). The overall mean accuracy for the 23 sites was 85%.

2.4. Air pollution data and LUR modeling

The LUR methodology seeks to predict pollution concentrations at a
given site based on surrounding land use and traffic characteristics. The
detailed information on LUR development can be found in Jerrett et al.
(2004) and it is briefly described here: LUR uses measured pollution
concentrations y at location s as the response variable and land use/
cover types x within areas around location s (called buffers) as pre-
dictors of the measured concentrations. The method entails the use of
least-squares regression modeling to predict pollution surfaces based on
pollution monitoring data and existing exogenous independent vari-
ables. Air pollution data on NO2 for Tianjin were collected by the
Tianjin Municipal Environmental Protection Bureau for 2015 for the 23
monitoring stations, covering the six urban districts of Heping, Nankai,
Hexi, Hebei, Hedong and Hongqiao, as well as the Binhai New Area,
Wuqing District and Jizhou District.

To develop a LUR model, we first created buffers of 40 circular area
distances with an interval of 50 m (i.e., 0–50 m, 0–100 m, 0–150 m, …,
0–2000 m) around each of the 23 air quality monitoring sites. The
buffer statistics for each underlying land cover type were then used in a
machine learning LUR modeling approach to identify the more ag-
gregated land cover categories that most accurately predict levels of
NO2 concentrations. The marginal effects of vegetation on reducing air
pollution was subsequently identified.

A distance decay curve was first generated to visualize the corre-
lations between air pollution and land cover categories, which were
generated through the object-based classification approach. The LUR
model was then run through a deletion/substitution/addition (DSA)
machine learning algorithm (Beckerman et al., 2013; Su et al., 2015c)
using the aggregated nine land cover categories described above. The
DSA algorithm is an aggressive model search algorithm which itera-
tively generates polynomial generalized linear models based on the
existing terms in the current 'best' model and the following three steps:
(1) a deletion step which removes a term from the model, (2) a sub-
stitution step which replaces one term with another, and (3) an addition
step which adds a term to the model. The search for the 'best' estimator
starts with the base model specified with 'formula': typically the inter-
cept model except when the user requires a number of terms to be
forced in the final model. Before searching through the statistical model
space of polynomial functions, all data are assigned randomly into v-
folds of near equal numbers of observations in each fold. Data in one
fold are used for validation while the data in the remaining folds are
used for prediction/model training. This process repeats for v-times
until all the folds are used for validation. The polynomial within the
search space that minimizes the cross-validated risk is selected as the
prediction algorithm. In our practice, we limited the predictors to be
only on linear terms (the maximum sum of powers in each variable
being 1) and disallowed any interaction except corridor by year. The
LUR model helped us identify whether the land cover categories and
data for the city could effectively predict air pollution NO2.

2.5. Identification of the effects of the City greening strategies on reducing
air pollution reduction

The regression coefficient associated with vegetation in the LUR
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model was then used to identify the degree of reduction in air pollutant
concentrations when a specific land cover category was retrofitted to
increase vegetation coverage. To identify air pollution reduction, we
also identified directions of association between individual land cover
types and NO2. These directions indicate whether a land cover con-
tributed to an increase or reduction in air pollution through the di-
rection of association. A positive association (+) indicates contributing
to the increase of NO2 levels while a negative association (-) indicates
contributing to the reduction of air pollution and thus improvement in
air quality. We also considered the combined effects of multiple
greening strategies (e.g., tree top layer + grass understory) in a single
place to more effectively reduce air pollution.

For a land cover type that contributed to air pollution (+ sign of
association with NO2), we analyzed the suitability of that category for
greening. A land cover category belonging to the “greening” group can
generally be modified to mitigate air pollution through retrofitting,
including shoulders of highway and major roadways, overpasses, local
roadways, and urban open space etc. The “no greening” group includes
public buildings, high-rise buildings and railway stations etc. High-rise
buildings, for example, due to the traffic canyon effects, might create
heightened air pollution levels; however, the prohibitive costs asso-
ciated with adding green space might preclude this type of land cover
from being included in green programs and we thus classified it as “no
greening”.

There are also differences within the “greening” group, depending
on the more detailed land cover type categories. For example, local
roadways and urban open spaces are different from major roadways
and overpasses in the amount of air pollutants produced and the per-
centage area available for greening. Further, roadway redesign is not
aimed at changing either road width or traffic carrying capacity, but
rather to cover the available space with plants based on the current
situation, such as mid-road parkways. Similarly, industrial buildings
differ from other building types, due to the fact that some factories
create air pollution, while others do not, and the strategy for redesign
likely depends on specific conditions on the ground.

We used China's national land planning standards to calculate the
maximum area and the percentage that could be retrofitted (Table 2).
The referenced standards included: Code for Planting Planning and
Design of Urban Roads CJJ 75-97, that focuses on planting along roads.
The Code for the Design of Urban Green Space GB50420-2007, stresses
public design and planting plans of public places. The Code for the
Design of Urban Road Engineering CJJ37-2012, pays attention to road
planning. The Technical Specification for Planted Roofs, JGJ155-2013,
offers preliminary guidance for green rooftops. The Code for the Design
of Urban Bridges CJJ11-2011, mainly addresses standards for bridge

design. We focused on those land cover types that are modifiable under
these standards, which are summarized in Table 2.

3. Results

3.1. E-cognition land cover classification results

We differentiated public, industrial and residential buildings using re-
mote sensing data through guidance provided by the Chinese government
on planning indicators for those land uses (MOHURD, 1998, 2010). Public
buildings are normally inter-connected to form a big block of buildings,
while industrial buildings are typically dispersed and low in height. Re-
sidential buildings are typically distributed in parallel blocks, separated
from each other in individual elongated polygon shapes, and normally taller
than industrial buildings (with more than 10 floors). Residential buildings
taller than 27 m are classified as high-rise buildings. As well as shape and
layout, shadow information was also used to identify those land uses, i.e., to
construct height information. The images were classified through e-Cogni-
tion and imported into ArcGIS for further processing. Some of the generated
images are shown as follows:

According to Figs. 2 and 3, the urban land cover types are dis-
tributed in a relatively orderly fashion: they are separated by grids of
roadways, relatively small in size and have multiple land cover types.
The road network includes highways, major roadways and local road-
ways. Open space and green vegetation (e.g., grasslands, street tree
stands and forests) are distributed throughout the area. The land de-
voted to industrial facilities and factories are relatively small and tend
to be dispersed among other land cover types. The public buildings are
generally bigger in size and concentrated in a specific area. The re-
sidential buildings are relatively small in size but constitute the greatest
share of the occupied land.

In comparison, land cover types in the rural areas are relatively
homogeneous, as shown in Fig. 4, where grasslands, bare soil and
farmland make up the bulk of uses. Grasslands and bare soil cover much
of the area; areas planted with trees are relatively small and they are
distributed mostly along roadways. The public buildings and residential
units are relatively concentrated. Buildings are generally lower in
height. Table 3 shows the distribution characteristics of each land cover
type across the areas surrounding the 23 air quality monitoring stations.

3.2. Model diagnostics: distance decay curves of correlation

Fig. 5 is the visualization of the distance decay curves of Pearson
correlations that shows the associations of selected land cover types
with air pollution from NO2.

Table 2
The national standards on greening for 9 land cover categories.

Type Standard size parameter Standard
greening scale

Max retrofit retrofit percent

Highway and major roadways (speed > 60 km/h) 3.75 m Wsb ≥3 m
Wsm ≥2.5 m

2*Wsb + Wsm (2*Wsb + Wsm)/Wr

Highway and major roadways (speed ≤ 60 km/h) 3.5 m Wsb ≥2 m
Wsm ≥2 m

2*Wsb + Wsm (2*Wsb + Wsm)/Wr

Local roadways ≤3.0 m ≥40% 2.3 m 77%
Roadway overpass 3.75 m – 2.5 m 67%
Residential building – Roof ≥60% Roof

Building elevation
≥90%
≤50%

Industrial building – – Roof ≥90%
Urban Open space – 25% All 100%
Grassland – – All 100%
Tree plants 1.2–1.5 m – none 0%
Bare soil – – All 100%

Notes: For roadways, the standard size parameter refers to the minimum single lane width. In the standard greening scale column, Wsb refers to road separation
barrier between a central roadway and its side roadway while Wsm refers to the middle roadway separation barrier between two main opposite lanes. 2*Wsb + Wsm
indicates the maximum greening width: the total width of the two side roadway separation barriers plus the central roadway main separation barrier. Wr is the total
roadway width in meters.

Y. Guo et al. Urban Forestry & Urban Greening 38 (2019) 11–21

15



The distance decay curves of correlation are the incremental re-
lationships in buffer distance between the grouped land cover types and
the concentration of NO2 within a 2 km distance from the 23 mon-
itoring stations, including those from 0 to 50 m, 0–100 m, 0–150 m, …,
to 0–2,000 m. It can seen that high way, major road way, local roadway
and buildings are positively correlated with NO2 concentrations while
residential, water, vegetation, and industrial land covers are negatively
correlated with NO2.

3.3. Land use regression modeling results

Table 4 displays the LUR modeling results. Overall, the model ex-
plained 84% of the variance observed from field air quality monitoring.

3.4. Land cover contribution to air pollution and greening optimization in
Tianjin: An example of Qixialu

Through bivariate analysis between a land cover and NO2, we found
that 8 land cover types were associated with increases in NO2 (Table 5).
Among all the land cover types, 6 of them were treated as non-mod-
ifiable while another 8 types could be retroffitted to increase greenning.

Based on whether a land cover type can be redesigned to increase ve-
getation according to the standards promulgated by Chinese planning au-
thorities for greening (Table 2), we calculated the total amount of land that
could be redesigned within each area centered around the 23 air quality
monitoring stations. Table 6 shows the estimated scale (in hectares) of
potential retrofitting that might be accomplished give the land cover types
identified in the study, for the Qixialu monitoring station area.

For redesign or retrofitting, we applied the coefficient of the marginal
effects of vegetation (including trees/forests, shrubs and grasslands) in our
LUR modeling as the optimal strategy for greening. In the area surround
monitoring station Qixialu, we found that the total area that could be re-
designed is 1372.77 ha or 53.7% of all land area. The LUR modeling
coefficients for vegetation are -0.0157 for a buffer distance of m (size =
855.3 ha) and -0.1159 for a buffer distance of 400 m (size = 50.27 ha).
Thus total NO2 reduced based on the marginal effects model would be:
0.0157 * 855.3 * 53.7% + 0.1159 * 50.27 * 53.7% = 10.3 ppb, or 25% of
the monitored concentration in 42 ppb in Qixialu area.

4. Discussion and conclusion

In this study, using e-Cognition, we classified land cover in Tianjin,

Fig. 2. The land cover classification result in the urban area of Dali Dao.
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within a 4 km by 4 km range of each of the 23 air quality monitoring
stations into 16 distinct types with an accuracy of 85%. This accuracy is
consistent with other studies that also applied the e-Cognitition soft-
ware in urban land cover classification (De Pinho et al., 2012; Tehrany
et al., 2013; Tijjani Baba, 2015; Xu et al., 2016). In our land cover
classification, we did not have surface elevation model or LiDAR (light
detection and ranging) data to support object height information. In-
stead, we used object shadows to adjust for object height information.
Though we found some misclassification between grasslands, shrub-
lands and forests, and between residential, industrial and high-rise
buildings, application of shadow information helped us retrieve height
information of objects, though in a slightly less precise way.

The distance decay curves of correlation and land use regression
modeling results are also consistent with previous research findings that
vegetated land covers including trees/forests, shrublands and grass-
lands have positive impacts on reducing air pollutant concentrations,
and vegetated lands are the most effective in reducing air pollution
(Dadvand et al., 2015; Su et al., 2010, 2009, 2011; Villeneuve et al.,
2018) and so should be used as a primary design strategy to combat air
pollution where feasible. The land use regression model in our study
had an adjusted R2 of 0.85, relatively higher than most other models
and we think it was likely due to the more refined way of characterizing

land cover in our study: at a sub-meter resolution in our study vs. 10 m
or 30 m resolution in prior studies.

Instead of estimating improvements in air quality at the level of an
individual tree, for example, we estimated reduction of air pollution at
the land cover level. Further, our analysis aimed to estimate improve-
ments in air quality associated with specific urban greening strategies at
a regional level. As such it provides a quantitative method to assess an
urban greening strategy and its potential in reducing air pollution le-
vels.

In regard to urban greening, we identified some exemplary models
that are worth further examination and implementation. For greening
residential land uses, the ACROS building design and the Garden House
design by Müller Sigrist, Emilio Ambasz and Wilkinson (Currie and
Bass, 2008; Li et al., 2010; Yang et al., 2008) could be used for effective
urban greening. For highways and major roadways, local roadways, and
roadway overpasses, urban designers should take advantage of middle
lanes and parkways in order to increase the extent of vegetation cov-
erage. Precedents for such strategies include the Buffalo Niagara Med-
ical Campus Streetscape, High Line Park in New York, Pancras Square
in London, Vancouver’s Land Bridge, and Seoullo 7017 Skygarden in
Seoul (Finch and Morfei, 2010; Hynd and Berglund, 2017). Most urban
open space, grassland and bare soil have some grass/shrub coverage but

Fig. 3. The land cover classification result in the urban area of Binshui Xi Dao.
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could also be enhanced with trees to further increase vegetation cover.
Here, design precedents to consider include the Tianjin Duishan Park,
Hamilton Bayfront Park, Amsterdam Westergasfabriek, and Circular

Park (Edge and Hill, 2005; Koekebakker and Joseph, 2003).
Despite its utility, we also realize that our study has certain lim-

itations. The analytic method requires air quality monitoring that
covers various land cover types in an urban area. Such an approach is
clearly a challenge to cities without an air quality monitoring network
and thus no detailed air quality data. Tianjin’s air quality monitoring
network included 23 sites across various land use and land cover types;
however, future efforts should include more air quality monitoring
stations (e.g., more than 40 sites) to make the LUR modeling results
more stable. Further, our study requires detailed land cover classifica-
tion through an object-based classification algorithm. Some land use
planning and urban greening institutes may not have the resources to
conduct such complex analytic tasks. We also envision difficulties in
changing urban land cover patterns. Although we can build a green roof
or implement vertical greening technologies for residential and in-
dustrial buildings, the cost may be prohibitive, and there are practical
issues around waterproofing and drainage technology. Moreover, large-
scale treatment of air pollution through greening strategies may disrupt
everyday life and urban economic development, despite its long-run
benefits to public health and urban vitality. Thus, practical greening
programs will need to rely on landscape architects, urban designers and

Fig. 4. The land cover classification result in the urban area of Baobai Gong Lu.

Table 3
The descriptive statistics on the land cover categories surrounding the 23 air
quality monitoring stations in Tianjin, China.

Total (ha) Max (ha) Min (ha) Mean (ha)

Public building 10153.3 2110.11 55.19 534.38
Industrial building 11203.63 2304.93 10.39 487.11
Residential building 13260.09 2731.28 30.16 576.53
Farmland 3881.855 1089.36 0.00 258.79
Grasslands 55463.94 12595.36 70.53 2411.48
Highway and major roadways 15756.4 3065.08 56.69 685.06
Waterbody 5037.557 1229.98 1.92 228.98
River (linear feature) 6340.967 1425.61 11.01 288.23
Local roadways 21034.5 6986.08 39.68 956.11
Urban open space 9031.895 2306.37 14.96 410.54
High-rise building 3320.218 1275.24 18.77 174.75
Others 1112.504 447.34 0.82 55.63
Tree plants 19793.49 4342.24 46.30 860.59
Bare soil 9027.954 2110.11 55.19 534.38
Roadway overpass 712.5062 2304.93 10.39 487.11
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engineers to develop not only building-level but also city-level greening
programs and related green infrastructural interventions.

In summary, this is the first study to apply a machine learning LUR
modeling technique to identify the marginal effects of vegetation on
reducing air pollution and then use those relationships to quantify the
potential improvements in air quality associated with urban greening

strategies. Our approach demonstrated that LUR modeling techniques
could be used in urban environmental design to help policy makers and
city planners improve air quality and protect public health.
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