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Abstract
The current Brazilian energy scenario is undergoing impactful changes. There is a clear need to adjust the current energy 
sector that presents an imbalance due to the almost exclusively dependency on hydroelectric power. This brings the need 
of diversifying the Brazilian energy matrix, including other energy sources that are both efficient and renewable. Amongst 
the available options, the wind energy stands out. Remarkable progress in wind turbine technology has been made over the 
past years, allowing the design of higher and slender structures for increasing efficiency in energy production. Parameter 
optimization for tuned liquid column dampers (TLCD), a class of passive structural control, has been previously proposed 
in the literature for reducing vibration in wind turbines and several other applications. However, most of the available work 
considers the wind excitation as either a deterministic harmonic load or random load with white noise spectra, which might 
not be representative of the actual wind load. This paper proposes an optimization approach for the TLCD parameters sub‑
jected to an arbitrary wind spectrum, given that its power spectral density is know. Finally, a numerical example is given in 
which a simplified wind turbine model is loaded by different stochastic wind profiles. Satisfactory reduction in the response 
vibration levels is found, and it is shown that different wind profiles can significantly affect the optimization results, i.e. the 
best TLCD parameters are dependent on the wind model.

Keywords  Vibration suppression · Parameter optimization · Generalized pattern search · Random vibration analysis · 
TLCD

1  Introduction

The current Brazilian energy scenario is undergoing impact‑
ful changes. There is a clear need to adjust the current 
energy sector that presents an imbalance. Brazil depends 
almost exclusively on hydroelectric power. According to 
data released by PNE 2030 (National Energy Plan), most of 
the energy produced in the country comes from hydroelec‑
tric plants. By the year 2030, it is expected that hydroelec‑
tric plants will have a share of 77.4% of the energy matrix 
[30]. Since there is a need to diversify the Brazilian energy 
matrix, other energy sources that are efficient and renew‑
able are sought. Amongst the possible options that stand out, 

wind and solar energy have been considered as important 
alternatives due to good geographical and economic condi‑
tions [11].

Wind turbines are structures that convert the mechanical 
movement generated by the force of the winds into electric 
energy. The wind reaches the rotor blades that transfer the 
rotational motion to an electric generator responsible for 
producing electricity. The increasing height of wind turbine 
also increases the need of new approaches to ensure struc‑
tural reliability. Concerns over the integrity of wind turbines 
throughout the years have become a key point during design 
phase. The advance of the technology in wind turbines has 
caused an increase in its size and efficiency. In this way, 
challenges arise to avoid excessive vibration of both propel‑
lers and towers [5]. Higher and slender structures pose chal‑
lenges concerning their integrity due to the dynamic loads 
from wind, ocean waves, or earthquakes [26]. Serious efforts 
have been undertaken to develop the concept of vibration 
control of wind turbines.
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The reduction in vibration, with the purpose of increasing 
its lifespan, motivates the use of several passive or semi-
active vibration control techniques. In that sense, Murtagh 
[26] applied a tuned mass damper to mitigate vibration in a 
wind turbine by modelling the dynamic interaction between 
three uniform rotating turbine blades and their supporting 
uniform tower. Also, Zuluaga [43] investigated a tuned 
pendulum-shape mass damper to evaluate the reduction in 
displacement when the main system is subject to random 
ambient excitation. Lackner and Rotea [19] incorporated the 
equation of motion of the Tuned Mass Damper in the source 
code of FAST, an aero-elastic code. This scheme creates a 
more realistic model for structural control in wind turbines 
to significantly improve system’s response. Li et al. [21] 
investigated experimentally the efficiency of a ball vibration 
absorber tested on a 1 / 13 scaled wind turbine. Fitzgerald 
and Basu [12] examined the effect of soil structure interac‑
tion on vibration control techniques. Zuo et al. [44] proposed 
the use of multiple tuned mass damper to control tower 
vibration of wind turbine by taking into consideration high 
vibrations modes.

Particularly, the use of tuned liquid column dampers 
(TLCD), first proposed by [22, 32], is a very attractive 
approach due to its relatively low cost and good efficiency 
[9, 23]. Recently, experimental investigations have been 
showing the potential of this approach in vibration mitiga‑
tion of tall and slender structures [3, 6, 7, 42]. The main 
advantages of TLCD are its low cost, low maintenance fre‑
quency and multi-use of the device, e.g. water tank. Besides 
that, the TLCD does not require any bearings, special floor 
type for installation, activation of the mechanism, springs, 
and other mechanical elements that only increase the price 
of vibration absorber expenses. Consequently, their geom‑
etry varies according to design needs, making them quite 
versatile devices.

TLCDs were first studied for excitation of structures 
that underwent wind actions by [40]. The structure was 
modelled as a lumped mass multi-degree-of-freedom sys‑
tem taking into account both bending and shear, and the 
wind turbulence was modelled as a stochastic process that 
is stationary in time and non-homogeneous in space. The 
nonlinear damping term in the fundamental equation of the 
tuned liquid damper is treated by an equivalent linearization 
technique.

As shown in Fig. 1, TLCD operates based on the move‑
ment of the liquid column. The column may have differ‑
ent geometries; particularly in this paper, the TLCD has a 
“U” shape. The TLCD requires no extra mechanism such 
as springs or joints; furthermore, its geometry may vary 
according to design needs, making them very versatile 
devices. While the apparent simplicity of the system, its 
damping is dependent on the amplitude of the liquid column, 
making it a nonlinear problem.

The existence of a nonlinear term in the TLCD equation 
of motion is a drawback. Some approaches to simplify it 
have been proposed. Roberts and Spanos [31] have used a 
statistical linearization to avoid solving the nonlinear system 
of equations, and Vanderplaats [37] used a parameter opti‑
mization technique. A close form solution for the optimized 
TLCD damping ratio and head loss coefficient have been 
proposed by Yalla and Kareem [41]. The method does not 
rely on iterative process, but to solve the minimum variance 
integrals, an expression is derived indirectly considering 
some properties of the spectrum of the stationary output of 
a linear time-invariant system to white noise input. More 
recently, Altay et al. [2] presented an expanded optimiza‑
tion approach which considers the geometric layout of the 
damper. Numerical verification was carried out by stochastic 
inflow turbulence simulator TurbSim [28] and the aero-elas‑
tic dynamic horizontal axis wind turbine simulator FAST 
[29], which are well-known wind turbine simulation tools.

The goal of this paper is to attempt a more general opti‑
mization scheme that allows the search for optimum param‑
eters of a TLCD for any stochastic wind model, given that 
its power spectral density is known. The structure of the 
paper starts by the mathematical description of TLCD and 
the wind turbine model in Sect. 2. A brief review on ran‑
dom vibration analysis of linear systems is presented in 
Sect. 3 followed by the proposed optimization approach. As 
a proof of stake, four different stochastic wind models and 
their effects on the optimum parameters are investigated in 
Sect. 5. Section 6 presents a numerical examples with the 
optimum parameters for the given wind load model, and 
finally, Sect. 7 presents some concluding remarks and fur‑
ther steps of the work.

Fig. 1   Tuned liquid column damper scheme applied in a wind turbine 
[2]
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2 � TLCD and structure modelling

Considering the TLCD rigidly connected on the primary 
structure, as sketched in Fig. 2, and the “U”-shaped sup‑
port with constant cross section and negligible mass when 
compared to fluid, it is possible to model the TLCD as a 
one-degree-of-freedom model with equivalent mass, stiff‑
ness and damping.

The equation describing the motion of the fluid is given 
by [34]

where u(t) is the displacement of fluid, x(t) is the dis‑
placement of the primary system, � is the fluid density, � 
is the head loss coefficient, A is the cross section area of 
the column, b and l are the horizontal and total length of 
the column, respectively, D is the diameter of the column, 
and g is the gravity constant. The TLCD equivalent mass, 
damping and stiffness are given, respectively, by ma = �Al , 
ca =

1

2
𝜌A𝜉|u̇(t)| and ka = 2�Ag . Therefore, the linearized 

column’s natural frequency is given by �a =
√
2g∕l . The 

term on the right side of Eq. (1) is the coupling term with 
the primary structure.

The equation of motion of the primary structure is given 
by

where the parameter me is the structure mass, ke the structure 
stiffness, ce the structure damping, and F(t) the excitation 
force. The term 𝜌Abü(t) is a reaction force that occurs due 
to the motion of the liquid column induced by the structure. 
Thus, combining Eqs. (1) and (2), the equation of motion in 
matrix form is given by

where

(1)𝜌Alü(t) +
1

2
𝜌A𝜉|u̇(t)|u̇(t) + 2𝜌Agu(t) = −𝜌Abẍ(t),

(2)(me + ma)ẍ(t) + 𝜌Abü(t) + ceẋ(t) + kex(t) = F(t),

(3)��̈ + ��̇ +�� = � , |u| ⩽ l − b

2
,

� =
{
x u

}T , and � = b∕l is the dimensionless length ratio. 
The condition presented by Eq. (3) is needed to ensure the 
liquid in the column does not spill over and consequently 
maintains its equivalent mass and damping characteristics. 
Additionally, Eq. (3) can also be written with the mass 
matrix in its dimensionless form, i.e.

where �e and �e are the damping ratio and natural frequency 
of the linearized structure, respectively. The dimensionless 
parameters mass ratio � and tuning ratio � are defined as 
� = ma∕me and � = �a∕�e . It can be noticed that the non‑
linear term is included in the damping matrix.

Murtagh at al. [25] presented a simplified model of wind 
turbine, assuming it as a cantilever beam such that the blade 
effects are negligible. This assumption is accurate for low-
frequency analysis [15]. Then, system can be reduced to a 
single degree of freedom (DOF), with equivalent mass and 
equivalent stiffness of the tower given by [4]

where m is the mass per length of the beam, and E and I are 
the modulus of elasticity and the second moment of area, 
respectively. The tower length is given by L, and the equiva‑
lent tower length Le is defined as Le = M∕m where M is the 
equivalent lumped mass at the top of the cantilever beam.

2.1 � Statistical linearization

The nonlinear nature of TLCD damping in Eq. (3) requires 
the determination of its equivalent form in order to perform 
random vibration analysis. Statistical linearization is the 
classical approach, but other methods can also be used. In 
this section, the linearization is firstly introduced followed 
by the parameter optimization.

Roberts et al. [31] proposed a procedure to estimate the 
linearized equivalent damping using statistical linearization. 

(4)

� =

[
me + ma �ma

�ma ma

]
, � =

[
ce 0

0 ca

]
,

� =

[
ke 0

0 ka

]
, � =

{
F(t)

0

}

(5)

� =

[
1 + 𝜇 𝛼𝜇

𝛼 1

]
, � =

[
2𝜔e𝜁e 0

0
𝜉|u̇|
2l

]
,

� =

[
𝜔2
e

0

0 𝜔2
a

]
, � =

{
F(t)

me

0

}

(6)ke =
�4

32L3
EI,

(7)me =
mL

2�

[
�

(
3 + 2

Le

L

)
− 8

]
,

Fig. 2   Schematic model of TLCD rigidly connected to the primary 
structure
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From this approach, the error between the nonlinear 
term with its equivalent linearized can be expressed as 
𝜀 = 𝜉|u̇|∕2l − cequ̇, where the value of the equivalent damp‑
ing ceq can be obtained by minimizing the standard deviation 
of the error value, namely E{�2} . Assuming a probability 
density function with Gaussian form, it is possible to obtain 
an expression for the equivalent linearized damping as a 
function of the standard deviation of the fluid velocity 𝜎u̇ 
and the head loss coefficient � . An iterative method is then 
carried out to find the optimized head loss coefficient.

Another linearization strategy is described in Yalla and 
Kareem [41]. By writing the TLCD’s nonlinear damping 
in its linear form, 2�a�a , where �a and �a are the TLCD’s 
natural frequency and damping ratio, respectively, Yalla and 
Kareem minimized the primary structure variance response 
with respect to the damping ratio and the tuning ratio to find 
their optimal conditions when both equations were solved 
simultaneously. Although this method does not rely on itera‑
tive procedure, it involves a rather large computation [31]. 
Furthermore, the minimization solution changes if different 
wind models are used.

In this work, the proposed method considers the lineariza‑
tion as described in Yalla and Kareem [41] but rather than 
solving the optimization problem analytically, a numerical 
approach is considered. We can write Eq. (3) in its linearized 
form by changing its normalized damping matrix, Eq. (5), to

From the linearized system, a frequency response function 
(FRF) is calculated which will be used in the random vibra‑
tion analysis. The frequency response functions are obtained 
by assuming the system in Eq. (8) is under harmonic motion. 
The system response vector is then given by

where � stands for the driving frequency, �(�) is the vector 
of the exciting force, �(j�) = [−�2� + j�� +�]−1 is the 
FRF, j is the imaginary unit, and � , � and � are the mass, 
damping and stiffness matrix, respectively. For both degrees 

(8)� =

[
2�e�e 0

0 2�a�a

]
.

(9)
�(�) = [−�2

� + j�� +�]−1�(�)

= �(�)�(�)

of freedom, the explicit expressions of the diagonal terms of 
the FRF matrix are given by

w h e r e  �H = [(j�)2(1 + �) + 2�
e
�
e
(j�) + �2

e
][(j�)2+

2�
a
�
a
(j�) + �

a
]2 − (j�)4�2� . Equation (10) depends on the 

system parameters such as the absorber damping ratio and 
the natural frequencies.

3 � Random vibration analysis

In this section, the random vibration analysis to find the 
system response in the frequency domain is introduced and 
some fundamental concepts are briefly reviewed. Expres‑
sions for the statistics of the random response, e.g. mean 
value, standard deviation and autocorrelation, of a linear 
systems under random stationary excitation can be given 
straightforwardly. However, nonlinear systems usually 
require the direct time domain solution of the differen‑
tial equations in order to calculate the response statistics. 
Alternatively, a linearization method can be applied. When 
the systems are subjected to a deterministic load, a Tay‑
lor expansion around same equilibrium point is typically 
employed. For stochastic load, a statistical linearization 
scheme can be used, as shown in Sect. 2.1. Both, direct inte‑
gration and linearization approaches, are summarized in the 
diagram shown in Fig. 3.

The equivalent linear approach is indicated by the upper 
path of the diagram, and load spectrum Sff (�) can be used 
directly to calculate the response spectrum Syy(�) . The FRF 
H(�) is given using the parameters obtained from the statis‑
tical linearization and is then used in the proposed procedure 
to calculate the optimized parameters.

The frequency content of a random process x(t) is not peri‑
odic and therefore cannot be expressed by the Fourier series 
and also due to the stochastic nature of x(t) that change from 
sample to sample. This difficulty in describing the process 

(10)
H11 =

(j�)2 + �a�a(j�) + �2
a

�H

,

H22 =
−�(j�)2

�H

,

Fig. 3   Response PSD Syy(�) 
obtained from frequency 
response function for the lin‑
earized case (upper path), and 
from numerical integration for 
the nonlinear case (lower path)



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:551	

1 3

Page 5 of 11  551

can be solved by looking at the autocorrelation function Rx(�) 
instead of the random function. Rx(�) is a deterministic quan‑
tity and can be used to fully specify a zero-mean second-order 
stochastic process [38], and for a stationary random process, 
the autocorrelation function Rxx(�) depends only on the time 
intervals, or lags, � , regardless of the instant t. Additionally, 
from the autocorrelation function, it is possible to obtain 
information about the frequency content of a random process 
because it is related to the power spectral density (PSD) func‑
tion of a stochastic process. The PSD is also a deterministic 
function and can be defined by the Fourier transform of the 
autocorrelation function as

Consequently, it is possible to define the following relation

also known by Wiener–Khintchine theorem [27].
One of the particularly relevant properties of Sxx(�) 

becomes apparent when � = 0 in Eq. (12); in this case,

where E[⋅] stands for the mathematical expectation. This 
result can be interpreted graphically, meaning that the mean 
squared of the random process is equal to the area under the 
spectral density curve.

The relation between the PSD of the response and the 
excitation can be extracted from the input and output ratios 
of a deterministic linear system. Let the elements x(t) and 
y(t) be the input and output of the system. Now, consider 
these functions in the frequency domain, X(�) and Y(�) , and 
the relation between them can be obtained as

where � stands for Fourier Transform. Now, consider that x(t) 
e y(t) represent stochastic processes. The relations between 
input and output are still valid, but due to their stochastic 
nature there is the need to interpret these results in terms of 
theirs statistics, which are not deterministic quantities.

For the case where x(t) is stationary, it can be shown that

Applying the Fourier transform yields

(11)Sxx(�) =
1

2� ∫
∞

−∞

Rxx(�)e
−i��d�.

(12)Rxx(�) = ∫
∞

−∞

Sxx(�)e
i��d�,

(13)E[x2] = Rxx(� = 0) = ∫
∞

−∞

Sxx(�)d�

(14)y(t) = ∫
∞

0

h(�)x(t − �)d�
�
�������→ Y(�) = H(�)X(�),

(15)Ryy(�) = ∫
∞

−∞ ∫
∞

−∞

h(�1)Rxx(� + �1 − �2)h
T (�)d�1d�2.

(16)

Syy(�) = Sxx(�)∫
∞

−∞

h(�1)e
i��1d�1 ∫

∞

−∞

hT (�2)e
−i��2d�2,

which, using the definition of the impulse response func‑
tion, leads to

These results provide a direct and simple relation between 
the input and output power spectral density. Additionally, it 
is straightforward to generalize this results for systems with 
multiple DOF [27], yielding

This is computationally more efficient than the direct time 
domain integration approach because a FFT-based approach 
can be used to estimate the input PSD [27, 33].

The direct integration in the time domain, typically 
requires the use a 4th-order Runge–Kutta–Fehlberg solver. 
The wind profile time history can be given from the wind 
PSD model Sff (�) , further described in Sect. 5.1. Finally, 
the response PSD Syy(�) can be estimated via a periodogram 
approach [27]. Any optimization problem set find the best 
TLCD parameters according to a performance function, 
would require several evaluations of this nonlinear system 
and the same number of evaluations of the statistics of the 
response, which could be computationally prohibitive. A 
comparison between the two approaches was carried out in 
[1] where it was shown a good approximation between them.

4 � Parameter optimization criteria

Assuming an external load �(t) as a stationary random signal 
with PSD given by Sff (�) , the structural response y(t) is also 
a stationary stochastic process with Syy(�) given by Eq. (18). 
Note that Sff (�) is proportional to the power spectral density 
of the wind velocity, and it can assume different models 
depending on the wind profile.

The desired performance index (cost function) J will be 
defined by the mean square response. If the exciting force is 
zero mean, then the response also has zero mean. Therefore, 
the mean square response Eq. (13) equals the variance, and 
thus

where the response PSD Syy(�) is real positive and, there‑
fore, the sufficient and necessary conditions for the opti‑
mization are met [20]. For the prescribed frequency range 
[�l,�u] the optimization problem consists of looking for the 
parameters that minimize the area under of response PSD 
over a given frequency band, i.e.

(17)Syy(�) = |H(�)|2Sxx(�).

(18)Syy(�) = �(�)Sxx(�)�(�)T .

(19)
J(�a, �) = ∫

∞

−∞

Syy(�)d�

= ∫
∞

−∞

�(�)Sff (�)�(�)Td�,



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:551

1 3

551  Page 6 of 11

where � is the set of design parameters TLCD damping ratio 
�a and tuning ratio � satisfying the constraint. To solve the 
optimization problem, we introduce the optimization algo‑
rithm in the next subsection.

4.1 � Generalized patter search

The Generalized Patter Search (GPS) is a class of direct 
search methods, and it was originally proposed for uncon‑
strained minimization problems [14] and then extended for 
problems with bound and linear constraints [36]. The classi‑
cal gradient-based algorithms have they performance strongly 
affected when the cost function includes some random noise. 
Although the GPS requires more function evaluations than 
gradient-based algorithms to find the true minimum, it is not 
as strongly affected by random noise [17].

The function patternsearch from the MATLAB environ‑
ment is used as a GPS implementation. Algorithm 1 is applied 
in this work for the proposed parameter optimization problem. 

Algorithm 1 patternsearch algorithm
X0 = [zeta gamma]; # Starting point
LB = [0 0]; # Lower bound
UB = [inf inf]; # Upper bound
Objfcn = @objfun;
PSoptions = optimoptions(’patternsearch’,...

’ConstraintTolerance’,1e-14,
’FunctionTolerance’,1e-14,
’StepTolerance’,1e-14);

[xopt,Fps] = patternsearch(Objfcn,X0,[ ],[ ],[ ],[ ],LB,UB,PSoptions);

4.2 � Verification procedure

In order to verify whether the algorithm and cost function are 
adequate for solving the optimization problem, a simple case 
where the closed-form solution is available is investigated.

Considering the case of undamped primary structure 
( �e = 0 ) and white noise excitation, Yalla and Kareem [41] 
solved the mean variance problem to obtain the following 
expression for optimal parameters

(20)

min
�a,�∈�

Ji(�a, �)

s.t. �a, � ≥ 0

I = {i ∣ �l ≤ �i ≤ �u}

(21)
�opt =

�

2

√√√√√ 2�
(
�2 �

4
− � − 1

)

(�2�2 + �2� − 4� − 2�2 − 2)
,

(22)�opt =

√
1 + �(1 −

�2

2
)

1 + �
,

which are function of the length ratio � and mass ratio �.
Figures 4 and 5 show the optimized parameters from 

Yalla and Kareem [41] and the proposed algorithm as a func‑
tion of the mass ratio for different length ratio � . It can be 
noticed a very good agreement in Fig. 4. A slight difference 
in Fig. 5 can be seen between the two methods in the opti‑
mum damping ratio for large values of mass ratio which can 
be attributed to tolerance error in the optimization algorithm 
and the chosen cost function’s interval of integration that, in 
this case, was chosen between 2 and 5 rad/s. However, the 
optimized damping ratio sensitivity does not influence the 
characteristics of the system.

The wind excitation PSDs considered in this paper are 
detailed in the next section.

5 � Probabilist description of wind loads

This section summarizes some probabilistic aspects of wind 
load in low atmospheric layers on flexible structures. The 
problems is confined to along-wind response of structures, 
and cross-wind response or aero-elastic coupled problems 
are not in the scope of this work and are therefore left out 
of discussion.

The wind velocity fluctuates as a function of the time 
near the ground. In fact, the spectral analysis of this 
velocity over a long time interval reveals several scales of 
fluctuation. Figure 6 shows the van der Hoven spectrum 
[18], a typical power spectrum of the horizontal velocity 
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Fig. 4   Optimized tuning ratio subject to white noise spectrum as a 
function of the mass ratio � for different length ratio �
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of wind at 100 metres above ground. It shows that the 
low-frequency energy is concentrated over a period of 
four days, which is associated with geostrophic motions. 
Another peak is commonly placed at 12 or 24 h and is due 
to thermal phenomena of night and day alternation. For 
last, part of the energy is concentrated over a period of 
one minute and corresponds to the timescale of turbulent 
motion. These micro-meteorological effects can be attrib‑
ute to turbulent gust caused by eddies in the wind load 
over obstacles in the vicinity of the turbine, i.e. towns, 
trees, hills and valleys. If the surface is relatively flat such 
as in the sea, there will be less turbulence then in the field.

The effects of coupling of the wind velocity with the 
structural motion can be neglected, and therefore the wind 
load can be given only by the wind velocity, which can be 
divided into static and dynamic components. Moreover, both 
along-wind and across-wind load directions can be consid‑
ered separately [39]. Wind turbulence is an important con‑
sideration if the first natural period of a structure is around 
0.5 s and it is mostly likely the cause of fatigue damage in 
lattice towers [13]. The power spectrum from Fig. 6 also 
shows that there is an energy hole for periods between 10 
min and 2 h. Therefore, if an average wind velocity is desir‑
able over a period T corresponding to the energy hole, i.e. in 
the 10 min up to 2 h range, the mean velocity will be almost 
stable [18] and over a time T the wind velocity can be mod‑
elled by a locally stationary stochastic process.

Two approaches can follow, a short-term and a long-term 
modelling. The short-term modelling describes the fast fluc‑
tuations due to turbulence and is modelled by a stochastic 
process. If we take into account the slow variations of the 
mean velocity over a long period, we obtain a long-term 
modelling. However, due to lack of meteorological deter‑
ministic forecast over a long period, one has to resort to 
probabilistic modelling. Hence, the mean velocity and other 
parameters are modelled by random variables where the 
probabilistic models are the outcome of statistical process‑
ing of meteorological measurements.

The analysis in this work focuses on the short-term model 
for wind flow, and the following section will describe typical 
PSD profiles used to model stochastic wind load.

5.1 � Wind profile power spectral density

Wind excitations are highly dynamic, irregular external 
loads. This section discusses how these could be simu‑
lated through the different PSDs such as white noise, 
Kanai–Tajimi, Kaimal and Davenport.

White noise is a signal idealization where its PSD cov‑
ers all frequency bands with a constant value. Other PSD 
models can be physically more meaningful to represent wind 
profiles by taking into account aspects of relevance to the 
real problem such as roughness, heights, wind forces and 
general changes in dynamic properties. Kaimal and Daven‑
port spectrum models are a first-order filter that can be used 
to approximate wind-induced positive pressures along wind 
loading. Kanai–Tajimi is a representation of a second-order 
filter, which is typically used in earthquake profiles, but will 
be used in this work for the sake of comparison. Table 1 
summarizes each respective power spectral density function 
expressions.

For Kaimal PSD, Lk = 340.2 m is a scale parameter that 
involves the wind turbine high and vhub = 16 m/s is the 
mean wind velocity. According to Burton et al. [8], Kaimal 
spectrum provides a good fit to empirical observation of 
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atmospheric turbulence. For Davenport PSD, � is the drag 
coefficient referred to the mean velocity and L in the hub 
height [10]. For Kanai–Tajimi PSD, �g =  10.5 rad/s and 
�g = 0.317 can be interpreted as characteristic frequency and 
characteristic damping ratio, respectively [16]. Kanai–Tajimi 
spectrum amplifies the frequency around �g and it attenuates 
high frequencies [35].

Figures 7 and 8 show the spectral and time history charac‑
teristics of different wind models with added Gaussian noise, 
respectively. From Fig. 7, it can be noticed that both Kaimal 
and Davenport spectra show more dominant low-frequency 
components. Since Kanai–Tajimi is a second-order filter, the 
formation of a peak near its characteristic frequency can be 
clearly noticed. In addition, Fig. 8 shows the velocity of the 
wind in the time domain. This time history is numerically 

generated by a FFT-based algorithm, taking the inverse dis‑
crete Fourier transform (IDFT) of the discretized signal in 
the frequency domain where its amplitude is estimated as 
the square root of the discretized PSD, 

√
Sk , and the random 

phase is generated from a uniform distribution within the 
interval [0, 2�] [27].

It can be noticed that the white noise velocity profile is 
the least smooth of all, because the velocity at one point in 
time is independent from the velocity at any other instant. 
Moreover, it has the largest dispersion around the mean 
which is proportional to the area under the PSD curve. 
This spectral is not physically meaningful, but it is usually 
applied because it is easier to manipulate analytically than 
other model. The Kanai–Tajimi spectrum also shows a large 
dispersion, due to its large area under the PSD curve, but it 
presents smoother time domain history than the white noise 
spectrum. Finally, Kaimal and Davenport spectra present a 
more physically meaningful wind velocity profile with good 
autocorrelation [24].

The next section describes a numerical example using 
random vibration analysis, the described wind profiles and 
the parameters obtained from the optimization approach.

6 � Numerical example

In this section, a numerical example is carried out using the 
wind turbine parameters, summarized in Table 2, which are 
the same as proposed by Murtagh et al. [25]. First, optimized 
parameters are obtained for a fixed length ratio and differ‑
ent mass ratios and wind spectra cases. Then, comparisons 

Table 1   Power spectral density functions for modelling the wind

Filter Power spectral density functions

White noise SWN(�) = S0

Kanai–Tajimi
SKT(�) =

(1+4�2
g
(�∕�g)S0)

[1+(�∕�g)
2+4�2

g
(�∕�g)

2]

Kaimal
SKai(�) =

[
4S2

0
(Lk∕vhub)

[1+(6�(Lk∕vhub))

]5∕3

Davenport
SDav(�) =

4�Lv2
hub

�

(1+�2)4∕3 ,     � = �L∕vhub
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of the system response PSD with and without TLCD are 
shown.

Table 3 presents the obtained optimized TLCD damping 
ratio �opt and tuning ratio �opt for a fixed length ratio � = 0.8 
and different mass ratio and wind spectra. Fixed length ratio 
configuration is chosen because both mass and length ratios 
are inversely proportional and related to the physical con‑
straint horizontal length of the liquid column b as follows

where a fixed length ratio can have different horizontal b 
lengths for each mass ratio.

From Table 3, it can be seen that the optimum TLCD 
damping ratio �opt increases for increasing mass ratio � , and 
it is only slightly affected by the choice of wind spectrum. 
This can be clearly noticed from Fig. 9. On the other hand, 
the optimum tuning ratio �opt decreases for increasing mass 
ratio � and it is significantly affected by the choice of wind 
spectrum, as can be clearly seen from Fig. 10. Kaimal and 
Davenport spectra present almost the same values of tuning 
ratio, which are overall increasingly smaller for increasing 
mass ratio � , when compared to the white noise spectrum. 
This is expected, since both Kaimal and Davenport spectra 
are very similar to each other and with significantly more 
energy content in lower frequencies, when compared to the 
white noise spectrum. Moreover, Kanai–Tajimi spectrum 
shows overall larger values of optimized tuning ratio. Fur‑
thermore, the choice of wind spectrum can influence the 
response magnitude and therefore it is relevant for the appro‑
priate choice of optimum TLCD parameters.

Figures 11 and 12 show the system response in fre‑
quency and time domain, respectively, under Kaimal 

(23)� =

(
�A

me

)
b

�
.

spectrum excitation and optimized parameters for 
� = 0.06 . A significant reduction in the response is over‑
all obtained in both PSD Syy and time domain response, 
when compared to the case without TLCD, as expected. 
Moreover, results are shown for two other cases in which 

Table 2   Wind turbine parameters

Parameter Symbol Equation Value Unit

Modulus of elasticity E 2.1 × 1011 Pa
Width D 3 m
Thickness t 0.015 m
Cross-sectional area A �Dt 0.14 m2

Steel density �s 7850 kg/m3

Tip mass M 19876 kg
Beam mass per length m �sA 1110 kg/L
Total length L 60 m
Equivalent length Le M / m 17.91
Second moment of area I �tD3∕8 0.16 m4

Structure stiffness ke Eq. (5) 470685 N/m
Structure mass me Eq. (6) 34975 kg
Structure natural frequency �e

√
ke∕me

3.67 rad/s
Structure damping ratio �e ce∕2me�e 1.83 %
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primary structural damping
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non-optimum parameters are chosen for � = 0.02 and 
� = 0.15 , to illustrate the effect of optimized parameters. 
Recall that the optimum performance is defined by the 
minimizing the area under the response PSD. The opti‑
mized response shows two peaks with same magnitude, the 
latter presents two peaks, one slightly bigger than the other 
and the former has only one peak, which is bigger than 
the optimized one. Note that results for different values of 
length ratio � would yield similar effects, since they are 
related by Eq. (23), due to the physical constraint horizon‑
tal length of liquid column.

7 � Concluding remarks

This paper proposes a more general optimization scheme 
that allows the search for optimum parameters of a TLCD 
for a arbitrary stochastic wind model, given that its power 
spectral density is known. The TLCD model presents a 
nonlinear damping term due to the head loss coefficient. A 
statistical linearization approach is applied which consid‑
ers the mean error between the nonlinear and linearized 
systems in a statistical sense.

An optimization criterion is chosen such that it mini‑
mizes the area under the response PSD Syy and the use of 
a global direct search optimization algorithm is proposed 
to find optimum TLCD parameters. This strategy allows 
for finding the optimized parameters for a more general 
case such that an arbitrary wind model can be used. Four 
different wind models, given by a PSD profile, were inves‑
tigated, namely Davenport, Kaimal, Kanai–Tajimi and a 
white noise. The numerical results show that the choice 
of the stochastic wind model can significantly affect the 
optimum TLCD parameters. The use of only white noise 
models, typically found in the literature, might give mis‑
leading results.

The TLCD design parameters can be given by its damp‑
ing ratio � and tuning ratio � . The optimum TLCD damp‑
ing ratio �opt increases for increasing mass ratio � , and 
it is only slightly affected by the choice of wind spec‑
trum. Besides, the optimum tuning ratio �opt decreases for 
increasing mass ratio � and it is significantly affected by 
the choice of wind spectrum.

Finally, further work is necessary for model validation, 
including experimental validation and sensitivity analysis, 
and more complex models for the wind turbine, including 
higher-order modes and the effects of the turbine blades.

Acknowledgements  The authors would like to thank CNPq and MCTI, 
process number 406895/2013-9, and FAPDF, process number 0193. 
001359/2016), for the financial support.

Table 3   Optimized LCD 
damping ratio �opt and tuning 
ratio �opt for a fixed length 
ratio � = 0.8 and 1% primary 
structural damping

� White noise Davenport Kaimal Kanai–Tajimi

�opt �opt �opt �opt �opt �opt �opt �opt

0.02 0.0561 0.9861 0.0559 0.9815 0.0559 0.9815 0.0563 0.9874
0.04 0.0787 0.9732 0.0783 0.9655 0.0783 0.9656 0.0790 0.9754
0.06 0.0955 0.9609 0.0950 0.9504 0.0950 0.9505 0.0961 0.9638
0.08 0.1094 0.9491 0.1086 0.9360 0.1086 0.9360 0.1102 0.9527
0.10 0.1213 0.9377 0.1203 0.9222 0.1203 0.9222 0.1224 0.9419
0.12 0.1317 0.9267 0.1305 0.9088 0.1305 0.9089 0.1331 0.9315
0.14 0.1411 0.9161 0.1396 0.8960 0.1396 0.8961 0.1427 0.9213
0.16 0.1497 0.9058 0.1479 0.8836 0.1479 0.8837 0.1515 0.9115
0.18 0.1575 0.8959 0.1555 0.8717 0.1555 0.8717 0.1595 0.9019
0.20 0.1647 0.8862 0.1625 0.8601 0.1625 0.8602 0.1669 0.8927

2 3 4 5 6

−100

−50

0

Frequency (rad/s)

S
y
y
(d
B

-
re
f
1(
m
/s
)2
/H

z)

Without TLCD
Optimized

µ=0.15 µ=0.02

Fig. 11   Response of main system under Kaimal spectrum for 
� = 0.06 and � = 0.8 without TLCD (dashed), optimized (solid 
black) and two different mass ratio (solid grey scale) in the frequency 
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