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• Estimation of the electric power production of a wind turbine.
• IoT-based machine learning to predict energy production.
• Real wind and power data generated in aerogenerators installed in a wind farm in Ceará State, Brazil.
• To obtain the power curve using logistic regression, integrated with Recursive Neural Network to forecast wind speeds.
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a b s t r a c t

Wind energy is an interesting source of alternative energy to complement the Brazilian energy matrix.
However, one of the great challenges lies in managing this resource, due to its uncertainty behavior.
This study addresses the estimation of the electric power generation of a wind turbine, so that this
energy can be used efficiently and sustainable. Real wind and power data generated in set of wind
turbines installed in a wind farm in Ceará State, Brazil, were used to obtain the power curve from a
wind turbine using logistic regression, integrated with Nonlinear Autoregressive neural networks to
forecast wind speeds. In our system the average error in power generation estimate is of 29 W for 5
days ahead forecast. We decreased the error in the manufacturer’s power curve in 63%, with a logics
regression approach, providing a 2.7 times more accurate estimate. The results have a large potential
impact for the wind farm managers since it could drive not only the operation and maintenance but
management level of energy sells.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Lee and Lee [1] categorize the Internet of Thing (IoT) as (i)
a monitoring and control tool for the automation of systems to
track variables and calculate their performance in real time from
anywhere. This is particularity interesting for technologies that
require advanced monitoring and control, such as electrical grids.
(ii) Big data and business analyses are another categories, and
are based on systems that can generate large amounts of data,
which may come from sensors. This data might be used to find
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relationships between different information systems, in order to
improve business issues and strategies. The last category, (iii)
Information sharing and collaboration, concern the tracking of
information based on predefined thresholds, which might share
data with other devices and services. For example, having in-
formation as soon as possible in a supply chain service could
guarantee optimization of this service. However, a real system
is not exclusive to one of the categories above, it has, in fact,
features from each one of these categories, such as the various
monitoring tools developed under these basis [2–4].

Various researchers have studied the benefits of inserting IoT
devices in energy industries. Faheem and Gungor [5] presented
a work that gathers wireless sensor networks and applying al-
gorithms to optimize smart grid integrations. This field of study
lines up with another area, the pattern recognition, which con-
sists of various kinds of data-driven methods that aim to find
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useful information in large database. Among electrical energy
generation, the wind energy stands out among all sources, since
it is one of the cleanest and most preferable [6]. It is growing
17% per year, and it is expected to supply 17%–20% of the world’s
energy demands by 2020 [6]. However, the inconsistent behavior
of the wind poses as a disadvantage for the wind energy, making
it a less reliable source than others, because it is hard to integrate
with the power grid systems [7]. According to Zhang et al. [7],
this problem might be mitigated if the operation was driven by
an accurate system to monitor and forecast wind patterns.

Qureshi et al. [8] used a trend machine learning algorithm,
based on artificial neural networks for wind power prediction
and Faheem and Gungor [5] used it to forecast wind speed. Both
works applied machine learning techniques to solve wind energy
problems. We believe that the uncertainty of the electricity gen-
eration of wind farms might be tackle by gathering information
from sensors already installed in an set of operating wind tur-
bines. Therefore this work was developed in a partnership with a
wind farm, by analyzing one year of the data. Two approaches are
proposed: (i) regression of the power curve of a wind turbine, and
(ii) forecast wind speed, based on the time series data of measure-
ments. Together, these approaches will provide an energy power
estimation for the wind farm, which might serve as an input to a
high-level layer of management, i.e. the decision making of how
much energy could be sold to the grid.

The paper is organized as follows: in Section 2 the state of the
art surrounding the problem of energy estimation is presented.
Our methodology is presented in Section 3, followed by the
results in Sections 4, 4.2 and 4.4. Conclusions are laid out in
Section 5.

2. State of the art

Reviews in the literature show there are different techniques
to maximize the power of a wind farm. There are methods that
study layout optimizations, as in [9–11]; however, these methods
are strict to wind farms that are still on concept design, and not
to the ones already in operation. Serrano González et al. [12] on
the other hand, show a different approach. They suggested an
algorithm to optimize the operations individually in each wind
turbine. There are only a few approaches that aim to optimize the
electric energy production of a wind farm already in operation,
such as Serrano González et al. [12].

In addition, the literature review has shown that all works
that aim to estimate, measure or optimize the electric energy
produced in a wind farm, rely on two factors: one is the wind
speed value, that comes from measurements in the region of
interest; another is the operational power curve of the wind
turbine. So, this Section has two main parts, which are Section 2.1,
that presents methods found in the literature to predict the wind
speed, and discusses their applicability. And, Section 2.2, that
discusses the methods used for regression of the power curve of
wind turbines.

2.1. Wind speed forecast

Researchers have been striving for some time to assess the
impacts of wind power generation on operations and costs of
electrical power systems. Holttinen [13], for example, estimates
how much the variations in electricity generation by a wind
power triggers auxiliary and costly energy resources for genera-
tion, such as thermoelectric plants. Ummels et al. [14] presents a
study of the mismatch in the energy generated by a wind park
and the load balance of the electrical systems. Based on these
variations, companies such as GE [15], have created manuals
to model the amount of additional services required. In these

surveys, the importance of the prediction of the wind condi-
tions is clear, since they all use temporal data to model and
predict variations of the wind pattern and try to correlate it with
variations of the electric power added to the grid.

Thus, the first step in determining the power of a wind farm
is to model the behavior (i.e. velocity) of the wind [16]. There are
two classical and stable methods for modeling the wind condi-
tions, which assume wind behavior according to the statistical
distribution, such as the Weibull [17] and the time series meth-
ods [18]. However, recent trends exhibit methods, mainly based
on artificial intelligence techniques, may be highlighted [19].
These authors believe that some machine learning methods over-
lap with the classical statistical methods [20].

Yesilbudak [21] uses the classical k-nearest neighbor algo-
rithm (k-NN) to provide short-term predictions (e.g. 10 min) of
wind speed. The authors agree on different wind velocities as
distinct classes and use the Euclidean, Manhattan and Minkowski
distance metrics as measures of dissimilarities for the k-NN
method. The disadvantages in using this method is the high
computational cost, since a large number of samples in the
database can make the use of this method impractical for real-
time estimates. The author also highlights the sensitivity to noise
in the data, making it imprecise for forecasts over 10 min. There
is also the use of random forests in the literature, but with
efficacious demonstrations for forecasts of only 1 h ahead [20].

There is a prominence for neural networks, which are promis-
ing and already confirm that they are able to provide wind
information without knowledge of topographic or meteorological
details [19]. Velo [22] uses a Multi-layer Perceptron (MLP) net-
work to estimate the average annual wind speed at a location
where there is no weather station available to measure wind
speed. These authors used data of wind speed and direction of
meteorological stations near the place of interest as input to
the neural network. This methodology showed that data from
60 days of observation was necessary to obtain an acceptable
generalization capacity, with results having errors less than 6%.

In spite of this, different architectures of standard neural
networks are exposed for time-series analyses and have gained
space in the scientific community in recent years. Nonlinear
Autoregressive (NAR) networks and their applications in temporal
signals prove effective and advantageous to traditional recur-
sive neural networks [23]. Based on the wind forecasting need
for wind applications and the imprecision of long-term fore-
casts, Azad et al. [24] proposed NAR network for wind forecasts in
Malaysia and obtained promising results: absolute errors in wind
speed predictions of 0.17 m/s for monthly averages forecasts,
0.64 m/s for forecasts of 30 days ahead and 0.8 m/s for forecasts
of 1 year ahead. So, the author demonstrated that the NAR
network is a suitable tool for predicting wind speed.

Baptista et al. [25] proposed a similar methodology to ours,
and used a artificial neural network alongside with a fuzzy model-
ing, reducing the error in 5.01% of a baseline-model, which means
750 kWh in a 1-hour ahead prediction. Hernández-Travieso et al.
[26] reports promising results, since by using neural networks
with and immersion dimension of five it reaches 0.29 m/s of
mean absolute error in the wind speed forecasting. However
the authors were not clear how much time a prediction ahead
represents in the matter of hours or minutes.

Huang and Kuo [27] exhibits in his studies a analytical tool for
a database of wind speed records, from a region in Taiwan, and
uses a convolution neural network to estimate wind speed. They
were able to reach a RMSE of 0.99 m/s for a seven day ahead
prediction. Huang and Boland [28] proposed a framework of NAR
model to estimate electricity production in a hybrid (i.e solar-
wind) plant. They reached very promising results or 0.17 m/s of
RMSE for a 30 min ahead prediction.

Based on the research carried out in the literature, this work
chose the NAR network as the tool for wind speed prediction, in
the wind turbine environment, located on the sea-coast of Ceará.
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2.2. Regression of the power curve of a wind turbine

Estimating the annual energy production is one of the most
important applications of the power curve of aerogenerators [29].
Lydia [30] showed the importance of having models representa-
tive of the power curves because they reflect the performance
of the equipment and even indicate anomalies in the operation.
Since there is a prediction of wind speed, it is also possible to
work predictively, providing information on future energy avail-
ability [30]. Thus, the next step to estimate the power output of
a wind farm is to know the power curve of the wind turbines
installed at that site.

The research in [29] aims to validate the annual power of
a wind farm in a region of Italy by carrying out power mea-
surements on a 12 kW turbine and wind speeds around it for a
period of one year . The authors proposed an analytical method
to estimate the power curve model from the data and compare
it with the curve provided by the turbine manufacturer. The
results indicate that the real model, evaluated [29], has a pro-
duction deficit of 10.2%, concluding that the curve stipulated by
the manufacturer is an optimistic representation of the process.
Some years later, Zolfaghari et al. [16] indicated in their study
that the actual output power of the wind turbine does not fol-
low the behavior of the theoretical curve recommended by the
manufacturer. According to Zolfaghari et al. [16] the reason for
the imprecision of the theoretical curve is its benchmarking in
laboratory tests, which control the direction and speed of the
wind, and relative humidity of the air.

Therefore, it is important to estimate the power curve of a
wind turbine starting with the real data, and the result will
provide the real power potential of the turbine. Lydia et al.
[31] presented in their bibliographic review the most common
methods for modeling power curves. The authors classified the
methods in a basic dichotomy: (i) parametric methods, which are
based on solving mathematical models that explain the behavior
of the system. As examples, Lydia et al. [31] reported the use of
linear and polynomial regression techniques, probabilistic models
and logistic regression. And (ii) non-parametric, which aims to
find connections between inputs and outputs of a dataset, not
only considering a specific mathematical model. Among these,
there are applications of copula models, neural networks and
fuzzy logic [31].

Lydia et al. [30] compared the methods of linear regression
by Least Squares (LS) and logistic regression to estimate the
power curve. However, the linear regression applied by parts
obtained better results than the logistic regression. Shokrzadeh
et al. [32] pointed out that Simple Polynomial Regression is sus-
ceptible to noise and proposes the use of interpolated polynomial
models and obtained satisfactory results. Taslimi-Renani et al.
[33] used a variation of logistic regression in their research and
obtained results superior to the least squares linear regression.
Based on the literature reviews, the present work chose to use
the parametric method of linear and polynomial regression, due
to their simplicity; and logistic regression due to its non-linear
characteristic.

Panahi et al. [34] compared the performance, through the
analysis of the Mean Square Error (RMSE) and the absolute mean
error, of parametric and non-parametric methods for power curve
modeling. According to the results, the robust polynomial regres-
sion has a smaller average error, but with overlapping results
of the linear and polynomial regressions. However, Panahi et al.
[34] proposed a two-layer MLP type network and obtained results
similar to the robust regression. The authors pointed out that
artificial neural networks are a promising tool for their analysis,
but because of the non-parametric nature of the model, it is
important to find the optimal structure for each specific problem.

However, Panahi et al. [34] did not justify the choice of the
architecture or even compare it with other methods of the same
category.

Pelletier et al. [35] proposed the use of an MLP network, but in
addition to performing a simple regression between wind speed
and power, the authors believed that using other information
(air density and turbulence intensity) as input from the network
would help make the model more representative. The results
were better than those of other parametric and non-parametric
models, noting the ability of neural networks to function as
universal approximations of functions.

However, the main disadvantage of the MLP network is in the
arduous and time consuming training. Therefore, researchers pro-
posed structural alternatives to the process of backpropagation
of the error for MLP training, in order to make it more effec-
tive. Miller et al. [36] exposed the ineffectiveness of the backprop-
agation algorithm in applications that require real-time learning,
and thus proposed a different approach. Years later, Huang et al.
[37] proposed the current model of the neural network called
Extreme Learning Machine (ELM), based on random distribution
for part of the network parameters, and in the least squares tech-
nique to estimate the other part. Huang et al. [37] demonstrated
the advantage of ELM over the classical algorithms like MLP and
Support Vector Machines (SVM): rapid training without losses in
the generalization capability of the model, and may also be used
for regression problems.

The use of ELM has been reported in the literature for solving
regression problems, including forecasting time series with real-
time learning [38,39]. Therefore, this work chose the ELM as the
nonparametric method to be used for regression of the power
curve of the aerogenerator. An estimation of the local wind speed
and the actual power curve of a wind turbine can provide infor-
mation on future energy production which is a crucial factor for
the efficient management of a wind farm.

3. Methodology to predict energy production in wind turbines

This section presents the methodology, used in this work, to
estimate the wind energy production in wind turbines, and which
has three stages: wind turbine power curve modeling, wind speed
estimation and energy production estimation. The flow diagram
of Fig. 1 illustrates the wind energy estimation process, where it
is first necessary to find a model for the power curve of the wind
turbine that best represents the behavior and predicts the wind
speed.

Before making a deeper analysis of each step in this work, it is
necessary to present the database in use, because small variations
of wind velocity imply large variations in the power generated by
the aerogenerator. Therefore accurate data collection must be of
good quality to be able to carry out a reliable analysis.

3.1. Databases

56,838 data samples of wind speed and power produced by
the wind turbine in operation make up the Database in the period
between 0:0h on 05/25/2014 and 23:50 on 07/27/2015. There is
a wind turbine daily availability record, for the same time period.
The database was made using the mean value of the wind speed
and power generated for each 10 min. The availability is the
percentage of time that the generator spent with real production.
Fig. 2 shows a sample of data collected over 140 days.

The availability of the wind turbine is very important because
it influences the productivity of this wind turbine. As in Fig. 2, on
day 40 the productivity of the VSWT wind turbine was 0 kWh,
although there was wind with an average velocity of 8 m/s,
because the VSWT availability was 0%. The model of wind turbine
in use to generate the database in this work is presented in
Table 1.
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Fig. 1. The proposed methodology.

3.1.1. Data preprocessing
There are some factors that contribute to the power curve

of the wind turbine presenting a variance of power values for
similar wind speed. One of the factors occurs because the wind
turbine control process does not update instantaneously; this
is because the wind turbine control system only considers the
average wind speed every ten minutes. Within this ten-minute
interval, the wind speed may vary and the control system does
not follow this variation, for this reason the wind turbine is not in
maximum efficiency all the time. Another important factor is the
turbulence that one wind generator causes other aerogenerators.
This turbulence acts as a ‘‘shadow’’. The wind, when changing
direction, focuses on the wind farm so that the wind coming from
one wind turbine enters into another. This causes turbulence that
disrupts wind turbine control. In addition to these reasons, the

Table 1
Wind turbine specifications.
Rated power 1500 kW
Minimum wind speed 3 m/s
Rated wind speed 12 m/s
Maximum wind speed 22 m/s
Angular speed range 9 – 17.3 rpm
Diameter 82 m
Scan area 5.325 m2

Cube height 85 – 100 m

aerogenerator may be malfunctioning, or even with a deliberate
limitation of its maximum generation power.

Therefore, before applying the techniques for modeling the
power curves it was necessary to filter the data from an analysis
of the power curve graph. Fig. 3 shows that there are samples
very distant from the average value of the power curve. Data
collection involves disregarding the samples that correspond to
the operation of the wind turbine under abnormal conditions.
Thus valid data was considered to be that which was at a distance
of twice the mean variance of the median value of the power
curve. Fig. 3 shows the Limits and Data under consideration, as
well as those in contempt in the modeling step of the power
curve.

3.2. Power curve regression

The regression step of the power curve aims to find a function
that represents the behavior of the wind turbine. Regression
methods in use are based on parametric approaches. Parametric
models are basic mathematical expressions. There are several dif-
ferent types of functions ready to use to model phenomena [40].
The method used in this work has satisfactory accuracy. The first
step is to find a basic function or a set of functions that are
closest to the control function (model) [30], seeking to balance
the complexity and precision of the factors. The power curve,
for example, is compared to the linear, exponential, sigmoidal, or
polynomial functions or associations between them.

3.2.1. Approximate cubic power curve
This method is based on the fundamental equation of the

maximum energy capable of being absorbed by the turbine. The
model uses the following equation:

P(v) =
1
2
ρACp,maxv

3, (1)

where ρ is the air density, A is the wind turbine sweep area,
Cp,max is the maximum power coefficient and v is the wind speed.

Fig. 2. Example of the relation between wind speed, energy production and availability of the wind turbine.
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Fig. 3. A scatter plot with original raw data, the samples considered for modeling, and limits for data filtering.

Parameter models are defined using wind turbine data. These
data are given in Table 1.

3.2.2. Exponential power curve
This model is based on a presumed form of power curve. It

responds satisfactorily to higher average annual wind speeds [41].
This proposal is presented in Eq. (2):

P(v) =
1
2
ρAKp(vβ

− v
β

ci), (2)

where kp and β are constants that need to be parameterized and
v

β

ci is the cut-in wind speed.

3.2.3. Polynomial power curve
The polynomial Power function, P , is expressed as:

P(i) = bkvk
i + bk−1v

k−1
i + · · · + b2v2

+ b1v1
i + b0, (3)

wherein b0, b1, . . . , bk are coefficients of the polynomial, and k is
a non-negative integer.

Therefore, to obtain better results in power curve modeling it
is necessary to use combinations of linear functions, as shown in
Fig. 4.

P = b1v1
+ b0 (4)

The approximation of the polynomial power curve in [41] uses
a second-degree polynomial equation to find q(v), as follows

P(v) = C2v
2
+ C1v + C0, (5)

wherein, C0, C1 e C2 are calculated with vci and vr .

C0 =
1

(vci − vr )2

[
vci(vci + vr ) − 4vcivr (

vci + vr

2vr
)3

]
(6)

C1 =
1

(vci − vr )2

[
4(vci + vr )(

vci + vr

2vr
)3 − 3vci − vr

]
(7)

C2 =
1

(vci − vr )2

[
2 − 4(

vci + vr

2vr
)3

]
(8)

3.2.4. Logistic function
The logistic function is the one that most closely represents

the power curve of wind turbines [42]. For this approximation
are used three, four or five parameters as in Eqs. (9)–(11) [30],
where θ is the parameter vector; θ3 = (a, b, c), θ4 = (a,m, n, τ )
and θ5 = (a, b, c, d, g), with c > 0 and g > 0 [40].

P(v, θ3) = a
1

1 + e−b(v−c) (9)

P(v, θ4) = a
1 + me−v/τ

1 + ne−v/τ
(10)

P(v, θ5) =
d + (a − d)(
1 +

(
v
c

)b)g (11)

To find the parameters of the vector θ , Lydia [40] uses an
optimization equation like the following:

min
N∑
i=1

[P(v, θ ) − Pa(i)]2, (12)

which searches for the value of the vector parameter θ̂ that
results in the output P(v, θ ) closest to the actual output Pa(i).

3.3. Wind speed forecast

The state space reconstruction is the prediction process of the
state vector from a single time series. In this work, we used a
database with 5040 wind speed samples from a wind turbine,
where 4320 samples were for test and 720 for training. Each
sample corresponds to the average wind speed in a ten minute
period. The 5040 samples correspond to a period of thirty-five
days and the 4320 training samples correspond to a period of
thirty days. The five days after the training period were all for
testing. The NAR method is applied for wind speed prediction was
under analysis.

As already used by Piazza et al. [43], the NAR method predicts
wind speed, which according to the author is interesting because
the method is neuro-statistical. The network topology results in
heuristics through tests, as shown in Fig. 5. The fit of the topology
elements such as the number of delay samples, the number of
training data, and the number of neurons and layers of the neural
network influence the result. So, one may not assume the right
number of neurons by arbitration and the questions arises: How
can define the proper number of neurons? We performed a pre-
liminary investigation following a grid search of: the immersion
dimension within the range of [2, 30] ∈ N and the number of
hidden neurons are in [2, 100] ∈ N. A 10-fold cross validations is
also performed, computing the RMSE is the metric to establish a
comparison.

The topology that showed best results uses a immersion di-
mension of 20 units (i.e. 19 delays in the time-series) and is
composed of 4 neurons in the hidden layer and one neuron in
the output layer. It worth note that a 20 delays in the immersion
layer represents in our problem a 5-hours of records sampled
each 15 min.
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Fig. 4. Model with combinations of linear functions.

Fig. 5. NAR topology for wind speed forecast.

3.4. Simulation settings

To chose the best model configuration we used a hold-out
cross-validation with 50 independent trials, in order to design
a Monte-Carlo simulation. In our case, the test set for the (i)
wind speed database are the five last days of each time-series,
as aforementioned; and, (ii) for the power curve data the test set
are randomly chosen among the processed data. The reports on
the results will be from the best configurations from all trials.

The experiments were computed in a PC Intel i7 running at
3.1 GHz and 8 GB of RAM on a Linux Ubuntu operating system
installed in a solid-state drive. We coded all the experiments
using Matlab.

3.5. Energy potential estimation

In this work, the estimation of wind resources was performed
in non-linear self-correcting models and in the power curve mod-
eling of the wind turbine. The wind velocity predictors are the
non-linear self-correcting models, which in combination with the
power curve models can estimate the energy potential of a wind
turbine. In summary, to obtain an estimation of the production

the wind speed forecast must be combined with the power curve
model, following the steps in Fig. 6.

4. Results analysis

This section contains the results of the wind power estimation
analysis, applying the methodology described in Section 3, which
presents the results of the evaluation methods in obtaining the
power curve of the wind turbine, and then the results of the wind
speed forecast. Finally, the results of the estimation of energy
production are presented.

4.1. Power curve modeling

In this work, the cubic approximation, the exponential power
curve, the polynomial model and the logarithmic function ap-
proximation are used in the modeling of the power curve by
parametric models. The details of how each method was used and
a comparison between them has been added to this topic.

4.1.1. Cubic approximation
In order to obtain the power curve through cubic approxima-

tion, the turbine parameters are applied to Eq. (1), where Cp,max
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Fig. 6. Stages to estimate wind generation potential, based on the proposed approach.

Table 2
Results obtained.
θ Parameters

θ5 a = 0.3 b = 3.7 c = 26 d = 1500 g = 56
θ4 a = 1500 m = −5.2 n = 71 τ = 1.9
θ3 a = 1500 b = 0.6 c = 8.4

= 0.45 and ρ = 1.225, resulting in

P(v) =
1
2
(1, 225)(5, 325)(0.45)v3. (13)

4.1.2. Exponential power curve
The modeling by the exponential method, as in Topic 3.2.2,

mainly consists of determining the value of the constants Kp and
β . Here, it is necessary to use the trial and error method, changing
the values of the constants and analyzing the results through the
calculation of R2 for each resulting model, and the parameters
obtained were: Kp = 4.5, β = 1.9. The results of the analysis of
R2 are found in Fig. 7(a) and (b). Applying the constants in Eq. (2)
we arrive at Eq. (14).

P(v) =
1
2
(1, 225)(5, 325)(4, 5)(v1,9

− v
1,9
ci ) (14)

4.1.3. Polynomial model
The polynomial model of power and the coefficients C0, C1

and C2, calculated from Eqs. (6)–(8) respectively, were calculated
considering the characteristics of the wind turbine present in
Table 1 resulting in the following equation:

q(v) = 0.0116v2
− 0.0745v + 0.1191. (15)

4.1.4. Approximation by logistic function
As discussed in Section 4, the determination of the model

from the logistic function is given by the search of values of
parameter vectors (θ ) that result in the model that shows the
greatest similarity with the real data. The search for the logistic
function parameters (θ ) was performed using Eq. (16).

min
N∑
i=1

[P(v, θ ) − Pa(i)]2, (16)

where P(v, θ ) corresponds to the logistic function output for a
wind speed v and a vector of parameters θ and P(Pa(i)) corre-
sponds to the output of the real system.

Fig. 8 was generated from the analysis of R2 according to the
variation of b and c of the vector θ3, maintaining the a constant
(see Table 2).

4.1.5. Comparison of the results of parametric models
Comparing the results of the parametric model approxima-

tions in Table 3, the logistic function of three parameters obtains
the best approximation result, and is the method with the lowest
RMSE value, higher R2 value and higher approximation speed, and
also one of the least complex metrics.

To visualize the models described in Table 3, the projection of
the approximate curves by the parametric models, as well as the
curve given by the manufacturer are presented in Fig. 9.

Table 3
Logistic regression analysis.
Model RMSE R2 Time (s)

Manufacturer 127.3423 0.8867 0.0219
Cubic 358.3626 0.1026 0.0550
Exponential 60.5159 0.9744 0.0578
Polynomial 234.5492 0.6156 0.0819
Logistic3 47.3406 0.9843 0.0047
Logistic4 52.9304 0.9804 0.0031
Logistic5 96.5083 0.9349 0.0051

Observing the curves shown in Fig. 9, the polynomial and cubic
model have curves below the cloud of real points and the curve
given by the manufacturer is in most cases above the real point
margin. On the other hand, logistic and exponential models are
in the middle of the data points.

Analyzing Table 3, the Logistic model3 has the lowest RMSE
and the highest R2, in addition to having the shortest time. This
analysis and the behavior of this model presented in the graph of
Fig. 9 confirms the numerical data of Table 3; therefore this model
was chosen, within the parametric methods, to be evaluated in
the prediction of energy production later on in this work.

4.2. Wind speed prediction

To predict the wind speed by the NAR method 5040 samples
were used, 4320 for training and 720 for test. Each sample cor-
responds to the average wind speed in a ten-minute period. The
5040 samples correspond to a period of thirty-five days, where
the 4320 samples used for training correspond to a period of
thirty days and the 720 samples used for testing are equivalent
to 5 days. The data in this step of the results are shown in Fig. 10.

The topology of the NAR method in these tests is config-
ured by four neurons in the hidden layer and one neuron in
the output layer, and one immersion dimension of 144 samples
with 2 steps of immersion delay. The Optimization Levenberg–
Marquardt method was used in the training of the NAR method.
The comparison between the real time series and the estimate
by the NAR model, where R2 and RMSE were 0.4769 and 1.1126,
respectively.

4.3. Energy production estimation

The energy productivity of a wind turbine may be estimated
by combining the wind speed prediction method with the power
curve modeling. From the afore discussed results, one model
highlight themselves among the others to approximate the power
curve of the wind turbine, which is the Logistic. The wind speed
is estimated by the NAR neural networks structure. In order to
provide a comparison to real and running system the values of
the manufacturer’s power curve and the real wind speed will be
presented.

Table 4 presents a summary of the average energy produc-
tion estimate during the testing period, where the actual power
generated in the period is taken as the baseline for analysis. The
power curve proposed is the Logistic Sigmoid approach and the
manufacturer’s curve. The wind speed is used for the estimation
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Fig. 7. Similarity analysis for exponential regression ranging Kp and β .

Fig. 8. Similarity analysis for logistic regression with different parameter θ3 .

Fig. 9. Approximation of power curve obtained from the parametric models and the manufacturer’s curve.

Table 4
Results of the wind energy production estimation, obtained by combining the
wind power curve (from both logistic and manufacturer curve) associated with
the wind speed (from both NAR method and real wind speed - RWS).
Power curve Wind speed RMSE R2 Mean (W)

Real Power – – – 526.7872

NAR 281.9127 0.1409 590.3827
Logistic RWS 83.9283 0.9239 637.8701

NAR 309.7881 −0.0374 681.6575
Manufacturer RWS 123.5668 0.8349 671.6176

of electricity generation, in which the real speed of wind and the
one obtained by the NAR method are presented.

In Table 4 the comparison is shown and it is identified that the
logistic power curve is more conservative than the one provided

by the manufacturer, e.g. around 34 W on average by calculat-
ing the potency using the RWS. This shows the manufacturer’s
curve introduces an error on the system, that might accumulate
over time and lead to wrong misalignments between the wind
farm and the power grid system. This happens mostly because
the power curve provided by the manufacturer was estimated
in a controlled environment in a wind tunnel. Others reasons
are: the topping between towers, in which a tower can prevent
the wind arrives in a second behind the first one; limitation of
the high temperature production of some components; partial
breakdown of some components of the wind turbine, which limits
its efficiency, but not its functionality.

What we would like to emphasize is that using the NAR
method we were able to mimic the wind speed pattern, since it
provided an average under-estimation of 47 W using the Logistic
power curve and a over-estimations of 11 W using the manufac-
turer’s power curve. This error might not be much relevant in a



188 P.P. Rebouças Filho, S.L. Gomes, N.M.M. e Nascimento et al. / Future Generation Computer Systems 97 (2019) 180–193

Fig. 10. Data used to analyze the wind speed prediction: (a) training data; (b) testing data.

short-term prediction, up to 7 days. This certainly would serve as
a trend to guide management.

The behavior of the wind is exhibit in Fig. 11, in which es-
timation of energy production versus the manufacturer’s data,
using the actual wind data, in which it presents an estimate using
the Logistic parametric model and the NAR method for wind
forecasting.

In the analysis of Fig. 11, the difference of the estimation by
the Logistic parametric approximation is on average close to the
actual data of the average production of the wind turbine.

4.4. Discussions from a point of view of management

Using the approaches expressed in this experiment, some IoT
analyses and functionalities can be used in the management of
wind farms. The following sections present three of these analy-
ses: energy production curve, machine production (which are not
100% available) and an analysis of the seasonality of the winds.

4.4.1. Analysis of the energy production curve
An analysis of the results is shown in Fig. 12 which presents

the power curve by these approaches and the total non-filtered
point margin.

Fig. 12(a) shows that the curve by the methodological ap-
proaches, using the Logistic model the wind speed varies speeds

from 3 m/s to 9, 5 m/s, and approximately in the middle of the
actual data points margin of wind and power generated, different
from the curve by the manufacturer. For a better analysis, three
regions are highlighted in Fig. 12(b) – (d).

In the first analysis shown in Fig. 12(b), the curve by the
manufacturer is optimistic. It predicts the best possible produc-
tion from the actual data for each wind speed, which generates
an estimation error by the manufacturer chart, since most of
the real energy produced is below the amount estimated by the
manufacturer.

In the second analysis (Fig. 12(c)) the main error in the pro-
duction estimate in the curve by the manufacturer is that it
overestimates the energy output of the 8.5 m/s velocity in the
wind data, which generates an even greater error in relation
to the optimistic analysis of the manufacturer presented in the
analysis of Fig. 12(b). Analyzing the approaches proposed in this
study, in this region where wind speed is above 9 m/s, the
behavior of the proposed curves is no longer similar, the logistic
model is a little lower down with a more pessimistic analysis of
production.

The third analysis in Fig. 12(d) presents several real wind data
that are well away from the curve, which is due to different
situations during the period under analysis. These may be due to
a production limitation of the wind turbine, or by a maintenance
stop during the same day, among other factors. The points that
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Fig. 11. Results obtained for the estimative of power produced by using the NAR method to forecast the wind speed, and the power curve by the logistic method
in (a), versus real data.

Fig. 12. Power curves obtained by the proposed methods, in contrast with the power curve provided by the manufacturer.

are away from the curve are not used to estimate the production
curve because they are out of phase in the same production
range in Watts. This analysis does not tell the cause of the fall
in production but allows a more detailed analysis of the wind
turbine, and can perhaps improve the maintenance and operation
planning of the equipment, mainly based on reports of that period
when the aerogenerator was not under normal operations.

4.4.2. Analysis of the production of the period in which the machine
was not 100% available

As a second analysis from the results of this experiment,
Fig. 13 presents an application of the logistic model to analyze
the production of aerogenerators that were not 100% available
over a certain period. Fig. 13 shows the daily production of a wind
turbine, the information of availability of the aerogenerator and
the daily wind speed. From these data and using the curve by the
logistic model it is possible to estimate the energy production if
the equipment was 100% available throughout the period; data
which is extremely useful in the management of a wind farm.

For the period in Fig. 13, the VSWT had an availability of 80.16%
and produced an average of 6.9 kWh; however, the same VSWT
would produce 9.8 kWh if it were 100% available throughout this
period.

4.4.3. Seasonality analysis of winds
Because air masses exhibit seasonal behavior a power curve

analysis divided one-year samples into four three-month periods,
as shown in Fig. 14(a) – (d). An analysis of each quarter cited in
Fig. 14, is presented in Table 5, which is a numerical evaluation
of the power curves using only the data of each period.

In January, February and March, the wind turbine works most
of the time with low wind speeds. As shown in Fig. 14(a), the
wind speeds recorded in this period are mainly less than 11 m/s.
and the margin of points less thick than the other quarters of the
year, Moreover, with lower speeds the oscillation is also less. In
this period, the logistic wind prediction methods are centered on
the velocity range from 3 m/s to 7 m/s, at the lower edge of the
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Fig. 13. Application of the logistic model in energy production of logistic model from a real period when the wind turbine has no work in some period.

Fig. 14. Analysis of a seasonal production, considering the following months: (a) January, February and March; (b) April, May and June; (c) July, August and September;
(d) October, November, December.

Table 5
Analysis of the sigmoid models for each quarter of the year.
Quarter Model RMSE R2

1 Logistic 46.3121 0.9740
2 Logistic 36.4936 0.9908
3 Logistic 54.4094 0.9780
4 Logistic 56.8190 0.9820

velocity points range from 7 m/s to 9 m/s below the curve after
this.

Fig. 14(b) presents the data for the second quarter: April,
May and June when there is a moderate increase in the wind

speed compared with the first quarter, and a small increase in
the thickness of the margin of points, especially at speeds above
10 m/s. The logistic model behaves properly in this period, and is
at the center of the cloud of points along the curve; consequently,
it has the best result among the evaluated curves, obtaining RMSE
and R2 metrics slightly above the period before the small variation
of the thickness of the cloud points at speeds above 10 m/s.

In the third quarter, where Fig. 14(c) presents the production
data for the months of July, August and September, there are
more points in the region above 10 m/s, which makes the error
larger due to oscillation of high speeds, as seen in Table 5. This is
the period with the largest error in RMSE and R2 metrics. In the
last period, Fig. 14(d), for the months of October, November and
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December, there is still a high value in the error represented in
the RMSE and R2 metrics, but lower than the third quarter of the
year under evaluation.

According to the [44], the period of the year with the highest
wind intensity in the state of Ceará is August and September, as
well as a high value in July, which confirms the analysis of the
results of Table 5 and Fig. 14, where the third quarter is the period
with the highest intensity of winds. Also according to FUNCEME
the fourth quarter has high rates similar to the month of July,
but lower than the months of August and September, which also
confirms the results of the experiment.

4.5. Comparison to related works

Baptista et al. [25] has been able to reduce an error of energy
production estimate in 5%, which represents 750 kWh in produc-
tions. This is in fact a remarkable milestone, however they only
considered a prediction for 1-hour ahead. With our framework
we were able estimate the energy production up to a week with
a mean error of 29 W of generated Power, which would an error
represent 145 kWh for one hour of production, being 5.17 time
more accurate than [25].

In what concerns to the wind speed estimations [26] reports
promising results of an error of 0.29 m/s but were not clear
how much time-ahead is represented by this error, so there are
no means for a fair comparison. On the other hand, Huang and
Boland [28] achieved and error of 0.99 m/s for a seven day
prediction and 0.17 m/s for a 30 min prediction. These results
seems promising but the database used by Huang and Kuo [27]
is of records of wind speed in a particularly region in Taiwan,
in which has lower wind speeds (an average less then 3 m/s)
and more constant (and standard deviation less than 1 m/s).
This is not likely the behavior at the state of Ceará, Brazil, in
which the average wind speed is more than 8 m/s and suffers
from fluctuations up to 16 m/s. And this is more evident in
different months throughout the year, that is why we proposed a
‘‘specialized’’ power curve for a 4-month period.

5. Conclusion and future work

The results demonstrate that the NAR model is capable of
obtaining wind speed predictions for a 5 day horizon. Also the
logistic method is the most applicable for the power curve re-
gression, because it was more representative because it decreases
the error of the manufacturer in 63%, providing a power curve 2.7
times more realistic than the manufacturer’s one.

It is possible and efficient to forecast energy production, since
the, together, the power curve regression and wind speed forecast
archived an average error of 29 W of Power generation, compared
to the real results for a one week period.

An analysis of our proposed approaches indicates that the
wind speed forecast and the power curve modeling might be used
separately, for instance, (i) using only the wind speed forecast to
optimize maintenance planning, according to periods of low wind
speed or even serve as a (ii) tuner for the wind turbine controller,
since in multiple operations points while the manufacturer curve
is unable to give a real value of generated power, the logistic
regression supplied a solid approximation. And, (iii) the power
curve modeling could also be used to account the amount of lost
power while the wind turbine was stopped for maintenance.

A seasonal analysis of energy production made from the power
curve regression during the period demonstrated that the error
in third and fourth quarters of year are 50% higher than in the
second quarter, due to the season behavior in Ceará, Brazil. So
it would be better to model a power curve modeled for each

quarter of the year. Finally, the proposed approaches are promis-
ing, important and novel techniques. In terms of IoT, we made
a robust system, based on large amounts of data from both the
wind turbines and wind speed sensors, and created a monitoring
system, providing metrics for management and evaluation. Our
system represents a trade-off analysis, because the wind farm
manager is going to have solid information about present energy
production and its estimation in the days ahead, making it pos-
sible for them to find a better strategic solution for planning a
sustainable energy system.
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