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a b s t r a c t

Neighborhood characteristics affect an individual’s quality of life. Although several studies have ex-
amined the relationship between neighborhood environments and human health, we are unaware of
studies that have examined the distance-decay of this effect and then presented the risk results spatially.
Our study is unique in that is explores the health effects in a less developed country compared to most
studies that have focused on developed countries. The objective of our study is to quantify the distance-
decay cardiorespiratory diseases risk related to 28 neighborhood aspects in the Federal District, Brazil
and present this information spatially through risk maps of the region. Toward this end, we used a
quantile regression model to estimate risk and GIS modeling techniques to create risk maps. Our analysis
produced the following findings: i) a 2500 m increase in highway length was associated with a 46%
increase in cardiorespiratory diseases; ii) 46,000 light vehicles in circulation (considering a buffer of
r500 m from residences) was associated with 6 hospital admissions (95% CI: 2.6, 14.6) per cardior-
espiratory diseases; iii) 74,000 m2 of commercial areas (buffer r1700 m) was associated with 12 hos-
pital admissions (95% CI: 2.2, 20.8); iv) 1 km2 increase in green areas intra urban was associated with less
two hospital admissions, and; vi) those who live r500 m from the nearest point of wildfire are more
likely to have cardiorespiratory diseases that those living 4500 m. Our findings suggest that the ap-
proach used in this study can be an option to improve the public health policies.

& 2016 Elsevier Inc. All rights reserved.
1. Introduction

Neighborhood characteristics, which include the built en-
vironment, socioeconomic conditions and environmental factors
affect an individual’s quality of life. Studies have identified pre-
dictive relationships between these factors, social behaviors and
human health (Sampson et al., 2002; Yen and Syme 1999; Pauleit
and Duhme 2000; Baldauf et al., 2013). The prevalence of tobacco
consumption has been shown to be positively correlated to the
concentration of convenience stores within a neighborhood
(Chuang et al., 2005). Neighborhoods with few parks and a low
perceived safety were correlated to increased obesity rates in
mcmaster.ca (W.J. Requia),
. Adams),
children (Wall et al., 2012). The design of the neighborhoods can
both support and reduce the amount of physical activity by re-
sidents, particularly their walking and cycling rates (Sallis et al.,
2012; Lee et al., 2007; Brian et al., 2012). The neighborhood built
environment includes associations to mental illness (Villanueva
et al., 2013) cardiovascular diseases (Chum and Patricia, 2015),
noise and air pollution exposure (Adams and Kanaroglou, 2016;
Weber et al., 2014) and body mass index (James et al., 2014).

The large body of research connecting the neighborhood en-
vironment with quality of life has supported the need for public
and private-sector policies to promote healthier communities.
Policies that improve the physical, social and service environments
of neighborhoods (CBHA, 2015; Diez-Roux, 2007). The impact goes
beyond quality of life, Nowak and Heisler (2010) demonstrate that
the presence of green spaces in U.S neighborhoods provide a $500
million savings per year to the economy because the green spaces
are responsible for air pollution removal, which is one of the main
causes of cardiorespiratory disease (Mortimer et al., 2012;
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Table 1
Health data structure.

Address level Number of unique address
blocks (geographic polygons)

Number of hospital admis-
sions in all address blocks

1 – AR 0 0
2- Sector 37 1286
3- Street 361 3090
4- Conjunct 1084 2371
5- Lote 65 560
TOTAL 1547 7307

"AR: Administrative Region; TOTAL: aggregation".

W.J. Requia et al. / Environmental Research 151 (2016) 203–215204
Buonanno et al., 2013; Valdés et al., 2012). Additionally, Wang et al.
(2005) reported that every dollar invested in building bike and
pedestrian trails reduces $3 dollars in medical costs.

Although several studies have examined the relationship be-
tween neighborhood environments and human health, we are
unaware of studies that have examined the distance-decay of this
effect and then presented the risk results spatially. Our study is
unique in that is explores the health effects in a less developed
country compared to most studies that have focused on developed
countries. Specifically in Brazil, an example of country in devel-
opment, to our knowledge there are no studies that have assessed
the relationship between neighborhoods environments and
health. The objective of our study is to quantify the distance-decay
cardiorespiratory diseases risk related to 28 neighborhood aspects
in the Federal District, Brazil and present this information spatially
through risk maps of the region.
2. Materials and methods

2.1. Study design and overview

We conducted a cross-sectional study to examine the effects of
neighborhood environment on hospital admissions for cardior-
espiratory diseases. We examined the Federal District (FD) in
Brazil, which is located in central Brazil at 15° 47′ 02″ S and 47° 49′
09″W, the region has an area of 5802 km2 and a population of
2.5 million. The health data were provided from the Brazilian
National Health Database (Datasus, 2013) and included the re-
sidential addresses of individuals (all ages) admitted to FD hos-
pitals between 2008 and 2013 for cardiorespiratory illness.

To preserve patient privacy the health data were provided at
the lote address level. In the FD the address system is composed of
five gradations, which include, from coarse to fine: i) adminis-
trative region - coarse, ii) sector, iii) street, iv) conjunct, and v) lote
- fine. Only 560 of the 7307 hospital admissions were provided at
the lote level, which occurred in 65 different lote areas. The sample
size (N¼7307) represents a subset with address information. In
Table 1, we present the number of admissions and the number of
different regions where an admission occurred by address level.
Appendix 1 shows a map to provide context (spatial extent and
scale) for each spatial unit of the FD address system.

The method used to link the health data to address blocks has
previously been used by our research group (Réquia et al., 2015a,
2015b). In short, we used an address matching process directly
with the blocks. There was no loss during the geolocation
procedure.

2.2. Predictor variables

We generated 28 predictor variables that were used in the GIS
processing and statistical analysis to explore their effects on hos-
pital emissions for cardiorespiratory diseases. These variables
were grouped into six categories: i) transportation - 6 variables, ii)
land use - 10 variables, iii) air pollution inventory - 6 variables, iv)
meteorological and terrain - 3 variables, v) demographic and
economic - 2 variables, and vi) Natural Issues - 1 variable.

The transportation attributes consisted of the length of high-
ways, the length of the streets and avenues, vehicle counts (light
vehicles, heavy vehicles and motorcycles) and the number of bus
terminals. The roads network and bus terminals data were pro-
vided by the Brazil Secretary of State for Habitation (Sedhab,
2012). The vehicle count data were obtained from three sources:
the Transit Department of the FD (Detran, 2009), the Route De-
partment (DER, 2010), and the report on Urban Transport of the FD
- PDTU (GDF, 2008). The temporal scale of the vehicle count data is
daily average (Monday to Friday). Vehicle count data were as-
signed in the GIS to the corresponding road link (233 traffic roads).
These 233 roads (approximately 615 km) do not represent the total
road segments in the FD. It represent the roads linked to the ve-
hicle count data provided. We present in Appendix 2 a map with
the 233 traffic roads considered in our analysis.

The land use categories included industrial, commercial, urban,
exposed soil, civil construction, and natural environment (water
and green area). These areas were identified using the database
provided by Sedhab (2012).

The air pollution category included vehicular emissions along
the 233 traffic routes within the FD. This inventory was previously
calculated by our research group and more information can be
found in Réquia et al. (2015a, 2015b). We used a bottom-up
method to estimate emissions for road segments, which were re-
presented by the vectors. In order to create a surface to represent
the vehicular emissions for the entire FD area, we used the Inverse
Distance Weighting (IDW) interpolation method. CO2 was the
pollutant with the highest emissions, at more than 30 million tons.
On average, approximately 130,000 tons of CO2 are emitted per
year among the 233 routes. Conversely, CH4 exhibited the lowest
emissions, approximately 4000 tons.

The meteorological and terrain category included temperature,
humidity, and slope – relief. The temperature and humidity data
were obtained from Environmental Institute of Brasilia (Ibram,
2013), and the slope – relief data were obtained from Sedhab
(2012). We the IDW interpolation method to model a surface with
the values of temperature and humidity.

The demographic and economic category included population
and income. These data were obtained from the census tracts of
the FD (IBGE, 2012). Natural issues included wildfire locations,
which were provided by the National Institute of Spatial Research
of Brazil (Inpe, 2013).

Table 2 presents a summary of all 28 attribute datasets that
were explored in this study.
2.3. GIS techniques for estimating predictor variables

First, we defined 15 buffers around each of 1547 address blocks
(Table 1). The buffers were specified using a logarithmic scale, as
suggested by some air pollution monitoring studies (Su et al.,
2009; Liu et al., 2009). The buffer sizes (meters) include 50, 500,
870, 1140, 1350, 1540, 1700, 840, 1,960, 2080, 2180, 2280, 2370,
2450, and 2520.

Subsequently, we used GIS techniques to estimate each pre-
dictor variable inside each buffer. This process was performed for
all 1547 address blocks. For example, in the hypothetical address
block “A” there is 1292 and 120,290 m of street and avenue within
the 50 and 1350 m buffers, respectively (Fig. 1). All GIS calculations
were performed in ESRI’s ArcGIS, version 10.3.



Table 2
Summary of attribute datasets.

Category Variables Unit Variable definition

Transportation Highways m Major roads which were mostly interstate
Streets and avenues m Roads in an urban context
Light vehicles Vehicles Passenger vehicles
Heavy vehicles Vehicles Bus and trucks
Motorcycles Numbers Vehicles with two in-line wheels
Bus terminals Coordinates Location points. Large bus stations (outbound, inbound)

Land use Industry areas m2 Area of land designated for industrial use
Commercial areas m2 Area of land designated for commercial use
Urbanization areas m2 Area of land designated for new urban area (under construction)
Exposed soil m2 Degraded areas (no vegetation, no urban structures)
Construction areas m2 Individual sites (private or public) under construction
Green areas intra urban m2 Green areas along the streets
Parks m2 Public green areas in neighborhoods designated for recreation (sport facilities)
Forest m2 Large green area designated for conservation
Lakes m2 Lakes in area
Rivers m Rivers in area

Air pollution inventory Particulate matter (PM) tons Tons of PM emissions in the area
Carbon monoxide (CO) tons Tons of CO emissions in the area
Methane (CH4) tons Tons of CH4 emissions in the area
Nitrogen oxides (NOx) tons Tons of NOx emissions in the area
Hydrocarbons (NMHC) tons Tons of non-methane hydrocarbons emissions in the area
Carbon dioxide (CO2) Tons Tons of CO2 emissions in the area

Meteorological and terrain Temperature °C Temperature
Relative Humidity % Relative Humidity
Slope - relief Unit Altitude measured: very low (1), low (2), median (3), high (4), and very high (5)

Demographic and economic Population Number Population in area
Income R$ Total income per month, per population and per census tract (Brazilian currency)

Natural Issues Wildfire Coordinates Location points of wildfire
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2.4. Statistical analysis

In our study, the response variable was the rate of hospital
admissions per capita in each of the 1547 address blocks. To ac-
count for the variation in geographic area due to the varying ad-
dress units, the population data were estimated for each health
data polygon based on the overlapping proportion of the area
(area of the census tracts and area of the health data). This process
resulted in 20 health data blocks with a less than one individual,
which were removed from the analysis. The analysis was con-
ducted with 1527 address blocks that included 7269 hospital
admissions.

We performed Quantile regression to evaluate how the quan-
tiles of the response variable change with the variation in the
predictor variable. This is different from Ordinary Least Squares
(OLS) regression, which assesses how the mean response variable
changes in accordance to the predictor variable. Studies that report
findings based on conditional means of the response variable may
be miss effects of the predictors (Reich et al., 2011; Koenker and
Hallock 2001; Bind et al., 2015). The quantile regression is de-
scribed as follows:

β β β β= + + +…+ + ( )y x x x e 1i i i k ki i0 1 1 2 2

Where yi is the response variable for the ith quantile; β β β+ …+, k0 1
are the coefficients associated with the ith quantile; x x,i i1 2 ,…, xki
are the predictor variables for the ith quantile; and ei is the re-
sidual error.

We estimated the risk of cardiorespiratory diseases related to
neighborhood environment, using the quantile regression coeffi-
cient (β) for each buffer size. Also we calculated the risk con-
sidering the effect from single predictor variables (total of 28
predictors). In order to create a multivariate model we tried to
control with other variables, such income, population, green areas
intra urban, transportation and land use, but we did not find any
significant associations. Eq. (2) describes the estimated risk.

β= × ( )Risk IQR 2kij kij kj

where k is the predictor variable; i represents the quantile ith,
which we used 0.05, 0.10, 0.25, 0.75, 0.90 and 0.95; j is the buffer
size; and IQR is the interquartile range. This is a scaling factor,
which is equal to the difference between the 75th and 25th per-
centile. The Eq. (3) describes the IQR.

= − ( )IQR Percentile Percentile75 25 3kj
th

k j
th

k j, ,

The risk estimated were expressed as a hospital admission in-
crease with an IQR increase in each predictor variable. We con-
sidered results to be significant in all analyses with a p-value
r0.05 and reported the corresponding 95% of Confidence Interval
(CI). Statistical analysis were conducted with R software, version
2.10.1.

2.5. Sensitivity analysis

We conducted a sensitivity analysis to examine the robustness
of the primary results. We divided the address blocks based on the
level of population and income (high/low values). For the low
values we considered the values below the quantile 0.25, whereas
for the high values we considered the values greater than quantile
0.75. As a result, we generated four sub groups: i) high population
and high income, ii) low population and high income, iii) low in-
come and high population, and iv) low population and low
income.

Finally, we applied the statistical method described above for
each sub group of population and income.

2.6. GIS modeling for constructing risk maps

Risk maps for the FD were created using two data inputs



Fig. 1. Estimation of predictor variables within the different buffers.
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including the estimated risk from the quantile regression analysis
and the complete address geodatabase for FD region (streets as
address level), which was provided by Sedhab (2012). The maps
were developed for the significant predictor variables from the
quantile regression analysis. The statistically significantly predictor
variables were calculated for each of the address locations (6158
streets), for each of the 15 buffers 50–2520 m) using the same GIS
techniques described in Section 2.2.

To allow comparison between risk variables and assess the total
risk, we created one risk map per predictor variable and we
calculated the total risk in a single map based on the sum of the
risks from all buffers (Eq. (4)):

=
×

+
×

+ …

+
×
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= =
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where RM is the risk map; z is a specific polygon, which means a
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specific street (total of 6158); k is the predictor variable; i re-
presents the ith quantile; Q is the amount of the predictor variable
k on the polygon z, for the buffer size j ( j¼1 for 50 m buffer, j¼2
for 500 m buffer, j¼3 for 870 m buffer, …, j¼15 for 2520 m buf-
fer); Risk is the estimated risk calculate using Eq. (2); and IQR is the
interquartile range calculated using Eq. (3).
3. Results

3.1. Population descriptive statistics

We studied 7269 hospital admissions from 1527 address
blocks. The average number of the hospital admissions per address
block is 4.76 (0.017 per person), with a standard deviation equal to
21.71 (0.928 considering the rate). There is only one hospital ad-
missions in each of the lower percentiles, 5th, 10th, and 25th. In
the higher percentiles, 75th, 90th, and 95th, there are two, four,
and nine hospital admissions, respectively.

3.2. Distance-decay of cardiorespiratory diseases risk

Using the quantile regression approach no statistically sig-
nificant results occurred for the 0.05, 0.10, 0.25 and 0.75 quantiles.
Quantiles 0.90 and 0.95 were statistically significant and will be
the focus of the results and discussion. Thirteen variables had a
zero confidence interval, indicating they did not affect the re-
sponse variable, which included bus terminals, urban land area,
construction area, parks, forests, lakes, PM, CH4, NMHC, CO2,
temperature, humidity and population. We suspect the metho-
dology may have influence the negligible effects observed for the
air pollution, meteorological and population variables. For ex-
ample, maybe the GIS technique used for measurement of air
pollution inventory variables and meteorological variables (IDW
interpolation) is inadequate at capturing the true spatial variation
because of a limited number of points for interpolation. The po-
pulation data, probably does not vary significantly in the number
of people among the buffer sizes, which could lead to its
insignificance.

Commercial land use was the only attribute that was statisti-
cally significant at all buffer sizes, which indicates that its com-
mercial lands have a very large spatial effect. Highways were also
significant in all but one buffer size (50 m), which is likely due to
zoning rules that would limit housing near major highways.

Some variables presented IQR values equal to zero for the
smallest buffers (e.g., for highways, buffer¼50 m; industry areas,
buffer 50–1700 m; exposed soil, buffer 50–1140 m), which means
that there is no impact of these variables at these distances.
(Table 3).

Fig. 2 presents the risk calculated for each buffer size, in terms
of IQR, quantiles and specific for each transportation category. For
highways there is no risk in buffer o50 m, because the IQR is zero.
Also, the risk at the quantile 0.95 was greater than at the quantile
0.90. The higher risks were found for the address blocks located
1140 m from the nearest highways; in a block with 3400 m of
highways (at the buffer 1140 m) we found an increase of 15
admissions.

We also found higher risk for streets and avenues at the
quantile 0.95. There is risk starting with the first buffer, 50 m
(quantile 0.95; risk¼3 hospital admissions; 95% CI: 0.6, 24.1), with
IQR equal to 550 m. The higher risk is at the buffer 500 m (quantile
0.95; risk¼6 hospital admissions; 95% CI: 1.4, 7.6), with IQR equal
to 6550 m. The risk becomes zero at the buffer Z1140 m, while
the IQR continues to increase (Fig. 2).

For light vehicles, heavy vehicles and motorcycles there is no
risk at buffer o50 m (IQR ¼0). For light vehicles, the higher risk is
for distances r500 m (quantile 0.95; risk¼6 hospital admissions;
95% CI: 2.6, 14.6), with IQR equal to 46,480 vehicles. The risk de-
creases between 870 and 2370 m (quantile 0.95; risk¼4 hospital
admissions; 95% CI: 1.8, 14.4) and for distances 42370 m the risk
related to light vehicles is zero. For heavy vehicles the overall risk
is smaller than for light vehicles. For the buffer between 1700 and
2080 m, the risk for heavy vehicles is equal to 1 patient (quantile
0.90; 95% CI: 0.2, 2.2) with the IQR equal to 9300 heavy vehicles.
Finally, for motorcycles the higher risk is for buffer 870 m (quantile
0.95; risk¼4 hospital admissions; 95% CI: 1.4, 9.7), IQR equal to
1800 motorcycles. For motorcycles the risk for buffer 4870 m
decreases to approximately 2 hospital admissions at the quantile
0.95 (Fig. 2).

The risk related to land use variables are presented by Fig. 3.
For the industrial areas, there is no risk r2080 m. Between 50 and
1700 m the IQR for industry areas is zero; and between 1840 and
2080, even with IQR approximately equal to 6000 m2, the risk is
zero. So there is a very low risk only with the buffer 42080 m,
and the higher risk is at the last buffer, 2520 m (quantile 0.90;
risk¼0.18 hospital admissions; 95% CI: 0.07, 0.55).

Considering commercial areas, we found significant risk for all
of the buffers. The risk increases up to the buffer 1700 m, where is
the highest risk (quantile 0.95; risk¼12 hospital admissions; 95%
CI: 2.2, 20.8), IQR equal to 74,000 m2. Then the risk decreases to
approximately 7 hospital admissions, at the quantile 0.95, while
the IQR continues to increase (Fig. 3). For exposed soil, we ob-
served an increasing effect of IQR change in cardiorespiratory risk
between the distances 1350 to 2520 m. The higher risk is at the
buffer 2450 m (quantile 0.95; risk¼4 hospital admissions; 95% CI:
1.6, 16.4). The effect was the opposite when we considered the
green areas intra urban. A decreasing risk was observed among all
of the buffers, while the IQR increased with increasing buffer size.
For rivers, there is significant risk only for 870–2280 m at the
quantile 0.95; and 870–1700 m at the quantile 0.90 (Fig. 3).

For air pollution inventory variables presented risk only for
short distances (o500 m). For income and slope were found un-
expected results. We expected to find higher air pollution in areas
with less income, and consequently, higher cardiorespiratory dis-
eases (Lim et al., 2012; Branis and Linhartova, 2012). However, we
found an increase risk between 870 and 1140 m, when in this
same distance interval the IQR for income increased. Possibly here,
the income does not present variation among the buffers sizes. We
had the same problem with population data, as mentioned pre-
viously. Regarding to slope variable, the results showed a higher
risk variation, while the IQR for slope was practically constant
across all of the buffers. We suggest here that the slope variable is
not a good predictor for cardiorespiratory risk in our study area.
Probably it is because that most of urban area of the FD has a flat
terrain. Therefore, the results for air pollution inventory, income
and slope are presented on the Appendix 3.

Finally, for the wildfire variable, we found risk between 500–
1540 m. The higher risk is at the 500 m (quantile 0.95; risk¼4
hospital admissions; 95% CI: 3.0, 15.2). Then the risk decreases
until the buffer 1700 m, when it becomes zero (Fig. 3).

The results obtained from sensitive analysis are presented in
Figs. 4 and 5, which was conducted for the greatest risk quantile
0.95 (highways and green areas). The greatest risk for hospital
admissions occurred where populations were highest. At the
nearest distance of 50 m, only the high income and high popula-
tion sub group presented a significant risk. Buffers larger than 500
m demonstrated that highways proximity produced a high risk for
both high and low income sub-populations regardless if they were
high or low income, see Fig. 4 for the distance decay for each sub
population. Green areas decreased the hospital admission risk, the
greatest impacts were noted in the low population density areas.
The distance decay effects are presented in Fig. 5.



Table 3
Coefficient significantly different from zero in each buffer (95%CI does not contain the zero value).

Category Variables Q Buffer 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Transportation 

Highways 0.90 *                             
0.95 *                             

Streets and 
avenues 

0.90                               
0.95                               

Light vehicles 0.90 *                             
0.95 *                             

Heavy 
vehicles 

0.90 *                             
0.95 *                             

Motorcycles 0.90 *                             
0.95 *                             

Bus terminals 0.90                               
0.95                               

Land use 

Industry areas 0.90 * * * * * * *                 
0.95 * * * * * * *                 

Commercial 
areas 

0.90                               
0.95                               

Urbanization 
areas 

0.90                               
0.95                               

Exposed soil 0.90 * * * *                       
0.95 * * * *                       

Construction 
areas 

0.90                               
0.95                               

Green areas 
intra urban 

0.90 *                             
0.95 *                             

Parks 0.90                               
0.95                               

Forest 0.90                               
0.95                               

Lakes 0.90                               
0.95                               

Rivers 0.90 * *                           
0.95 * *                           

Air pollution 
inventory 

PM 0.90                               
0.95                               

CO 0.90                               
0.95                               

CH4 
0.90                               
0.95                               

NOx 
0.90                               
0.95                               

NMHC 0.90                               
0.95                               

CO2 
0.90                               
0.95                               

Meteorological 
and terrain 

Temperature 0.90                               
0.95                               

Humidity 0.90                               
0.95                               

Slope - relief 0.90                               
0.95                               

Demographic 
and economic 

Population 0.90                               
0.95                               

Income 0.90                               
0.95                               

Natural Issues Wildfire 0.90  *                             
0.95  *                             

Notes: Quantiles (Q); at the quantile 0.90, CI ≠0 and p-value r0.05 (light grey color); at the quantile 0.95, CI ≠0 and p-value r0.05 (dark grey color); CI contains zero
(blank); Buffer 50 m (1); Buffer 500 m (2); Buffer 87 m (3); Buffer 1140 m (4); Buffer 1350 m (5); Buffer 1540 m (6); Buffer 1700 m (7); Buffer 1840 m (8); Buffer 1960 m (9);
Buffer 2080 m (10); Buffer 2180 m (11); Buffer 2280 m (12); Buffer 2370 m (13); Buffer 2450 m (14); Buffer 2520 m (15); IQR equal to zero (*).
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Fig. 2. Risk and distance decay – Category: transportation. Notes: blue solid line (hospital admissions – risk – coefficients at the quantile 0.95); red solid line (hospital
admissions – risk – coefficients at the quantile 0.90); green solid line (hospital admissions – risk – coefficients at the quantiles 0.05; 0.10; 0.25; 0.75); blue dash line (hospital
admissions – risk – 95% CI of coefficients at the quantile 0.95); red dash line (hospital admissions – risk – 95% CI of coefficients at the quantile 0.90); black solid line (IQR -
amount of predictor variable). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.3. Risk map

We plot the spatial variation of health risk separately for
quantile 0.90 (Fig. 6) and quantile 0.95 (Fig. 7). Income, slope, in-
ventory of CO and inventory of NOx were excluded from risk
mapping because their results were unexpected.
4. Discussion and conclusion

Significant health risk occurred for 15 of the neighborhood
attributes that we calculated in this study. From those 15, nine of
the variables did not present a significant risk for the smaller
buffers (typically r500 m). Our findings indicate that to predict
the neighborhood influence on cardiorespiratory diseases that the
neighborhood must be assessed beyond the very local level of the
residence. Seven of the attributes were significant up to a distance
of 2520 m, which included the influence of highways, the number
of motorcycles, industrial and commercial land use, the amount of
exposed soil, natural areas and income.

Living close to a highway presents a host of potential benefits
such as accessibility; however, the proximity can also lead to ne-
gative health effects form noise and air pollution. Brugge et al.
(2013) identified that cardiorespiratory disease risk increased for
people who live within 50 m from highways by 49% (95% CI: 6%)
and for those who live between 10 and 50 mwas 41% (95% CI: 6%).



Fig. 3. Risk and distance decay – Category: land use and Natural Issues (wildfire). Notes: blue solid line (hospital admissions – risk – coefficients at the quantile 0.95); red
solid line (hospital admissions – risk – coefficients at the quantile 0.90); green solid line (hospital admissions – risk – coefficients at the quantiles 0.05; 0.10; 0.25; 0.75); blue
dash line (hospital admissions – risk – 95% CI of coefficients at the quantile 0.95); red dash line (hospital admissions – risk – 95% CI of coefficients at the quantile 0.90); black
solid line (IQR - amount of predictor variable). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Our findings agree that the proximity to a highway increases the
risk of cardiorespiratory disease. For example, a 2500 m increase
in highways (buffer 500–1140 m) was associated with a 46% in-
crease in cardiorespiratory diseases (quantile 0.95). The effect
from streets and avenues occurs more locally with the maximum
significant distance of 870 m. The highest risk occurred for the
buffer 500 m (quantile 0.95), buffers that are much smaller likely
have little variation because all residences are located adjacent to a
street. A 6000 m increase in streets and avenues (buffer 50–500 m)
was associated with a 51% increase in hospital admissions per
cardiorespiratory diseases (quantile 0.95).

The risk from heavy duty vehicles may not have localized ef-
fects because of the proximity between the operating locations of
heavy duty vehicles and the location of residences. Williams et al.
(2009) identified that most heavy duty vehicle routes are far away
from residences, which do not translate to adverse health effects.
Heavy duty vehicle risk was significant for buffers between 1540
m and 2180 m, which is consistent with the notion that their
routes occur at fair distances from residences. The risk for mo-
torcycles and light duty vehicles occurs at much closer distances
and the strength of this risk decreases as buffer sizes are increased.
These findings of traffic effects and adverse health outcomes are in
agreement with other studies such as Williams et al. (2009) in
Seattle, Washington – US, where women living within 150 m of
arterial roads had 21% (95% CI: 15.6%; 23.5%) lower NK cytotoxicity
(immune function) than women who live more than 150 m from
arterial roads.

Our findings for the risk from industrial areas has the same



Fig. 4. Sensitive analysis – hospital admissions risk for highways (quantile 0.95).

Fig. 5. Sensitive analysis – hospital admissions risk for green areas (quantile 0.95). Notes: there is no significant risk for high population and high income (subpart 1).
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effect on health risk as the highways, such that, residences are not
located near industrial regions because of land use policies im-
plemented to limit the exposure. Increased risk occurs for buffers
42080 m, the increase is small compared to other factors with the
greatest risk only increasing by 0.18 hospital admissions (quantile
0.90; 95% CI: 0.07; 0.55). The FD has limited industrial land use
within the region.

The FD has a very high concentration of commercial land use.
We found significant risk for all commercial area buffers, with the
highest risk for the 1700 m buffer (quantile 0.95; risk¼12 hospital
admissions; 95% CI: 2.2; 20.8). For the commercial area, we esti-
mated that the cardiorespiratory diseases risk with buffer 1700 m
(quantile 0.95) is 197% higher, than for the buffer 500 m. Com-
paring the 1700 m buffer with the 2520 m buffer (largest buffer),
the risk decreased to 49%. James et al. (2014) studied the effect of
commercial areas in association with walking and Body Mass In-
dex (BMI) and found a decreasing effect with larger buffer size as
well. However, the authors observed the strongest effect of com-
mercial area on BMI in the 400 m radial buffer, with a decrease out
to the 1600 m buffer.

For exposed soil (Fig. 3), our findings showed an increasing risk
beginning at 1140 m (quantile 0.95). Below 1140 m the risk is zero for
all quantiles. It was observed that at the last buffer, 2520 m, the risk
increased 572% (quantile 0.95). Probably the risk also exists for
distances 42520 m. We suggest that crustal particles (air pollutant
from exposed soil) on the FD have high association with cardior-
espiratory diseases. Other studies have found this association (Zano-
betti and Schwartz, 2009; Laden et al., 2000). Also, as for previous
studies (Rodriguez et al., 2013; Wallace et al., 2009), the meteorological
conditions, such as wind direction and wind speed, can contribute to
the possibility that the risk still exists at distances 42520 m.
Our results showed that the vegetation intra urban has an
important effect to minimize the cardiorespiratory risk (Fig. 3). A
decreased risk was observed beginning at 1140 m. The findings
suggest that a 1 km2 increase in green areas intra urban (buffer
1140 to 2520 m) was associated with less 2 hospital admissions
(quantile 0.95). Other studies have found the positive effect from
green areas to improve health (Nardo et al., 2010; Zandbergen and
Green, 2007). For instance, Nielsen and Hansen (2007) reported
that who live in short distances from green areas are associated
with less stress and a lower likelihood of obesity. Berg et al. (2010)
showed that there is less occurrence of mental health for who live
o1 km from green spaces. Also, Villeneuve et al. (2012) reported
that in Ontario, Canada, an increase in the IQR of green areas, using
a 500 m buffer, was associated with reduced non-accidental
mortality (RR¼0.95, 95% CI: 0.94; 0.96). For respiratory disease
mortality, the authors found a relative risk equal to 0.91 (95% CI:
0.89; 0.93).

For water (rivers and lakes), we observed that the presence of
rivers is positively associated with cardiorespiratory risk (Fig. 3).
The results showed that there is an increase risk between 870 and
1350 m (quantile 0.95). Then the risk begins to decrease. A 3200 m
increase in river (buffer 870–1350 m) was associated with 98%
increase in cardiorespiratory risk (quantile 0.95). We suggest that
in the FD around the rivers there is a higher population, conse-
quently, a higher number of cars. No significant results were found
for lakes. It was not possible compare this result with other stu-
dies. We did not find studies that considered water as variable to
represent the neighborhood environment.

Considering the points of wildfire (Fig. 3), our findings showed
a decreasing risk between 500 and 1540 m. Individuals who live
r500 m from the nearest point of wildfire are more likely to have



Fig. 6. Risk map, considering quantile 0.90.
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cardiorespiratory diseases than those living 4500 m. The cause
here is that the wildfire is related to air pollution emissions, for
instance Particulate Matter (PM), Carbon Monoxide (CO), Black
Carbon (BC). Several studies have found the effects from wildfires
on human health (Williams et al., 2012; Youssouf et al., 2014;
O’Neill et al., 2013). Johnston et al. (2014), for instance, show that
the wildfire events in Sydney, Australia, were associated with in-
creases in hospital attendances for respiratory conditions (OR 1.07,



Fig. 7. Risk map, considering quantile 0.95.
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95% CI: 1.04; 1.10).
Our study has some limitations. First, the variables light ve-

hicles, heavy vehicles and motorcycles are only from 233 roads of
the FD (mostly highways and big avenues). Probably if we had
access to the data from all roads, we would find a higher effect
from these variables to the hospital admissions. Second, the health
data do not represent the real total number of hospital admission
in the FD between 2008 and 2013. The health data used in this
study represent a subset with address information. Finally, our
results should be interpreted carefully as the association may be
influenced by residual confounding of other variables, including
socioeconomic, lifestyle, indoor contribution etc. Further research
is needed to identify potential confounding role of other factors-
related cardiorespiratory risk.
In conclusion, our findings suggest that predictor variables re-
lated with transportation, land use and wildfire can explain the
occurrence of cardiorespiratory diseases. The risk map created can
presents the spatial distribution of the risk, even for areas where
we did not have access of health data. The spatial analysis of these
variables, for instance the amount of each variable per buffer and
the risk map, can be a potential tool to guide and enhance the
public health policies in the FD.
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