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A B S T R A C T

Brazil, in its intended nationally determined contribution protocol on the Paris Agreement, set to enhancement
the usage of energy from sugarcane. To sustainably meet this goal, the Brazilian government rely on the
Sugarcane Agroecological Zoning (SAZ). The SAZ, based on soil, climate, and land use conditions, defines as
suitable 63 million hectares (Mha). Such an area would suffice the future demand for sugarcane. However,
climate change impacts on the climate conditions necessary to grow sugarcane may promote a mismatch be-
tween the SAZ and future suitability. Our goal is to examine the effects of climate change on the SAZ policy. We
developed ecological niche models to identify the suitability criteria and generate scenarios under 17 global
climate models listed in the IPCC 5 for 2050. An ensemble of the 17 scenarios identifies areas of estimation
congruence thus indicating smaller uncertainty regarding the suitability of these areas. Areas of high congruence
(above 70% of prediction) encompass 1.53Mha by 2050, a reduction of 97.5% compared to SAZ. Including areas
of high congruence outside of the SAZ increases the suitable area to 7Mha. The public and private sector in
Brazil needs to develop large-scale adaptation strategies such as improving the research cycle of sugarcane
varieties and reducing yield gaps by advancing the management of sugarcane fields to propel Brazil into ful-
filling its Paris Agreement commitment.

1. Introduction

The evolution of the Brazilian energy matrix has demonstrated a
successful shift from oil importer to a world leader in renewable energy.
Brazil’s main source of renewable energy is sugarcane. Indeed, the su-
garcane sector contributes with 17% of Brazil’s energy matrix and su-
garcane ethanol has replaced almost 42% of Brazilian gasoline needs
(EPE, 2016). Sugarcane ethanol has expanded quickly in the early
2000s (Goldemberg, 2007; Granco et al., 2017; Moraes, 2011). From
2004 to 2013, the sugarcane sector invested more than US$ 30 billion,
setting up more than 100 mills and expanding the production area from
5.8 million hectares (Mha) to 9Mha in 2015/16, harvesting 667 million
tons of sugarcane, which yielded 33.8 million tons of sugar and 30.2
billion liters of ethanol, resulting in a GDP around 40 billion dollars in
2016 (CONAB, 2016; Unica, 2014). These results make Brazil the main
sugar producer and the second largest ethanol producer in the world
(Sant’Anna et al., 2016).

In addition to the economic impacts, sugarcane ethanol has been an

important instrument in the country’s strategy for mitigating green-
house gas emissions. Due to sugarcane energy, Brazil has avoided
emitting more than 300 million tons of CO2 from fossil fuels since 2003
and converting crop or pastureland to sugarcane may lead to direct
impacts on local climate by substantial local cooling effect (Loarie et al.,
2011). This success in renewable energy has led the country to commit
to a reduction in greenhouse gas (GHG) of 37% by 2025 and 43% by
2030 compared to GHG emission level in 2005 on its intended na-
tionally determined contribution (iNDC) protocol on climate change
(UNFCCC, 2015). For the near future, the Brazilian Energy Plan 2024
(PDE 2024) forecasts an increase in production to 44 billion liters of
sugarcane ethanol in 9.9Mha of land (EPE, 2015) representing a de-
mand of 1Mha of sugarcane over the 2015/2016 area.

However, concerns about environmental impacts and the country’s
ability to achieve its iNDC committement have incentivized the devel-
opment of planning policies for the expansion of sugarcane. Among the
policies is the Sugarcane Agroecological Zoning (SAZ), a crop zoning
established by the Decree No. 6,961/2009 with two main goals: (i) to
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guide the industry expansion, and (ii) to act as an active strategy in
sparing land in an important environmental biome (Myers et al., 2000;
Phalan et al., 2016). The SAZ guides the expansion by describing the
areas most suitable for cultivation in terms of soil conditions, slope,
climate requirements, and previous land use (Table 1) (Jaiswal et al.,
2017; Lucon and Goldemberg, 2010; Manzatto et al., 2009; Zullo et al.,
2018). Following this guidelines, the Brazilian government estimates
the availability of 63Mha of land for sugarcane expansion as follow:
18Mha are classified as the highest suitability potential (P-Class) with
good soils and good climate, 41Mha with regular suitability (R-Class)
defined by average soil conditions and good climate conditions, and
4Mha with low suitability (S-Class), defined by poor soils and good
climate conditions (Manzatto et al., 2009). It is important to note that
the SAZ offers incentives for farmers that comply with it, such as easy
credit and environmental license in order to operate, but it does not
force farmers to plant only in the best suitable areas.

The success of agricultural land use zoning as active land sparing
strategy is associated with the compliance with the zoning. In other
words, if farmers are not convinced that the zoning is mapping the most
suitable areas, and the enforcement is low, then farmers may stop fol-
lowing the policy rules (Arima et al., 2014; de Lucena et al., 2009; Niles
et al., 2013). Furthermore, another important component of the SAZ
requirements is climate, which can become a challenge for a successful
implementation of the land use zoning policy.

Studies on the future of agricultural production have cautioned
about severe impacts of future climate conditions on agricultural pro-
duction leading to changes in the distribution of agricultural areas
(Jaiswal et al., 2017; Machovina and Feeley, 2013; Pugh et al., 2016;
Schlenker and Lobell, 2010), yield loss (Nelson et al., 2014; Pugh et al.,
2016; Rosenzweig et al., 2014), and food security (Campbell et al.,
2016; Kline et al., 2016). Such negative impacts can undermine the
effects of agricultural land-use zoning by affecting the suitability of
zoned areas and increasing the possibility of mismatch between the
zoning and actual suitability. In the case of sugarcane, current research
indicates that climate change poses a threat to sugarcane production
due to its relatively low adaptive capacity, high vulnerability to natural
hazard, and lack of mitigating strategies (Chandiposha, 2013; de
Lucena et al., 2009; Marin et al., 2016; Zhao and Li, 2015). Thus, the
Brazilian sugarcane production is not immune to the potential impacts
of climate change, in fact, since most sugarcane production in Brazil is
rainfed climate change might have significant impacts in sugarcane
production (Jaiswal et al., 2017; Marin et al., 2013; Zullo et al., 2018).
Still, the SAZ does not present information on potential impacts of
climate change on the land suitability of sugarcane, which can have
negative consequences for the sugarcane industry and for the en-
vironment, such as the establishment of new production site in areas
that may not maintain its suitability given climatic change. Indeed, we
can ask if the areas defined as suitable by SAZ will remain suitable
given climate change. We are especially concerned with the existence of
mismatch between current and future suitable areas because the su-
garcane ethanol industry is highly specialized and demands large
cropland to operate. In the presence of a mismatch, the industry trust in
the zoning policy may vanish jeopardizing the sustainability gains from
the SAZ policy. Although our research is focused on the case of su-
garcane in Brazil, the study of mismatch due to future climate condition
is generalizable to other land use policies that are associated with

climatic conditions, such as agroecological zoning for palm trees in the
rain-forest of the Brazilian Amazon and Indonesia (Harahap et al.,
2017; Monteiro de Carvalho et al., 2015) and coffee worldwide (Bunn
et al., 2015).

The goal of this research is to analyze the potential impact of cli-
mate change on the spatial distribution of suitable areas for sugarcane
production by 2050. To address this question, we (i) developed an
ecological niche model (ENM) for the current spatial distribution of
suitable areas based on the SAZ, and (ii) projected the ENM to 2050 by
considering 17 global climate models (GCM) under the representative
concentration pathways (RCP) of 4.5 and 8.5 (Thomson et al., 2011,
2010).

2. Materials and methods

2.1. The sugarcane agroecological zoning (SAZ)

The SAZ’s goal is to guide the sugarcane expansion while protecting
the environment and avoiding negative impact on food security. The
mechanism used to achieve this goal is an agroecological zoning that
defines areas as suitable, nonsuitable, and not allowed for sugarcane
production. The areas suitability is a combination of sugarcane’s eco-
climatic requirements such as climate, soil, slope, and previous land
use. For the climate component many factors are considered such as
average air temperature, annual hydric deficit, an index for the sa-
tisfaction of sugarcane’s water necessities, and risk of frost. Areas that
need intense irrigation or that had too much rain were considered un-
suitable for sugarcane production. The slope requirement is that areas
with slope<12° can be considered suitable. In addition, the suitability
consider soil factors like deficiencies of fertility, water deficits, water
excess or lack of oxygen, erosion-prone, restrictions to mechanized
harvest, and restrictions to the sugarcane’s radicular system develop-
ment. Although, the SAZ presents the requirements, it does not precise
the methodology used to identify such requirements. The combination
of the different requirements defines if an area is suitable or non-
suitable. We can group the suitable areas into three suitability classes:
(1) highest suitability potential (P-Class) with good soils and good cli-
mate; (2) regular suitability (R-Class) defined by average soil conditions
and good climate conditions; (3) low suitability (S-Class), defined by
poor soils and good climate conditions (Table 1).

Agricultural land use is not considered as a restriction factor; it is
important to notice that the Brazilian government has expressed a de-
sire that sugarcane expansion occurs over pastureland, thus reducing
direct competition for land with food production from converting
cropland (Alkimim et al., 2015; Leal et al., 2013; Walter et al., 2014).
Although previous land use is not a restriction in the definition of
suitability areas, land cover is a restriction for the SAZ such that natural
vegetation cannot be replaced by sugarcane producing areas. To define
which areas where covered by natural vegetation, the SAZ uses the land
cover classification developed by the PROBIO program (Sano et al.,
2008). Although the PROBIO program focus was on biodiversity, it
produced maps reflecting the land cover/land use as in 2002 (Sano
et al., 2008).

The definition of areas not allowed for sugarcane expansion is a
governmental decision to rule out any conversion of natural vegetation
and any area in the Amazon, Pantanal, and Alto Paraguay River Basin

Table 1
Climate and soil conditions to define the SAZ’s suitability classes. This classification scheme is adapted from (Manzatto et al., 2009).

P-Class R-Class R-Class R-Class S-Class

Suitability conditions Average air temperature > 19 °C >19 °C > 19 °C > 19 °C > 19 °C
Annual hydric deficit < 200mm < 200mm > 200 and < 400mm > 200 and < 400mm < 200mm
Index for the satisfaction of sugarcane’s water necessities > 0.6 >0.6 > 0.6 > 0.6 > 0.6
Risk of frost < 20% <20% <20% <20% <20%
Soil suitability high regular high regular low
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to preserve these environments (Manzatto et al., 2009). Areas within
conservation units and indigenous reserves are also removed from the
SAZ (Manzatto et al., 2009). Because the SAZ is focused on the ex-
pansion of sugarcane, areas under sugarcane production in 2007 as
mapped by the Canasat program (Rudorff et al., 2010) were also re-
moved from the SAZ.

2.2. Ecological niche model for land suitability

Ecological niche model (ENM) is a technique to estimate the po-
tential range of species (Akhter et al., 2017; Broennimann et al., 2012;
Guillera-Arroita et al., 2015; Hirzel and Le Lay, 2008; Peterson, 2003;
Phillips et al., 2006). An ENM traces the species’ ecological niche by
relating data on the occurrence of the species with data on other ele-
ments of the landscape such as climate, physical environment, human
population, land use, among others (Elith and Leathwick, 2009). These
models contribute to answering questions related to the distribution of
species and predicting distribution shift under a change in the en-
vironment (Anderson et al., 2003; Estes et al., 2013; Petitpierre et al.,
2016; Silva et al., 2014b). ENM has been used in a broad range of ap-
plications, from modeling exotic species (Faleiro et al., 2015; Silva
et al., 2015) and pollinators (Silva et al., 2014a) to invasive species
(Barney and DiTomaso, 2011; Peterson, 2003; Petitpierre et al., 2016).
More recently, ENM started to attract the attention of land change
scientists who have used it to model land use suitability (Heumann
et al., 2013; Machovina and Feeley, 2013), establish potential of new
producing regions (Evans et al., 2010; Trabucco et al., 2010), and land
cover change and planning (de Souza and De Marco, 2014; Zhang et al.,
2012).

The ENM broad adoption can be attributed to four main factors: the
good fit of the models’ predictions and potential to transferability
(Peterson et al., 2007; Phillips et al., 2008); the user-friendly interface
of some ENM software (Elith and Leathwick, 2009; Lozier et al., 2009);
the readily available GIS data layers on species records and landscape
factors (Elith and Leathwick, 2009; Lozier et al., 2009); and the de-
velopment of machine learning algorithms and other data-mining
techniques (Faleiro et al., 2013; Fourcade et al., 2014). Data di-
mensionality reduction techniques such as principal component trans-
formation (PCT) are commonly used to improve model estimation
(Silva et al., 2014a). ENM has the capability of handling data re-
presenting biotic (such as dispersal ability, predation) and abiotic (such
as climate and terrain) factors relevant to the study of the potential
habitat of a species. Identification of abiotic factors as one of the largest
force defining the spatial distribution together with the abundance of
GIS layer of climatic and bioclimatic variables stimulated an ENM re-
liance on abiotic factors (Elith and Leathwick, 2009; Pearson and
Dawson, 2003). However, the ENM reliance on abiotic factors has been
called out as a source of prediction error (Araújo and Peterson, 2012;
Pearson and Dawson, 2003). Researchers have proposed the use of
biotic factors, however, the incorporation of these factors is limited by
the specificity of each species and lack of data that can be used as a
proxy for the biotic factors (Cunningham et al., 2016; Elith and
Leathwick, 2009; Lewis et al., 2017).

We recognize the influence of biotic and abiotic factors, however,
the approach chosen for this research relies on the abiotic factors af-
fecting the species distribution. The first research goal deals with de-
veloping an ENM for sugarcane suitability which is defined in terms of
abiotic factors. The second research goal focuses on the projection of
the ENM to future climate conditions and analysis of changes in the
spatial distribution. Because there is uncertainty regarding future cli-
mate, we use an ensemble of the ENM results to examine possible im-
pacts of climate change on land suitability for sugarcane and the SAZ.
The aggregation of ENM results under climate scenarios into ensembles
aims to identify the uncertainty and high congruence of prediction of
the future distribution of suitable areas (Machovina and Feeley, 2013;
Ranjitkar et al., 2016; Rosenzweig et al., 2014). The ENM approach

allows both to predict changes in climatic suitability and evaluate the
uncertainty of this measure derived from the different future climate
scenarios (Akhter et al., 2017; Blanchard et al., 2015; Heumann et al.,
2013; Machovina and Feeley, 2013).

2.3. Modeling framework

To achieve our goals, we developed a modeling framework con-
sisting of three steps. In step (1), we created an ENM representing each
suitability class defined in the SAZ using the bioclimatic variables for
the current climate conditions. In step (2), we evaluated the ENM using
bioclimatic variables from 17 global climate models (GCM) for RCPs of
4.5 and 8.5. This step generates 1020 probability maps (340 for each
suitability class; 170 under each RCP), which were analyzed in-
dividually and later combined in an ensemble map of predicted suitable
areas. In step (3), we conducted a spatial analysis to identify potential
mismatch between the current spatial distribution of SAZ suitable areas
and the areas predicted by the ensemble map.

For this paper, congruence of prediction is defined as the frequency
that each area is predicted as suitable by individual ENM. By following
Rosenzweig et al. (2014), we set the threshold for high congruence of
model’s estimation as a proportion of 70% or more of models predicting
the area as suitable. Likewise, the areas with a proportion of prediction
inferior to 70% of the models are considered areas of low model con-
gruence, thus nonsuitable for sugarcane production. For this study,
areas with low model congruence are considered more susceptible to
negative impacts of climate change, while areas with high model con-
gruence are considered less susceptible.

Several approaches are available to implement ENM differing in the
algorithm used to predict the species’ distribution and results (Duan
et al., 2014; Howard et al., 2014; Stockwell and Peterson, 2002; Wisz
et al., 2008). We tested the three algorithm most frequently used in the
literature in Step (1): (i) Maxent (MXT) (Phillips et al., 2006); (ii)
Random Forest (RDF) (Howard et al., 2014); and (iii) Support Vector
Machine (SVM) (Drake et al., 2006). The results of each algorithm were
evaluated and only the algorithm that produced the best-fitting pre-
diction was used on the next steps of this research. The ENM was
performed on R Statistical software, with the packages dismo for the
MXT algorithm (Hijmans et al., 2017), randomForest for the RDF algo-
rithm (Liaw and Wiener, 2002; Svetnik et al., 2003), kernlab for the
SVM algorithm (Karatzoglou et al., 2004).

2.4. Ecological niche model evaluation

To identify which algorithm generates the ENM that best represents
the set of conditions for the SAZ Classes, we perform the True Skilled
Statistics (TSS) as the assessment tool (Allouche et al., 2006). This
statistic varies from -1 to +1, where negative values and< 0.5 are
considered no better than random and where a value closer to +1 is
considered excellent. The use of TSS has advantages over other metrics
for binary presence-absence predictions of species distribution
(Allouche et al., 2006; Garcia et al., 2013). The TSS is a threshold-de-
pendent measure. The receiver-operator curve (ROC) threshold is used
in this research. The ROC threshold provides the value in which the
model has the same number of omission and commission errors, thus
reducing overfitting problems (Duan et al., 2014; Silva et al., 2014b).
This is a more precautionary threshold than the least presence training
threshold (Faleiro et al., 2015; Silva et al., 2014a).

The evaluation uses a repeated measures ANOVA to test the equality
of the TSS means for each algorithm regarding each SAZ Class (Duan
et al., 2014; Pearson et al., 2006; Segurado and Araújo, 2004; Silva
et al., 2014a). Thus, defining the best algorithm is not only the one with
the highest TSS, but it also has the highest TSS over all samples for each
SAZ Class.
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2.5. Occurrences data set

In the ENM, the potential distribution is based on known occur-
rences locations of the target species. For our study, areas zoned as
suitable are considered as a known occurrence of the species “suitability
for sugarcane expansion” that the ENM is defining the distribution
range. In other words, the occurrence data set for this research are the
areas classified as suitable by the SAZ. The data was acquired in sha-
pefile format from the Brazilian Enterprise of Agricultural Research
(EMBRAPA) (available for download at http://geo.cnpma.embrapa.br/
projeto_pt.aspx). The original data set was divided into SAZ Classes and
converted to a grid format (Fig. 1). The use of gridded data facilitates
our modeling approach of ENM. Each SAZ Class was modeled using
ENM with the point location represented by the centroid of each cell.
After these steps, the P-Class had 724,818 points, R-Class had 1,527,006
points, and S-Class had 160,308 points.

The abundance of points is unusual in the use of ENM (Wisz et al.,
2008) and may raise two biases in the models. First, the use of all points
can lead to overfitting the model, thus threatening the projection of the

model to different climate scenarios (Peterson et al., 2007; Phillips
et al., 2008). Second, the abundance of points can lead to spatial au-
tocorrelation as the SAZ criteria are related to physical factors that
exhibit spatial dependency (e.g., soil characteristics and climate)
(Ettema and Wardle, 2002; Hijmans et al., 2005).

To avoid these biases, we applied a random sampling procedure,
which reduces the effects of spatial autocorrelation by imposing a
spatial threshold to select data points. The method employed selects
occurrence points such that a point is added to the sample only if its
distance to any point already present in the sample is larger than 10 km.
The procedure first selects a point randomly and then discard those that
do not follow the spatial rule (Bini et al., 2009). Using this procedure,
we selected 10 random sets for modeling for each SAZ class with 3500
points (except for the S-Class which has only 1000 points due to its
smaller observed area). This random sampling procedure has the ad-
vantage of avoiding spatial autocorrelation, hence reducing the odds of
overfitting by sampling the original data set (Howard et al., 2014).
Furthermore, it enables statistical validation of the ENM using repeated
measures ANOVA.

Fig. 1. Representation of the three suitability classes (P – high suitability, R – regular suitability, S – low suitability) defined by the SAZ.
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2.6. Bioclimatic variables

Three sets of bioclimatic variables were employed to evaluate the
effects of climate change on the availability of land suitable for su-
garcane expansion. The first set is representative of the current climate
conditions which interpolates average climate data for 1960 to 1990
using data from the WorldClim 1.4 (Hijmans et al., 2005). The second
set is representative of the future climate conditions under the re-
presentative concentration pathway (RCP) 4.5 (average increase of
∼1.4 °C), considering 17 global climate models (GCM) (Table 2). While
the third set is representative of the future climate conditions under
RCP 8.5 (average increase of ∼2 °C) for 17 GCM. The 17 GCMs con-
sidered are: ACCESS1-0, BCC-CSM1-1, CCSM4, CNRM-CM5, GFDL-
CM3, GISS-E2-R, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES,
INMCM4, IPSL-CM5A-LR, MIROC-ESM-CHEM, MIROC-ESM, MIROC5,
MPI-ESM-LR, MRI-CGCM3, NorESM1-M. Data for both second and third
sets came from the CMIP5 (IPCC Fifth Assessment) with downscaling
and calibration performed by WorldClim version 1.4 (Hijmans et al.,
2005).

We considered the 19 bioclimatic variables (Table 2) derived by
WorldClim from climate models at a spatial resolution of 2.5 arc-min
(approximately 4 km at the equator) (Hijmans et al., 2005). The bio-
climatic variables include several metrics that are closely related to the
climatic conditions defined for the SAZ. For instance, air temperature is
a SAZ’s criterium and there are four bioclimatic variables capturing
annual averages, such as annual mean temperature, and temperature
annual range, along with 6 variables for seasonal or quarterly averages
(Table 2). The annual hydric deficit and the index for sugarcane’s water
necessity criteria are captured by a combination of the temperature
bioclimatic variables mentioned above and precipitation bioclimatic
variables such as annual precipitation and precipitation seasonality.
Although there are mechanistic methods to obtain the annual hydric
deficit, such as the Thornthwaite’s method and the Camargo’s method
(Zullo et al., 2018), the SAZ does not specify the methodology used. For
this reason, we decided for using the ENM to find the empirical relation
between the SAZ criteria and the bioclimatic variable without defining
a functional form. Furthermore, this approach contributes to the lit-
erature on the use of ENM for modeling land suitability (de Souza and

De Marco, 2014; Evans et al., 2010; Trabucco et al., 2010). A principal
components transformation (PCT) was implemented to reduce colli-
nearity among the bioclimatic variables under current climate condi-
tion (Jiménez-Valverde et al., 2008; Martins et al., 2015). The PCT
generated 19 principal components (PC) from which we selected the
first PC until we have> 95% of the variation of the original data set
(Table 2). In this case, the first 6 PC accounted for> 97% of the var-
iation, thus they are used as the bioclimatic variables in the ENM. For
the future climate ENM, the PCT used is the same as derived from the
current conditions data set. By using the same PCT, we are ensuring the
comparability of current and future climate ENM by assigning the same
weight to the bioclimatic variables in each PC used.

By examining the loading factors presented in Table 2 we can as-
sociate each PC with climate conditions. PC1 is representing the in-
fluence of temperature during cold and dry periods having the largest
loading with bioclimatic variables such as Minimum Temperature of
Coldest Month, Mean Temperature of Coldest Quarter, and Mean
Temperature of Driest Quarter. PC2 has the largest loading for pre-
cipitation during driest month and quarter variables, thus we associate
PC2 with dry spell. PC3 indicates strong variation in climate conditions
throughout the year with variables Temperature and Precipitation
Seasonality. PC4 captures the climate conditions during the warmest
and wettest period by the loading with Precipitation of Warmest
Quarter, Precipitation of Wettest Quarter, and Precipitation of Wettest
Month. PC5 is related to Precipitation of Coldest Quarter, while PC6
capture daily variation in temperature with the largest loading with
Mean Diurnal Range and Isothermality. The relationships above also
holds for the analysis of ENM under future climate conditions.

3. Results

3.1. The current climate condition ENM

In our modeling framework, step 1 consisted of developing ENM for
the suitability classes as defined in the SAZ using the PCs of bioclimatic
variables for the current climate conditions data set. We recognized the
existence of many algorithms available to implement ENM and tested
three algorithm using the TSS (Allouche et al., 2006). Fig. 2 shows TSS

Table 2
Bioclimatic variables and the principal component transformation. Individual loadings for each variable and principal component (PC) are showed in each cell.
Proportion of variance explained by each and accumulated by PCs, as well as the PC eigenvalues are also presented. The six principal components presented are the
environmental factors used by the ENM.

Bioclimatic variables Principal components

PC1 PC2 PC3 PC4 PC5 PC6

Annual Mean Temperature 0.271 −0.229 −0.109 0.006 −0.066 0.072
Mean Diurnal Range −0.233 −0.097 0.021 −0.429 0.115 0.534
Isothermality 0.208 0.077 0.405 −0.005 −0.196 0.461
Temperature Seasonality −0.225 0.010 −0.398 0.071 0.267 −0.020
Max Temperature of Warmest Month 0.200 −0.322 −0.305 −0.045 0.156 0.154
Min Temperature of Coldest Month 0.290 −0.126 0.008 0.130 −0.096 −0.023
Temperature Annual Range −0.253 −0.082 −0.261 −0.223 0.265 0.159
Mean Temperature of Wettest Quarter 0.225 −0.276 −0.256 −0.058 −0.027 0.157
Mean Temperature of Driest Quarter 0.281 −0.160 0.034 0.099 −0.083 0.000
Mean Temperature of Warmest Quarter 0.234 −0.262 −0.285 0.058 0.054 0.065
Mean Temperature of Coldest Quarter 0.283 −0.185 0.021 −0.004 −0.113 0.055
Annual Precipitation 0.263 0.206 0.010 −0.235 0.201 −0.081
Precipitation of Wettest Month 0.256 0.050 0.158 −0.326 0.294 −0.215
Precipitation of Driest Month 0.155 0.429 −0.202 0.097 −0.067 0.359
Precipitation Seasonality −0.135 −0.303 0.389 −0.180 0.064 0.250
Precipitation of Wettest Quarter 0.258 0.056 0.148 −0.338 0.283 −0.206
Precipitation of Driest Quarter 0.167 0.426 −0.197 0.088 −0.028 0.307
Precipitation of Warmest Quarter 0.102 0.227 −0.256 −0.598 −0.420 −0.140
Precipitation of Coldest Quarter 0.209 0.210 0.111 0.204 0.593 0.122
Proportion explained by each PC 0.578 0.158 0.118 0.060 0.036 0.022
Accumulated variation proportion 0.578 0.736 0.854 0.914 0.950 0.971
PC eigenvalues 10.980 3.005 2.235 1.142 0.679 0.409
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values for each algorithm and the high scores presented offers support
to the use of ENM for modeling land suitability defined by the SAZ. All
three algorithms presented a TSS > 0.7, which is considered an ex-
cellent fit (Allouche et al., 2006; Garcia et al., 2013); the only exception
is the MXT for the SAZ R-Class. The ENM generated using the RDF al-
gorithm (RDF-ENM) had the highest TSS values for all SAZ Classes.
Having identified RDF as the best algorithm, we will report the findings
obtained using the RDF-ENM.

In step 1, the ENM was developed to identify the areas with climate
conditions that were appropriate for each SAZ Class. Because we had 10
random samples for each class when performing the RDF-ENM we ob-
tained 10 prediction maps, which were combined into an ensemble map
using the 70% threshold. On the ensemble map (Fig. 3.a – c), we can
compare the RDF-ENM results with the SAZ Classes. Areas predicted
only by the RDF-ENM are mapped in gray, areas predicted by both RDF-

ENM and SAZ are mapped in green, and areas predicted only by the SAZ
are mapped in pink. Overall, the models generated satisfactory output.
The RDF-ENM for the P-Class produced the most accurate representa-
tion of the original data set with 98% of the SAZ areas (Fig. 3.a), while
the ensemble for the RDF-ENM S-Class captured 97% of this class area
(Fig. 3.c). The ensemble for the RDF-ENM R-Class (Fig. 3.b) estimated
87% of the area defined by the SAZ. A possible explanation for the
lower representation of this class is due to the larger area classified as
R-Class which covers multiple climatic conditions, thus, creating the
potential for many ecological niches and causing the RDF-ENM to un-
derpredict areas.

Whereas the RDF-ENM can successfully predict the areas classified
as suitable by the SAZ, the main goal of the ENM is to model the general
relationship of climatic conditions and land suitability. Being able to
model the general relationship is necessary to project the ENM to future
climate conditions. In this approach, we do not incorporate other re-
strictions on the suitability, such as the prohibition of expansion over
natural vegetation and protected areas and the expansion in areas with
a slope>12% because we are assuming they will not change in the
future (Manzatto et al., 2009). As a result, the RDF-ENM ensembles
overpredicted the range of areas with climatic conditions adequate for
the SAZ (illustrated by the presence of gray areas in Fig. 3.a – c).

3.2. Statistical test among ENMs under RCP 4.5 and RCP 8.5

One of our main results is the generation of scenarios of future land
suitability using ENM for 17 global climate models under two re-
presentative concentration pathways (RCP 4.5 and RCP 8.5). There are
significant differences between the RCP 4.5 and RCP 8.5, with the
former being an intermediate emissions pathway achieved by im-
plementation of emission reduction policies while the latter RCP is a
high emissions pathway assuming no emission reduction policy would
be implemented. It is important to highlight that RCP 4.5 assumes that
policies and mitigation are in actions (e.g., biofuels use) and mitigation
policies will be effective in curbing carbon concentration in the atmo-
sphere (Thomson et al., 2011). Our study considered these differences
while modeling sugarcane’s land suitability in Brazil in future climate
scenarios for 2050.

After the models ran for each RCP, we performed a statistical test on
the difference of the mean of the models’ results (Table 3). The

Fig. 2. ANOVA testing of the True Skilled Statistic (TSS) value with receiver-
operator curve (ROC) threshold for ENMs developed considering the present
climatic conditions with Maxent (MXT), Random Forest (RDF), and Support
Vector Machine (SVM) algorithm. Algorithms are compared against each other
considering the different SAZ Classes (x-axis), higher value of TSS are prefer-
able to lower values (y-axis). The evaluation used means (mid-points) and 95%
confidence intervals (bars).

Fig. 3. Ensemble map of the RDF-ENM for each SAZ Class under current climate conditions. The ensemble map uses a threshold of 70% of congruence to indicate
areas predicted (gray color). SAZ areas are overlaid, areas in agreement with the ensemble map are green and areas of disagreement are pink. The output from RDF-
ENM is classified considering the ROC threshold (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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statistical test employed was the two-sample t-test with unequal var-
iances with Satterthwaite's degrees of freedom in the STATA 14 I/C
software. The t-test found no evidence that the results considering RCP
4.5 and RCP 8.5 are different for P-Class and for R-Class with 10%
statistical significance (Table 3a and b respectively). A different result
was found for the S-Class, which the t-test found evidence that the
GCM-ENM results are different under RCP 4.5 and RCP 8.5, indicating
that both results are significant (Table 3.c). However, both RCP 4.5 and
RCP 8.5 ENM results present the trend of area reduction for the S-Class.
Based on the t-test, the trend area reduction, and the theoretical as-
sumptions of the RCPs, we decided to report the results under RCP 4.5
in the main text. The results under RCP 8.5 are available upon request
to the authors.

3.3. The future climate condition ENM

Fig. 4 presents the ensemble results for future sugarcane suitability
for areas zoned by the SAZ. We found that only 1.53Mha out of 63Mha
estimated by the SAZ have a high congruence of prediction, thus

considered as suitable by 2050 (Fig. 4). These results are indicative of a
potential mismatch of the areas zoned as suitable by the SAZ land use
policy and future climate conditions.

The ensemble maps indicate that even areas with the best suitability
may be threatened by climate change. By mid-century, the RDF-ENM
ensemble predicts only 0.9Mha for the P-Class out of 18Mha zoned by
the SAZ. Interestingly, this class is concentrated in the center-south of
Brazil, a traditional sugarcane producing region. Moreover, the impacts
of climate change are even greater for the R-Class with areas predicted
to 0.6 Mha by the RDF-ENM (out of 41Mha), and for the S-Class with
only 0.03Mha (out of 4Mha). If we assume that Brazil will meet the
PDE 2024 with an allocation of 10Mha to sugarcane – an expansion of
1Mha over the 2015/16 harvest – and considering only the areas al-
lowed by the SAZ, and consistently predicted on the climate change
scenarios, then after meeting the PDE 2024, Brazil would have only
0.53Mha to expand for the next 25 years.

In the event this scenario is confirmed, an alternative path is the
expansion of the sugarcane industry to areas outside of the SAZ. We
examined this possibility by expanding the sugarcane land to locations

Table 3
Results for the two-sample t-test with unequal variances using Satterthwaite's degrees of freedom test on RDF-ENM outputs under RCP 4.5 and 8.5.

a) The two-sample t-test for the RDF-ENM P-Class under RCP 4.5 and RCP 8.5

Group Obs Mean Std. Err. Std. Dev. 95% Conf. Interval

P-Class RCP 4.5 170 4041.647 281.035 3664.252 3486.855 4596.439
P-Class RCP 8.5 170 3367.212 206.961 2698.438 2958.650 3775.773
Combined 340 3704.429 175.211 3230.737 3359.791 4049.068
Diff 674.435 349.018 −12.303 1361.174
Ha: diff != 0 Pr(|T| > |t|)= 0.0542

b) The two-sample t-test for the RDF-ENM R-Class under RCP 4.5 and RCP 8.5

R-Class RCP 4.5 170 13874.020 613.004 7992.594 12663.890 15084.150
R-Class RCP 8.5 170 12307.580 605.365 7892.988 11112.530 13502.630
Combined 340 13090.800 432.229 7969.915 12240.610 13940.990
Diff 1566.435 861.534 −128.209 3261.079
Ha: diff != 0 Pr(|T| > |t|)= 0.0699

c) The two-sample t-test for the RDF-ENM S-Class under RCP 4.5 and RCP 8.5

S-Class RCP 4.5 170 1534.924 160.443 2091.921 1218.193 1851.654
S-Class RCP 8.5 170 1371.682 127.297 1659.745 1120.386 1622.979
Combined 340 1453.303 102.349 1887.222 1251.984 1654.622
Diff 163.241 204.808 −239.693 566.175
Ha: diff != 0 Pr(|T| > |t|)= 0.4260

Fig. 4. Sugarcane Agroecological Zoning associated with the ensemble of future distribution of suitable areas for 2050. (a) to (c) are the ensembles of the ENM for
each suitability class developed using the 17 GCM under RCP 4.5. Colder colors show low congruence of prediction while warmer colors show high congruence of
prediction.
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not included in the SAZ and consistently predicted as suitable by 2050.
The amount of area meeting the criteria rises to 7Mha (Fig. 5),
1.53Mha inside the SAZ and 5.47Mha outside. This enlarged area
would be enough to supply the PDE 2024 and future demands. More
specifically, Brazil would have 3.2, 2.6, and 1.2 Mha for sugarcane in
suitability conditions estimated by the RDF-ENM for the P, R, and S-
Classes, respectively. It is important to note that this scenario only
considers climate conditions, and it does not incorporate other criteria
from the SAZ. Hence, this result should be taken as an unrestricted
scenario, whereas the incorporation of other criteria may reduce the
amount of area suitable available by 2050.

4. Discussion and conclusion

This paper examined the potential effects of mid-century climate
change scenarios to the spatial distribution of zoned areas regarding the
Sugarcane Agroecological Zoning. Our models use machine-learning
algorithm to establish and project empirical relationship among bio-
climatic variables and suitability for sugarcane production. Although
not mechanistic as previous research (Jaiswal et al., 2017; Zullo et al.,
2018), this approach has the flexibility to identify ecological niche
conditions similar to the original SAZ dataset while allowing for ana-
lysis of future climate conditions.

When Brazil associated its iNDC with the increase usage of renew-
able energy provided by sugarcane, it was building upon the promise of
63Mha zoned by the SAZ and expected abundance of ethanol produc-
tion due to land availability and expected low prices for the consumers.
Traditionally, the sugarcane industry has responded to increase in de-
mand by expanding production area, later followed by improvement of
agricultural and industrial processes (Furtado et al., 2011; Goldemberg
et al., 2003). The SAZ reinforced this approach of land-expansion first
by appointing 63Mha to sugarcane production during the peak of the
expansion boom (Granco et al., 2018; Silva and Peixinho, 2012).

This strategy can be considered a success to stimulating investments
and the establishment of more than 100 mills with a large portion of the
sugarcane industry expansion taking place in the center-south of Brazil,
especially in the states of Minas Gerais, São Paulo, Mato Grosso do Sul
and Goiás, which enclosed ∼70% of all SAZ areas (Granco et al., 2017;
Shikida, 2013; Unica, 2014). It is important to mention that the su-
garcane expansion to Goiás, Mato Grosso do Sul, and Minas Gerais was
incentivized by low land prices, proximity to São Paulo, and munici-
pality and state-level fiscal incentives (Bergtold et al., 2017; Sant’Anna
et al., 2016; Silva and Miziara, 2011; Silva and Peixinho, 2012; Spera

et al., 2017). The political and fiscal supports have been justified by the
economic development that the sugarcane industry may bring to rural
counties. Recent studies have found a positive socio-economic devel-
opment of the counties hosting the industry and also an indirect posi-
tive effect on the GDP per capita of the neighboring counties due to
industrial employment and dynamism of local and regional economic
activities (Gilio and Moraes, 2016; Moraes et al., 2016).

However, these positives effects are associated with the success of
the industry which on itself is not guaranteed. In recent year, more than
79 mills applied for judicial restructuration or bankruptcy between
2008 and 2015 (Batista, 2016; Santos et al., 2016) which represents a
severe loss of capital. Nevertheless, the negative consequences of mills
closure have many other aspects than the loss of capital or investments.
For instance, from 2008 to 2016 there has been a lay-over of 40% of
workers in the center-south region (Center for Advanced Studies on
Applied Economics (CEPEA), 2018), and news showing lines of un-
employed workers, closure of business, and even riots and violence
accumulate in the region (Batista, 2016; Globo Rural, 2013; Santos
et al., 2016). The leadership of the sector has pointed out the main
reasons to be the high production cost due to climatic conditions and
low economic margins due to governmental intervention in the fuel
market (Globo Rural, 2013).

The mismatch between the expectation of the growing conditions as
set by the SAZ and the potential future conditions may harm the in-
dustry long-term success. In an extreme scenario that loss of suitability
equals crop-failure, Brazil would face challenging times – there would
be almost no increase in ethanol production due to lack of area for
expansion but the demand would continuous to increase, resulting in
lack of fuel and high ethanol prices. This situation would resemble the
supply-crisis of the end-1980s which almost destroyed the consumers’
trust in the ethanol fuel and industry (Soccol et al., 2005), although the
reasons behind each supply-crisis are different.

The use of 17 GCMs and the ensemble analysis represents an addi-
tional step to incorporate climate uncertainty into sugarcane’s potential
to supply green energy to Brazil and the world. The ensemble presents a
treatment of uncertainty that is comprehensive and cautionary. It is
comprehensive because accounts for 17 GCM present in the IPCC 5, and
cautionary because establishes a 70% threshold for high-congruence
(Rosenzweig et al., 2014). In our future climate conditions models, we
identify a potential for a severe reduction of areas with climatic con-
ditions suitable for sugarcane production. When considering the PCs
used to model the SAZ’s suitability classes, bioclimatic variables related
to temperature and precipitation during cold and dry month/quarter

Fig. 5. The probability of future distribution of areas with climatic conditions comparable to the suitability classes developed for the SAZ for 2050. (a) to (c) are the
ensembles of the ENM for each suitability class developed using the 17 GCM under RCP 4.5. Colder colors show low congruence of prediction while warmer colors
show high congruence of prediction.
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had major loading factors in 4 out 6 PCs. Low precipitation during
driest quarter might prompt the use of irrigation while low temperature
and precipitation can promote frost. Zullo et al. (2018) identified the
increase of areas where irrigation is recommended and risk of frost
under future climate conditions. In our models, such areas would not be
classified as suitable because the SAZ excludes areas where irrigation is
recommend (Manzatto et al., 2009). Our models also corroborate the
findings of a south-north gradient of climate conditions for sugarcane
(Jaiswal et al., 2017). While Jaiswal and collaborators estimated su-
garcane yields, we are analyzing the climatic conditions to sustain the
SAZ suitability guidance. Therefore, our model is limited to the em-
pirical relationship among bioclimatic variables and the areas zoned by
the SAZ (Fig. 1), and by sugarcane production technology. With this
information, the industry can plan adaptation strategies that will lead
to long-term success.

Although Brazil is a leader in sugarcane development technology
with 500+ new varieties developed over the last decades, it is im-
portant to highlight that a maximum of six new varieties are released
each year to the market (BNDES and CGEE, 2008; Melo and Poppe,
2014). The option to not follow an expansion strategy supported by
high-technological investments is explained by the costly and lengthy
development process which runs close to U$50 million and between
10–15 years of experimental clone testing resulting in a low number of
new varieties (Barbosa et al., 2012; Ming et al., 2010; Raboin et al.,
2008). The financial and temporal costs are even higher for the de-
velopment of genetic-modified varieties. To test new varieties of su-
garcane the industry needs the approval of three governmental agencies
that have distinct requirements and unclear protocols, an arrangement
that discourages investments in the sector.

Another obstacle to the adoption of new varieties is the sugarcane
field renewal process. As a semi-perennial crop, sugarcane field renewal
(planting of new varieties) is done in approximately 15–18% of the
planted area, requiring about five to six years for complete variety
change (Centro de Cana, 2018). Therefore, today’s development of new
varieties would only be available by the end of Brazil’s intended pro-
tocol in 2030 and at least another five years to replace the old varieties.
In addition, sugarcane producers can be considered more traditional
and resistant to invest in a new variety that will be in the field for 7–8
years when compared with farmers that produce annual crops like
soybeans. Thus, efforts to mitigate the negative impacts will involve a
combination of public and private efforts not only in the development
of more productive, drought and disease resistant varieties but also in
the development of new management practices and investment in ir-
rigation infrastructure (Jaiswal et al., 2017; Leal et al., 2013; Marin
et al., 2016, 2013; Zullo et al., 2018).

The ENM implemented in this research are useful models to un-
derstand the potential mismatch of present and future suitability and to
start a discussion on the need to invest in technology and management
to adapt the sugarcane industry to climate change. The information
presented here represents a first step in the treatment of this un-
certainty by dealing with 17 GCMs and presenting a large-scale result
that calls attention to the strategy of area-expansion instead of a
strategy of closing yield-gaps, sugarcane variety development, and
management. For the information generated by ENM to have practical
applications in guiding the development of new sugarcane varieties,
more research is needed on isolating the uncertainty of each bioclimatic
variable and GCM in the definition of suitability, as well as, updating
the base knowledge used to develop the SAZ. The effect of technological
advancements in agricultural production are remarkable and should be
incorporated when analyzing longer time-period.

Even though we focus on the SAZ policy, the modeling framework
and findings concerning land use and climate change policy presented
in this research are applicable to other cases worldwide. The in-
corporation of climate change scenarios into land use policy is not a
common practice yet (Lobell et al., 2008), but current research is
proving that it is a pressing need (Berry et al., 2006; Jaiswal et al.,

2017; Machovina and Feeley, 2013; Olesen and Bindi, 2002;
Rosenzweig et al., 2014; Schlenker and Lobell, 2010; Zullo et al., 2018).
Indeed, agricultural land use zoning may suffer from a lack of adaptive
capability given the institutional processes needed to establish and/or
update land use policies (Pettersson and Keskitalo, 2013).

Brazil has achieved an exceptional development in its energy matrix
and the SAZ represents an active land use policy contributing to the
sustainability of the sugarcane industry. However, the SAZ is only one
step in the roadmap of decarbonization (Rockström et al., 2017).
Brazil’s long-term intended contribution (iNDC) protocol and the goal
of becoming a renewable energy leader will require resilient actions
from both the public and private sectors in the short-term to overcome
the negative impacts of future climate change. The cost of failure is to
lose the trust of the sugarcane industry in the land use policy, thus
increasing the pressure to expand to areas outside of the SAZ what
jeopardizes the zoning efforts to sustain food security and biodiversity
conservation, and Brazil’s iNDC goals.
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