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INSIGHTS and INNOVATIONS 

How Well Do Coupled Models 
Simulate Today's Climate? 

BY T H O M A S RE ICHLER A N D J U N S U K I M 

Coupled climate models are sophisticated tools 
designed to simulate the Earth climate system 
and the complex interactions between its compo-

nents. Currently, more than a dozen centers around 
the world develop climate models to enhance our 
understanding of climate and climate change and to 
support the activities of the Intergovernmental Panel 
on Climate Change (IPCC). However, climate models 
are not perfect. Our theoretical understanding of 
climate is still incomplete, and certain simplifying 
assumptions are unavoidable when building these 
models. This introduces biases into their simulations, 
which sometimes are surprisingly difficult to correct. 
Model imperfections have attracted criticism, with 
some arguing that model-based projections of climate 
are too unreliable to serve as a basis for public policy. 
In particular, early attempts at coupled modeling in 
the 1980s resulted in relatively crude representations 
of climate. Since then, however, we have refined our 
theoretical understanding of climate, improved the 
physical basis for climate modeling, increased the 
number and quality of observations, and multiplied 
our computational capabilities. Against the back-
ground of these developments, one may ask how 
much climate models have improved and how much 
we can trust the latest coupled model generation. 

The goal of this study is to objectively quantify 
the agreement between model and observations us-
ing a single quantity derived from a broad group 
of variables, which is then applied to gauge several 
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generations of coupled climate models. This approach 
is new, since previous model intercomparison studies 
either focused on specific processes, avoided making 
quantitative performance statements, or considered 
a rather narrow range of models. 

Several important issues complicate the model 
validation process. First, identifying model errors 
is difficult because of the complex and sometimes 
poorly understood nature of climate itself, making 
it difficult to decide which of the many aspects of 
climate are important for a good simulation. Second, 
climate models must be compared against present 
(e.g., 1979-99) or past climate, since verifying ob-
servations for future climate are unavailable. Present 
climate, however, is not an independent dataset since 
it has already been used for the model development. 
On the other hand, information about past climate 
carries large inherent uncertainties, complicating the 
validation process of past climate simulations. Third, 
there is a lack of reliable and consistent observations 
for present climate, and some climate processes 
occur at temporal or spatial scales that are either 
unobservable or unresolvable. Finally, good model 
performance evaluated f rom the present climate 
does not necessarily guarantee reliable predictions of 
future climate. Despite these difficulties and limita-
tions, model agreement with observations of today's 
climate is the only way to assign model confidence, 
with the underlying assumption that a model that ac-
curately describes present climate will make a better 
projection of the future. 

Considering the above complications, it is clear 
that there is no single "ideal way" to characterize 
and compare model performances. Most previous 
model validation studies used conventional statis-
tics to measure the similarity between observed and 
modeled data. For example, studies by Taylor et al. 
(2001) and Boer and Lambert (2001) characterized 
model performance from correlation, root-mean-
square (RMS) error, and variance ratio. Both studies 
found similar ways to combine these three statistics 
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in a single diagram, resulting in nice graphical vi-
sualizations of model performance. This approach, 
however, is only practical for a small number of mod-
els and/or climate quantities. In addition, Taylor's 
widely used approach requires centered RMS errors 
with the mean bias removed. We, however, consider 
the mean bias as an important component of model 
error. In a 2004 article, Murphy et al. introduced a 
Climate Prediction Index (CPI), which measures the 
reliability of a model based on the composite mean-
square errors of a broad range of climate variables. 
More recently, Min and Hense (2006) introduced a 
Bayesian approach into model evaluation, where skill 
is measured in terms of a likelihood ratio of a model 
with respect to some reference. 

T H R E E G E N E R A T I O N S O F M O D E L D A T A . 

This study includes model output from three differ-
ent climate model intercomparison projects (CMIP): 
CMIP-1 (Meehl et al. 2000), the first project of its kind 
organized in the mid-1990s; the follow-up project 
CMIP-2 (Covey et al. 2003, Meehl et al. 2005); and 
CMIP-3 (PCMDI2007) (aka, IPCC-AR4), representing 
today's state of the art in climate modeling. The CMIP-
3 data were taken from the "climate of the twentieth 
century" (20C3M) (hereafter simply "present-day") 
and the "preindustrial control" (PICNTRL) (hereafter 
simply "preindustrial") experiments. These simula-
tions were driven by a rather realistic set of external 
forcings, which included the known or estimated his-
tory of a range of natural and anthropogenic sources, 
such as variations in solar output, volcanic activity, 
trace gases, and sulfate aerosols. The exact formula-
tion of these forcings varied from model to model, 
with potential implications for model performance. In 
contrast, the CMIP-1 and CMIP-2 model output was 
derived from long control runs, in which the forcings 
were held constant in time. These forcings were only 
approximately representative for present climate. 

M E A S U R E O F M O D E L P E R F O R M A N C E . A s 

outlined before, there are many different ways to mea-
sure and depict model performance. Given the extra 
challenge of this study to evaluate and depict a large 
number of models and climate variables, we decided 
to design our own measure. Our strategy was to cal-
culate a single performance index, which can be easily 
depicted, and which consists of the aggregated errors in 
simulating the observed climatological mean states of 
many different climate variables. We focused on vali-
dating the time-mean state of climate, since this is the 

most fundamental and best-observed aspect of climate, 
and because of restrictions imposed by available model 
data in calculating higher moments of climate (most 
CMIP-1 fields are archived as climatological means, 
prohibiting the derivation of temporal variability). This 
concept is somewhat similar to the CPI performance 
measure introduced by Murphy et al. (2004), but in 
contrast to the present study, Murphy et al. calculated 
the CPI from a range of rather closely related models. 

Our choice of climate variables, which is shown in 
Table 1, was dictated by the data available from the 
models. In most cases, we were able to validate the 
model data against true observation-based data, but 
for a few variables of the free atmosphere, the usage 
of reanalyses as validation data was unavoidable. In 
terms of the specific uncertainties associated with 
each of those validating datasets, separate analysis 
showed that the data can be considered as good ap-
proximations to the real state of present climate for 
the purpose of model validation. 

We obtained the model performance index by first 
calculating multiyear annual mean climatologies 
from global gridded fields of models and validating 
data. The base period for the observations was 1979-
99, covering most of the well-observed post-1979 
satellite period. For some observations, fewer years 
were used if data over the entire period were not avail-
able. For the CMIP-1 models, long-term climatologies 
of the control run for Northern Hemisphere winter 
(December, January, February) and summer (June, 
July, August) conditions were downloaded from the 
archives and averaged to annual mean climatologies. 
The CMIP-2 climatologies were calculated by averag-
ing the annual mean data of the control run over the 
years 61-80. The CMIP-3 present-day climatologies 
were formed using the same base period as for the 
observations, and the preindustrial climatologies 
were taken from the last 20 simulation years of the 
corresponding control run. For any given model, only 
one member integration was included. In the rare case 
that a climate variable was not provided by a specific 
model, we replaced the unknown error by the mean 
error over the remaining models of the correspond-
ing model generation. One model (BCC-CM1 from 
CMIP-3) was excluded because it only provided a 
small subset of variables needed for this study. 

In determining the model performance index, we 
first calculated for each model and variable a normal-
ized error variance e2 by squaring the grid-point dif-
ferences between simulated (interpolated to the ob-
servational grid) and observed climate, normalizing 
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TABLE I. Climate variables and corresponding validation data. Variables listed as "zonal mean" are latitude-height 
distributions of zonal averages on twelve atmospheric pressure levels between 1000 and 100 hPa. Those listed as 
"ocean," "land," or "global" are single-level fields over the respective regions. The variable "net surface heat flux" 
represents the sum of six quantities: incoming and outgoing shortwave radiation, incoming and outgoing longwave ra-
diation, and latent and sensible heat fluxes. Period indicates years used to calculate observational climatologies. 

Variable Domain Validation data Period 

Sea level pressure ocean ICOADS (Woodruff et al. 1987) 1979-99 

Air temperature zonal mean ERA-40 (Simmons and Gibson 2000) 1979-99 

Zonal wind stress ocean ICOADS (Woodruff et al. 1987) 1979-99 

Meridional wind stress ocean ICOADS (Woodruff et al. 1987) 1979-99 

2-m air temperature global CRU (Jones et al. 1999) 1979-99 

Zonal wind zonal mean ERA-40 (Simmons and Gibson 2000) 1979-99 

Meridional wind zonal mean ERA-40 (Simmons and Gibson 2000) 1979-99 

Net surface heat flux ocean ISCCP (Zhang et al. 2004), OAFLUX (Yu et al. 2004) 1984 (1981)-99 

Precipitation global CMAP (Xie and Arkin 1998) 1979-99 

Specific humidity zonal mean ERA-40 (Simmons and Gibson 2000) 1979-99 

Snow fraction land NSIDC (Armstrong et al. 2005) 1979-99 

Sea surface temperature ocean GISST (Parker et al. 1995) 1979-99 

Sea ice fraction ocean GISST (Parker et al. 1995) 1979-99 

Sea surface salinity ocean NODC (Levitus et al. 1998) variable 

on a grid-point basis with the observed interannual 
variance, and averaging globally. In mathematical 
terms this can be written as 

e l , = X ('W« (Jvmn ~ Ovn I ' M ) ' (D 
n 

where s~ is the simulated climatology for climate 
variable (v), model (m), and grid point (n); Ovn is the 
corresponding observed climatology; wn are proper 
weights needed for area and mass averaging; and o2

n 

is the interannual variance from the validating ob-
servations. The normalization with the interannual 
variance helped to homogenize errors from differ-
ent regions and variables. In order to ensure that 
different climate variables received similar weights 
when combining their errors, we next scaled e2 by 
the average error found in a reference ensemble of 
models—that is, 

_ L-R- M=20C3M 
T2 -e1

 e (2) vm vm / vm > v y 

where the overbar indicates averaging. The reference 
ensemble was the present-day CMIP-3 experiment. 

The final model performance index was formed by 
taking the mean over all climate variables (Table 1) 
and one model using equal weights, 

I2 = I2 " (3) 
m vm v ' 

The final step combines the errors from different 
climate variables into one index. We justify this step 
by normalizing the individual error components prior 
to taking averages [Eqs. (1) and (2)]. This guarantees 
that each component varies evenly around one and 
has roughly the same variance. In this sense, the 
individual I2

vm values can be understood as rankings 
with respect to individual climate variables, and the 
final index is the mean over all ranks. Note that a 
very similar approach has been taken by Murphy et 
al. (2004). 

R E S U L T S . The outcome of the comparison of the 
57 models in terms of the performance index I2 is il-
lustrated in the top three rows of Fig. 1. The I2 index 
varies around one, with values greater than one for 
underperforming models and values less than one 
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FIG. I. Per formance index 12 for individual models (circles) and model generations (rows). Best performing 
models have low I2 values and are located toward the left. Circ le sizes indicate the length of the 95% confidence 
intervals. Let ters and numbers identify individual models (see supplemental online material at doi: 10.1175/ 
BAMS-89-3-Reichler); flux-corrected models are labeled in red. Grey circles show the average 12 of all models 
within one model group. Black circles indicate the I2 of the mult imodel mean taken over one model group. The 
green circle ( R E A ) corresponds to the 12 of the N C E P / N C A R reanalyses. Last row ( P I C T R L ) shows I2 for the 
preindustrial control experiment of the CMIP-3 project. 

for more accurate models. Since I2 is an indicator 
of model performance relative to the mean over the 
present-day CMIP-3 ensemble, we used a logarithmic 
scale to display the index. The results indicate large 
differences from model to model in terms of their 
ability to match the observations of today s climate. 
Further, the results clearly demonstrate a continu-
ous improvement in model performance from the 
early CMIP-1 to the latest CMIP-3 generation. To 
our knowledge, this is the first systematic attempt 
to compare the performance of entire generations of 
climate models by exploring their ability to simulate 
present climate. Figure 1 also shows that the realism 
of the best models approaches that of atmospheric 
reanalysis (indicated by the green circle), but the 
models achieve this without being constrained by 
real observations. 

We also obtained quantitative estimates of the 
robustness of the I2 values by validating the models 
against a large synthetic ensemble of observational 
climatologies and by calculating the range of 12 values 
encompassed by the 5th and 95th percentiles. The 
synthetic ensemble was produced by selecting the years 
included in each climatology using bootstrapping (i.e., 
random selection with replacement). To the extent that 
the circles in Fig. 1 overlap, it is not possible to distin-
guish the performance of the corresponding models 
in a way that is statistically significant. 

R O L E O F F O R C I N G S . Given the more realistic 
forcing used for the present-day CMIP-3 simulations, 
the superior outcome of the corresponding models is 
perhaps not too surprising. One might ask how im-
portant realistic forcing was in producing such good 
simulations. To this end, we included the preindus-
trial CMIP-3 simulations in our comparison. Both 
the present-day and the preindustrial simulations 
were conducted with identical models. The only dif-
ference was the forcing used to drive the simulations, 
which was similar to preindustrial conditions for the 
preindustrial experiments and similar to present-day 
conditions for the present-day experiments. 

The outcome of validating the preindustrial experi-
ment against current climate is shown in the bottom 
row of Fig. 1. As expected, the I2 values are now larger 
than for the present-day simulations, indicating poorer 
performance. However, the mean difference between 
the two CMIP-3 simulations, which was due only to 
different forcings, is much smaller than that between 
CMIP-3 and the previous two model generations. 
The latter difference was due to different models and 
forcings combined. We conclude that the superior 
performance of the CMIP-3 models is mostly related 
to drastic model improvements, and that the forcings 
used to drive these models play a more subtle role. 

Two developments—more realistic parameteriza-
tions and finer resolutions—are likely to be most 
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Also note that CMIP-3 always performs better than 
CMIP-1, and almost always better than CMIP-2, even 
when only one variable is included. These results 
indicate that I2, when used to compare entire model 
generations, is robust with respect to the number and 
choice of selected variables. 

FIG. 2. Spread of I2 values ( lowest to highest) for an 
increasing number of randomly chosen variables v. 
Shown are index values averaged individually over the 
four model groups (corresponding to the grey circles in 
Fig. I ) . In order to avoid nonunity results for 20C3M, all 
values were normalized by the mean I2 over all three 
model generations, and not by the mean of the 20C3M 
group alone (as in Fig. I, see Eq. 2). 

responsible for the good performance seen in the 
latest model generation. For example, there has been 
a constant refinement over the years in how sub-
grid-scale processes are parameterized in models. 
Current models also tend to have higher vertical 
and horizontal resolution than their predecessors. 
Higher resolution reduces the dependency of models 
on parameterizations, eliminating problems since 
parameterizations are not always entirely physical. 
The fact that increased resolution improves model 
performance has been shown in various previous 
studies. 

VALUE OF THE MULTIMODEL MEAN. We 
also investigated the performance of the multimodel 
means (black circles in Fig. 1), which are formed by 
averaging across the simulations of all models of one 
model generation and using equal weights. Notably, 
the multimodel mean usually outperforms any single 
model, and the CMIP-3 multimodel mean performs 
nearly as well as the reanalysis. Such performance 
improvement is consistent with earlier findings by 
Lambert and Boer (2001), Taylor et al. (2004), and 
Randall et al. (2007) regarding CMIP-1, AMIP-2, and 
CMIP-3 model output, respectively. 

The use of mult imodel ensembles is common 
practice in weather and short-term climate forecast-
ing, and it is starting to become important for long-
term climate change predictions. For example, many 
climate change estimates of the recently released 
global warming report of the IPCC are based on the 
multimodel simulations from the CMIP-3 ensemble. 
The report dealt with the problem of inconsistent 
predictions, resulting from the use of different mod-
els, by simply taking the average of all models as the 
best estimate for future climate change. Our results 
indicate that multimodel ensembles are a legitimate 
and effective means to improve the outcome of cli-
mate simulations. As yet, it is not exactly clear why 
the multimodel mean is better than any individual 

SENSITIVITY OF THE INDEX. We now address 
the question of how sensitive our results are with 
respect to our particular choice of variables. We used 
bootstrapping to investigate how I2—averaged indi-
vidually over the four model groups—varies with an 
increasing number v of variables. For any given v, we 
calculated I2 many times, every time using different 
randomly chosen variable combinations taken from 
Table 1. As shown in Fig. 2, the spread of outcomes 
decreases with increasing number of variables. When 
six or more variables are used to calculate I2, the av-
erage performances of the three model generations 
are well separated from each other—independent 
f rom the exact choice of variables. Only the two 
CMIP-3 experiments cannot be distinguished from 
each other, even for a very large number of variables. 

FIG. 3. F ract ion of flux-adjusted models among the 
three model generations. 
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FIG. 4 . Systematic biases for the three model generations, (a) Biases in an-
nual mean climatological mean sea surface temperatures (K ) ; (b) Biases in 
zonal mean air temperatures (K ) . Statistically significant biases that pass 
a Student's t-test at the 95% level are shown in color; other values are sup-
pressed and shown in white. Gray areas denote no or insufficient data. 

model. One possible explanation is that the model so-
lutions scatter more or less evenly about the truth (un-
less the errors are systematic), and the errors behave 
like random noise that can be efficiently removed by 
averaging. Such noise arises from internal climate 
variability, and probably to a much larger extent from 
uncertainties in the formulation of models. 

ROLE OF FLUX CORRECTION. When dis 
cussing coupled model performances , one must 
take into account that earlier models are generally 
flux corrected, whereas most modern models do not 
require such corrections (Fig. 3). Flux correction, 
or adding artificial terms of heat, momentum, and 
freshwater at the air-sea interface, prevents models 
from drifting to unrealistic climate states when in-
tegrating over long periods of time. The drift, which 
occurs even under unforced conditions, is the result 
of small flux imbalances between ocean and atmo-
sphere. The effects of these imbalances accumulate 
over time and tend to modify the mean temperature 
and/or salinity structure of the ocean. The tech-
nique of flux correction attracts concern because of 

its inherently nonphysical 
nature. The artificial cor-
rections make simulations 
at the ocean surface more 
realistic, but only for arti-
ficial reasons. This is dem-
onstrated by the increase in 
systematic biases (defined as 
the multimodel mean minus 
the obse rva t i ons ) in sea 
surface temperatures f rom 
the mostly f lux-corrected 
CMIP-1 models to the gen-
erally uncorrected CMIP-3 
models (Fig. 4a). Because 
sea sur face t empera tu re s 
exert an important control 
on the exchange of prop-
er t ies across the a i r - s e a 
in te r face , c o r r e s p o n d i n g 
errors readily propagate to 
other climate fields. This 
can be seen in Fig. 4b, which 
shows that biases in ocean 
temperatures tend to be ac-
companied by same-signed 
tempera ture biases in the 
f ree t roposphere . On the 

other hand, the reduction of strong lower strato-
spheric cold biases in the CMIP-3 models indicates 
considerable model improvements. These cold biases 
are likely related to the low vertical and horizontal 
resolution of former model generations and to the 
lack of parameterizations for small-scale gravity 
waves, which break, deposit momentum, and warm 
the middle a tmosphere over the high lati tudes. 
Modern models use appropriate parameterizations 
to replace the missing momentum deposition. 

C O N C L U S I O N . Using a composite measure of 
model performance, we objectively determined the 
ability of three generations of models to simulate 
present-day mean climate. Curren t models are 
certainly not perfect, but we found that they are 
much more realistic than their predecessors. This 
is mostly related to the enormous progress in model 
development that took place over the last decade, 
which is partly due to more sophisticated model 
parameterizations, but also to the general increase 
in computational resources, which allows for more 
thorough model testing and higher model resolu-
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tion. Most of the current models not only perform 
better, they are also no longer flux corrected. Both 
improved performance and more physical formula-
tion suggest that an increasing level of confidence 
can be placed in model-based predictions of cli-
mate. This, however, is only true to the extent that 
the performance of a model in simulating present 
mean climate is related to the ability to make reli-
able forecasts of long-term trends. It is hoped that 
these advancements will enhance the public cred-
ibility of model predictions and help to justify the 
development of even better models. 

Given the many issues that complicate model 
validation, it is perhaps not too surprising that the 
present study has some limitations. First, we note the 
caveat that we were only concerned with the time-
mean state of climate. Higher moments of climate, 
such as temporal variability, are probably equally as 
important for model performance, but we were un-
able to investigate these. Another critical point is the 
calculation of the performance index. For example, 
it is unclear how important climate variability is 
compared to the mean climate, exactly which is the 
opt imum selection of climate variables, and how 
accurate the used validation data are. Another com-
plicating issue is that error information contained 
in the selected climate variables is partly redundant. 
Clearly, more work is required to answer the above 
questions, and it is hoped that the present study will 
stimulate further research in the design of more ro-
bust metrics. For example, a future improved version 
of the index should consider possible redundancies 
and assign appropriate weights to errors from differ-
ent climate variables. However, we do not think that 
our specific choices in this study affect our overall 
conclusion that there has been a measurable and im-
pressive improvement in climate model performance 
over the past decade. 
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(Formerly the Corporate Forum) 
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SESSION TOPICS 

Congressional Legislation— 
Authorization Committees 
House and Senate staff will provide 
an outlook on pending legislation 
and discuss issues associated with 
programs and initiatives that may 
provide opportunities for AMS 
members. 

Congressional Legislation— 
Appropriations Committees 
House and Senate staff will pro-
vide an outlook on Federal budget 
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climate related activities. 

Agency Initiatives, Plans, 
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initiatives and directions. 
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and products aimed at respond-
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other climate change risk mitigation 
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Priorities—Defining, Prioritizing, 
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being made on this critically impor-
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