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Abstract
Olive crops have become a strategic sector in Andalusia,

Spain, providing an element of social cohesion and territo-

rial management, but identified as vulnerable under climate

change. Their great socioeconomic importance makes the

mitigation of climate change effects an important strategy.

The main contribution of this paper is to show the applica-

tion of Bayesian networks into climate change assessment

using the evaluation of its impact over olive system in

Andalusia. Both classification and regression models

were learnt and validated to predict the potential olive

grove distribution under an Intergovernmental Panel on

Climate Change scenario. A lower error rate was obtained

for the regression problem compared to classification.

Results predict that climate change will lead to changes

into the territorial distribution of olive crops, with a

movement from the river valley to the uplands due to the

impact of the predicted increase in temperatures.

Recommendations for Resource Managers
• Bayesian networks are a powerful tool that allows dealing

with both discrete and continuous data. However, if con-

tinuous data are available in order to retrieve all statistical

information from them, discretization process should be

avoided and original continuous data used for modeling

purpose.

• Olive cropping area follows an altitudinal gradient from

the river bed to the mountainous ranges. The minimum

temperature limits the establishment of this crop over cer-

tain altitude.
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• Under the scenario of climate change, the altitudinal

gradient is lost and the main expanse of olive groves

becomes fragmented into smaller patches. Besides,

mountainous areas would reach optimal conditions for

olive growth due to the increase in temperatures.

K E Y W O R D S
agriculture systems, classification, naïve Bayes, regression, tree-

augmented naïve Bayes

1 INTRODUCTION

Spanish agriculture was characterized by diverse and extensive croplands, with a significant propor-

tion of rainfed cereal crops (Sánchez-Martínez, Gallego-Simón, & Araque-Jiménez, 2011). Olive trees

(Olea europaea L.) are one of the oldest domesticated crops that best adapted to the Spanish climate.

Their ability to grow under both dry and drought conditions means that olive cropping became an

important sector in Spain (Tanasijevic, Todorovic, Pereira, Pizzigalli, & Lionello, 2014). However,

during the 1970s, the fall in olive oil prices made olive cropping much less profitable and a more prob-

lematic activity, which drove people to abandon it. However, at the beginning of the nineties, the Euro-

pean laws and grants arising from the Common Agricultural Policy (CAP) encouraged Spanish farmers

to maintain and even to increase the surface area and productivity of olive groves. Under these new

circumstances, olive cropping became a strategic sector in Spain, accounting for 51% of the European

olive crop surface area (Commission, 2011). The autonomous region of Andalusia—particularly Jaén

Province—is one of the areas that received most grants. According to the Management Plan for Olive

Crops in Andalusia (PDOA, 2015), olives comprise the most symbolic and representative sector in this

region with more than 1.52 million hectares, producing over 75% of Spain's olive oil (Taguas, Gomez,

Denisi, & Mateos, 2015). From the economic point of view, olive exploitation is the agricultural sector

that provides most employment, with between 100 and 350 thousand laborers per year (PDOA, 2015).

Thus, olive crops comprise an important agriculture sector in Andalusia and configure the so-called

comarcas olivareras (open landscapes of olive groves), where both social and natural structures are

highly conditioned by this crop. It means that olive crops have provided an element of social cohesion,

territorial management, employment, and wealth generation, while providing society with ecosystem

services, such as cultural identity, carbon sequestration, and food providing (PDOA, 2015).

The Intergovernmental Panel on Climate Change (IPCC) predicts significant changes in tempera-

ture and rainfall patterns in Andalusia, with an increase in the number and force of extreme events

(storms and droughts) (Mendez-Jimenez, 2012; Solomon et al., 2007). These changes would poten-

tially have an impact on the distribution of several species, leading to changes in their spatial patterns

as optimal conditions relocate. Accordingly, the agriculture sector has been identified as one of the

most vulnerable sectors in Andalusia under climatic change. In the case of olive cropping, its huge

socioeconomic importance makes mitigation of any impacts of climatic change an important strategy.

In order to implement any mitigation strategy, climate change impacts first need to be clearly known,

and this is where statistical modeling becomes crucial.

Climate change modeling approaches are becoming indispensable as a tool for helping manage-

ment plans and politics to mitigate their effects (Niggol Seo, 2016; Schliep, Gelfand, & Clark, 2015).
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However, most of the papers related with olive orchards modeling are mainly focused on their effect

over soil moisture or soil erosion, and therefore, over olive productivity (García-Ruíz, 2010; Viola,

Caracciolo, Pumo, & Noto, 2013). In this sense, Viola, Caracciolo, Pumo, and Noto (2014) develop

a crop model divided into two parts, the first for estimating evapotranspiration and assimilation in

well-watered conditions, while the second aimed at reproducing water-stressed conditions. Once the

model was calibrated and validated, it was applied to forecast the impact of three scenarios of climate

change in a region of Southern Italy. In a similar way, dos Santos, Martins, and Torres (2017) eval-

uate the impact of climate projections on climatological water balance for olive orchard. Dhiab et al.

(2017) use a partial least-squares regression method in which olive output is the dependent variable

and meteorological and aerobiological information are the independent variables for forecasting the

extension of olive crop in Tunisia. Morales, Leffelaar, Testi, Orgaz, and Villalobos (2016) model is

more focused on the olive production with a three-dimensional model of canopy photosynthesis and

radiation absorption from which simulations about climate change were carried out.

Most of these papers are based on deterministic models (Militino, Ugarte, Goigoa, & Gonzalez-

Audicana, 2006; Taguas, Vanderlinden, Pedrera-Parrilla, Giraldez, & Gomez, 2017). Here, we pro-

posed the use of a probabilistic-based model. Bayesian networks (BNs) have been defined in recent

decades as powerful tools capable of dealing with uncertainty in real-life problems (Abbal et al., 2016;

Aguilera, Fernández, Fernández, Rumí, & Salmerón, 2011; Phan, Smart, Capon, Hadwen, & Sahin,

2016; Quentin Grafton, 2017; Smith, Dick, & Scott, 2011). In comparison with other fields, applica-

tions in environmental sciences and ecology are still scarce, though some examples of climatic change

modeling can be found (Franco, Appleby Hepburn, Smith, Nimrod, & Tucker, 2016; Molina, Pulido-

Veláquez, García-Aróstegui, & Pulido-Velázquez, 2013). According to the literature, BNs have been

developed to deal with three types of problems: characterization, classification, and regression; but

most studies have focused just on characterization, while BNs classifiers and BN-based regression

remain scarcely applied (Ropero, 2016).

The aim of this paper is to explore the use of BNs in the assessment of the impact of climate change

on the extent of olive cropping in Andalusia, Spain. This paper is organized as follows: Section 2

defines and explains the concept of BNs and their use for classification and regression problems, and the

inference process. Section 3 describes the methodology used, considering model learning, validation,

and scenarios of climatic change. Section 4 shows the results obtained and the predictions from the

climatic change scenarios. Finally, Section 5 draws the conclusions obtained.

2 BAYESIAN NETWORKS

BNs are defined as a statistical multivariate model for a set of variables 𝐗 = {𝑋1,… , 𝑋𝑛}. They are

composed by two components: (i) the qualitative part, a direct acyclic graph in which each vertex rep-

resents one of the variables, linked by an edge that indicates the existence of statistical dependence

between them; and (ii) the quantitative part as the conditional probability distribution for each vari-

able 𝑋𝑖, 𝑖 = 1,… , 𝑛, given its parents in the graph (𝑝𝑎(𝑥𝑖)) expressed in conditional probability tables

(CPTs) (in the case of discrete variables) or probability functions (for continuous variables).

The qualitative part allows BN models to be easily understood by experts in other fields who are

unfamiliar with the model's mathematical context. Thus, experts and stakeholders can play an important

part in the model learning process by identifying relationships between the variables, giving values for

the CPTs or even refining the structure previously learnt from data (Aguilera et al., 2011).

This structure also allows that, with no mathematical calculation involved, the variable(s) that

are relevant (or not) for a certain one can be known (Pearl, 1988), and help to simplify the joint
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probability distribution (JPD) of the variables necessary to specify the model. Thus, BNs provide a

compact representation of the JPD over all the variables, defined as the product of the conditional

distributions attached to each node, so that

𝑝(𝑥1,… , 𝑥𝑛) =
𝑛∏
𝑖=1

𝑝(𝑥𝑖 ∣ 𝑝𝑎(𝑥𝑖)), (1)

where 𝑝𝑎(𝑥𝑖) is the set of parents of variable 𝑥𝑖 according to the structure of the directed acyclic

graph.

BNs were originally developed for discrete variables, but real life problems require both continuous

and discrete (hybrid) data to be simultaneously included in the modeling processes. This necessity has

brought about the proposal of new models for dealing with hybrid data in BNs. One of these models is

the mixture of truncated exponential models (MTEs), proposed by Moral, Rumí, and Salmerón (2001)

and developed in detail in Rumí (2003). Similar to discretization methods, through MTE models, the

range of the variable is divided into a set of intervals, in each of them, the distribution is approximated

by an exponential function, rather than a constant value like in discretization (for a detail information

about MTE, see Cobb, Rumí, & Salmerón, 2007; Rumí, Salmerón, & Moral, 2006; Rumí & Salmerón,

2007). This approximation allows both discrete and continuous variables to be included simultaneously

in the model with no changes into the methodology followed (Ropero, Aguilera, Fernández, & Rumí,

2014). In environmental science, BNs based on MTE models have been successfully applied for regres-

sion (Maldonado, Aguilera, & Salmerón, 2016a), classification (Maldonado, Aguilera, & Salmerón,

2016b), characterization (Ropero, Rumí, & Aguilera, 2016), and even dynamic models (Ropero,

Flores, Rumí, & Aguilera, 2017).

Defined in Moral et al. (2001), MTE models divide the value range of a continuous variable into

several intervals, and approximate each of them by an exponential function rather than by a constant

(Rumí, 2003), since they are closed under restriction, marginalization, and combination. It is able to

deal with any distribution function, due to of its high fitting power, which makes it appropriate to deal

with hybrid data. In the same way as in discretization, the more intervals used to divide the domain of

the continuous variables, the better the MTE model accuracy, but also the more complex. Furthermore,

in the case of MTEs, using more exponential terms within each interval substantially improves the

fit to the real model, but, again, more complexity is assumed. For more details about learning and

inference tasks in MTE models, see Rumí et al. (2006), Rumí and Salmerón (2007), and Cobb, Rumí,

and Salmerón (2007).

2.1 Classification based on Bayesian networks
A classification problem, in which a discrete class variable 𝐶 exists, and a set of continuous or discrete

explanatory variables (called features) 𝑋1,… , 𝑋𝑛, can be expressed as a BN and an individual with

observed features 𝑥1,… , 𝑥𝑛 will be classified as belonging to class 𝑐∗ obtained as

𝑐∗ = argmax𝑐∈Ω𝐶
𝑓 (𝑐 ∣ 𝑥1,… , 𝑥𝑛), (2)

where Ω𝐶 denotes the set of possible values of 𝐶 .

If we consider that 𝑓 (𝑐 ∣ 𝑥1,… , 𝑥𝑛) is proportional to 𝑓 (𝑐) × 𝑓 (𝑥1,… , 𝑥𝑛 ∣ 𝑐), the specification of

an 𝑛 dimensional distribution for 𝑋1,… , 𝑋𝑛 given 𝐶 is required in order to solve the classification

problem, which implies a high computational cost, since the number of parameters necessary to spec-

ify a joint distribution is exponential to the number of variables. However, using the factorization

determined by the network (Equation (1)), this cost can be broadly reduced.
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2.2 Regression based on Bayesian networks
In the case of regression, the idea is similar to classification problems but the so-called class variable

is now continuous. A BN can be used as a regression model for prediction purposes if it contains a

continuous response variable 𝑌 and a set of discrete and/or continuous feature variables 𝑋1,… , 𝑋𝑛.

Thus, in order to predict the value for 𝑌 from 𝑘 observed features, with 𝑘 ≤ 𝑛, the conditional density

𝑓 (𝑦 ∣ 𝑥1,… , 𝑥𝑛), (3)

is computed, and a numerical prediction for 𝑌 is given1 using the expected value as follows:

𝑦̂ = 𝑔(𝑥1,… , 𝑥𝑛) = 𝔼[𝑌 ∣ 𝑥1,… , 𝑥𝑛] = ∫Ω𝑌

𝑦𝑓 (𝑦 ∣ 𝑥1,… , 𝑥𝑛)𝑑𝑦, (4)

where Ω𝑌 represents the domain of 𝑌 .

Note that 𝑓 (𝑦 ∣ 𝑥1,… , 𝑥𝑛) is proportional to 𝑓 (𝑦) × 𝑓 (𝑥1,… , 𝑥𝑛 ∣ 𝑦), and therefore, solving the

regression problem would require a distribution to be specified over the 𝑛 variables given 𝑌 . The associ-

ated computational cost can be very high. However, using the factorization determined by the network,

the cost can be again broadly reduced.

2.3 Constrained structures for classification and regression through BNs
In both classification and regression problems, the aim of the model is to predict, as accurately as

possible, the results of the class/response variable (olive crops in our case) rather than properly esti-

mate the parameters of the relationship between all variables, so that the so-called constrained or fixed
structure is developed. The extreme case is the naïve Bayes (NB) structure (Duda, Hart, & Stork, 2001;

Friedman, Geiger, & Goldszmidt, 1997), which consists of a BN with a single root node and a set of

attributes having only the class/response variable as a parent.

Its name comes from the naive assumption that feature variables 𝑋1,… , 𝑋𝑛 are assumed to be

independent given the class/response variable. This strong conditional independence assumption is

somehow compensated by the reduction of the number of parameters to be estimated from data, since

in this case, it holds that

𝑓 (𝑐 ∣ 𝑥1,… , 𝑥𝑛) ∝ 𝑓 (𝑐)
𝑛∏
𝑖=1

𝑓 (𝑥𝑖 ∣ 𝑐), (5)

which means that, instead of one 𝑛-dimensional conditional distribution, 𝑛 one-dimensional conditional

distributions are estimated. Despite this extreme independence assumption, the results are amazing in

many cases, and it is for this reason that it has become the most widely used Bayesian classifier in the

literature.

A step beyond is to allow each feature to have one more parent beside the response/class variable,

so configuring a Tree-Augmented naïve (TAN) Bayes. For each data set, there are several possible TAN

structures, so the way to choose between them is to learn a maximum weight spanning tree structure

with feature variables using the mutual information with respect to the response/class variable as the

weight of each edge (Chow & Liu, 1968), defined as

𝐼(𝑋𝑖,𝑋𝑗 ∣ 𝐶) =
∑

𝑋𝑖,𝑋𝑗 ,𝐶

𝑝(𝑥𝑖, 𝑥𝑗 ∣ 𝑐) log
𝑝(𝑥𝑖, 𝑥𝑗 ∣ 𝑐)

𝑝(𝑥𝑖 ∣ 𝑐)𝑝(𝑥𝑗 ∣ 𝑐)
. (6)

These extra relationships are not based on an environmental interpretation but on the amount of

information they share with the response/class variable. Finally, relationships from the response/class
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to each feature are included. In general, the increased complexity, in both the structure and the number

of parameters, results in richer and more accurate models (Friedman et al., 1997).

2.4 Inference in Bayesian networks
Once the model is learnt and validated, BNs allow new information, or evidence, to be included into

the model, through the so-called inference process or probabilistic propagation. If we denote the set

of evidenced variables as 𝐄, and its value as 𝑒, then the inference process consists of calculating the

posterior distribution 𝑝(𝑥𝑖|𝐞), for each variable of interest 𝑋𝑖 ∉ 𝐄:

𝑝(𝑥𝑖|𝐞) = 𝑝(𝑥𝑖, 𝐞)
𝑝(𝐞)

∝ 𝑝(𝑥𝑖, 𝐞), (7)

since 𝑝(𝐞) is constant for all 𝑋𝑖 ∉ 𝐄. So, this process can be carried out computing and normalizing

the marginal probabilities 𝑝(𝑥𝑖, 𝐞) in the following way:

𝑝(𝑥𝑖, 𝐞) =
∑

𝐱∉{𝑥𝑖,𝐞}
𝑝𝑒(𝑥1,… , 𝑥𝑛), (8)

where 𝑝𝑒(𝑥1,… , 𝑥𝑛) is the probability function obtained from replacing in 𝑝(𝑥1,… , 𝑥𝑛) the evidenced

variables 𝐄 by their values 𝐞.

3 METHODOLOGY

The cover area by olive crops in Andalusia was predicted through BNs according to a set of land uses

and climatic variables. In the literature, it is common to change continuous into discrete variable in

order to deal with a classification problem rather than a regression since most available softwares are

not able to deal with continuous or hybrid variables (Aguilera et al., 2011). In order to compare both

approximations, once regression model was learnt with the original continuous data, the olive crops

variable was discretized and a classification model built. Both techniques were compared in terms of

error rate. Finally, a scenario of climatic change with two horizons, 2040 and 2100, was included and

the evolution of olive orchard was evaluated.

3.1 Study area
Andalusia is located in southern Spain (Figure 1) forming the second largest autonomous region (cov-

ering more than 87.000 km2) and the most densely populated according to data from the National

Statistics Institute.2

From the climatic point of view, Andalusia presents a Mediterranean climate, characterized by mild

annual temperatures and an irregular rainfall pattern, with periods of drought followed by strong storm

events. This irregularity is also territorial, with stark differences between inland and coastal Andalusia.

While coastal areas, mainly in the southeast, are characterized by semiarid conditions, inland Andalusia

is more humid.

Inland Andalusia enclosed the so-called Baetic depression, with the Guadalquivir river basin area.

Two extensive mountainous ranges—the Sierra Morena mountain range and the Baetic system—

separate this depression from the coastal and north area of Andalusia. This river valley plain presents

optimum conditions for agricultural settlement, mainly rainfed herbaceous and woody crops (olive is

the most common crop). In this area, more than 50% of territory is used for agriculture. In addition, its
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F I G U R E 1 Location of Andalusia in southern Spain and the extent of olive cropping

population has close links to agriculture, through direct employment (in the primary economic sector),

and through indirect employment (manufacturing industries).

3.2 Data collection and preprocessing
Data were collected from the Andalusian Regional Environmental Information Network,3 from the

Regional Government of Andalusia. Data from different thematic maps (climate and land uses) were

incorporated into the geographic information system ArcGIS v.9.3. For all data sets used, the coordinate

system is based on the European Terrestrial Reference System 1989 (ETRS89). A 5 × 5 km grid cell

was used for obtaining the information for all variables, giving a total of 3630 observations.

Climatic information was obtained from raster maps based on the 1971–2000 time series. For each

cell, values of potential evapotranspiration (PET, expressed in mm), annual average temperature (◦C),

and annual average rainfall (mm) were collected.

Land use information was obtained from the SIOSE 2011.4 Initially, a total of 138 different land

uses were represented on the thematic map. This number was reduced into 10 by merging them using

similarity criteria (i.e., all different types of herbaceous crops were merged into one unique variable:

Herbaceous Crops). Besides, those land uses occupying less than 1% of the total surface were removed,

as well those variables for which more than 75% of data were equal to 0. Finally, a total of six land use

variables were preserved and expressed as the percentage of the cell occupied by this land use.

All variables collected were continuous, and Table 1 summarizes their main statistics. The surface

area of olive groves was expressed in the continuous variable Olive crops, which is the variable of

interest in our models. In order to compare against regression, Olive crops was discretized into five

intervals for the classification model: 0-Absence; 1-Less than 25%; 2- Between 25-50%; 3- Between

50-75%; 4- More than 75% land cover.

3.3 Models learning
The objective of this paper is to predict, as accurately as possible, the potential cover of olive crops in

Andalusia, which is originally a continuous variable. It means a regression problem is faced. Model

learning was addressed using Elvira software (Elvira-Consortium, 2002), based on MTE models, and
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T A B L E 1 Minimum, maximum, and mean values for all variables collected

Variable Min Max Mean
PET 0 962 832.0

Average temperature 0 19.03 15.94

Average rainfall 0 1753 567

Herbaceous crops 0 100 17.87

Woody crops 0 100 4.1

Forest 0 100 48.3

Water surface 0 100 2.78

Bared areas 0 100 3.17

Olive crops 0 100 16.37

PET: potential evapotranspiration.

two different structures were tested, an NB and a TAN.5 A five-parameter MTE distribution was fitted

for every probability distribution due its ability to fit the most common distributions accurately, while

both model complexity and the number of parameters to be estimated remains low.

In order to compare the performance of this continuous model against classification methods, a BN

classifier was learnt using the discretized version of the Olive crops variable, while all features remain

continuous. Again, both NB and TAN structures were used, so that the comparison is more reliable

since the model structure remains constrained. Model parameters were again estimated using Elvira

software (Elvira-Consortium, 2002) and based on five-parameter MTE models.

So, a total of four BNs models were obtained: two of these treat the Olive crops variable as

continuous—NB for regression (NBr) and TAN for regression (TANr)—while the other two treat the

Olive crops variable as discrete—NB classifier (NBc) and TAN classifier (TANc).

3.4 Models validation
Models obtained were tested through k-fold cross validation (Stone, 1974). This is a commonly used

technique in artificial intelligence for model validation that is based on the holdout method to check

how predictive a model is when confronted with data that have not been previously used for learning.

Data are separated into two complementary sets, one for learning (𝐷𝑙) and one for testing (𝐷𝑡), and

the root mean square error (rmse) of a model built from 𝐷𝑙 according to 𝐷𝑡 was estimated using the

following equation:

𝑟𝑚𝑠𝑒 =

√√√√1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2. (9)

To reduce variability, data are initially divided into k subsets, and the method is repeated k times.

Each time, one of the k subsets is used as 𝐷𝑡 and the other k−1 subsets are combined to form 𝐷𝑙.

Finally, the average error of k trials is computed. In this paper, k was set to 10.

Equation (9) was developed for continuous variables. So, in order to compare regression model with

the classification, the rmse equation needs to be recomputed for the discrete version as:

𝑟𝑚𝑠𝑒 =

√√√√1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑐𝑎(𝑐𝑖))2, (10)
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where 𝑐𝑎(𝑐𝑖) is the class average for the predicted category after propagating the records in the

discrete case, and 𝑦𝑖 is the actual continuous value for the response variable. Note that once the data

are discretized, the original continuous values are still necessary to compute this version of the rmse.

So that a 10-fold cross validation was computed for both regression and classification models.

3.5 Scenarios of climatic change
In this paper, the aim is to predict how the land use of olive crops might change as a consequence of

climatic change through an inference process.

The IPCC considers two main scenarios of climatic change for Andalusia: A2 and B2 (Mendez-

Jimenez, 2012). The A2 scenario describes a heterogeneous world, where self-reliance and preservation

of local identity are key. Population increases continuously and economic development is based on

national decisions (regionally oriented), while per capita economic growth and technological change

are fragmented and slow (Gasca, 2014; Solomon et al., 2007). By contrast, the B2 scenario describes a

situation in which economic development is not important and the environmental and socioeconomic

problems are solved at local level. This scenario implies a slow population increase (Gasca, 2014;

Solomon et al., 2007). In our study, we focus on the A2 scenario, since we consider it closer to the

current trend of socioecological change.

Taking the information provided by the IPCC, both national and regional governments have devel-

oped climate change scenarios for their territory for a set of variables. In Andalusia, the Environmental

Information Network (REDIAM) provides information as a shapefile, with prediction for a set of cli-

matic and land use variables according to the Assessment of the International Panel on Climate Change

(Stocker et al., 2013). By this means, the information for the evidences was collected from the REDIAM

for only climatic variables, which means just three variables were used as evidences (Rainfall, Tem-
perature, and PET).

One advantage of BNs is that it is not necessary to include information for all feature variables in

order to be able to make the prediction (Ropero et al., 2014). Rather, only new information is included

as evidences in those variables for which we have knowledge about their change. In our case, evidences

were included in those variables we have information about, i.e., the climatic variables and propagated

to predict the most probable state of the variable Olive crops.

4 RESULTS AND DISCUSSION

4.1 Models comparison
Table 2 shows a comparison between BNs and traditional methodologies in terms of their ability to

include both continuous and discrete variables simultaneously, dealing with regression and classifica-

tion problems, and provide interpretable results and a quality output. BNs are able to deal with these

five items, and besides, provide additional advantages. First, it is possible to establish specific types

of relationships between each feature and the response variable (i.e., linear relationships in the case of

multilinear regression), and also, no relationships among the features are often possible. By contrast,

BN models allow relationships between features to be included with the aim of improving the response

variable prediction. In our paper, only constrained structures have been built, but general networks can

be used in which the relationships between features do not respond only to optimize the parameters of

the response variable, but also to include environmental knowledge. Also, other types of relationships

can be modeled in a BN not only linear relationships. Figure 2a shows the type of relationship identi-

fied with the regression model with a BN with a TAN structure. These relationships were identified by
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T A B L E 2 Comparisons between Bayesian networks and traditional methodologies. Y expresses that this method

is able to deal appropriately with this item, while X expresses this method is not. Quality output refers to the information

contained in the output, i.e., if it returns only a value or a distribution of values, which is more informative

Method Discrete/Continuous Regression Classification Interpretability Quality output
Bayesian networks Y Y Y Y Y

Linear regression X Y X Y Y

Regression trees Y Y X Y X

Classification trees Y X Y Y X

Logistic regression X X Y X Y

Neural network X X Y X X

including several values for each feature and obtaining the value of the probability distribution. In order

to summarize the evolution of the probability function when each feature is increasing, the mean of the

distribution was calculated and represented. In this case, BNs identify not only direct (Figure 2a, PET
variable represents with a +) and inverse (Figure 2a, Herbaceous Crops variable represents with a −)

relationships, but also those variables that present a complex relationship with Olive crops (Figure 2a,

Average Rainfall variable presents with a +−). Figure 2b shows the relationship between Average Rain-
fall and Olive Crops. At the beginning of the range, an increase in Average Rainfall leads to an increase

in Olive Crops. Then, at the fourth point of the Rainfall variable distribution that is equivalent to

the value 526 mm, the relationship changes and further increase in Average Rainfall provokes a decrease

in Olive Crops. From an environmental point of view, olives flourish in not so humid areas; thus, while

an initial increase in rainfall would improve conditions for growth, above a certain rainfall threshold,

the conditions become suboptimal for olive crops again.

Another important advantage of BNs is that not all feature variables need to be evidenced in order to

predict the response variable. In the case of traditional regression methodologies, if new information

about a subset of features needs to be included into the model, the remaining unknown features have to

be set with a value (i.e., the mean or the initial value) that implies that nonreal situations are modeled

and some noise is included. In the case of BNs, a scenario of change can be included to take into account

a subset of feature variables, and keeping the rest as nonevidenced variables, rather than including an

estimate (Ropero et al., 2014). In our case, information about just three features (over eight) were

included as evidences, and results were properly obtained. This is why we have decided not to compare

against other traditional methodologies.

Table 3 shows the rmse values for the BN models, which are mainly used in this paper as a way to

compare different models in an appropriate way, rather than to measure the goodness of the models.

First, regression models provide smaller errors than classification. Data discretization is the most com-

monly used solution when dealing with continuous data. Even though when several approaches have

been proposed for dealing with hybrid or continuous data, the literature shows that a high percentage of

models continue discretizing the data (Aguilera et al., 2011; Ropero, 2016). According to our results,

discretizing only the class variable causes rmse to increase from 19.64 to 31.06 in the case of the TAN

structure, and from 21.67 to 35.80 for the NB case. Thus, it is demonstrated that dealing with the orig-

inal data provides more accurate results. Besides, In Table 3, the accuracy of both BN classifiers are is

shown, and results are below 0.6, which implies less than 60% of results predicted by the model agree

with the real data (used for validation purpose).

Finally, Figure 3a,b shows the NB and TAN structures obtained. In terms of complexity, measured

as number of links, NB is simpler (eight links, between Olive crops variable and the features) than

TAN (15 links, between Olive crops variable and each feature, but also among the features). Besides,
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Variable Relation BNs

PET +

Average Temperature +-

Average Rainfall +-

Herbaceous Crops -

Woody Crops -

Forest -

Water Surface +-

Bared Areas +-

(a) Type of relationship

2 4 6 8 10

10
15

20
25

30

Rainfall values

%
 o

f O
liv

e 
cr

op
s

(b) Relationship Rainfall - Olive crops

F I G U R E 2 Type of relationships identified by BNs-based regression with a TAN structure (a). + means a direct

relationship; − means an inverse relationship; +− means a complex relationship. An example of relationships between

a feature (Average Rainfall variable) and the Olive Crops variable (b) in which total of 12 points (minimum, maximum,

and 10 equidistant points) were included into the feature and the mean of the posterior probability distribution for Olive
Crops at each point was calculated

T A B L E 3 Root mean square error for the four BNs models: NB classifier (NBc), TAN classifier (TANc), NB for

regression (NBr), and TAN for regression (TANr); and the accuracy of BNs classifiers

Model rmse Accuracy
NBr 21.67 –

TANr 19.64 –

NBc 35.80 0.507

TANc 31.06 0.549
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Olive

Forest Bared areas WaterWoody C.Herb. C.PET R T

(a) NB

Olive

PET

T
R

Woody C.

Herb.C.

ForestWater Bared areas

(b) TAN

F I G U R E 3 Regression models for olive crops based on both NB and TAN structure. T,: temperature; R: rainfall;

PET: potential evapotranspiration; Herb.: herbaceous.; C,: Crops

the computational time was calculated using a MacBook Air, 1.6 GHz Intel Core i5. RAM 4GB 1600

MHz DDR3, and again, NB is faster (11 minutes 42 seconds) than TAN (4 hours 21 minutes). Despite

this result, TAN provides a smaller error in both classification and regression models (Table 3). This

difference is smaller in the case of regression. Including relationships between features, despite the

increase in model complexity and computational cost, means that the model is better able to predict

the response variable.

4.2 Evolution of olive crops in Aandalusia under climate change
A BN model for regression based on a TAN structure was selected, and scenarios of climatic change for

2040 and 2100 horizons included. Figure 4 shows the results a priori, before any scenario of change,

and the predictions for 2040 and 2100 horizons.

According to the Technical Report on Andalusian Climatic Change Adaptation in the Agriculture

Sector (Mendez-Jimenez, 2012), optimal conditions for olive crops are characterized by a warm mean

annual temperature (16–22 ◦C) and 650 mm of mean annual rainfall. However, the main limiting factors

are the maximum summer temperatures (above 35–40 ◦C, photosynthesis is affected) and sudden falls

in the minimum temperature during certain moment of the cycle (i.e., around 0 ◦C during the flowering

period can provoke irreparable damage). In terms of rainfall, even though olives are quite drought-

resistant, when annual rainfall is less than 200 mm, production is drastically reduced. Also, rapid and

sudden changes in the temperature or rainfall can have important consequences on olive production if

they take place during the flowering or sprouting period.
F
b
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F I G U R E 4 Percentage surface area occupied by olive crops in Andalusia according to results from regression

based on BNs model with a TAN structure
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Results a priori (Figure 4a) show the (current) distribution of olive crops in Andalusia. A gradient

of color shows the extent of olive crops per grid cell. The main area of olive groves corresponds

to the Guadalquivir river plain. This is Andalusian's largest river catchment, and it has a strong

agricultural character. Through history, a warm climate and rich soils have encouraged agricultural

settlement here. Further West, olive cropping decreases and around the river mouth, it covers less

than 30% of land surface. In this area, rainfed crops could be replaced by crops, which necessities

fit better with the new environmental conditions. By contrast, in southeastern Andalusia, the scarcity

of olive groves is explained by two factors: the semiarid conditions and the steep relief. This area is

characterized by an abrupt mountain relief with peaks rising to more than 2000 meters above sea level

(m.a.s.l.); the climate is semiarid, most markedly so in the so-called Desert of Tabernas. However,

over recent decades, in this desert area, significant olive cropping has been established due to the

use of groundwater irrigation systems and stable climatic conditions. Finally, the areas marked in red

in Figure 4a correspond to the mountainous landscapes in Andalusia. In these areas, the minimum

temperature limits the establishment of this mediterranean crop.

Both the 2040 and 2100, horizons were evaluated under the A2 scenario of climatic change. Pre-

dictions were made using a BN regression model based on a TAN structure. They predict significant

changes in olive crop distribution in Andalusia.

In comparison with a priori, under the 2040 horizon (Figure 4b), the main area of olive crops is now

fragmented into several patches. Besides, the Guadalquivir plain becomes suboptimal to support its

a priori cover of olive crops, and predict less than 30% cover. This change is driven by the increase in

annual average temperature in this area provoked by more intense heat waves and a higher maximum

temperatures in summer. This 2040 scenario includes warmer summers rising to more than 40 degrees.

This would provoke a reduction in photosynthesis and losses in olive production. In the same way,

mountainous areas would suffer increased temperatures, but in this case, the situation is positive for

Olive crops: fewer frosts and a higher minimum temperature means these areas would reach optimal

conditions for olive growth. Comparing a priori and 2040 maps, the extension of olive crops increases

from less than 10% to between 10 and 30%.

This relocation from the river plain to the uplands is even more emphatic under the 2100 horizon

(Figure 4c). Under the 2100 scenario, only a few cells are predicted to have olive groves covering less

than 10% and these are mainly located in the southeast. However, compared to the 2040 horizon, the

continued increase in temperature means several areas change from 40–50% cover of Olive crops to

30–40% of olive extension.

These results are not deterministic since they are based on probabilistic approach. The value of

each cell is represented as a probability function rather than an absolute value of extension. From

this probability distribution, a set of statistics and measurements can be obtained. In this paper,

for obtaining the maps of Figure 4, the mean of the probability distribution was obtained. So,

the uncertainty enclosed in the results depends on the reliability of the evidences included into

the model and the robustness of the model with respect to the rest of variables in the horizon

studied.

5 CONCLUSIONS

Olive cropping has become one of the most important agricultural activities in Andalusia. Its role in the

socioeconomy means this crop is the basis of a complex agroecosystem. Olive production is the main

economic activity in some parts of Andalusia and potential changes in its distribution would affect its

annual production and impact the socioeconomic structure of these areas.
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According to our results, the a priori situation confirms a significant area of olive production near

the Guadalquivir river plain and a limit of olive groves marked by altitude. In the mountains, the lower

temperatures means that olive crops are not currently planted, and there is a gradual transition from

upland to lowland planting pattern. However, this altitudinal structure is lost under the A2 scenario.

The increase of temperature and decrease of rainfall means that olive planting would be relocated

from the valley plain to mountainous areas. This territorial change would have an impact on the local

socioeconomy. Nowadays, a significant proportion of the population depends, directly or indirectly, on

olive production. In these areas of olive crops, the reduction of their extension and productivity would

imply a decrease in employment rates and richness, which encourage the movement of the population.

Besides, economic sector should be diversified in order to adapt to this change and not to depend only

on one agriculture activity. The impact of climatic change on the distribution of this crop, in turn,

implies a significant potential impact on socioeconomic structure.

BNs have been extensively applied into several scientific fields to evaluate the impact of new con-

ditions on the system being modeled. In environmental sciences, applications of BNs to study Global

Environmental Change and Climatic Change impacts are still scarce despite their advantages over

classical methodologies. In the present application, data available were totally continuous and no dis-

cretization method was applied in order to fit with the software requirements, but for comparing a

totally continuous against a hybrid model. Thus, regression and classification models were obtained

and results show that regression models give a smaller error than classification ones. Besides, the

methodology applied was not modified in order to deal with both continuous and discrete/continuous

or hybrid data, which is an advantage over other traditional methods. Another advantage of BNs is

that relationships between each feature and the goal variable can be studied in detail. In this paper,

the nature of the relationships between each feature and the goal variable Olive crops was studied

and both positive and negative relations, but also, more complex ones, were found. Finally, in order

to perform an accurate and real scenario of change, BNs allow new information to be included in

just those variables for which well-known information is available, climate variables in our case. This

means that the remaining variables remain as nonevidenced and no estimates are made up of their

values.

This paper presents an initial study on the impact of climatic change on olive cropping, which

included only climatic and land use variables. Due to their great importance in the socioeconomic

systems of Andalusia, these models should be extended to include socioeconomic information in order

to provide greater focus in that field.
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