
On the Meltdown & Spectre Design Flaws

Mark D. Hill

Computer Sciences Dept.
Univ. of Wisconsin-Madison

February 2018
 Computer Architect, Not Security Expert
 Prepared while on a sabbatical visit to Google with public information only and

representing the author’s views only, not necessarily Google’s.

Talk Info (Hidden Slide)
Title: On the Meltdown & Spectre Design Flaws

Speaker: Mark D. Hill, Computer Sciences Department, University of Wisconsin-Madison

Abstract: Two major hardware security design flaws--dubbed Meltdown and Spectre--were broadly revealed to the public in early January 2018 in research papers and blog posts that
require considerable expertise and effort to understand. To complement these, this talk seeks to give a general computer science audience the gist of these security flaws and their
implications. The goal is to enable the audience can either stop there or have a framework to learn more. A non-goal is exploring many details of flaw exploitation and patch status, in
part, because the speaker is a computer architect, not a security expert.

In particular, this talk reviews that Computer Architecture 1.0 (the version number is new) specifies the timing-independent functional behavior of a computer and micro-architecture that
is the set of implementation techniques that improve performance by more than 100x. It then asks, “What if a computer that is completely correct by Architecture 1.0 can be made to leak
protected information via timing, a.k.a., micro-architecture?” The answer is that this exactly what is done by the Meltdown and Spectre design flaws. Meltdown leaks kernel memory, but
software & hardware fixes exist. Spectre leaks memory outside of sandboxes and bounds check, and it is scary. An implication is that the definition of Architecture 1.0--the most
important interface between software and hardware--is inadequate to protect information. It is time for experts from multiple viewpoints to come together to create Architecture 2.0).

Bio: Mark D. Hill (http://www.cs.wisc.edu/~markhill) is John P. Morgridge Professor and Gene M. Amdahl Professor of Computer Sciences at the University of Wisconsin-Madison. Hill
has a PhD in computer science from the University of California, Berkeley. Hill’s research targets computer design and evaluation. He has made contributions to parallel computer system
design (e.g., memory consistency models and cache coherence), memory system design (caches and translation buffers), computer simulation (parallel systems and memory systems),
software (e.g., page tables and cache-conscious optimizations), deterministic replay and transactional memory. For example, he is the inventor of the widely-used 3C model of cache
behavior (compulsory, capacity, and conflict misses) and co-inventor of the cornerstone for the C++ and Java multi-threaded memory specifications (sequential consistency for data-race-
free programs). He is a fellow of IEEE and the ACM. He serves as Vice Chair of the Computer Community Consortium (2016-18) and served as Wisconsin Computer Sciences
Department Chair 2014-2017.

Executive Summary

Architecture 1.0: the timing-independent functional behavior of a computer
Micro-architecture: the implementation techniques to improve performance

Question: What if a computer that is completely correct by Architecture 1.0
can be made to leak protected information via timing, a.k.a., Micro-Architecture?

Meltdown leaks kernel
memory, but software &
hardware fixes exist

Spectre leaks memory
outside of bounds checks or
sandboxes, and is scary

Implication: The definition of Architecture 1.0 is inadequate to protect information

Outline

Computer Architecture & Micro-Architecture Background

Timing Side-Channel Attack

Meltdown

Spectre

Wrap-Up

Computer Architecture 0.0 -- Pre-1964

Software Lagged Hardware

●  Each new machine design was different
●  Software needed to be rewritten in assembly/machine language
●  Unimaginable today

Going forward: Need to separate HW interface from implementation

Each Computer was New

●  Implemented machine (has mass) → hardware
●  Instructions for hardware (no mass) → software

Computer Architecture 1.0 -- Born 1964

IBM System 360 defined an instruction set architecture

●  Stable interface across a family of implementations
●  Software did NOT have to be rewritten

Architecture 1.0: the timing-independent functional behavior of a computer

Micro-architecture: implementation techniques that change timing to go fast

branch (R1 >= bound) goto error
load R2 ← memory[train+R1]
and R3 ← R2 && 0xffff
load R4 ← memory[save+SIZE+R3]

Note: The code is not IBM 360 assembly, but is the example used later.

Micro-architecture Harvested Moore’s Law Bounty

For decades, every ~2 years: 2x transistors, 1.4x faster & 1x chip power possible;
2300 transistors for Intel 4004 → millions per core & billions for caches

(Micro-)architects took this ever doubling budget to make each processor core
execute > 100x than what it would otherwise.

Key techniques w/ tutorial next:

●  Instruction Speculation
●  Hardware Caching

Hidden by Architecture 1.0: timing-independent functional behavior unchanged

Instruction Speculation Tutorial
Many steps (cycles) to execute one instruction; time flows left to right →

add

Predict direction: target or fall thru

Go Faster: Pipelining, branch prediction, & instruction speculation

add

load

branch

and Speculate!

store Speculate more!

load

Speculation correct: Commit architectural changes of and (register) & store (memory) go fast!

Mis-speculate: Abort architectural changes (registers, memory); go in other branch direction

Hardware Caching Tutorial

Main Memory (DRAM) 1000x too slow

Add Hardware Cache(s): small, transparent hardware memory

●  Like a software cache: speculate near-term reuse (locality) is common
●  Like a hash table: an item (block or line) can go in one or few slots

E.g., 4-entry cache w/ slot picked with address (key) modulo 4

-- 0
-- 1
-- 2
-- 3

12?
Miss

Insert 12

12 0
-- 1
-- 2
-- 3

07?
Miss

Insert 07

12 0
-- 1
-- 2
07 3

12?
HIT!
No

changes

12 0
-- 1
-- 2
07 3

16?
Miss

Victim 12
Insert 16

16 0
-- 1
-- 2
07 3

Note 12
victimized
“early” due
to “alias”

Micro-architecture Harvested Moore’s Law Bounty

For decades, every ~2 years: 2x transistors, 1.4x faster & 1x chip power possible;
2300 transistors for Intel 4004 → millions per core & billions for caches

(Micro-)architects took this ever doubling budget to make each processor core
execute > 100x what it would otherwise

Hidden by Architecture 1.0: timing-independent functional behavior unchanged

branch (R1 >= bound) goto error ; Speculate branch not taken
load R2 ← memory[train+R1] ; Speculate load & speculate cache hit
and R3 ← R2 && 0xffff ; Speculate AND
load R4 ← memory[save+SIZE+R3] ; Speculate load & speculate cache hit

Whither Computer Architecture 1.0?

Architecture 1.0: timing-independent functional behavior

Question: What if a computer that is completely correct by Architecture 1.0
can be made to leak protected information via timing, a.k.a., micro-architecture?

Implication: The definition of Architecture 1.0 is inadequate to protect information

This is what Meltdown and Spectre do. Let's see why and explore implications.

Side-Channel Attack: SAVE Secret in Micro-Arch

1.  Prime micro-architectural state
a.  Repeatedly access array train[]to train branch predictor to expect access < bound
b.  Access all of array save[]to put it completely in a cache of size SIZE

2.  Coerce processor into speculatively executing instructions that will be nullified
to (a) find a secret & (b) save it in micro-architecture

branch (R1 >= bound) goto error ; Speculate not taken even if R1 >= bound
load R2 ← memory[train+R1] ; Speculate to find SECRET outside of train[]
and R3 ← R2 && 0xffff ; Speculate to convert SECRET bits into index
load R4 ← memory[save+SIZE+R3] ; Speculate to save SECRET by victimizing
memory[save+R3] since it aliases in cache with new access memory[save+SIZE+R3]

3. HW detects mis-speculation
 Undoes architectural changes
 Leaves cache (micro-architecture) changes (correct by Architecture 1.0)

Side-Channel Attack: RECALL Secret from Micro-Arch

4: Probe time to access each element of save[]--micro-architectural property;
If accessing save[foo] slow due to cache miss, then SECRET is foo. A leak!

5: Repeat many times to obtain secret information at some bandwidth. (More
shifting/masking needed to get all SECRET bits victimizing 64B cache lines)

Well-known in 1983/85 DoD “Orange Book”
Covert timing channels include all vehicles that would allow one process to signal
information to another process by modulating its own use of system resources in
such a way that the change in response time observed by the second process would
provide information. --TRUSTED COMPUTER SYSTEM EVALUATION CRITERIA

With roots back to 1974 TENEX password attack
But seemed fanciful Spy vs. Spy, Mad Magazine, 1960

Meltdown (https://meltdownattack.com/meltdown.pdf)

Can leak the contents of kernel memory at up to 500KB/s

TRAP!! (not branch)
Under mis-
speculation

Meltdown & Hardware

Demonstrated for many Intel x86-64 cores; NOT demonstrated for AMD

Key: When to suppress load with protection violation (user load to kernel memory)

●  EARLY: AMD appears to suppress early, e.g., at TLB access
●  LATE: Intel appears to suppress at end after micro-arch state changes

 My SWAG (Scientific Wild A** Guess) Why

●  Both are correct by Architecture 1.0
●  Performance shouldn’t matter as this case is supposed to be rare
●  Do what’s easiest & have luck that is good (AMD) or bad (Intel)

Meltdown & Software

Bad: Meltdown operates with bug-free OS software (by Architecture 1.0)

Good: Major commercial OSs patched for Meltdown ~January 2018

Idea: Don’t map (much) of protected kernel address space in user process

●  Offending load now fails address translation & does nothing
●  Patches quickly derived from KAISER developed for side-channel attacks of

Kernel Address Space Layout Randomization (KASLR)
●  Performance impact 0-30% syscall frequency & core model.

Future hardware can fix Meltdown (like AMD) so maybe we dodged a bullet

Spectre (https://spectreattack.com/spectre.pdf)

Classic side-channel attack w/ deep micro-arch info

●  1. Attacker primes micro-architecture
○  E.g, branch predictor or branch target buffer for saving secret
○  E.g., cache for recalling secret

●  2: Victim loads secret under mis-speculation
○  Load should NOT trap (unlike Meltdown)
○  Still inappropriate if managed language or sandbox

●  3: Victim saves secret in micro-arch state, e.g., cache

●  4: Attacker recalls secret from micro-arch state; 4: repeat.

Spectre Applicability (Paper Sections 4, 5, & 6)

4. Exploit branch mis-prediction to let Javascript steal from Chrome browser

●  Demonstrated Intel Haswell/Skylake, AMD Ryzen, & several ARM cores
●  Many other existing designs vulnerable

 5. Used indirect branches & return-oriented programming to mis-train
branch target buffer to obtain information from different hyper-thread on same
core

 6. Many other known timing-channel exist, e.g., register file contention,
functional unit occupancy, but what about unknown timing channels?

Spectre Mitigation (Section 7)

Branch prediction

●  SW: Suppress branch prediction “when important” with mfence, etc.
●  Not defined to work but appears to work--at a performance cost
●  HW could auto-magically suppress branch prediction when appropriate (???)

 Branch Target Buffer

●  SW: Not clear. Disable hyper-threading, etc.?
●  HW: Make micro-architecture state private to thread (not core or processor)

More generally: Hard to mitigate threats NOT YET DEFINED.

Need Computer Architecture 2.0?
With Meltdown & Spectre, Architecture 1.0 is inadequate to protect information

Augment Architecture 1.0 with Architecture 2.0 specification of

●  (Abstraction of) time-visible micro-architecture?
●  Bandwidth of known (unknown?) timing channels?
●  Enforced limits on user software behavior? (c.f., KAISER)

Change Microarchitecture to mitigate timing channel bandwidth

●  Suppress some speculation
●  Undo most changes on mis-speculation

Can this be (formally) solved or must it be managed like crime?

Need Computer Architecture 2.0?

More generally, can we reduce our dependence on SPECULATION?

Accelerators!! GPU, DSP, IPU, TPU, ... [Hennessy & Patterson 2018 Taxonomy]

●  Dedicated Memories
●  More ALUs
●  Easy Parallelism
●  Lower precision data
●  Domain Specific Language

Yavits et al. MultiAmdahl, 2017

Speculation NOT a first-
order feature!

In 2005, Arvind said Speculation (w/ von Neumann model) killed Dataflow

After 2018, Dataflow-like Renaissance w/ Sea of Accelerators?

Executive Summary

Architecture 1.0: the timing-independent functional behavior of a computer
Micro-architecture: the implementation techniques to improve performance

Question: What if a computer that is completely correct by Architecture 1.0
can be made to leak protected information via timing, a.k.a., Micro-Architecture?

Implication: The definition of Architecture 1.0 is inadequate to protect information

Meltdown leaks kernel
memory, but software &
hardware fixes exist

Spectre leaks memory
outside of bounds checks or
sandboxes, and is scary

Some References
New York Times: https://www.nytimes.com/2018/01/03/business/computer-flaws.html

Meltdown paper: https://meltdownattack.com/meltdown.pdf

Spectre paper: https://spectreattack.com/spectre.pdf

A blog separating the two bugs: https://danielmiessler.com/blog/simple-explanation-difference-meltdown-spectre/

Google Blog: https://security.googleblog.com/2018/01/todays-cpu-vulnerability-what-you-need.html and
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Industry News Sources:
https://arstechnica.com/gadgets/2018/01/whats-behind-the-intel-design-flaw-forcing-numerous-patches/ and
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/

Backup Slides

Spectre Code Example
Listing 2: Exploiting Speculative Execution via JavaScript
1 if (index < simpleByteArray.length) {

2 index = simpleByteArray[index | 0];
3 index = (((index * TABLE1_STRIDE)|0) & (TABLE1_BYTES-1))|0;
4 localJunk ^= probeTable[index|0]|0;

5}

Listing 3: Disassembly of Speculative Execution in Listing 2 JavaScript
1 cmpl r15,[rbp-0xe0] ; Compare index (r15) against simpleByteArray.length
2 jnc 0x24dd099bb870 ; If index >= length, branch to instruction after move below
3 REX.W leaq rsi,[r12+rdx*1] ; Set rsi=r12+rdx=addr of first byte in simpleByteArray
4 movzxbl rsi,[rsi+r15*1] ; Read byte from address rsi+r15 (= base address+index)
5 shll rsi, 12 ; Multiply rsi by 4096 by shifting left 12 bits}\%\
6 andl rsi,0x1ffffff ; AND reassures JIT that next operation is in-bounds
7 movzxbl rsi,[rsi+r8*1] ; Read from probeTable
8 xorl rsi,rdi ; XOR the read result onto localJunk
9 REX.W movq rdi,rsi ; Copy localJunk into rdi

Meltdown v. Spectre

Miessler Blog (https://danielmiessler.com/blog/simple-explanation-difference-meltdown-spectre/)

