Diagrams as Centerpiece of a Peircean Epistemology

Recent developments in semiotics, semantics, and linguistics tend to give concepts like “schema,” “gestalt,” and the like a renaissance in the description of signification processes. The actual cognitive semantics tradition (Lakoff, Johnson, Turner, Fauconnier, etc.), for instance, highlights the central role of schemata and their mappings between conceptual and mental spaces in the description of many levels in linguistics. Another related development is the renewed interest in diagrammatic calculi in computer science and AI communities, documented in e.g. the influential *Diagrammatic Reasoning* volume (Glasgow 1995) — where the diagram category is most often taken for its common sense value as an opposition to the symbol category; little effort is spent on determining the general status of the diagram as such.

This return of the iconic in semiotics is probably the main event in semiotic scholarship during the recent decades, but it has not, until now, received a proper meta-theoretical treatment making clear the very concept of schema itself. This is a strange fact; in Peirce we find drafts for precisely such a theory in his general musings on the concept of *diagram*. While Peirce’s systems for logic diagrams (his alpha-, beta-, and gamma-graphs implementing propositional logic, first-order-predicate logic, and various types of modal logic and speech act logic, respectively¹) have received considerable attention in recent years because of their indication that iconic representations of logic are possible and even to some extent are heuristically superior to symbolic logic systems, Peirce’s general notion of diagram has passed much more unnoticed. This might be for editorial reasons — Peirce’s central arguments concerning the general diagram category are not to be found in the *Collected Papers* — but still the diagram concept plays a central, not to say the central, role in the mature Peirce’s semiotics. In particular “PAP”, a paper from 1906 (Robin 293, published in Eisele 1976), makes clear the crucial part played by the diagram and diagrammatic reasoning in Peirce. The present schema and diagram research would no doubt benefit from the knowledge of Peirce’s general diagrammatic philosophy.

The aim here is twofold: firstly, to present and discuss Peirce’s general diagram concept and its central role in his semiotics and in his philosophy as a

Transactions of the Charles S. Peirce Society
Summer, 2000, Vol. XXXVI, No. 3
whole, and, secondly, to argue for the significance, beyond Peirce philology, of this diagram concept for semiotics and epistemology of our day.

The Diagram as Icon

The diagram is an icon. In the taxonomy of signs, thus, the diagram forms the second subcategory among the three types of icons — images, diagrams, and metaphors, respectively (2.277, from "Syllabus" 1903) — even if Peirce elsewhere notes that sharp distinctions among icons are not possible due to the inherent vagueness of the concept. As an icon, the diagram is characterized by its similarity to its object — but while the image represents its object through simple qualities and the metaphor represents it through a similarity found in something else, the diagram represents it through a skeleton-like sketch of relations (mostly dyadic, apparently in an attempt to justify the 3 subtypes triadically). Knowing the inclusive nature of Peirce’s triads in general, it follows that non-degenerate diagrams will include images, while non-degenerate metaphors will contain diagrams (and images). Still, this tripartition of icons is easy to overlook as yet another detail in the tree of ever trifurcating triads in Peirce’s architectonic; it does not reveal the crucial role played by diagrams in Peirce’s epistemology. To grasp this, a further investigation of the very definition of the icon is necessary.

A Non-trivial Icon Definition

The icon, of course, is defined as the sign referring to its object by virtue of similarity. Now, Peirce himself admitted the deliberate vagueness of this definition: an icon may refer to any object possessing the qualities in question — and a strong tradition in the philosophy of our century has attacked such definitions for being so vague as to be completely meaningless. The dangers in the similarity concept are many: the trivializing of it to identity; the psychologizing of it to refer to subjective feelings of resemblance; the lack of criteria for judging two phenomena as similar. It is important here to emphasize that these traditional drawbacks of similarity are overcome by Peirce’s non-trivial — because operational — account of similarity. In “Syllabus”, it is stated as follows: “For a great distinguishing property of the icon is that by the direct observation of it other truths concerning its object can be discovered than those which suffice to determine its construction” (2.279). This epistemologically crucial property of the icon is nothing but an operational elaboration on the concept of similarity. The icon is not only the only kind of sign involving a direct presentation of qualities pertaining to its object; it is also — and this amounts to the same — the only sign by the contemplation of which more can be learnt than lies in the directions for its construction. This definition separates the icon from any psychologism: it does not matter whether the sign for a first (or second) glance seems similar; the decisive test for its iconicity rests in whether it is possible to manipulate the sign so that new information regarding its object appears. This definition is non-trivial because it avoids the circularity threat in most definitions.
of similarity. At the same time, it ties the concept of icon intimately to the concept of deduction. This is because to discover these initially unknown items of information about the object hidden in the icon, some deductive experiment on the icon must be performed. The prototypical icon deduction is the manipulation of a geometrical figure in order to observe the validity of a theorem — but the idea is quite general: an icon is characterized by containing implicit information which in order to appear must be made explicit by some more or less complicated procedure accompanied by observation. As early as 1885, Peirce writes (in "The Algebra of Logic"), discussing the syllogism, but with evident implications for the icon category as a whole, that "... all deductive reasoning, even simple syllogism, involves an element of observation; namely, deduction consists in constructing an icon or diagram the relations of whose parts shall present a complete analogy with those of the parts of the object of reasoning, of experimenting upon this image in the imagination, and of observing the result so as to discover unnoticed and hidden relations among the parts" (3.363). This property clearly distinguishes it from pure indices and symbols: If we imagine a pure, icon-less index (only possible as a limit case), then it would have a character completely deprived of any quality, a pure here-now of mere insistence, about which we would never be able to learn anything further, except exactly by some kind of icon of it. And if we imagine a purely symbolic sign (limit case), say e.g. the variable x, we could not learn anything about it except when placing it in some context, syntax, system or the like, that is, in some kind of iconical relationship. From this operational icon definition, connection lines run to a bundle of Peircean themes: the abductive guess as the suggestion of an icon as a general answer covering the particular question present; icons as the predicative, descriptive side of any signification process; the pragmatic maxim’s conditional definition of concepts described by the icon showing which operations we could conceivably perform on an object subsumed under the concept; the scientific community’s unlimited semiosis converging towards truth, that is, an ever more elaborate icon possessing still more operational possibilities. We shall touch upon some of these issues later during the discussion of the type of icon making all this possible: the diagram.

The Operational Criterion and the Extension of the Icon Category

It is a well-known fact that Peirce’s icon definition sets it apart from spontaneous tendencies to privilege visual icons. It is a more controversial fact that the operational icon definition extends the icon category considerably, measured against the spontaneous everyday conception of resemblance. Peirce’s logic graph systems as iconic calculi already indicate this change: they demonstrate that systems normally considered symbolic possess an ineradicable iconicity. For if we use Peirce’s concepts, it is no longer possible to speak about iconicity and symbolism as two concurrent modes of representation of the same content: if the same logical calculus may be represented in two ways, this indicates that the
"symbolic" representation did in fact already possess an iconic content: the possibility of experimentation on the calculus resulting in new insight grants — due to the operational icon criterion — that it is in fact an iconic calculus. Thus, when the operational criterion is adopted, icons become everything that can be manipulated in order to reveal more information about its object, and algebra, syntax, formalizations of all kinds must be recognized as icons; in the "Syllabus", Peirce adds that these types of signs are even icons par excellence due to their capacity for revealing unexpected truths: "Given a conventional or other general sign of an object, to deduce any other truth than that which it explicitly signifies, it is necessary, in all cases, to replace that sign by an icon. This capacity of revealing unexpected truth is precisely that wherein the utility of algebraical formulae consists, so that the iconic character is the prevailing one" (2.279).

This, in turn, implies that we in the operational icon definition find a useful criterion to distinguish fertile from less fertile formalization: the good formalization is one which permits manipulation in order to reveal new truths about its object; formalizations which only permit this to a small extent or not at all can be discarded.5

The Diagram's Central Status in Iconicity

Given the operational icon criterion, we are now able to appreciate the central role played by diagrams in the icon category as such. As soon as an icon is contemplated as a whole consisting of interrelated parts whose relations are subject to experimental change, we are operating on a diagram. Thus, the inclusion of algebra, syntax, and the like in the icon category takes place due to their diagrammatic properties — but the same goes for your average landscape painting as soon as you stop considering its simple qualities, colors, forms etc. and move on to consider the relations between any of these parts. As soon as you judge fore-, middle-, and background and estimate the distance between objects depicted in the pictorial scene, or as soon as you imagine yourself wandering along the path into the landscape, you are operating on the icon — but doing so in this way is possible only by regarding it as a diagram. You have no explicit awareness6, it is true, of the rules which permit you to follow the imaginary track (the laws of perspective permitting you to construct the scene, gravity keeping you on the ground etc.), but still they are presupposed due to the organization of your perception apparatus7 and your common sense knowledge. The principles could be make explicit, and this is what counts. Thus, it is hard to take a closer look at any icon without at least performing proto-diagrammatic experiments with it to reveal some of the unexpected truths inherent therein. Thus, the use of a sign as a pure image is more like a limit case as when you enjoy the overall impression or Stimmung of a painting without going into any details. On the other hand, the appreciation of a metaphor may seem automatic, but recent metaphor research supports what lies implicit in Peirce’s thought: that a diagrammatic analysis — be it conscious or not — precedes the typical metaphor, consisting in the recogni
tion of diagrammatic schemas in one phenomenon which may be used in understanding another. The metaphor of an 'ancestral tree' thus presupposes that the formal branching diagram is mapped from a tree onto family structure. Far from all metaphorical mappings are so easy, of course, but it seems reasonable to assume that the mapping of diagrammatic structure between conceptual spaces plays a central role in all of them. Thus, the diagrammatic way of interpreting an icon seems central as soon as any part of the internal mereological structure of the icon is taken into consideration. The diagram's skeleton-like, relational, and highly stylized picture of its object is at stake also when clothed in simple image qualities and hidden in the metaphors' reference to other empirical phenomena.

Now, let us take a closer look at how Peirce dissects the single elements and phases in the diagrammatic interpretation process. As already mentioned, one essay stands out when it comes to detailed analysis of this process, namely one of the drafts for "Prolegomena to an Apology for Pragmaticism" from 1906. The paper in question is Robin catalogue number 293 and is known also as "PAP" from Peirce's own abbreviation. The next passage will present the central quote from that paper, describing the diagrammatic interpretation process in extenso.

To begin with, then, a Diagram is an Icon of a set of rationally related objects. By rationally related, I mean that there is between them, not merely one of those relations which we know by experience, but know not how to comprehend, but one of those relations which anybody who reasons at all must have an inward acquaintance with. This is not a sufficient definition, but just now I will go no further, except that I will say that the Diagram not only represents the related correlates, but also, and much more definitely represents the relations between them, as so many objects of the Icon. Now necessary reasoning makes its conclusion evident. What is this "Evidence"? It consists in the fact that the truth of the conclusion is perceived, in all its generality, and in the generality of the how and the why of the truth is perceived. What sort of a Sign can communicate this Evidence? No index, surely, can it be; since it is by brute force that the Index thrusts its Object into the Field of Interpretation, the consciousness, as if disdaining gentle "evidence". No Symbol can do more than apply a "rule of thumb" resting as it does entirely on Habit (including under this term natural disposition); and a Habit is no evidence. I suppose it would be the general opinion of logicians, as it certainly
was long mine, that the Syllogism is a Symbol, because of its Generality. But there is an inaccurate analysis and confusion of thought at the bottom of that view; for so understood it would fail to furnish Evidence. It is true that ordinary Icons, — the only class of Signs that remains for necessary inference, — merely suggest the possibility of that which they represent, being percepts minus the insistency and percussivity of percepts. In themselves, they are mere Semes, predicating of nothing, not even so much as interrogatively. It is, therefore, a very extraordinary feature of Diagrams that they show, — as literally show as a Percept shows the Perceptual Judgment to be true, — that a consequence does follow, and more marvellous yet, that it would follow under all varieties of circumstances accompanying the premises. It is not, however, the statical Diagram-Icon that directly shows this; but the Diagram-Icon having been constructed with an Intention, involving a Symbol of which it is the Interpretant (as Euclid, for example, first announces in general terms the proposition he intends to prove, and then proceeds to draw a diagram, usually a figure, to exhibit the antecedent condition thereof) which Intention, like every other, is General as to its Object, in the light of this Intention determines an Initial Symbolic Interpretant. Meantime, the Diagram remains in the field of perception and imagination; and so the Iconic Diagram and its Initial Symbolic Interpretant taken together constitute what we shall not too much wrench Kant’s term in calling a Schema, which is on the one side an object capable of being observed while on the other side it is General. (Of course, I always use ‘general’ in the usual sense of general as to its object. If I wish to say that a sign is general as to its matter, I call it a Type, or Typical.) Now, let us see how the Diagram entrains its consequence. The Diagram sufficiently partakes of the percussivity of a Percept to determine, as its Dynamic, or Middle, Interpretant, a state [of] activity in the Interpreter, mingled with curiosity. As usual, this mixture leads to Experimentation. It is the normal Logical effect; that is to say, it not only happens in the cortex of the human brain, but must plainly happen in every Quasi-Mind in which Signs of all kinds have a vitality of their
own. Now, sometimes in one way, sometimes in another, we need not pause to enumerate the ways, certain modes of transformation of Diagrams of the system of diagrammatization used have become recognized as permissible. Very likely the recognition descends from some former Induction, remarkably strong owing to the cheapness of mere mental experimentation. Some circumstance connected with the purpose which first prompted the construction of the diagram contributes to the determination of the permissible transformation that actually gets performed. The Schema sees, as we may say, that the transformate Diagram is substantially contained in the transformand Diagram, and in the significant features to it, regardless of the accidents, — as, for example, the Existential Graph that remains after a deletion from the Phemic Sheet is contained in the Graph originally there, and would do so whatever colored ink were employed. The transformate Diagram is the Eventual, or Rational, Interpretant of the transformand Diagram, at the same time being a new Diagram of which the Initial Interpretant, or signification, is the Symbolic statement, or statement in general terms, of the Conclusion. By this labyrinthine path, and no other, is it possible to attain to Evidence; and Evidence belongs to every Necessary Conclusion.
(quotation from Eisele 1976, pp. 316-19)

The remainder of this paper tracks the implications of this passage, partly in terms of its relation to Peirce’s thought, partly in terms of the actuality of its contents.

The Diagram as an Icon of Rationally Related Objects

The diagram is a skeleton-like sketch of its object in terms of relations between its parts, but what makes it apt to reason with, to experiment on, respectively, is the fact that it is constructed from rational relations. In this requirement, Peirce explicitly continues Kant’s demand with respect to the foundations of science: the schematism. In Kant, the finitude of man entails that we have no access to ‘intellectual intuition’; we can not — as may the gods — intuit the object in itself; we may only approach the object in a pincer movement with two flanks: concepts and intuitions, respectively. Concepts without intuitions are empty; intuitions without concepts are blind, as the well-known Kantian doctrine goes. The two may only meet in schemata, a priori as well as posteriori, and the former constitute the condition of possibility for the famous synthetic a priori judgments. Kant’s central examples are mathematical: arithmetic is the schema
rendering the concept of quantity intuitive, while the schema of the triangle is the schema permitting an unlimited series of empirical triangles to be subsumed under the triangle concept. Peirce’s demand that the relations in the diagram be rational is inherited from Kant’s synthetic a priori judgment notion, just like his idea that rationality is tied to a generalized subject notion: rational relations are those known by “anybody who reasons”. As is evident, Kant’s “transcendental subject” is pragmatized in this notion in Peirce, transcending any delimitation of reason to the human mind. In the same way, Kant’s synthetic apriori notion is pragmatized in Peirce’s account:

Kant declares that the question of his great work is “How are synthetical judgments a priori possible?” By a priori he means universal; by synthetical, experiential (i.e., relating to experience, not necessarily derived wholly from experience). The true question for him should have been, “How are universal propositions relating to experience to be justified?” But let me not be understood to speak with anything less than profound and almost unparalleled admiration for that wonderful achievement, that indispensable stepping-stone of philosophy. (4.92, from “The Logic of Quantity”, ch. 17 of “Grand Logic”, 1893)

Synthetic a priori is interpreted as experiential and universal, or, to put it another way, observational and general — thus Peirce’s rationalism in demanding rational relations of the diagram is connected to his scholastic realism supposing the existence of real universals. The relations which make up the diagram are observational and universal at one and the same time, and they constitute the condition of possibility for the diagram to exist as an icon (observationality) with respect to which it is possible to entertain generally valid experiments (universality). The extension of this concept of rational relations is only described negatively in Peirce’s account; in a parallel version to the “PAP” quotation above, he says:

But we do not make a diagram simply to represent the relation of killer to killed, though it would not be impossible to represent this relation in a Graph-Instance; and the reason why we do not is that there is little or nothing in that relation that is rationally comprehensible. It is known as a fact, and that is all. I believe I may venture to affirm that an intelligible relation, that is, a relation of thought, is created only by the act of representing it. I do not mean to say that if we should some day find out the metaphysical nature of the rela-
tion of killing, that intelligible relation would thereby be created. [...] No, for the intelligible relation has been signified, though not read by man, since the first killing was done, if not long before. (Eisele IV, p. 316n)

Peirce’s pragmatizing Kant enables him to escape the threatening subjectivism: the rational relations are inherent in the universe and are not our inventions, and we must know (some of them) in order to think. The relation of killer to killed, is not, however, given our present knowledge, one of those rational relations, even if we might later produce a rational diagram of aspects of it. Yet, such a relation is, as Peirce says, a mere fact. On the other hand, the rational relations are — even if inherent in the universe — not only facts. Their extension is rather that of mathematics as such, which can be seen from the fact that the rational relations are what makes necessary reasoning in diagrams possible — at the same time as Peirce subscribes to his father’s mathematics definition: Mathematics is the science that draws necessary conclusions — with Peirce’s addendum that these conclusions are always hypothetical. This conforms to Kant’s idea that the result of synthetic a priori judgments was precisely mathematics. Thus, in constructing diagrams, we have all the possible relations in mathematics (which is inexhaustible, following Gödel’s 1931 incompleteness theorem) at our disposal. In the alternative PAP version, Peirce continues: “At any rate, a Diagram is clearly in every case a sign of an ordered Collection or Plural, — or, more accurately, of the ordered Plurality or Multitude, or of an Order in Plurality” (ibid.). To sum up, we can say that the diagram is so to speak the redrawing of an icon in terms of a priori relations among its parts. In contrast to the wider term icon, defined by its relation to the object, the subcategory diagram is thus defined through its mode of rationally representing:

The Diagram represents a definite form of Relation. This Relation is usually one which actually exists, as in a map, or is intended to exist, as in a Plan. But this is so far from being essential to the Diagram as such, that if details are added to represent existential or experiential peculiarities, such additions are distinctly of an undiagrammatic nature. The pure Diagram is designed to represent and to render intelligible, the Form of Relation merely. (ibid., correction made from MS Robin (293), p. 59; Eisele has “represented existential or experiential peculiarities”)

Thus, it is possible in a diagram to dissociate the pure diagram, built from rational relations, on the one hand, and what the diagram is used to signify (via symbols) or refer to (via indices) on the other. Thus, the pure relational diagram
forms a type.

The Diagram as Type

Taken separately from its signification and reference, a diagram is a type. Consisting of rational relations, it is no wonder that the diagram as such is an idea which is, in turn, communicated through particular diagram tokens. The diagram in itself is not the graphic figures on the sheet before us, as we might spontaneously believe. The diagram-icon may not be sensed in itself as such: already before ascribing to the diagram any content or reference whatsoever, there is a crucial process of abstraction (in Peirce’s terminology, precission) taking place, allowing the particular sinsign to be interpreted as instantiation of a type by bracketing all accidental features of the token at the profit of the type: “One contemplates the Diagram, and one at once prescinds from the accidental characters that have no significance” (Eisele IV, p. 317). When seeing a geometrical figure drawn on a blackboard, we immediately prescind from the stripe of chalk having any breadth, from the line’s vacillating deviation from linearity, from the drawing having any color, and so on. This type-reading of a diagram token now depends on the set of rules that is selected to govern its typicality. Thus, one and the same diagram token may be read as a type in widely differing ways according to the rules of interpretation used. A line in one diagram may be interpreted as a borderline, in another as a line of connection between two points, in yet another as a transport of some object between two locations. This may be banal, but nevertheless it is an important feature in the diagram’s iconicity: the type only becomes apparent in light of the use of certain rules — long before the virtual application of the diagram on more specific meanings, not to talk about empirical reference. This implies that already the pure diagram is an icon governed by a rule, that is, by a symbol. For instance, the sinsign may be read as a token of the type circle, as a token of the type circular disc (including its interior), of the type circular hole (excluding its interior), of the type conic section (any other conic section, a point, an ellipse, a parabola, etc. would do as well as token), of the type Jourdan-curve (a closed curve; here any other closed curve, e.g. a rectangle, would fulfill the purpose), of the type hole in a two dimensional surface (a hole of any other shape would do as well), of the type topological sphere in 2 dimensions, of the type closed and connected manifold, etc., etc., — each of these choices, in turn, yields different possibilities of which content the diagram type may be used to signify. In the language of Hjelslevian semiotics, we could say that the diagram token is a unit of the expression substance referring to different types at the form-of-expression-level — all prerequisite to any reference to types in the content plane. Thus, the diagram type consists of two parts: a diagram token and a set of reading rules for the understanding of it as a type (which may, in many cases, be implicit); thus on the level of pure diagrams, the Kantian intuition-concept (talking Peircean: observation-universality) duality, is present in the very construction of the diagram as a sign.
The Diagram as the Interpretant of a Symbol

In the next step, this diagram type becomes a diagram in actu (recalling Peirce’s basic dictum that signs are only signs in actu) only when it becomes part of the inference process. To this end, the visual type needs to be endowed with a symbolic signification — it must involve a “Symbol of which it is an Interpretant”. Of course, it was only possible to construct the diagram type in the first place by precisely such a symbol (the reading rules just referred to), but these were all on the purely rational, pre-empirical level. The diagram being constructed as a type due to this symbol (the circle above e.g. taken to mean totality in a Neurathian cake-diagram), may now in turn act as the interpretant of another symbol (the population of Denmark, e.g.). The symbol in question refers to a general object while the diagram in question — being an iconic legisign, a type, — is in itself one. The condition of possibility for this connection is thus the generality of both terms; the diagram being a type and the symbol referring to it being general as to its object. This connection forms the defining semiotic link of the diagram. As the symbol refers to a general object while the iconic legisign, the diagram type, is in itself one, the possibility of the diagram lies in letting the latter constitute the signification of the former and hence letting it refer to the same object. Of course, this is no merely arbitrary connection; what Peirce does not explicitly emphasize in this context is the fact that any symbol which is not a completely empty convention must always already refer to some icon (or, at least, it must make possible a process of inference leading to an icon), this icon being its initial interpretant before the symbol might be further elaborated in a diagram. The construction of the diagram, then, amounts to substituting for the initial interpretant of the symbol — the Vorverständnis of it, so to speak — a more precise and relationally elaborate icon.

This is a crucial point in order to understand the diagram’s double determination — iconic and symbolic, perceptive and general — in Peirce. The diagram is an icon, but a special icon insofar as it is governed by a symbol, and in many cases doubly so, governed both by the rational relations used and the actual phenomenon referred to (like the circle and the Danish population). But what does it imply to be governed by a symbol, to be the signification of a symbol? A symbol is defined by denoting a kind of thing, that is, an idea, not a particular thing (2.300); it does so by connecting a set of (possible) indices to an icon (2.295); it is a law, or regularity of the indefinite future (2.293), and this implies that it is a rule which will determine its interpretant (2.292). It is, simply, a sign making explicit its interpretant, its signification (this in contradistinction to pure icons and indices, respectively). It is a sign referring to all possible entities acting according to some rule which is described by means of an icon: “It is applicable to whatever may be found to realize the idea connected with the word ...” (2.298), and the habit or rule defining it links together icons: “A Symbol is a sign which refers to the Object that it denotes by virtue of a law, usually an association of general ideas, which operates to cause the Symbol to be interpreted as referring to that
Object" (2.249). But the symbol does not determine the particulars which fall under it — except for precisely their falling under it. This is why it is necessarily general, and thus vague as to its extension. But it may also be vague as to its intension because it is defined by a rule connecting icons: these need not be clearly defined, as is most often not the case in non-scientific concepts. Thus, the concept "dog" is vague because it is not possible to determine beforehand all single creatures it may apply to now and in the indefinite future, but it is also vague for the reason that there is no sharp borderline between it and the concept of wolves. But still, it is defined by a rule-bound association of icons, constituting a general kind. Now, as is evident from these deliberations, any symbol in itself always already constitutes a proto-diagram, insofar as its predicative aspect is iconic. Peirce emphasizes this in "Kaina stoikheia" (1904): "A diagram is an icon or schematic image embodying the meaning of a general predicate; and from the observation of this icon we are supposed to construct a new generel predicate" (Eisele, p. 238). The rule in it need not be explicit, as it is appropriately hinted at in the identification of rule with habit in Peirce. The diagram, then, can be seen as making explicit (some of) the habits already inherent in a symbol.

Of course, it is important to keep in mind that the mode of existence of the symbol's object is here bracketed; it may refer to existent, future, past, imaginary, phantasy, impossible, or any other object. The symbol "unicorn" is no less a symbol even though its object does not exist. It is of course perfectly possible to let a diagram make explicit the content of a symbol whose referent is fictitious merely. On the other hand, it is an important property that it is beyond the reach of any diagrammatization to picture inconsistent symbols; this constitutes the very strength of diagrammatic formalization: every (correct, that is) diagram corresponds to a real possibility. For instance, the grammatically correct symbol "round square" which implies a rule connecting the two iconic qualities "round" and "square" reveals itself as inconsistent precisely when we try to draw a diagram to express these properties in one and the same figure. The same goes for more complicated and less intuitive cases, for instance "the rational square root of 2"; here a more complicated diagram is needed in order to grasp the symbol's inconsistence. Briefly, being an icon, the diagram cannot be inconsistent. It may display non-existent entities, but not logically inconsistent entities. Its object is necessarily possible — in contrast to the object of a merely symbolic expression. This constitutes a basic motive for diagrammatic reasoning: it can make explicit (parts of) the signification of a symbol.

Similarly, no distinction between more or less empirical symbols rules out explication by means of diagrams: both may give rise to diagrammatic explication. There are, of course, prototypical cases of empirical and a priori diagrams, respectively, cf. for instance a diagram representing various parts of a population in a cake-diagram vs. a drawing of a circle as a diagram for the concept circle. A pure diagram will be a purely mathematical diagram (for instance a map with no reference to its empirical interpretation but only referring to a 2-d surface
with certain structures in it), while an empirical diagram will be the interpretant of some empirical symbol in the actual or some possible world (for instance, a country). This must not be confused with the question of reference which is the question whether the diagram is used in a proposition (a Peircean "dicisign"), that is, applied to objects referred to by indices (for instance, a map of England).

Thus, the diagram may make explicit the consistent content of (parts of) both more and less general symbols — and these may in turn be used as predicates in propositions about indexically identifiable subjects (which also may be general, to be sure).

The Diagram as a Formal Machine for Gedankenexperimente

Now, we reach the core point of Peircean diagrammatology: the diagram as a vehicle for mental experiment and manipulation. The operational definition of the icon is intimately tied up with diagrammatic experimentation. Let us take a closer look at these connections. The central phase of the diagrammatic reasoning process, motivating the very construction of the diagram, is deduction: the demonstration of the fact that a certain version of the diagram necessarily follows from another. Thus, every deduction is diagrammatic of nature and the logic of diagrams is an extension of the traditional concept of deduction (tied to truth-preserving operations in symbolic logic) to cover a large range of phenomena not usually considered as deduction (unless translated into symbolic form) — but describable as such in so far as they qualify as necessary movements of diagrammatic thought. Let us consider some examples in order to grasp the general idea. A constructive geometrical proof is probably the arch example of a diagrammatic experiment — a simple and often quoted example is the diagrammatic version of Pythagoras: the two diagrams accompanied only by a "Behold!" (Hayes, in Glasgow et al. 206):
Some comparisons between the two figures reveal that the triangles are isomorphic, and what remains in the first figure if the triangles are removed is literally the square of the hypotenuse, while what is left in the other is the sum of the other sides' squares. It is immediately perceived that the figures might appear in any size, so that the conclusion is valid for a continuum containing all magnitudes. Another prototypical example is the solution of an equation during a series of well-controlled steps according to a transformation syntax given by elementary arithmetic. These are experiments on pure diagrams — prior to indexical and (empirical) symbolical reference, but once an empirical diagram is constructed, the experiment follows the same formal procedure. A map permits you to find a route between two given localities (there is no unique solution, but any continuous line connecting them is necessarily one). An economic growth graph in a business magazine permits you to determine the actual tendency. These experiments are very simple, indeed, but there is a continuum between these and very difficult, even yet unsolved, problems in mathematics. A very crucial observation here is that empirical diagrams continuously shade into ordinary icons. Take a photograph of a tree — it is an icon in so far as not previously explicit information may be gathered from it — say, e.g., the fact that the crown of the tree amounts to two thirds of its overall height. This fact was remarked nowhere earlier, neither by the photographer nor the camera nor the developer — and by noticing it you performed a small experiment of diagrammatic nature: you took the trunk of the tree and moved upward for your inner gaze in order to see it cover the height of the crown twice, doing a bit of spontaneous metric geometry, complete with the implicit use of axioms (invariance of translation). Of course, this is an ordinary icon in so far as nobody constructed it with a diagrammatic intention. Nevertheless, you used it — in actu — that way. This continuum between diagrams proper (be it pure or empirical) and diagrammatic use of ordinary icons shows the centrality of the diagram for the icon category as such. It is with diagrammatic means that the operational use of the icon proceeds. Still, a distinction must be maintained between diagrams proper — that is, diagrams constructed with the explicit intention of experimentation and endowed with an explicit or precise syntax of transformation — on the one hand, and on the other, the more comprehensive class of diagrammatic unfolding of information from "innocent" icons. In any case, this defining feature of the diagram — its possibility of being rule-bound transformed in order to reveal new information — is what makes it the base of Gedankenexperimente, ranging from routine everyday what-if to scientific invention. No wonder that we find in the German chemist Kekulé's discovery of the stereochemical arrangement of Benzene (C₆H₆) in the Benzene ring a prime example of diagrammatic reasoning. As any historian of science will know, the scientist sat daydreaming before the fire, exhausted by speculation. He then saw one of the flames assuming the figure of a snake which turned around and bit itself in the tail — and all of a sudden, Kekulé realized that the normally linear carbon chain bent to form a circle in Benzene. The flame
metaphor of the snake metaphor of the carbon chain — metaphors held together by a common diagram of a piece of line, able to bend.

The Diagrammatic Reasoning Process

Before the crucial diagrammatic transformation is undertaken, however, preliminary steps take place in the overall picture of diagrammatic reasoning. The initial diagrammatic intention is in itself an interpretant of a Symbol (Peirce here refers to the Euclidean procedure of beginning with a statement of the general proposition to be proved, and then drawing a figure to illustrate the premiss of the conclusion). Thus, the reasoning process begins with the drawing of a diagram to exhibit the antecedent condition of its object, determining an “Initial Symbolic Interpretant”. These two, taken together, now form the Peircean equivalent of the Kantian schema: the drawing constitutes its observable side, the initial interpretant constitutes its universal signification. Take an example: the drawing of a bridge construction equipped with the appropriate equations pertaining to its carrying ability. After this initial phase, Peirce in the quotation above (PAP) considers the middle phase, albeit in a strange psychological tone alien to him: this initial schema determines “a state of activity in the Interpreter, mingled with curiosity. As usual, this mixture leads to Experimentation.” Yet, he immediately admits that such a development must take place in any semiotic Quasi-Mind; we may discern the phenomenological kernel in the psychological shell: the central feature is the equipment of the initial diagram with transformation possibilities. Peirce here considers the sources for the transformation syntax: “... certain modes of transformation of Diagrams of the system of diagrammatization used have become recognized as permissible. Very likely the recognition descends from some former Induction, remarkably strong owing to the cheapness of mere mental experimentation.” One source for transformation rules thus comes from the diagram itself, and their deductive status untold, Peirce refers their recognition to “some former induction” (say, the law of gravity involved in the equation system for the bridge’s carrying ability has been corroborated by induction). This “former induction” must, in fact, be taken to refer to at least two separate sources. First, what we introduced above as the symbol’s pre-diagrammatic immediate interpretant; including the idea inherent in the symbol of certain developments being possible for its object, others not so. This signification is also iconic, even if not explicitly diagrammatic; it constitutes so to speak our common-sense Vorurteil as to the content of the Symbol which the diagram more rationally illustrates, in our example, the common-sense understanding of a bridge (implying that we gauge the effect of vehicles, not planets or atoms, on it). But the vagueness here probably comes from the fact that the determination of the possibilities of experimentation on the diagram is twofold and has yet another source in addition to the vagueness inherent in the symbol’s generality. Quite another comes from the very structure of the diagrammatic figure as a legisign (without any reference to which symbols it may be taken as an interpre-
tant of): questions concerning which purely formal possibilities does the law gov-
erning the sign allow for variations upon the diagram's arrows, the number of
entities, forms, structure, etc.; in the bridge case the set of equations with vari-
ables taken separately, apart from their actual referent. The former has its source
in the generality of the symbol's object, the latter in the generality of the dia-
grammatic sign itself — what Peirce calls its being a type. Peirce presents one
more source stemming from the diagram intention (the fact that we want to
gauge our bridge's carrying ability) which makes us experiment in order to fulfill
this intention (we may vary the weight carried in order to find the point where
the bridge can carry no more, hopefully far above the average weight of expected
vehicles).

After having performed the transformation, in any case, the transformate dia-
gram displays the result at the same time as it is evident that the transformate dia-
gram was contained in the transformand diagram. The transformate diagram is
the eventual, rational interpretant of the transformand diagram, and it has in turn
the conclusion, expressed in symbolic terms, as its interpretant: the bridge may
carry vehicles up to, say, 100 tons. Thus, the steps in diagrammatic reasoning
lead from an initial symbol through three consecutive phases of diagrams to a fi-
nal symbol. We may envisage the possibility that the diagram transformation cho-
sen does not lead to the expected result so that a trial-and-error process under-
takes a new experiment on the same diagram. Say, if the bridge is determined to
carry only 100 g vehicles, a new experiment changing the size or the material
(but not necessarily the diagram) may give a better result.

But there are a lot of possible prerequisites to be added to this ideal-type dia-
gram transformation. First, the initial symbol has already its interpretant partly
consisting of iconic material (in our example: data about the bridge). Thus, the
diagram may be said to be a rational analysis of parts of this pre-diagrammatic
icon. But this entails the possibility of fallacies, if a diagram not conforming to
the initial interpretant is chosen. Thus, experiments already in this phase may in
some cases be expected; in cases less simple or less well-known than bridge build-
ing we might resort to a trial-and-error process here, experimenting with differ-
ent formalisms in order to accord with the intention. In that case, the deductive
diagram transformation "molecule" just described becomes a phase in Peirce's
overall heuristics. An initial abduction makes a guess about how to formalize a
given phenomenon, the deductive diagrammatic phase just described follows,
and finally an inductive investigation concludes the picture, in which the dia-
grammatic result is compared to the actual empirical data: Does the diagram
transformation actually, in some sense, correspond to a state of or an evolution in
the phenomenon mapped in the diagram?
We can sum up the steps of the process as follows:

\[a \] Symbol (1)

\[b \] ... having a rule-bound, initial, pre-diagrammatic, immediate iconic interpretant

\[c \] Initial interpretant \((a + c)\) constituting the initial transformand diagram, the “Schema” diagram-icon

\[d \] Middle interpretant: the symbol-governed diagram-icon equipped with possibilities of transformation (with two sources, \(a\) as well as \(c\))

\[e \] Transformate diagram. Eventual, rational interpretant

\[f \] Symbol (2) (Conclusion)

\[g \] ... having a post-diagrammatical interpretant differing from \(b\). This interpretant being an interpretant of \(a\) as well, the diagrammatic reasoning has now enriched the total interpretant of the concept \(a\).

Thus, the process begins with “some former induction” having given rise to the initial symbol’s pre-diagrammatic interpretant, an inductive generalization sedimented as the meaning of the symbol. This meaning, of course, must be to some extent already structured, and some of its rationally formalizable relations are now abductively selected, yielding a guess of which invariant properties may be sufficient to account for other central properties in the general object in question. Then, in the very construction process of the initial diagram, a constant feed-back comparison must take place between the general object as it is preliminarily and inductively grasped on the one hand, and on the other, the abductive guesses trying to establish against this background a more formalized diagram; in many cases this may take place almost automatically, due to the existence of well-established diagrams. It goes without saying that the fertility of the specific diagram chosen can only be fully measured with regard also to the deductive experimentation taking place later in the diagrammatic reasoning process which consequently also has a role in this constant feed-back trial-and-error process. But the overall picture of the initial phase of diagram construction is thus: the general knowledge contained iconically in the symbol — no matter whether it be an empirical symbol or a mathematical one — is interpreted in relational terms so as to give (part of) the consistent general meaning an iconical illustration able to be manipulated, an illustration which is, on its side, also general. After few or many repeated transformations (subject to the three different sources of transformation
syntax mentioned above), a transformate diagram is reached — its finality is of course only measured by how it accords with the initial intention. The evaluation of an interpretant for a final diagram status is in itself an abduction proposing a symbolic reading of that diagram, and this may, in turn, be inductively compared with empirical information present in the initial interpretant.

To sum up, the overall picture of the diagrammatic reasoning process is that it provides a formal deductive reasoning core, embedded in the trial-and-error procedure of abductive suggestions and inductive tests.

Cartography as an Example

Maps are without doubt a good candidate to a diagram subcategory: rule-bound depictions of empirical phenomena. The non-trivial icon property is evident here: the construction of a map, be it based on triangulation from a set of selected measuring points in the landscape, or on the rational rendering of aerial photography, does not explicitly contain all information held in the map. What types of experiment can be performed with respect to a map that reveal this information? We may 1) find a route between two localities, 2) determining a distance or an area, 3) recognize landscape forms — and so on.

Of course, there is nothing very "experimental" in a laboratory sense of the word in these transformations; nevertheless their status as diagram transformations are granted by their fulfilling the demand for revealing truths not stated in the construction of the diagram. Take for instance the distance between two cities. To measure the map distance with a ruler and figure out the real distance from the map’s scale is a typical map manipulation, depending on the fact that the map we imagine here is endowed with a metric topology. In this case, a middle interpretant will be the map with your route on it added; the transformate diagram will be the map with the ruler — and the final conclusion will be of the form "The distance between New York and Pittsburgh is so-and-so many miles", revealing a number nowhere present in cartographic triangulation nor in an air photo, nor in the map itself. The experiments possible of course depend on the type of map projection, some are area preserving but not distance preserving, some vice versa, some are distance preserving in some directions, not in others. Thus, different map types may be described simply with reference to which types of experiments they allow. Other maps do not even have a metric topology, take for e.g. your typical subway map which does not keep geometric form invariant but which merely keeps invariant certain connexity properties: the connexity of the single subway lines — very often symbolized with one color for each — and the crossings and touchings of several subway lines indicating the weaker connections if possibility of changing line. Here, it is easy to find one’s localization and path relative to fixed points, namely, the stations, but it is no longer possible to gauge metric properties (how far are we from the main station?) nor morphological properties (a curved track may be represented by a straight line, and vice versa, even on the same map), nor sub-area categorization. In this case,
the initial schema will be the colored spaghetti articulation interpreted as a diagram-icon by the symbol “London Subway Network”; the middle interpretant will be your present position and the end of your travel, and the transformate diagram will be the possible paths tracked as continuous lines on the spaghetti figure, and, again, the conclusion will be symbolic statements of the type “We gotta catch the B train at Piccadilly”; “It seems to be the shortest way to change at Victoria” (shortest here referring to transport time measured by means of number of stations passed, rather than to any metric property of the diagram).

Even in so simple diagrams as road maps, we can appreciate the distinction between two experiment classes. One is the simple use of the diagram, following the transformation rules more or less explicitly given. Another is experimental in a stronger sense of the word: it experiments with the very diagram itself: the possibility of building a new subway line in order to mend London’s traffic problems. These more ambitious experiments may involve two dimensions: one is further information with respect to the object (or in our ideas about it) making the extension of diagram possibilities desirable. Another is the change in the formal apparatus of the diagram (these two may, of course, trigger each other), as for instance the development of Venn diagrams out of Euler diagrams by the addition of a rule (the shading of an area referring to an empty set), or the reinterpretation of Euclid’s axioms in order to make non-Euclidean geometries. Already the first type of experiment is unlimited as soon as the diagram in question is continuous (like most maps), but in sufficiently complicated diagrams we must expect not to be able to account for the possibilities of interesting experiments beforehand (cf. the Gödel inexhaustibility of mathematics). On two different levels, these properties are what constitute the well-known “depth” of icons and diagrams. This inexhaustibility is dryly remarked on by Peirce when he epigrammatically states about the content of a diagram that “Everything is involved which can be evolved” (4.86, “Logic of Quantity,” from the “Grand Logic,” 1893).

Diagram Subtypes

As in any branch of research, the possible establishment of an inventory of rational subtypes will constitute a major progress. Unfortunately, no simple diagram taxonomy seems to be at hand, at least not referring to pure diagrams — for the simple reason that the category of pure diagrams is coextensive with mathematics as such. This implies that the question of pure diagram taxonomies is inevitably entangled in the philosophical questions of the foundations of mathematics. Other taxonomies might refer to different diagram intentions, different diagram graphics, different diagram subjects, etc., but a comprehensive review of diagram taxonomies by Blackwell and Engelhardt (1998) reveals little agreement among scholars. Peirce, taxonomist of signs, never really attempts to propose a diagram taxonomy; the closest he gets might be a remark en passant in an early account for diagram experimentation in Robin (15), “On Quantity” (ca.
1895, in Eisele, p. 275) where he talks about "... a diagram, or visual image, whether composed of lines, like a geometrical figure, or an array of signs, like an algebraical formula, or of a mixed nature, like a graph ..." so that we might envisage yet another trichotomy comprising maps, algebra, and graphs; that is, simple diagrams, construction precepts, and diagrams equipped with construction precepts, respectively? The construction of a rational taxonomy of diagrams will be a major future task for (not only) Peircean semiotics.17

The Imaginary Moment: Peirce and Hilbert

During the operational interpretation of an icon, a certain phase typically appears which at the same time exposes the icon's full range of possibilities and displays a central danger of iconic fallacy. Its condition of possibility already lies in a consequence of the icon's purely qualitative character: "The role of an icon consists in its exhibiting the features of a state of things as if it were purely imaginary" (4.448; "Logical Tracts" II, 1903). A pure icon refers to a equally purely fictitious fact or \textit{Sachverhalt}, until further indexical grounding of the icon is undertaken. This implies the possibility of completely forgetting the distinction icon-object while operating on the former:

Icons are so completely substituted for their objects as hardly to be distinguished from them. Such are the diagrams of geometry. A diagram, indeed, so far as it has a general signification, is not a pure icon; but in the middle part of our reasonings we forget that abstractness in great measure, and the diagram is for us the very thing. So in contemplating a painting, there is a moment when we lose the consciousness that it is not the thing, the distinction of the real and the copy disappears, and it is for the moment a pure dream — not any particular existence, and yet not general. At that moment we are contemplating an \textit{icon}. (3.362; "Algebra of Logic", 1885)

This moment of fiction when we, operating on the icon, take it to be the object itself, is crucial for our operations: here, the constraints on our operations stemming from the icon's formal properties are identified with the constraints stemming from the object's empirical properties and the constraints stemming from the question leading us to diagram experimenting (the three sources discussed above), and it feels as if we were operating on the very object itself. This goes for all icons, from paintings where we leave our observer's position and momentarily insert our imaginary body on a stroll into the landscape and to equations where we cease manipulating only ink symbols on a sheet and tackle invariances in arithmetic directly. This 'imaginary moment', of course, is a psychological description of a phase in a process that is not itself of a psychological nature. But the impor-
tant thing in our context is the virtual source of error inherent in this moment: properties stemming from our preformed folk understanding of the object in question may interfere, without our knowledge, in our experiments with the icon — with the result that we see things in a picture not really presented there, or we find regularities in a formalism not really implied by it. The latter was, of course, the case in Euclidian geometry where our everyday conceptions prejudiced us to assume the parallel axiom true — a fact which in the history of mathematics predisposed mathematicians to be on guard against intuition.18

Thus, there is a certain tension in this 'imaginary moment'. In so far as the imaginary moment leads to the eventual interpretant, the conclusion seems to be directly "read off" the diagram and so furnishing evidence. On the other hand, even if this fertile moment is the source of evidence, it is precisely the seductive welding together of object and representation in this phase which constitutes the major source of error in diagrammatic reasoning and has long since been recognized as such. The whole formalist endeavor in the philosophy of mathematics and the emphasis placed upon symbolic calculi and the related mistrust of geometry in the last centuries is based on attempts at getting rid of the dangers of seduction by intuition in this very moment. More precisely, this danger can be traced to the triple source of constraints on the possible experiments in this crucial phase of the reasoning process: they descend, as we saw above, from the initial pre-diagrammatic interpretant, from the diagram intention as well as from the internal regularities of the diagram-icon as iconic legisign. But the first two of these sources are of course ripe with common sense, with folk theories, and virtually ideological preconceptions of the object and possibly with wishful thinking — and the imaginary moment may lure the reasoner into accepting these and tacitly letting them govern the experiment so as not to discover crucial formal possibilities in the legisign or even to abandon internal legisign-constraints to the benefit of fallacious common sense assumptions in cases or aspects where the two are mutually exclusive. Hence the idea of formalism in mathematics; one could describe Hilbert's idea as that of getting rid of the imaginary moment precisely in the decisive part of the process leading from the diagram-icon via the middle to the eventual interpretant, bracketing the process from signification in these phases and then reinvesting it after having reached the transformed diagram, that is, the theorem. Of course, orthodox Hilbertians will be shocked to see the idea of purely symbolic proof theory (with intuition's role reduced to the level of meta-mathematical interpretation) transformed into iconic diagram manipulations. At first glance, the Peircean process seems to be almost the opposite: one could leave out the possibly folk theoretic symbolic determination while manipulating the icon — and then reinvest the symbolic interpretation after having reached the theorem. But a closer analysis reveals the similarities: the diagram in Peirce is iconic indeed, but it is a formally controlled, "rational" icon equipped with a syntax of transformations, while the symbols here are the possible source of error because of their immediate interpretants in the form of pre-diagrammatic
ordinary icons, "wild" icons, so to speak. The reason for confusion here comes from widely differing concepts of "symbol". So the isolation of the purely diagrammatic part of the process is equivalent to the idea of keeping a pure mathematical reasoning apart form uncontrollable iconicity — just as in Hilbert a certain and inevitable minimum of Anschauung remains ineradicable even in the symbolic calculation, namely the basic ability to identify, count, and permute symbol units on a string. In both cases, then, the crucial opposition ceases to be between symbolic and iconic and becomes rather the opposition between a controllable, rational intuition and a 'wild' pre-formal intuition. The crucial difference is rather, now, that the Peircean point of view will see the remaining control domain of rational intuition as a definitively iconic field, while the Hilbertian will often see it as purely symbolic, unfortunately, but unavoidably, to be exposed to a severely constrained intuition. Of course, Hilbert himself was no Hilbertian and he perfectly realized the unavoidable remnant of Anschauung in his "formale Redeweise", cf. Kreisel 1982. Here, Peirce's technical research into iconic logic diagrams shows, as mentioned, that the task undertaken by "symbolic" calculi may be equally well performed by apparently much more iconic calculi. Still, the problem that motivated Hilbert is still relevant for the Peircean account of diagrammatic reasoning: we cannot expect, even less can we demand, the imaginary moment to involve the whole process from initial interpretant to eventual interpretant. The very formal raison d'etre of diagrammatic reasoning entails that purely diagrammatic constraints with no apparent interpretation may take over in decisive phases of the argument — so that the imaginary moment, in fact, must be virtually split into two: an initial moment where diagram and symbol (1) are identified, and a final one where transformate diagram and symbol (2) are identified, so as to keep a pure diagrammatic transformation phase in between them. In this case, the comparison between symbol (1) and (2) of course becomes crucial: in the empirical case, the question will be, does the symbol (2) make sense as expressed in a proposition about symbol (1) — e.g.: has an object of type (1) ever empirically given rise to an object of type (2)? If not then the diagram may be invalid, or the observation insufficient. So the pragmatist trial-and-error feedback between initial and final symbols in the diagrammatic reasoning process must be the Peircean means of avoiding being caught up in the 'imaginary moment'.

Diagram, Continuity, Concept, Abduction, Pragmatism ...

The diagram's central role in the ongoing reasoning process should be clear from the above; I can only in this paragraph hint sporadically at its relations to other central tenets in Peirce's philosophy. The prototypical diagram: a set of lines between points on a continuous sheet of paper, may serve to indicate the important relation between the diagram as epistemological device and the signification of Peirce's notion of the continuum for metaphysics. How do we immediately "see" that the conclusion of a diagram experiment is valid for a whole class of cases referred to by the premisses? One source is, of course, the typicality
of the diagram, but this typicality consists in the possibility of continuously de-
forming any token to the diagram type. Something similar holds for the transfor-
mations. We see this by the fact that a continuum of possible realizations are built
into the diagram. This may take place by different means: one is the continuity of
the underlying sheet. By performing the transformation on the sheet we see that
the tripartition of angles into acute, rectangular, obtuse is complete, because we
can make the angle pass through all values between 0 and 180. The variable \(x \) is
in the same way, so to speak, a hole in the sheet through which a whole contin-
uity of instantiations may pass. Of course, discrete diagrams exist where this idea
is not relevant (equations defined only with reference to natural numbers etc.) —
but continuity, for Peirce’s metaphysics, is more inclusive than discontinuity, so
we are able to understand the latter only against the background of the former.

Continuity is also the basis for Peirce’s well-known “medieval” realism with
regard to the existence of “real universals” which refer to natural habits and a
continuity of possible instantiations. But diagrams are tightly connected to sym-
bols, as we have seen, in the diagrammatic reasoning process. Concepts are “the
living influence upon us of a diagram”\(^{22}\) — this should be compared with Peirce’s
basic pragmatist meaning maxim, according to which the meaning of a concept is
equal to its behavioral consequences in conceivable settings. This implies that sig-
nification of a symbol is defined conditionally: “Something is \(x \), if that thing be-
haves in such and such a way under such and such conditions” — “Something is
hard, if it is not scratched by a diamond”. But this maxim, developed on the basis
of a conception of scientific experimenting, is formally equal to the idea of dia-
igrammatic experiments: the signification of the concept is the diagram of the ex-
periment. The aim of science is to try to make such conditional definitions as dia-
grammatic as possible. This is the diagrammatic component in Peirce’s laconic
enlightenment maxim, “symbols grow”: new symbols arise through diagram-
matic experimentation.

Perspectives

Peirce admits that his word diagram is employed in “... a wider sense than is
usual” (Eisele, p. 315); precisely this is the great advantage of his diagram
concept: a whole series of semiotic processes — the tropisms studied by biosemi-
otics,\(^{23}\) the contemplation of pictures, metaphorical, analogical, and poetical rea-
soning, linguistic and narratological syntax, basic sensormotor schemata, as well
as mathematics proper — become understandable as different realisations of one
and the same basic rational semiotic behavior, namely, diagram experimentation.
Thus, it liberates semiotics from the static idea of the en- and decoding of signs,
because the interesting part of semiotics lies elsewhere, in the epistemological dy-
namics of diagram interpretation — at the same time as it saves semiotics from
the false “dynamics” of irrationalist poststructuralisms. Moreover, it constitutes a
wholly actual attempt at making explicit René Thom’s great intuition in
philosophy of science, “... il n’y a science qu’à partir du moment où on peut
plonger le réel dans le virtuel" (Thom 1989, p. 69) — science involves the embedding of the real within the virtual. You only understand a phenomenon in terms of a scenario mapping (some of) the possible ways of changing that phenomenon into related, virtual phenomena. Quite contrary to Quine, eager to expulse counterfactuals from science, this basic idea is what diagrams formalize: various counterfactual transformations of the phenomenon in question as the means of gaining insight into it.24 Thus, the diagram as a central concept in epistemology unites a series of actual scientific and philosophical currents: cognitive semantics and linguistics, the resurfacing of diagrammatic reasoning in AI as well as, more generally, the renaissance of intuition, pragmatism, and scientific realism in the philosophy of science.

University of Copenhagen

NOTES

1. See Roberts 1973, for the most thorough treatment of the logic graphs. Among recent diagrammatic scholars elaborating on Peirce's logic graphs John Sowa, Allwein/Barwise, and Sun-Joo Shin should be mentioned.

2. The force of this idea in metaphor analysis is obvious — and it is recognized, albeit in non-Peircean clothing, by the cognitive semantics tradition mentioned above.

3. Examples are strong tendencies in analytical philosophy (Goodman), structuralist semiotics (Greimas, the younger Eco), irrationalist Lebensphilosophien (Nietzsche) and their poststructuralist heirs. It is interesting to note in passing that these attacks against similarity thus come from otherwise opposed camps in philosophy. A critical discussion of these attacks is to be found in Stjernfelt (1999b). Recently, Eco has changed his position and turned to the question of the central role played by Kantian schemata in iconicity (Eco 1999).

4. This fact is elaborated ingeniously in Hintikka 1997.

5. It is, for instance, not sufficient to rebaptize objects a, b, c ... in order to undertake a formalization, if a rational transformation syntax is missing. By this criterion, hence, the infertility of some classical formalization attempts in semiotics becomes understandable; e.g. Hjelmslev's ambitious algebra of glossematics which did not permit transformational possibilities of any larger interest.

6. I prefer to count such sign use as diagrammatic, notwithstanding Peirce's more strict definitions demanding the presence of explicit, intentionally constructed diagrams. This definition conflicts with other descriptions of diagram use, e.g. his characterization of mental imagery experiments as diagrammatic, and is closer to his pragmatic in actu -requirement for sign use. I follow the latter tendency in calling icon experimentation involving rule-bound manipulation of icon parts diagrammatic.
This points to the fact that the organization of perception includes highly elaborated diagrammatic capacities without explicit conscious representation.

The distinction between pure and applied diagrams roughly corresponds to Kant’s distinction between a priori and a posteriori schemata.

Barwise and Etchemendy highlight this important feature in diagrammatic modeling: “5. Every possibility (involving represented objects, properties, and relations) is representable. That is, there is no possible situations that are represented as impossible. 6. Every representation indicates a genuine possibility” (1995, p. 215).

But does this example not run counter to Peirce’s observation that the grammar of natural language is diagrammatic? No, because the contents of the words “round” and “square” are not defined by grammar. The diagrammaticalness of (parts of) natural language syntax rather lies in its instantiation of some basic logic and ontological categories (argument structure, subject/predicate structure, tempus, aspect, etc.) It is important to remember — cf. our painting example above — that concrete signs may possess both diagrammatic and non-diagrammatic aspects, just as they may be composed of differently defined diagrams, the relation between which need not in itself be diagrammatic. Some of the strength in natural language probably lies in precisely this: it unites freely diagrams on different levels (expression, grammar, lexical semantics of the different word classes, narratology), the relative independence of which constitutes language’s plasticity.

Of course, this requires that the diagram is consistent. But the very syntax of a diagram forces it to be consistent: it is impossible to draw a square circle. This does not imply, however, that it may not be in many cases rather or extremely difficult to determine whether a given diagram is in fact consistent. For instance, an equation — a subspecies of algebraic diagrams — may hide an inconsistency very difficult to ascertain at first glance but which requires lot of work to determine: if you can derive a contradiction from it (the reductio ad absurdum method), then it is false (if we do not introduce intuitionist logic etc.). The seminal difference is that you cannot derive from the symbolic expression “a square circle” an analogous contradiction, in order to do so, you have to try to make a diagram of its content.

Yet, this distinction is in many cases impossible to draw beforehand, so to speak — cf. for instance the fact that a certain amount of empirical data shows up to yield a Gaussian distribution: on a first glance, this result may be conceived of as an empirical law, but it might hide a deeper law, yet uncovered, which would rather make the distribution a logical result of general mathematical principles.

This icon-index distinction in Peirce of course refers back to Kant’s contention that existence (index) is no predicate (icon), just like it refers forward to Kripkean reference theory’s rigid designators (as a certain class of indices).

Peirce makes a distinction which he considers important between corollaries and theorems; the former are propositions directly read from a diagram, the latter are propositions only to be found after some “ingenious” experiment. The distinction is valid, but can not be sharp: there is a continuum between, say, measuring a distance on a map; measuring the same distance with corrections according to the map projection used; constructing that projection; proving that the geometry of the surface of a sphere is isomorphic to a non-Euclidean geometry ... etc.

Ernst Cassirer’s concept of “symbolic pregnancy” can be interpreted as referring to such cases of ‘spontaneous proto-diagrams’ (cf. Stjernfelt in press a).

Another example would be maps with high direction sensitivity but no metric, e.g. maps of the starry sky as seen from the earth; distances on this map measured
in minutes and seconds of arc do not refer to real distances between stars in the universe, while directions refer to real orientations in space.

17. See some preliminary remarks in May and Stjernfelt 1996.
18. The German mathematician Moritz Pasch explicitly noticed this geometrical error and proposed a purely formal manipulation of symbols with no regard to their intuitive signification, an idea that was fully developed by his famous pupil David Hilbert’s formalism.

19. The concept of “symbol” has a history so confused that it almost ought to be completely discarded; in any case, any use of it should be explicit about the precise signification intended. In formalism, symbols are arbitrary, simple signs to be manipulated syntactically; in Peirce they are, to put it too briefly, concepts, not necessarily simple, and dependent on iconic meaning and indexical reference. On the symbol concept in the Kantian tradition, see my “Die Vermittlung zwischen Anschauung und Denken” (in press a).

20. But even if we grant the basic iconicity of any “symbolic” calculus, a Peircean approach will still be faced with the problem of evidence in cases where the “imaginary moment” is precluded or where it simply refuses to appear, cf. for instance the discussion of the computer proof of the 4-color map theorem of topology which — because of its enormous size — is hard to understand as an ordinary proof in which a skilled reader may adorn it with interpretations from beginning to end. In proofs of this type, the trust is put in the infallibility of the computer: each step in the proof is logically valid, ergo the whole proof is valid, even if nobody has ever observed its truth in Peircean evidence or in Husserlian “kategoriale Anschauung” (Husserl 1980a, b; 1985).

21. Recent years have seen some able investigation into Peirce’s continuum doctrine, cf. Putnam 1992; Parker 1998. I have attempted a contribution myself in Stjernfelt 1997b.

22. 3.467, from “Grand Logic,” 1893.
23. Life as such seems formally to involve simple diagrams known as “categorical perception,” see Stjernfelt 1999b and in press b.

24. Of course, this counterfactual is easier to hide in experimental sciences, where the experiment on the diagram in many cases may be verified by similar experiments on the object itself. When this possibility disappears, counterfactual speculation prevails, cf. for instance cosmology. It is interesting to note, however, that the insight in the connection between counterfactual constructions and scientifity is taken up in non-experimental sciences in recent years. For instance historiography, so long trapped in a positivist determination to record only what actually happened, now seems (through inspiration from, among others, chaos theory and the formal concept of phase space in general qualitative dynamics) to realize that the actual event is made intelligible only through its juxtaposition with a rational idea of what would have happened if some central factors in the initial conditions of the situation were changed (Ferguson 1997).
REFERENCES

Allwein, G. and Jon Barwise

Barwise, J. and J. Etchemendy
"Heterogeneous Logic,” in Glasgow 1995

Benacerraf and Putnam (eds.)

Blackwell, A. and Y. Engelhardt

Burch, R. W.

Eco, U.
1999 *Kant and the Platypus*, London: Secker and Warburg

Ferguson, Niall (ed.)

Glasgow, J. et al. (eds.)

Hayes, P.
“Section Introduction,” in Glasgow 1995

Hintikka, J.

Hjelmslev, Louis
1953 *Prolegomena to a Theory of Language*, Baltimore: Waverly Press

Houser, N. et al. (eds.)

Husserl, Edmund
1980a *Logische Untersuchungen*, Tübingen: Max Niemeyer (2. umgearbeiteten Aufl. 1913; 1. Aufl. 1900)

Kant, Immanuel

Kreisel, Georg

May, Michael
May, Michael and F. Stjernfelt

Parker, K.

Peirce, Charles S.
“PAP”, Robin Catalogue (293), manuscript copy (copyright Harvard University Library)

Putnam, H.

Roberts, Don D.

Shin, Sun-Joo

Sloman, A.
“Musings on the Roles of Logical and Non-Logical Representations in Intelligence,” in Glasgow 1995

Stjernfelt, F.
1997a *Rationalitetens himmel [“The Heaven of Rationality”]* Copenhagen: Gyldendal
1997b “Let’s Stick Together. Peirce’s Concept of the Continuum,” unpubl. paper
1999a “Biosemiotics and Formal Ontology,” in Semiotica 127-1/4,
(in press b) “A Natural Symphony? The Actuality of von Uexküll’s “Bedeutungslehre” for Our Days’ Semiotics”, in Semiotica

Thom, R.