Controle da Mistura Ar/Combustível em um Motor a Combustão: Sistema em Malha Fechada

Bruno Silva Pereira

João Francisco Justo, Armando Laganá

XXIII Simpósio Internacional de Engenharia Automotiva 23^{er} International Symposium of Automotive Engineering

SUMÁRIO

- **1.** INTRODUÇÃO
- 2. RELAÇÃO AR/COMBUSTÍVEL
- 3. METODOLOGIA
- **4.** PROJETO
- **5.** RESULTADOS OBTIDOS
- 6. CONCLUSÕES

INTRODUÇÃO

- Introdução da eletrônica.
- Diminuir a emissão de poluentes.
- Inovações na área automotiva.
- Controle da mistura ar/combustível.
- Diversas técnicas de controle.

Figura 1 – Sistema de gerenciamento do motor.

FONTE: Adaptado de (BALENOVIC, 2002).

- Relação ar/combustível
- Estequiométrica

 $\lambda = \frac{\text{mistura a/c atual}}{\text{mistura a/c estequiométrica}}$

- $\lambda < 1$, mistura rica
- $\lambda > 1$, mistura pobre
- $\lambda = 1$, mistura estequiométrica

Influência de Lambda no funcionamento do motor

Figura 2 – Relação de lambda com potência e consumo de combustível.

FONTE: Adaptado de (DENTON, 2004).

Emissão de poluentes

- HC Hidrocarbonetos
- NO_x Óxidos de nitrogênio
- CO Monóxido de carbono

Figura 3 - Relação de lambda e a emissão de poluentes.

Conversor Catalítico

Figura 4 – Conversor catalítico de três vias.

- Oxidação de hidrocarbonetos (HC) em dióxido de carbono (CO₂) e água (H₂O).
- Oxidação de monóxido de carbono (CO) em dióxido de carbono.
- A redução de NO_x em nitrogênio (N₂) e oxigênio (O₂).
- Platina, Paládio e Ródio.

Conversor Catalítico

Figura 5 – Taxa de conversão catalítica.

FONTE: Adaptado de (GUZZELLA e ONDER, 2010).

• Controle em malha aberta

Figura 6 – Diagrama de blocos do sistema em malha aberta.

• Estratégia Speed Density:

$$PV = m_a RT \qquad m_c = \frac{m_a}{relacão a/c}$$

• Definição do modelo:

Figura 7 – Modelo da mistura ar/combustível.

$$t_{l} = \frac{2(\text{Cil} - 1)}{n * \text{Cil}} \qquad \qquad \text{delay} = 2 t_{l} \qquad \qquad U_{\lambda}(v) = \begin{cases} 0, & \lambda > 1\\ 1, & \lambda < 1 \end{cases}$$

• Unidade de gerenciamento eletrônico:

Figura 8 – Diagrama de blocos do hardware utilizado.

FONTE: (PEREIRA, 2013).

- Polo Volkswagen
- Motor EA113 2.0L, 4 cilindros, 8 válvulas

Figura 9 – Motor utilizado nos testes.

PROJETO E RESULTADOS OBTIDOS

 Utilizando como realimentação a sonda lambda de banda estreita

PROJETO

Figura 10 – Diagrama de blocos do sistema em malha fechada.

PROJETO

- Definição do compensador.
- Controlador PI.

$$C(s) = 1 + \left(P + I\frac{1}{s}\right)e(s)$$

• Ganho integral

$$I = T_1 = \frac{2(Cil - 1)}{n * Cil} = \frac{2(4 - 1)}{n * 4} = \frac{3}{2n}$$

• Ganho proporcional

$$P = 0,01$$

Simulações em malha fechada: • Figura 11 – Resposta do sistema em malha fechada. L Ulambda(V) 0.5 а t(s) 1.02 C(z) b 0.98 t(s) 1.02 τ L Fator Lambda C 0.98 [[]---0 t(s)

• *Lambda* médio = 1,000.

Figura 12 – Resposta dinâmica do sistema real em malha fechada.

• Análise da resposta do sistema real em malha fechada:

Figura 13 – Resposta do sistema real em malha fechada.

• *Lambda* médio = 1,002.

PROJETO E RESULTADOS OBTIDOS

 Utilizando como realimentação a sonda lambda de banda larga

PROJETO

• Definição do compensador.

Figura 14 – Diagrama de blocos do sistema em malha fechada.

PROJETO

• Controlador PI.

$$C(s) = 1 + \left(P + I\frac{1}{s}\right)e(s)$$

- Ganhos calculados pelo método da síntese direta:
- Ganho proporcional

$$P = \frac{1}{k} \frac{t_{le}}{t_{de} + t_c}$$

• Ganho integral

$$I = \frac{P}{t_{le}}$$

- Análise da resposta do sistema real em malha fechada:
- t_c 1, 2 e 4 segundos; e
- Rotação do motor em marcha lenta (≈900), 1200, 2000 e 3000 RPM.

Figura 16 – Resposta do sistema real em malha fechada – 900 RPM.

• *Lambda* médio = 1,002.

- Análise da resposta do sistema real em malha fechada:
- **Tabela 1** Comparativo da resposta do sistema para diferentes valores de t_c e diferentes rotações.

Tempo de resposta t _c (s)	Rotação (RPM)	Lambda médio	Erro lambda (%)
1	900	1,002	0,2
	1200	1,0013	0,13
	2000	0,9953	0,47
	3000	0,9955	0,45
2	900	1,0017	0,17
	1200	1,0006	0,06
	2000	0,9996	0,04
	3000	0,9956	0,44
4	900	1,0036	0,36
	1200	0,9983	0,17
	2000	0,9983	0,17
	3000	0,9951	0,49

Figura 17 – Resposta ao degrau do sistema em malha fechada – t_c = 1s, referência 0,8 *lambda*, referência de 1200 RPM.

Figura 18 – Resposta ao degrau do sistema em malha fechada – $t_c = 1s$, referência 1,2 *lambda*, referência de 1200 RPM.

Figura 19 – Resposta ao degrau do sistema em malha fechada – t_c = 1s, referência 1,05 *lambda,* referência de 1200 RPM.

- t_c = 2s apresentou o melhor compromisso estabilidade e desempenho
- *Lambda* dentro do limite definido de 0,5%
- Menor erro no controle pela banda larga em relação ao de banda estreita
- Instabilidade na região de *lambda* pobre

REFERÊNCIAS

BALENOVIC, M. **Modeling and Model-Based Control of a Three-Way Catalytic Converter**. Tese de Doutorado. Technische Universiteit Eindhoven. Eindhoven, p. 179. 2002.

DENTON, T. Automobile Electrical and Electronic Systems. 3^a. ed. Londres: Elsevier Butterworth-Heinemann, 2004.

GUZZELLA, L.; ONDER, C. H. Introduction to Modeling and Control of Internal Combustion Engine Systems. 2^a. ed. Zurique: Springer-Verlag, 2010.

PEREIRA, B. C. F. Unidade de Gerenciamento Eletrônico de um Motor Volkswagen 2.0L: Projeto Otto II. Escola Politécnica da USP. São Paulo. 2013.

UMICORE, A. C. Umicore, 2015. Disponivel em: http://www.umicore.com.br/nossosNegocios/catalysis/catalisador_automotivo/. Acesso em: 10 Março 2015.

OBRIGADO

Bruno Silva Pereira bruno.sp@usp.br (11) 98269 3229

2XIII Simpósio Internacional de Engenharia Automotiva 23^{er} International Symposium of Automotive Engineering

30