Automotive Electronics

Product Information 6A H-Bridge - CJ220

BOSCH

Invented for life

Customer benefits:

- Excellent system know-how

Smart concepts for system safety

- Secured supply
- Long- term availability of manufacturing processes and products
> QS9000 and ISO/TS16949 certified

Features

- Operating supply voltage 5 V to 28 V
- Typical RDSon $=150 \mathrm{~mW}$ for each output transistor (at $25^{\circ} \mathrm{C}$)
- Continous DC load current 5A
- Output current limitation at typ. 6.5 A
- Short circuit shut down for output currents over 8A
- Logic- inputs TTL/CMOS-compatible
- Operating-frequency up to 30 kHz
- Over temperature protection
- Short circuit protection
- Undervoltage disable function
- Diagnostic output
- Enable and disable input
- Package: Power-SO20

General description

The CJ220 is an intelligent full H-Bridge, designed for the Control of DC and stepper motors in safety critical applications and under extreme environmental conditions.

Functional description

The outputs are protected against short circuit to VB, GND and over the load. Whenever at least the supply voltages (VB) is below its specific threshold, the power stages are switched in tristate and the status flag is switched low.
If the supply voltage is over the specific threshold again, the power stage switches independently into normal operation, according to the input pins, and the status flag is reset.
In case of over-temperature or over-current is detected the power stages are switched in tristate independent of the input signals and the status-flag is switched low. If the level changes from high to low on DI or low to high on EN, the output stage switches on again, if the temperature is below the specified limit. The status-flag is reset to high-level.
The maximum current which can flow under normal operating conditions is limited to Imax $=6,5 \mathrm{~A} \pm 20 \%$. When the maximum current value is reached, the output stages are switched tristate for a fixed time. According to the time-constant the current decreases exponentially until the next switch-on occurs.

Application example

Timing diagram

Pos.	DI	EN	IN1	IN2	OU1	OU2	SF
1. Forward	L	H	H	L	H	L	H
2. Reverse	L	H	L	H	L	H	H
3. Free-wheeling low	L	H	L	L	L	L	H
4. Free-wheeling high	L	H	H	H	H	H	H
5. Disable	H	X	X	X	Z	Z	L
6. Enable	X	L	X	X	Z	Z	L
7. IN1 disconnected	L	H	Z	X	H	X	H
8. IN2 disconnected	L	H	X	Z	X	H	H
9. DI disconnected	Z	X	X	X	Z	Z	L
10. EN disconnected	X	Z	X	X	Z	Z	L
11. Current limit. active	L	H	X	X	Z	Z	H
12. Undervoltage 1.)	X	X	X	X	Z	Z	L
13. Overtemperature 2.)	X	X	X	X	Z	Z	L
14. Overcurrent 2.)	X	X	X	X	Z	Z	L

1.) In case of undervoltage tristate and status-flag are reset automatically.
2.) Whenever overcurrent or overtemperature is detected, the fault is stored (i.e. status-flag remains low). The tristate conditions and the status-flag are reset via DI or EN.

PIN configuration

L = Low
H = High
X = High or Low
Z = High impedance (all output stage transistors are switched off in static state).

Pin description

Pin	Name	Function
1	GND	Ground
2	SF	Status-flag
3	IN1	Input 1
4	V $_{\mathrm{B}}$	Supply voltage
5	V $_{\mathrm{B}}$	Supply voltage
6	OU1	Output 1
7	OU1	Output 1
8	nc	
9	nc	
10	GND	Ground
11	GND	Ground
12	nc	
13	EN	Enable
14	OU2	Output 2
15	OU2	Output 2
16	V	Supply voltage
17	CP	Charge pump
18	DI	Disable
19	IN2	Input 2
20	GND	Ground

Electrical characteristics

Parameter	Condition	Symbol	Min	Typ	Max	Unit	
Power supply							
Operating range	static	V_{B}	5		28	V	
Logic inputs	IN1, IN2, DI, EN						
Input „high"		U	3.4			V	
Input „low"		U			1.4	V	
Input hysteresis		U	0,7	1		V	
Input current IN1,IN2, DI	V IN $=0 \mathrm{~V}$	I	-200	-125		$\mu \mathrm{A}$	
Input current EN	$\mathrm{V}_{\text {EN }}=5 \mathrm{~V}$	Ien			100	$\mu \mathrm{A}$	
Power outputs							
Switch on resistance	Rou-ve, Rou-bl						
	$5 \mathrm{~V}<\mathrm{V}_{\mathrm{B}}<6 \mathrm{~V}$ C $\mathrm{CP}=33 \mathrm{nF}$				400	$\mathrm{m} \Omega$	
	$\mathrm{V}_{\mathrm{B}}>6 \mathrm{~V} \mathrm{C}_{\text {cp }}=33 \mathrm{nF}$				300	$\mathrm{m} \Omega$	
Current limitation	Peak value controlled inductive load $\mathrm{L}=0,8 \ldots 5 \mathrm{mH}$ ressistive load $R=0,8 \ldots 1,8$						
Switch-off current		\|loul max	5.5	6.6	7.8	A	
Short circuit detection current		\|louk		8			A
Output Statusflag	Open drain-output						
Output,„high" (SF not set)	$\mathrm{V}_{\mathrm{SF}}=5 \mathrm{~V}$	IsF			10	$\mu \mathrm{A}$	
Output „low" (SF set)	$\mathrm{V}_{\mathrm{SF}}<1 \mathrm{~V}$	IsF	300			$\mu \mathrm{A}$	
Timing							
PWM frequency	Ccp $=33 \mathrm{nF}$	f			1	kHz	
Switching frequency during current limitation	$\mathrm{V}_{\mathrm{B}}=6 \ldots .7 \mathrm{~V} \mathrm{C}_{\mathrm{cp}}=33 \mathrm{nF}$	f			5	kHz	
	$\mathrm{V}_{\mathrm{B}}=7 \ldots 8 \mathrm{~V}$	f			10	kHz	
	$\mathrm{V}_{\mathrm{B}}=8 \ldots 12 \mathrm{~V}$	f			20	kHz	
	$V_{B}>12 \mathrm{~V}$	f			30	kHz	
V_{B}-Undervoltage switch-off		Vve,Gnd	4.4		5.0	V	
Overtemperature switch-off		T_{j}	175		190	${ }^{\circ} \mathrm{C}$	

Contact

Robert Bosch GmbH
Sales Semiconductors
Postbox 1342
72703 Reutlingen
Germany
Tel.: +49 7121 35-2979
Fax: +49 7121 35-2170

Robert Bosch Corporation
Component Sales
38000 Hills Tech Drive
Farmington Hills, MI 48331
USA
Tel.: +1 248 876-7441
Fax: +1 248 848-2818

Robert Bosch K.K.
Component Sales
9-1, Ushikubo 3-chome
Tsuzuki-ku, Yokohama 224
Japan
Tel.: +81 459 12-83 01
Fax: +81 459 12-95 73

E-Mail: bosch.semiconductors@de.bosch.com
Internet: www.bosch-semiconductors.de
© 02/2006 All rights reserved by Robert Bosch GmbH including the right to file industrial property rights
Robert Bosch GmbH retains the sole powers of distribution, such as reproduction, copying and distribution.
For any use of products outside the released application, specified environments or installation conditions no warranty shall apply and Bosch shall not be liable for such products or any damage caused by such products.

