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Abstract: This study presents a novel procedure for switched affine systems control design specially developed to
deal with switched converters where the main goal is to attain a set of equilibrium points. The main contribution
is on the determination of a switching function, which assures global stability and minimises a guaranteed
quadratic cost. The implementation of the switching function taking into account only partial information is
analysed and discussed with particular interest. The theoretical results are applied to buck, boost and buck–
boost converters control design. Several simulations show the usefulness of the methodology and its
favourable impact in a class of real-world control design problems.
1 Introduction
The last years have witnessed the crescent interest of the
scientific community in the study of switched linear
systems. They consist of a subclass of hybrid systems
characterised by having a switching rule which selects, at
each instant of time, a dynamic subsystem among a
determined number of available ones. In general, the main
goal is to design a switching strategy in order to guarantee
closed-loop asymptotical stability with adequate guaranteed
performance. The literature to date presents several
important results in this research field, where the papers
[1–3], and the books [4, 5] are surveys that treat these
topics with deepness and particular attention to the most
effective design techniques.

Roughly speaking, the techniques commonly used to study
this kind of systems arise from the choice of distinct classes of
Lyapunov functions, as for instance, quadratic [6–9], multiple
[10–12], polyhedral [13] or piecewise quadratic ones [14–18],
where the main difference among them is the level of
conservativeness in the provided conditions. Some of the
cited techniques seamed very effective to treat state feedback
switched control design problems [7, 9, 11, 12, 14, 16, 17]
and dynamic output feedback design problems [8, 9, 16],
where some of these works consider robust control design as
well. Despite the rapid progress made so far, many switched
systems-related problems are still unexplored.
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Motivated by the wide field of application in the real
world, mainly in power electronics, we turned our attention
to study switched affine systems with the following state-
space realisation

ẋ = Asx + Bsu, x(0) = x0 (1)

where x(t) [ Rn is the state, s(.) is the switching strategy and
u(t) = u [ Rm is an external input assumed to be constant
for all t ≥ 0. Notice that, when u(t) ; 0 the system,
whenever globally asymptotically stable, presents an unique
equilibrium point xe = 0. In this case, as it can be seen by
the references cited before, the literature is rich and
provides results even for state and output feedback control
design. It is interesting to notice that, depending on the
switching strategy, when u(t) � 0 the resulting affine
system may have several equilibrium points composing a
region in the state space. This aspect, important for
practical applications, will be fully addressed in the sequel.

In this paper, our main goal is to calculate what we call the
set of attainable equilibrium points defined as the state-space
region composed by all points that can be reached from any
initial condition by the proposed switched control
technique. Our main goal is to calculate this set and design
a switching rule in order to take any trajectory of the
system to a desired point inside the mentioned set. In
addition, this is done by minimising a quadratic in the state
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guaranteed cost to be defined later. Undoubtedly, this
problem is more challenging than that defined with
u(t) ; 0. Now, two points of concern are: (i) to find the
set of attainable equilibrium points and (ii) to design a
switching rule that guides the system trajectory to the
desired equilibrium point. To the best of our knowledge,
this problem is still unexplored, although it was cited
before by [1] and [5], as motivation to study switched
linear systems but, in the context presented here, has never
been solved. However, it is worth mentioning the recent
results of [19] dealing with convergence analysis of affine
systems with bounded piecewise continuous inputs, that
will be considered for comparison. The obtained theoretical
results are based on a quadratic Lyapunov function and
seemed very useful, in particular, for application in power
electronics control design problems. In a first moment, the
designer has to provide full information, that is the set of
state variables at equilibrium. Afterwards, the possibility to
implement the switching strategy with partial information,
which represents a more realistic situation where only part
of the equilibrium state variable is provided, will be treated
and discussed. Three different and classical topologies of
DC–DC converters, namely boost, buck and buck–boost,
will be considered in detail. For these converters, our
methodology has shown to be efficient in the sense that,
under the full or partial information assumption, the
switching strategy was able to make globally asymptotically
stable all equilibrium points within a set that covers a wide
range of the load voltage.

The paper is organised as follows. Section 2 presents the
problem statement and some mathematical preliminaries
needed for future developments. In Section 3, two switching
strategies are designed. They differ from the fact that one of
them is linear and easier to implement. Section 4 is devoted
to design switching strategies for the three mentioned
converters under full information. In Section 5, some
relevant points on control design under partial information
are addressed. We end the paper by a conclusion which puts
in evidence the main contributions.

The notation used throughout is standard. The identity
matrix of any dimension is denoted by I. For real matrices
or vectors (′) indicates transpose. The convex combination
of a set of matrices {A1, . . . , AN } is denoted by
Al =

∑N
i=1 liAi , where l belongs to the set L composed

by all non-negative vectors such that
∑N

i=1 li = 1. The set
of square and Hurwitz real matrices, those with eigenvalues
located in the left-hand side of the complex plane, is
denoted by H. Finally, the set composed by the first N
positive integers, namely {1, . . . , N }, is denoted by K.

2 Problem statement and basic
results
In this section, the problem to be dealt with is presented. The
class of switched systems of interest is defined by the
202
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following state space realisation

ẋ = Asx + Bsu, x(0) = x0 (2)

z = Csx (3)

where x(t) [ Rn is the state, u(t) = u [ Rm is the input
supposed to be constant for all t ≥ 0 and z(t) [ Rp is the
controlled output. The switching rule s(t):t ≥ 0 � K

selects at each instant of time t ≥ 0, a known subsystem
among N available ones defined by

Gi =
Ai Bi

Ci 0

[ ]
, i [ K (4)

where the matrices of each subsystem Gi have compatible
dimensions. The control design problem to be addressed
afterwards can be summarised as follows: Design a
switching strategy s(x(t)) for all t ≥ 0 and determine the
set of all equilibrium points xe [ Rn denoted Xe that are
attainable with such switching strategy, that is x(t) � xe as
t � 1 . Of course, we would like to determine a switching
strategy in order to be able to attain any point xe [ Rn,
that is Xe ; Rn. However, such a switching strategy often
does not exist and, as a consequence, we have to determine
the region Xe , Rn together with the associated switching
strategy. In this framework, the practical usefulness of a
proposed solution must be verified for each specific
problem as it will be done in the sequel. Furthermore,
ideally the final design requires the determination of s(.)
from the solution of the optimal control problem

min
s

∫1

0

(z − Csxe)
′(z − Csxe)dt (5)

for some given xe [ Xe. Owing to the non-continuous
nature of the switching function s(t), this problem is very
hard to solve. Hence, we propose to replace it by a
simpler problem which corresponds to minimise an upper
bound of the objective function yielding a quadratic in the
state guaranteed cost control problem. To ease the
notation, throughout the paper we denote Qi = C ′

i Ci ≥ 0
for all i [ K. In the literature to date, several results
dealing with the determination of a stabilising switching
strategy are available, but in general, for the particular
case of switched linear systems characterised by u(t) ; 0,
which naturally imposes Xe = {0}. They differ from the
use of different Lyapunov functions, as for instance
multiple [1, 10], quadratic [6] and piecewise quadratic
Lyapunov functions [15, 16], among others. An exception
is [19] where the concept of quadratic convergence of
affine systems is addressed by means of a quadratic
Lyapunov function. In this paper, we restrict ourselves to
use a quadratic Lyapunov function to establish the next
theoretical results. This class of Lyapunov functions
allows precise and simple comparisons with the already
classical results on DC–DC converters design, which are
based on some time approximation of the switching
IET Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1201–1210
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strategy, known as the state variables averaging method, see
[20]. The next lemma provides a well-known and important
result on this subject.

Lemma 1: Consider the switched linear system (2) with
u(t) ; 0 for all t ≥ 0. If there exist l [ L and a symmetric
positive-definite matrix P [ Rn×n such that

A′
lP + PAl , 0 (6)

then the switching strategy s(x) = arg mini[K x′PAix makes
the equilibrium point xe = 0 globally asymptotically stable.

The proof of this result is simple. It suffices to consider the
quadratic Lyapunov function v(x) = x′Px whose time
derivative with respect to an arbitrary trajectory of (2) with
u ¼ 0 provides

v̇(x) = x′(A′
sP + PAs)x

= min
i[K

x′(A′
iP + PAi)x

= min
l[L

x′(A′
lP + PAl)x

, 0, ∀x = 0 (7)

where the last inequality follows from the existence of l [ L

satisfying (6). A remarkable fact associated to this lemma is
that the necessity also holds whenever N ¼ 2, as has been
proved in the interesting paper [6].

In the next section, we generalise this result in two
directions. First, a constant input signal is taken into
account in order to cope with affine models. As it will be
clear afterwards, the behaviour of the closed-loop system
with a state-dependent switching control strategy of the
form s(x) is considerably richer in the sense that the set
of attainable equilibrium points is not a single point
anymore. Instead, it becomes curves or regions of the
state-space Rn. Second, a quadratic guaranteed cost
associated to (5) is taken into account towards the
switching strategy design.

3 State feedback switching
control design
In this section, the state feedback switched control for system
(2), (3) is designed. The main goal is to determine a set of
equilibrium points xe [ Rn denoted Xe such that the
equality limt�1 x(t) = xe holds for all initial condition
x0 [ Rn whenever the designed switching strategy s(x) is
applied. The next two theorems provide the main results of
this paper.
T Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1201–1210
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Theorem 1: Consider the switched affine system (2), (3)
with constant input u(t) ¼ u for all t ≥ 0 and let xe [ Rn

be given. If there exist l [ L, and a symmetric positive-
definite matrix P [ Rn×n such that

A′
lP + PAl + Ql , 0 (8)

Alxe + Blu = 0 (9)

then the switching strategy

s(x) = arg min
i[K

j′(Qij+ 2P(Aix + Biu)) (10)

where j = x − xe makes the equilibrium point xe [ Rn

globally asymptotically stable and the guaranteed cost

∫1

0

(z − Csxe)
′(z − Csxe) dt , (x0 − xe)

′P(x0 − xe) (11)

holds.

Proof: Considering the switching strategy (10) and adopting
the quadratic Lyapunov function v(j) = j ′Pj, its time
derivative along an arbitrary trajectory of the switched
system (2), (3) satisfies

v̇(j) = ẋ′Pj+ j′Pẋ

= 2j ′P(Asx + Bsu)

= min
i[K

j ′(Qij+ 2P(Aix + Biu)) − j ′Qsj

= min
i[K

(j ′(A′
iP + PAi + Qi)j

+ 2j ′P(Aixe + Biu)) − j ′Qsj

= min
l[L

(j ′(A′
lP + PAl + Ql)j

+ 2j ′P(Alxe + Blu)) − j ′Qsj

, −j ′Qsj (12)

where the fourth equality follows from the third one by
substituting x = j+ xe and the last inequality follows from
the conditions (8), (9). Since v̇(j) , 0 for all j = 0 [ Rn,
the conclusion is that xe is a globally asymptotically stable
equilibrium point. Moreover, integrating (12) from zero to
infinity and taking into account that v(j(1)) = 0 we obtain
(11) and the proof is concluded. A

It is interesting to observe that even in the particular case
Qi = 0 for all i [ K where only asymptotical stability is
addressed, the switching function given in Theorem 1 is in
general quadratic with respect to the state variable x [ Rn.
Moreover, whenever Qi = 0 for all i [ K and u ¼ 0 this
theorem reduces to the result of Lemma 1. A simpler linear
switching strategy will be given in the sequel. For the
moment, the result of Theorem 1 admits the following
considerations. The first one concerns the way we have to
proceed in order to solve the design conditions (8), (9),
which requires the determination of a specific vector l [ L
1203
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associated to an equilibrium point xe. Noticing that the
inequality (8) imposes Al asymptotically stable, all xe

satisfying (9) constitute the set

Xe = {−A−1
l Blu : Al [ H, ∀l [ L} (13)

which can be numerically determined. Only points xe [ Xe

can be reached by the switching strategy provided in
Theorem 1. Hence, for a given xe [ Xe the associated
value l [ L is determined and, afterwards, a feasible
solution for the Lyapunov inequality (8) is calculated. Since
by construction Al [ H, matrix P . 0 is readily obtained
from

P =
∫1

0

eA′
lt (Ql + S)eAlt dt (14)

where S . 0 is an arbitrary matrix with compatible
dimensions. From this, all parameters required for the
implementation of the switching strategy (10) follow.

Another relevant point is on the interpretation of Theorem 1
in the light of the well-known state variable averaging
method reported in [20]. To this end, let us define the
auxiliary dynamic system

ḣ = Alh+ Blu, x(0) = x0 (15)

z = Clh (16)

where we notice that Al [ H enforces h(t) � xe [ Xe as
t � 1. Moreover, simple calculations put in evidence that

∫1

0

(z− Clxe)
′(z− Clxe) dt =

∫1

0

(x0 − xe)
′eA′

ltC ′
lCleAlt

× (x0 − xe) dt

≤
∫1

0

(x0 − xe)
′eA′

ltQleAlt

× (x0 − xe) dt

, (x0 − xe)
′P(x0 − xe)

(17)

where the first inequality follows from the fact that
C ′
lCl ≤ Ql for all l [ L and the second one is a direct

consequence of S . 0 in (14). The important conclusion is
that, with no approximation of any kind, the affine time
invariant system (15), (16) admits the same steady-state
solution xe [ Xe and the same guaranteed cost for the
transition from h(0) = x0 to h(1) = xe [ Xe than the
switched affine system under consideration controlled with
the switching strategy provided by Theorem 1. In our
opinion, this gives a precise and favourable measure of the
theoretical results obtained so far, as far as control design
of power electronics converters is concerned. The next
theorem provides a linear switching strategy, simpler to be
implemented in practice.
04
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Theorem 2: Consider the switched affine system (2), (3)
with constant input u(t) ¼ u for all t ≥ 0 and let xe [ Rn

be given. If there exist l [ L, and a symmetric positive-
definite matrix P [ Rn×n such that

A′
iP + PAi + Qi , 0 (18)

Alxe + Blu = 0 (19)

for all i [ K, then the switching strategy

s(x) = arg min
i[K

j′P(Aixe + Biu) (20)

where j = x − xe makes the equilibrium point xe [ Rn

globally asymptotically stable and the guaranteed cost (11)
holds.

Proof: Considering again the quadratic Lyapunov function
v(j) = j ′Pj, its time derivative along an arbitrary trajectory
of the switched system (2), (3) controlled with the
switching rule (20), satisfies

v̇(j) = ẋ′Pj+ j ′Pẋ

= 2j ′P(Asx + Bsu)

= 2j ′P(Asxe + Bsu) + j ′(A′
sP + PAs)j

= min
i[K

(2j ′P(Aixe + Biu)) + j ′(A′
sP + PAs)j

, min
l[L

(2j ′P(Alxe + Blu)) − j ′Qsj

, −j ′Qsj (21)

where the first inequality follows from the fact that
A′
sP + PAs , −Qs for all s [ K as an immediate

consequence of (18) and the last inequality is due to (19).
Finally, by simple integration, the inequality (11) is
obtained and the proof is concluded. A

Notice that when u ¼ 0, the global asymptotical stability
is assured for an arbitrary switching rule. When compared to
(10) the switching strategy provided by Theorem 2 is
simpler and more amenable for practical purposes because
the switching function is linear. However, the price to be
payed is that the conditions (18) are much more stringent
than (8). While (8) is a classical Lyapunov inequality the
condition (18) represents a set of N LMIs with respect to
a single matrix variable P . 0, being so more difficult to
solve. Whenever Theorem 2 admits a solution, it is
preferable to be used than Theorem 1. The main reason is
that in the last, the matrix P > 0 does not depend on
each l [ L associated to xe [ Xe. Hence, for any
equilibrium point xe [ Xe selected by the designer the
same P . 0 and, consequently, the same switching
strategy (20) is used.

An interesting property regarding piecewise affine systems
is the quadratic convergence, fully addressed in [19]. For
comparison purpose, restricting our attention to bimodal
IET Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1201–1210
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switched systems characterised by N ¼ 2 and Q1 = Q2 = 0,
the linear switching strategy (20) allows us to rewrite the
system (2) as

j̇ =
A1j+ b1, c′ej ≤ 0

A2j+ b2, c′ej . 0

{
(22)

where j = x − xe, bi = Aixe + Biu for i ¼ 1, 2 and ce =
P(b1 − b2). Hence, applying Theorem 2 for any xe [ Xe,
the existence of a common positive-definite solution
of the Lyapunov inequalities (18) is sufficient to conclude
that the origin j ¼ 0 is globally asymptotically stable. On the
other hand, from the necessary and sufficient condition given
in ([19], p. 1238), we cannot say that this affine system is
quadratically convergent unless the supplementary condition
A1 − A2 = Gc′e for some G [ Rn is also satisfied. As
expected, the less restrictive result of Theorem 2, valid
exclusively for affine switched systems with constant input, is
not sufficient to assure quadratic convergence which, by
definition, imposes an adequate behaviour of the system
response for any bounded piecewise continuous input.

The next section is devoted to apply the theoretical results
obtained so far to specific models of three classical DC–DC
converters. Fortunately, as it will be seen, all of them satisfy
the design conditions preconised by Theorem 2.

4 DC–DC converters design
In this section, the three DC–DC converters of interest are
modelled as switched affine systems that consist of a group of
N ¼ 2 affine subsystems sharing the same state variables. At
any instant of time only one of the subsystems determines the
evolution of the states and this subsystem is said to be active.
The decision of which subsystem is active is the control
variable, resulting in a switching rule s(x(t)) [ {1, 2}. This
approach considers that the controller is able to determine
the active subsystem, so converters that operate in
discontinuous conduction mode are not considered here. In
all converters under consideration, iL denotes the inductor
current, vC denotes the capacitor voltage and they are the
elements of the state variable x = [iL vC]′. The converters
are modelled by two subsystems corresponding to each
position of the switches that operate complementarily and
depend on five parameters that, for simulation purpose, we
have considered the following nominal values: u = 100 V,
R = 2V, L = 500mH, Co = 470mF and Ro = 50V.

In the present design framework, we propose to solve the
guaranteed cost problem associated to

min
s

∫1

0

R−1
o (vC − ve)

2 + rR(iL − ie)
2 dt (23)

where xe = [ie ve]
′ [ Xe is an attainable equilibrium point and

r ≥ 0 is a parameter, both defined by the designer. The index
appearing in (23) expresses the weighted sum of the energy of
Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1201–1210
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the error signal of each state variable, the error being taken
relatively to the respective level defined by the chosen
equilibrium point. It has been verified that the non-negative
parameter r [ R plays a central role as far as the voltage
transitory duration and the current peak value are concerned.
Indeed, for r ≫ 1 the current peak is reduced at the expense
of a slower output voltage convergence to the equilibrium
value. On the contrary, for r ≪ 1, the voltage convergence is
faster but a greater current peak generally occurs.

In this paper, we will consider the extreme case r ¼ 0
which from (5) leads to

Q1 = Q2 = 0 0
0 1/Ro

[ ]
(24)

The determination of the matrix P . 0, necessary to the
implementation of the switching strategy given in Theorem 2,
is done from the solution of the following convex
programming problem

inf
P.0

{Tr(P) : A′
iP + PAi + Qi , 0, ∀i [ K} (25)

which can be numerically handled by any LMI solver available
in the literature, see [21]. The objective function of problem
(25) corresponds to that of the right-hand side of (11) with
the (unknown) vector x0 − xe assumed to be uniformly
distributed over the unit sphere. Furthermore, for the three
DC–DC converters to be analysed in the sequel, problem
(25) is always feasible because the energy Lyapunov matrix

Po =
L/2 0

0 Co/2

[ ]
(26)

yields P = ePo, which satisfies all constraints whenever e . 1.
Unfortunately, it is important to mention that, in general, the
matrix Po may be far from the global optimal solution of the
convex programming problem (25). Unless in the particular
cases where Ai = A ∀i [ K, the determination of the optimal
solution is not trivial and, as already mentioned, requires the
use of an appropriate numerical routine. Finally, we want to
stress that for N ¼ 2 the switching strategy (20) is particularly
simple to be implemented. Actually, it can be written as

s(x) =
1 if c′e(x − xe) ≤ 0

2 if c′e(x − xe) . 0

{
(27)

where ce = P((A1 − A2)xe + (B1 − B2)u). The actual value of
s(x(t)) is decided by verifying in which subspace defined by the
hyperplane c′e(x − xe) = 0 passing through xe [ Xe the state
vector x(t) at time t ≥ 0 belongs to. Needless to say that the
vector ce may depend on the equilibrium point xe and must
be recalculated whenever a different equilibrium point is
selected. We are now in a position to analyse each DC–DC
converter of interest. It is worth to be pointed out that no
limit is imposed to the switching frequency; consequently,
when the system trajectory evolves on a sliding mode, the
1205

& The Institution of Engineering and Technology 2010



12

&

www.ietdl.org
switching signal changes very fast between its possible values.
Therefore it is not possible to properly visualise the switching
signal, which is omitted in the simulations.

4.1 Buck converter

The top of Fig. 1 shows the structure of a buck converter,
which allows just output voltage magnitude lower than the
input voltage. From the definition of the state variable, the
switched system state-space model (2), (3) is defined by the
following matrices

A1 = A2 =
−R/L −1/L

1/Co −1/RoCo

[ ]
,

B1 =
1/L

0

[ ]
, B2 =

0

0

[ ]
(28)

Before all, the set of all attainable equilibrium points is
calculated as being

Xe = {(ie, ve) : ve = Roie, 0 ≤ ie ≤ u/(Ro + R)} (29)

which is a line segment practically defined only by the load
since R ≪ Ro. The solution of problem (25) yields the vector

ce =
0.0171
0.0128

[ ]
u (30)

needed for the implementation of the switching strategy (27).
It is interesting to notice that for this particular converter, the

Figure 1 Buck circuit and phase plane
06
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gradient of the switching surface does not depend on the
equilibrium point xe [ Xe. The bottom of Fig. 1 shows in
solid lines some trajectories that start from zero initial
condition and reach the equilibrium points with voltages
ve = {10, 20, . . . , 90} V belonging to the set Xe, viewed in
dotted line. As it can be seen the proposed switching
control is very effective. In all cases the transitory period
was less than 5 ms but at the expense of current peaks near
40 A of magnitude.

4.2 Boost converter

The top of Fig. 2 shows a bidirectional boost converter
feeding the resistive load Ro. The switched system state-
space model (2), (3) is defined by the following matrices

A1 =
−R/L 0

0 −1/RoCo

[ ]
,

A2 =
−R/L −1/L

1/Co −1/RoCo

[ ]
(31)

B1 = B2 = 1/L
0

[ ]
(32)

There is no difficulty to express the set of all attainable
equilibrium points as

Xe = {(ie, ve) : u/(R + Ro) ≤ ie ≤ u/R,

v2
e + (RRo)i

2
e − (Rou)ie = 0} (33)

Figure 2 Boost circuit and phase plane
IET Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1201–1210
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which makes apparent that the equilibrium voltage attained
by the proposed switched control law belongs to
0 ≤ ve ≤ (

��������
Ro/4R

√
)u, which is an adequate voltage

interval. Indeed, this is more than necessary because, in
practice, the equilibrium current is limited to the region
u/(R + Ro) ≤ ie ≤ u/2R enforcing Rou/(R + Ro) ≤
ve ≤ (

��������
Ro/4R

√
)u. As already remarked we always have

R ≪ Ro and consequently ve ≥ u as a characteristic of this
class of converters. From the optimal solution of problem
(25), we obtain

ce =
−0.1182 0.5726
−1.0506 0.1111

[ ]
xe (34)

used for the implementation of the switching strategy (27).
The bottom of Fig. 2 shows the phase plane of the boost
converter evolving from zero initial condition. In solid
lines, we show the closed-loop system trajectories towards
the equilibrium points corresponding to the following
values of load voltage ve = {110, 120, . . . , 240} V. These
points of the set Xe given in (33) are shown in dotted line.
In this case, the transitory period was less than 60 ms for
the maximum current peak near 40 A of magnitude.

4.3 Buck–boost converter

The top of Fig. 3 shows a buck–boost converter feeding the
resistive load Ro. The switched system state-space model (2),

Figure 3 Buck–boost circuit and phase plane
T Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1201–1210
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(3) is defined by the following matrices

A1 =
−R/L 0

0 −1/RoCo

[ ]
,

A2 =
−R/L −1/L

1/Co −1/RoCo

[ ]
(35)

B1 = 1/L
0

[ ]
, B2 = 0

0

[ ]
(36)

With a little more difficulty, the set of all attainable
equilibrium points are calculated as being

Xe = {(ie, ve) : 0 ≤ ve ≤ Roie,

v2
e + (RRo)i

2
e − (Rou)ie + uve = 0} (37)

from which it is verified that the attained voltage range is
approximatively the same as in the previous case, that is
0 ≤ ve ≤ (

��������
Ro/4R

√
)u, whenever the resistance of the load

and the source satisfy R ≪ Ro. Moreover, the optimal
solution of problem (25) is the same as that of the boost
converter, yielding

ce =
−0.1182 0.5726
−1.0506 0.1111

[ ]
xe +

0.5726
0.1111

[ ]
u (38)

and by consequence the switching strategy (27). As before,
the bottom part of Fig. 3 shows in solid lines the phase
plane trajectories of the closed-loop system evolving from
the origin. Notice in dotted line the equilibrium points of
interest belonging to Xe and corresponding to
ve = {10, 20, . . . , 190} V. In this case, the converter
has a transitory behaviour very close to that of the boost
converter, namely, the transitory period was approximatively
60 ms for the maximum current peak near 35 A of
magnitude.

The previous simulations show that the switching strategy
is simple and is very effective to control three important
classes of converters. It is linear and depends on the two
coordinates of the equilibrium point xe = [ie ve]

′ [ Xe

which must be provided by the designer. However, in
practice, it would be important to work with partial
information, a problem that will be stated and solved in the
next section.

5 Partial information
A problem of great practical interest is the one raised from the
possibility to implement the switching strategy based on
partial information, see [22]. For instance, the equilibrium
output voltage ve of the converters already treated is
precisely defined by the user who does not care about the
corresponding current inductor ie. In the framework of
Theorem 1 applied to system (2), (3) it consists in making
s(x) given in (10) independent of part of the equilibrium
vector xe [ Xe, that is, independent of the equilibrium
1207
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current ie. For simplicity of exposition we consider
Qi = Q ≥ 0 for all i [ K. The approach presented in [22]
is adopted here. An idea is to introduce a low-pass filter
with transfer function F (s) = 1/(ts + 1) in order to
estimate the steady-state value of the current iL. Choosing
t = RoCo the new state variable becomes x = [iL vC îL]′

and the augmented switched system state-space model (2),
(3) is defined by the following matrices

A1 =
−R/L 0 0

0 −1/RoCo 0

1/RoCo 0 −1/RoCo

⎡
⎢⎣

⎤
⎥⎦,

A2 =
−R/L −1/L 0

1/Co −1/RoCo 0

1/RoCo 0 −1/RoCo

⎡
⎢⎣

⎤
⎥⎦ (39)

B1 =
1/L

0
0

⎡
⎣

⎤
⎦, B2 =

0
0
0

⎡
⎣

⎤
⎦ (40)

and Q1 = Q2 = diag{0, 1/Ro, 0}. The model of each
converter is given by (A1, A2, B1, B2) = (A2, A2, B1, B2) for
buck, (A1, A2, B1, B2) = (A1, A2, B1, B1) for boost and
(A1, A2, B1, B2) = (A1, A2, B1, B2) for buck–boost. The
interesting issue in this case is that the set of equilibrium
points Xe provided by Theorem 1 is composed by
points of the form xe = [ie ve ie]

′. Hence, setting the linear
constraints

JP Ai Bi

[ ]
= V , ∀i [ K (41)

with respect to the Lyapunov matrix P [ R3×3 and the matrix
variable V [ R1×4, where J = [1 0 1], it is seen that the
switching strategy s(x) = arg mini[K (x − xe)

′ P(Aix + Biu)
does not depend on the equilibrium current ie. Indeed,
defining the vector P(Aix + Biu) = [ fi (x) gi(x) hi(x)]′,
multiplying (41) to the right by [x′ u′]′ we conclude that
fi (x) + hi(x) = V [x′ u′]′ for all i [ K, that is the sum of
these functions does not depend on the index i [ K.
Consequently, we obtain

s(x) = arg min
i[K

(x − xe)
′P(Aix + Biu)

= arg min
i[K

(iL − ie)fi (x) + (vC − ve)gi(x)

+ (îL − ie)hi(x)

= arg min
i[K

(iL − îL)fi (x) + (vC − ve)gi(x) (42)

We notice that the functions fi (x) and gi(x) are linear with
respect to x [ R3, which makes the switching surface
quadratic. This switching strategy is globally asymptotically
stable. For a given load voltage level ve such that the
corresponding equilibrium point xe is attainable, Theorem 1
assures that for any initial condition vC(t) � ve as t � 1.
Moreover, due to the fact that only the error vC − ve is
present in the objective function, this switching strategy
208
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generally imposes to the closed-loop system a small transitory
in the load voltage at the expense of a greater one in the
current error iL − îL. This aspect will be illustrated
afterwards. For the moment, we have to make explicit the
determination of the switching strategy (42). Clearly, from
Theorem 1 it follows that the solution of the convex

Figure 4 Converters operating under partial information
IET Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1201–1210
doi: 10.1049/iet-cta.2009.0246
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programming problem

inf
(P,V )[V

{Tr(P) : A′
lP + PAl + Ql ≤ 0} (43)

where V is the set of all pairs (V, P) with P . 0 satisfying the
equality constraints (41) and l [L is associated to the desired
equilibrium point xe [ Xe. The inequality in (43) is not strict as
indicated in (8) because the constraints (41) generally impose
JPAl J ′ = 0. Indeed, it can be verified that this is precisely
the case of the boost and buck–boost converters. As a
consequence, to preserve feasibility of (43), we must have
JQi J ′ = 0 for all i [ K, which is true for the matrices under
consideration. Applying Theorem 1, these theoretical aspects
led us to conclude that the time derivative of the quadratic
Lyapunov function v(j) = j ′Pj satisfies

v̇(j) ≤ −j ′Qsj (44)

and v̇(j) = 0 for all j [ R3 of the form j = J ′a for some
a [ R, that is for all points of the state-space
j = [iL − ie vC − ve îL − ie]

′ such that iL = îL = ie + a

and vC = ve. On the other hand, since the filter output
imposes dîL/dt = 0 whenever iL = îL and vC = ve enforces
iL = îL = ie, the only trajectory such that v̇(j) = 0 is
actually that defined by the equilibrium point xe [ Xe

chosen by the designer.

Fig. 4 shows, from the top to the bottom, the phase plane
of buck, boost and buck–boost converters operating under
partial information and starting from zero initial
conditions. In all cases, the time needed for the output
voltage vC(t) be close enough to the equilibrium voltage ve

was approximatively the same than the one observed under
full information. This fact, together with the phase plane
trajectories that clearly indicate that all desired equilibrium
points have been reached, put in evidence the usefulness
and practical appealing of the proposed switching strategy
design for switched affine systems.

6 Conclusion
In this paper, we have addressed the problem of designing a
switching strategy for switched affine systems. Two different
solutions have been proposed providing switching rules that are
linear and quadratic with respect to the state-space vector
supposed to be available for feedback. In both cases a quadratic
guaranteed cost have been minimised. Moreover, problems
with full information and partial information structures have
been considered. These structures differ from one another by
the important aspect that, in the second case, implementation
constraints of the switching strategy are explicitly taken into
account. Although it is possible to say that the theoretical
results involving affine dynamic systems can be adopted in
various real-world problems, due to its intrinsic practical
importance, three classical DC–DC converters control design
have been chosen for illustration. In this framework, it has
been possible to give a new interpretation of the well-
established state variable averaging method. Several simulations
T Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1201–1210
oi: 10.1049/iet-cta.2009.0246
involving three types of converters namely buck, boost and
buck–boost have shown the simplicity, quality and usefulness
of the design methodology proposed.
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São Paulo - FAPESP’, Brazil.

8 References

[1] DECARLO R.A., BRANICKY M.S., PETTERSSON S., LENNARTSON B.:
‘Perspectives and results on the stability and stabilizability
of hybrid systems’, Proc. IEEE, 2000, 88, (7), pp. 1069–1082

[2] LIBERZON D., MORSE A.S.: ‘Basic problems in stability and
design of switched systems’, IEEE Control Syst. Mag.,
1999, 19, (5), pp. 59–70

[3] SHORTEN R., WIRTH F., MASON O., WULFF K., KING C.: ‘Stability
criteria for switched and hybrid systems’, SIAM Rev.,
2007, 49, (4), pp. 545–592

[4] LIBERZON D.: ‘Switching in systems and control’
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