
A Trajectory Tracking and 3D Positioning Controller for the AR.Drone
Quadrotor

Lucas Vago Santana1, Alexandre Santos Brandão2, Mário Sarcinelli-Filho3 and Ricardo Carelli4

Abstract— In this paper a complete framework is proposed,
to deal with trajectory tracking and positioning with an
AR.Drone Parrot quadrotor flying in indoor environments. The
system runs in a centralized way, in a computer installed in
a ground station, and is based on two main structures,namely
a Kalman Filter (KF) to track the 3D position of the vehicle
and a nonlinear controller to guide it in the accomplishment
of its flight missions. The KF is designed aiming at estimating
the states of the vehicle, fusing inertial and visual data. The
nonlinear controller is designed with basis on a dynamic model
of the AR.Drone, with the closed-loop stability proven using the
theory of Lyapunov. Finally, experimental results are presented,
which demonstrate the effectiveness of the proposed framework.

I. INTRODUCTION

The study of control techniques applied to unmanned
aerial vehicles (UAV) has been extensively explored in
academic research, with remarkable results already published
[1], [2], [3]. Most of the published works have the use of
rotary-wing aircrafts as experimental platform as a common
factor, much probably because of its versatility to perform
in-flight maneuvers in any direction and its capability to
hover as well. Due to these characteristics, such aircrafts
are ideal platforms to perform tasks like environment explo-
ration, surveillance, search and rescue, aerial photography
and others.

However, some of these results are limited, in real-world
applications, mostly because they are based on an external
computer vision system, like the Vicon Motion Capture
System, used to determine the UAV localization. This kind
of approach is very popular in works whose maneuvers
are quickly and accurately explored, such as in [1], where
quadrotors perform ball juggling, and [2], where they pre-
cisely fly through a circular hoop.

On the other hand, some works deal with UAV navigation
using only the sensors installed onboard the vehicle. This
is the case in [4], where a quadrotor with an assembled
onboard computer is used for navigation between floors in
indoor environments. The work presents a technique for

*This work was supported by CNPq and FAPES.
1L. V. Santana is with the Department of Industrial Automa-

tion, Federal Institute of Espı́rito Santo, Linhares - ES, Brazil
lucas@ifes.edu.br

2A. S. Brandão is with the Department of Electrical
Engineering, Federal University of Viçosa, Viçosa - MG, Brazil
alexandre.brandao@ufv.br

3M. Sarcinelli-Filho is with the Graduate Program on Electrical En-
gineering, Federal University of Espı́rito Santo, Vitória - ES, Brazil
mario.sarcinelli@ufes.br

4R. Carelli is with the Institute of Automatics, National University of
San Juan, San Juan, Argentine rcarelli@inaut.unsj.edu.ar

simultaneous localization and mapping (SLAM) through the
fusion of information coming from a laser scanner, an inertial
measurement unit (IMU) and a video camera.

Using the AR.Drone quadrotor as experimental platform,
some interesting works can be cited. In [5], a set of exper-
iments based on servo-visual cooperative position control is
presented. There is not an explicit fusion filter, but the inertial
data are still used together with visual data to guide the UAV
in formation with a ground robot. In [6] the Parallel Tracking
and Mapping (PTAM) technique is adopted as the tool to
extract the visual data and a Extended Kalman Filter (EKF)
is adopted to fuse it with inertial measurements. There,
the system is evaluated through flying missions consisting
of following some test figures, with the state estimation
provided by the EKF. More recently, in [7], a framework has
been presented to perform an onboard path-following control,
demonstrating the feasibility of using a small single-board
computer attached to the AR.Drone as the central processing
unit to guide the aircraft.

In such context, this work proposes a method to control
the AR.Drone quadrotor in 3D trajectory tracking and 3D
positioning tasks in indoor environments. The main goal
is to provide to the reader information on how to develop
a computational system capable of automatically control a
quadrotor, which can be easily adapted for other applications
in robotics.

It is noteworthy that several published works have ad-
dressed solutions to the problem discussed here, so it is
important to highlight the differences of this manuscript,
considering similar works. The first relevant difference is
the focus on the AR.Drone as a low-cost experimental plat-
form, while most of another published results involving the
problem of trajectory tracking are based on more expensive
platforms and vision systems [2], [8], [9]. Another important
difference is in terms of the methodology applied for sen-
sor fusion. While most works perform the state estimation
through an EKF [4], [6], we show how to implement a
simple KF to fuse the available sensorial data to track the
AR.Drone states. Finally, the last important difference is the
proposed nonlinear controller, which is based on a simplified
mathematic model to represent the AR.Drone dynamics.
Usually, other works are based on complex mathematic
models to represent the quadrotor dynamics [10], [11], but
our method shows that it is possible to get good results, in
terms of control, with the AR.Drone in a simpler way.

To discuss such topics, the paper is hereinafter organized
as follows: Section II briefly presents the Parrot AR.Drone
quadrotor, its main characteristics, the main reasons for its

2014 International Conference on Unmanned Aircraft Systems (ICUAS)
May 27-30, 2014. Orlando, FL, USA

978-1-4799-2376-2/14/$31.00 ©2014 IEEE 756

Fig. 1. The AR.Drone 2.0 quadrotor and the coordinate systems adopted
({w} and {b} are the global and the body coordinate systems, respectively).

choice as experimental platform and a mathematic model
describing its dynamics. In the sequel, Section III presents
the state estimation technique adopted to use the sensor
data available in a KF implementation. After, Section IV
discusses the control method adopted, Section V presents
an overview of the system architecture, and Section VI
shows and discusses some experimental results. Finally, some
important observations are pointed out and some future work
are outlined in Section VII.

II. THE AR.DRONE QUADROTOR PLATFORM

The experimental platform chosen in this work is the
AR.Drone quadrotor, from Parrot Inc, in its version 2.0,
which is shown in Figure 1, with the coordinate systems
adopted.

It is an autonomous aerial vehicle (a rotorcraft one)
commercialized as a hi-tech toy, originally designed to be
controlled through smartphones or tablets, via Wi-Fi net-
work, with specific communication protocols. The AR.Drone
is easily purchased in the market (at a reduced cost1) and
it is quite easy to buy spare parts to keep it operative, as
well as for maintenance. In addition, Parrot provides a set
of software tools, which makes easier to develop commu-
nication and control algorithms for the AR.Drone platform,
encouraging and supporting users to create applications for
it (additional details can be found in [12]).

These are the main reasons for its selection as the ex-
perimental platform in this work. We also have know other
famous and robust similar platforms, such as the AscTec
Hummingbird III, for instance. However, its high price2 and
the difficulty of access make it an unfeasible platform for
our demands.

A. AR.Drone Sensors Data

The AR.Drone 2.0 is equipped with two embedded boards.
The first one, called the sensor board, contains a set of
sensors, such as accelerometers, gyroscopes, magnetometers,
an ultrasonic sensor and a barometric sensor. The second one,
labeled the main board, is a processing unit based on an
ARM Cortex-A8 processor, with 1GHz of clock frequency,
running an embedded Linux operating system. This board
manages the data coming from the sensor board, the video

1As low as USD 300.00.
2As high as USD 4,000.00.

streamings from a frontal and a bottom cameras, and the
wireless communication network of the UAV.

The firmware installed on the main board is capable of
performing automatically the procedures of take-off, landing
and flight stabilization, besides responding to external motion
commands. The AR.Drone also delivers the set of variables

q =
[
z vx vy ϕ θ ψ

]
,

where
• ϕ, θ and ψ represent the orientation angles of the

AR.Drone, referred to the global coordinate system;
• z represents the UAV altitude relative to the ground

underneath it. The ground is considered a flat surface
and the firmware already treats inclinations on ϕ and θ;

• vx and vy represent the linear velocities developed by
the vehicle, relative to the reference axes xb and yb.

These information, as well as how to get access to them,
can be found in [12]. The algorithms internally applied to
generate them are discussed in [13]. Therefore, it is recom-
mended to the interested reader to check these references to
get more knowledge about the technology involved in the
firmware of the AR.Drone Parrot quadrotor.

Despite these characteristics, the AR.Drone does not have
the capability of keep hovering or navigating for a long time
in a completely autonomous way. The take-off and landing
maneuvers happen autonomously, but once in the air the UAV
slowly starts sliding away from its initial position. This effect
is known as drifting in the literature, and results mostly
from measurement errors integrated along time. Thus, to
ensure a better performance during hovering, positioning or
trajectory-tracking maneuvers, it is necessary to continuously
estimate the UAV posture from external references and
to correct its position error through a closed-loop control
system.

B. AR.Drone Motion Control

The motion commands for the AR.Drone are encoded
under a specific protocol, over its Wi-Fi network. In this
protocol, the command signals are normalized, and arranged
as elements of the control signal vector

u =
[
uż uψ̇ uϕ uθ

]
∈
[
−1.0,+1.0

]
,

where
• uż represents a linear velocity command, which causes

displacements over the zw axis;
• uψ̇ represents an angular velocity command, which

causes rotations around the zw axis;
• uϕ represents an inclination command related to the xw

axis, which indirectly represents a command of linear
velocity related to the yb axis [5], [14], [15], [16]. For
this reason it will be hereinafter called uvy ;

• uθ represents an inclination command related to the yw
axis, which indirectly causes linear velocity related to
the xb axis [5], [14], [15], [16]. For this reason it will
be hereinafter called uvx .

757

C. AR.Drone Mathematic Model

The dynamic model of a generic quadrotor is already
known in the literature, and can be represented as [10]

mẍ = (cosψ sinϕ+ cosψ cosϕ sin θ)u1
mÿ = (− cosψ sinϕ+ sinψ cosϕ sin θ)u1
mz̈ = (cosϕ cos θ)u1 −mg

Ixxϕ̈ = u2 − (Izz − Iyy)θ̇ψ̇

Iyy θ̈ = u3 − (Ixx − Izz)ϕ̇ψ̇

Izzψ̈ = u4

(1)

Here, the UAV movements are described by rigid body
transformations and the point of interest, the one whose co-
ordinates should be controlled, is its center of mass. In such
model, m represents the mass of the vehicle, g is the gravity
acceleration, and Ixx, Iyy and Izz are the moments of inertia.
The signals u1, · · · , u4 are control parameters correspondent
to forces and torques generated by the quadrotor propellers,
also modeled in [10].

As any model, (1) does not completely represent what
happens to the aircraft in real flights. For instance, such
model does not take into account the drag forces caused
by the vehicle friction with the wind. It is known it is very
difficult to obtain an universal mathematic model to represent
flying systems, thus the aim should be to get a model precise
enough for the intended application.

According to [13], in the AR.Drone firmware a model
similar to (1) is considered in addition with other aerody-
namic effects to achieve flight stabilization. However, the
firmware algorithm and the model parameters are restricted
to developers. Regardless, we still can take advantage of
this AR.Drone internal processing results by modelling its
dynamics in function of its control actions u.

In this procedure we assume the AR.Drone behavior when
answering a given input command near to the one of a linear
system. This observation was used before in several related
works [5], [6], [14], [15], [16] and in this way it is not
necessary to deal with the complex dynamics of a quadrotor
(1). Thus, assuming this context, we propose the model
to represent the AR.Drone dynamics in its own coordinate
system as 

v̇x = K1uvx −K2vx
v̇y = K3uvy −K4vy
z̈ = K5uż −K6ż

ψ̈ = K7uψ̇ −K8ψ̇

, (2)

where v̇x and v̇y represent linear accelerations with respect to
the axes xb and yb, z̈ represents the linear acceleration with
respect to the axis zw, and ψ̈ represents the angular accelera-
tion with respect to the axis zw. The parameters K1, · · · ,K8

are proportionality constants to be experimentally identified.
Adopting such model, one assumes four degrees of free-

dom of interest (vx, vy, ż and ψ̇), each one modeled as
an independent linear system in function of the AR.Drone
control signals (uvx , uvy , uż and uψ̇), having the aircraft
center of mass as the point of interest to the controller (the
point whose position is being controlled).

20 30 40 50 60 70 80
−1

0

1
vx

[m
/s

]

Measured
Modeled

20 30 40 50 60 70 80
−1

0

1

[m
/s

]

vy

20 30 40 50 60 70 80
−0.2

0

0.2

[m
/s

]

ż

20 30 40 50 60 70 80
−0.5

0

0.5

[ra
d/

s]

ψ̇

Fig. 2. Comparison between measured data flight and the simulation of
(2) for the same input signals.

This model cannot be adopted as a complete representation
of the UAV dynamics, but it is precise enough to our control
purposes, as detailed ahead, in the Section VI. For now, as
one can check in Figure 2, (2) provides a fair approximation
of the measures of the AR.Drone sensors along a flight
mission. Flight tests also have shown that z̈ and ψ̈ can be
represented directly in the global coordinate system, once the
AR.Drone firmware already compensates for the influence of
the θ and ϕ orientation angles.

Thus, the model in (2) referenced to the global frame
becomes

ẍ
ÿ
z̈

ψ̈

 =


K1 cosψ −K3 sinψ 0 0
K1 sinψ K3 cosψ 0 0

0 0 K5 0
0 0 0 K7



uvx
uvy
uż
uψ̇

−


K2 cosψ −K4 sinψ 0 0
K2 sinψ K4 cosψ 0 0

0 0 K6 0
0 0 0 K8



vx
vy
ż

ψ̇

 , (3)

which will be used in Section IV to propose the autonomous
flight controller.

III. STATE ESTIMATION

This Section presents the method implemented to estimate
the state vector of the vehicle to feedback the autonomous
controller. The method used is the Kalman Filter (KF), an
usual state estimation technique for robot control [17].

Regarding UAV state estimation, the most commonly
adopted approach is the Extended Kalman Filter (EKF),
which is a generalization of the KF for nonlinear systems, as
described in [3], [6] and in our previous work [18]. However,
from the experience with the AR.Drone, we found that it
is possible to obtain a good state estimation for control
purposes using just a simple kinematic model, instead of a
more complex nonlinear model for the filter prediction step.

758

The kinematic model is inspired in examples of tracking
systems discussed in [19] and we discuss how to adapt it
to the AR.Drone in the sequel.

A. The Kalman Filter Implementation

The Kalman Filter is a recursive algorithm that uses noisy
input data to produce an optimal state estimation for linear
systems, represented as [17], [19]

xk = Fxk−1 +Buk +wk (4)
zk = Hxk + vk

where x represents the system state vector, F is the state
transition model matrix, B is the control input matrix, z
is the possible states measurement vector, H is the sensor
observation model matrix, and, finally, w and v represent
Gaussian noises with zero average. The subscript k refers to
a discrete time instant.

In terms of implementation, Algorithm 1 illustrates the
steps of the KF procedure, where x̂ is the filter state
estimation output, P̂ is the error covariance matrix, K is
the Kalman gain, Q is the covariance matrix of the process
noise, and R is the covariance matrix of the measurement
noise.

Algorithm 1: The Kalman Filter procedure.
1: xk = Fx̂k−1 +Buk
2: Pk = FP̂k−1F

T +Q

3: Kk = PkH
T
(
HPkH

T +R
)−1

4: x̂k = xk +Kk (zk −Hxk)
5: P̂k = (I−KkH)Pk

In our application, the KF should track the point of interest
(the center of mass of the AR.Drone), whose states are
defined by

xk =
[
x y z ψ ẋ ẏ ż ψ̇

]T
, (5)

where x, y, z, ẋ, ẏ and ż are the position, in (m), and
the linear velocities of such point, in (m/s), at the global
reference system. The angular position and velocity around
the z axis are ψ, in (rad), and ψ̇, in (rad/s), respectively.

The process model is defined as

xk+1

yk+1

zk+1

ψk+1

ẋk+1

ẏk+1

żk+1

ψ̇k+1


=



xk + δtẋk
yk + δtẏk
zk + δtżk
ψk + δtψ̇k

ẋk
ẏk
żk
ψ̇k


, (6)

where δt is the sampling time. Notice that (6) is a simple
representation of the matrix F ∈ R8×8.

This model is a discrete implementation of a kinematic
constant velocity model as described in [19], which assumes

velocity changes in the interval [tk → tk+1] as a white noise.
To apply (6), δt should be small and the variance chosen for
the velocities in the Kalman Filter should reflect its possible
changes from one time step to next one. To accomplish this
statement, the implementation follows what is described in
the sequel.

For every system loop, the main program runs the Al-
gorithm 1 ensuring that the AR.Drone firmware delivers q
with a δt ≈ 16ms, which is used to define the measurement
vector

z1 =


z
ψ
ẋ
ẏ

 =


z
ψ

cosψ vx − sinψ vy
sinψ vx + cosψ vy

 (7)

and the observation model

H1 =


0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 . (8)

At this point, the system is already able to run the KF
algorithm and estimate the position of the AR.Drone by
odometry, integrating and rotating the velocity data available
in q. In such case, the position estimation is still subject to
drifting problems along time. To solve the drifting problem,
the KF needs to be fed with some other sensorial position
reading. Our solution (better explained in Section III-B), is to
design a visual system to provide additional position readings
for the KF algorithm. The visual algorithm is capable of
estimating the AR.Drone position referenced to the global
coordinate system, processing images of a landmark captured
by the AR.Drone frontal camera. Thus, when this new data,
here represented by xw and yw, is available it can be used
to augment the measure vector of the KF to

z2 =


x
y
z
ψ
ẋ
ẏ

 =


xw
yw
z
ψ

cosψ vx − sinψ vy
sinψ vx + cosψ vy

 (9)

and the observation model to

H2 =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 (10)

Therefore, the state estimation method represented in
Algorithm 1 is executed every system loop, since it is
guaranteed a small δt (≈ 16ms). Furthermore, at each loop
the system analyze how to execute the Algorithm 1: using z1
and H1, if the vector q is the only data available, or using
z2 and H2 if there is visual measurements available, besides
the vector q. Notice that if there is visual data available, the

759

covariance matrices Q and R also needs to be augmented
to take into account the variances of xw and yw.

Using such approach, the KF will be able to estimate the
AR.Drone position by odometry, integrating and rotating the
velocities over time and, at the same time, to correct this
estimation whenever the visual data is available. By doing
that, it is possible to increase the robustness of the KF under
a temporary loss of visual data, since that is not the only
source of information about the state of the aircraft.

To reinforce this idea, Figure 3 illustrates a fragment of
the experiment 1 presented in Section VI. There, three lines
are shown, all of them representing the x variable referred
to the global frame. The first representation is estimated
by odometry (the dot-dashed line). To generate this data,
the variables vx, vy and ψ were stored and then directly
integrated to produce this estimation. The next representation
is estimated by the Kalman Filter algorithm presented in this
Section (the solid line). The last representation is the result
of the computer vision algorithm implemented (the dashed
line), stored during the experiment.

In this experiment, the AR.Drone is pushed away twice
from its initial position (0 m), and automatically recovers
it. During the maneuvers, the system deals with some lacks
of visual measurements, such that the visual system is not
able to compute the AR.Drone position. In such cases, the
graphic shows the visual estimation of x as a constant value
(the previous value is kept).

34 36 38 40 42 44 46 48 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Global position X

X
 (

m
)

Time (s)

Odometry
Kalman Filter
Visual Algorithm

Fig. 3. Comparison of the global x position estimation using pure
odometry, Kalman Filter and the visual algorithm.

Notice that the KF estimation of x is an improved com-
bination of the other two sources. As it can be seen, the
odometry estimation drifts away from the KF estimation
along time, due to the cumulative integration errors involved
in the odometry process (the drifting problem). When there
is a lack of visual measurement (t ≈ 34s → t ≈ 37s,
t ≈ 40s → t ≈ 42s and t ≈ 47s → t ≈ 49s), the visual
estimation of x temporarily stops, but even in such cases
the KF continues estimating the position from the velocity
measures, correcting it as soon as a new visual data arrives.

Fig. 4. The dimensions of the visual mark.

Finally, it is important to highlight that to finish the
implementation of the KF, it is necessary to ensure its
performance by adjusting the process covariance matrix (Q)
and the measurement covariance matrix (R). In this work,
an off-line calibration was used to tune the filter, after storing
data from experimental non-autonomous flights.

B. Visual Data Extraction

The computer vision application here adopted aims at
localizing the AR.Drone quadrotor along its flight, using
the images provided by its frontal camera. This procedure
is needed to allow the KF algorithm to correct its state
estimation with the absolute readings of xw and yw.

Our algorithm implementation is based on the OpenCV
library, an open source computer vision library which makes
faster and easier to implement computer vision algorithms
and to compute linear algebra operations. Most of the code
used is inspired in the examples in [20] and [21].

An overview of the visual algorithm implemented is in the
sequel, but its general idea is to search in the camera image
for 2D coordinates of a colored mark and geometrically
associate them to the 3D coordinates of the same mark,
previously known. We have tested some other camera pose
algorithms, based on homograph and structure from motion
(SfM), but these methods dependency on image features
detection turns out to be slow, compared to our proposal.

The first step is to define a mark for visual detection. It is
made using a couple of colored stickers, arranged as shown
in Figure 4. The stickers are the same provided by Parrot
with the AR.Drone, and the mark shape was chosen after
some practical tests with the system, where this format have
shown to be more effective than other coplanar ones.

Then, for every system loop a raw image is captured by
the AR.Drone frontal camera and a segmentation process is
performed over it, looking for the orange color. As the result
of this process a filtered image is generated, as illustrated in
Figure 5.

Next, in the filtered image a search is conducted looking
for the white blobs. Once found a blob, its area is compared
to a predefined threshold. If the area is bigger, the algorithm
calculates the coordinates of the blob center. This procedure
is repeated until the whole filtered image has been analyzed.

After this step, the algorithm classifies the result as a
good visual observation or a bad visual observation of the
mark. A good visual observation occurs when exactly four
blob centers are detected in the whole filtered image. A bad

760

Fig. 5. Raw and filtered images of the visual marker.

visual observation occurs when more or less than four blob
centers are identified. This step is primordial to increase the
robustness of the system, preventing a bad visual information
caused by a noisy image. When a good visual observation is
detected, the system holds four 2D image coordinates relative
to the centers of each blob detected, which corresponds to
the centers of the marks in the colored stickers. With a
previous knowledge of the 3D coordinates of the mark it
is possible to use the SolvePnP algorithm to calculate the
camera pose relative to the mark (more details about the
SolvePnP algorithm can be found in [22], while in [20] there
are examples on how to implement such an algorithm using
the OpenCV library).

The OpenCV SolvePnP implementation returns a vector
tvec =

[
xc yc zc

]
, which represents the 3D mark position

referred to the camera coordinate system. Thus it is necessary

Fig. 6. Illustration of all the coordinate systems. {W} is the global one,
{B} is the one attached to the AR.Drone, {C} is the one associated to the
camera and {M} is the one associated to the visual mark.

to represent tvec in global coordinates in order to find xw
and yw, to be inputted to the KF. It is worthy mentioning that
these measures are given in meters, the same unit used in the
program to describe the 3D coordinates of the mark on its
own coordinate system {M} and that the zc is discarded in
this application (Figure 6 shows all the mentioned coordinate
systems).

In order to convert tvec from the camera coordinate
system to the global coordinate system, a sequence of
rigid body transformations is now applied. For this, first
a fixed rigid body transformation converts the tvec reading
from the camera coordinate system {C} to the AR.Drone
coordinate system (located at its center of mass) {B}. Then,
the orientation angles ϕ, θ and ψ are used in a rotation
compensation from the AR.Drone coordinate system {B}
to the global coordinate system {W}. Finally, the relative
distances between the origin of the global coordinate system
{W} and the mark coordinate system {M} are compensated
through a translation. This way, the variables xw and yw can
be computed and used in the KF implementation.

In experimental tests, under a well-controlled illumination
and using the mark dimensions of Figure 4, the proposed
visual system can detect the target within a distance in the
range of 0.5m until 3.5m, which gives a fair flight area in
indoor environments.

The visual algorithm here presented runs every system
loop, trying to estimate the AR.Drone position from the
frontal camera image. If during a loop, a good visual
observation is detected, the resulting values of xw and yw are
fed into the KF to correct its state estimation. Else, if a bad
visual observation is detected caused by bad illumination,
obstacles, loss of sight of the mark or any other sources of
error, the image processing is discarded until a new image
arrives in a next loop. Thus during system loops with a
bad visual observation, the KF estimation is based only on
odometry.

IV. THE PROPOSED AUTONOMOUS CONTROLLER

This Section presents the nonlinear controller proposed to
guide the AR.Drone in positioning and trajectory tracking
tasks. Knowing that (3) represents the UAV model at the
global frame, the objective is to propose a controller to
guide the AR.Drone from its current position and orienta-
tion X =

[
x y z ψ

]T
to their desired values Xd =[

xd yd zd ψd
]T

. Notice that Xd can be a function of
time, thus characterizing trajectory tracking, or a constant,
thus characterizing positioning.

Rewriting (3) as

Ẍ = f1U− f2Ẋ (11)

where

Ẍ =


ẍ
ÿ
z̈

ψ̈

 , U =


uvx
uvy
uż
uψ̇

 , Ẋ =


vx
vy
ż

ψ̇

 ,
761

with f1 and f2 being the two 4×4 matrices of (3), an inverse
dynamic controller can be proposed, in a way quite similar
to the one proposed in [23]. To do that, we adopt the control
law

U = f1
−1(ν + f2Ẋ), (12)

with

ν = Ẍd + κpX̃+ κd
˙̃X,

X̃ = Xd − X =
[
xd − x yd − y zd − z ψd − ψ

]T
(the tracking error),

κp =


Kpx 0 0 0
0 Kpy 0 0
0 0 Kpz 0
0 0 0 Kpψ


and

κd =


Kdx 0 0 0
0 Kdy 0 0
0 0 Kdz 0
0 0 0 Kdψ


(diagonal positive defined gain matrices).

Substituting (12) in (11) the closed-loop equation gov-
erning the dynamics of the position and orientation errors
becomes

¨̃X+ κpX̃+ κd
˙̃X = 0, (13)

for which we should demonstrate that such errors converge
to zero when t→ ∞ (asymptotic stability of the closed-loop
control system).

In order to analyze the stability of the equilibrium of (13),
the radially unbounded Lyapunov candidate function

V(X̃, ˙̃X) =
1

2
X̃TκpX̃+

1

2
˙̃XT ˙̃X ≥ 0 (14)

is chosen. After taking its first time derivative and replacing
(13), one gets

V̇(X̃, ˙̃X) = X̃Tκp
˙̃X+ ˙̃XT ¨̃X

= X̃Tκp
˙̃X+ ˙̃XT

(
−κpX̃− κd

˙̃X
)

= − ˙̃XTκd
˙̃X ≤ 0. (15)

Based on the theory of Lyapunov for nonlinear systems,
one can conclude from (15) that X̃ → 0 with t → ∞,
meaning that the closed-loop control system is asymptoti-
cally stable.

V. SYSTEM ARCHITECTURE

This Section presents a brief overview of the proposed
software architecture. Notice that it is necessary to establish
a communication channel between the AR.Drone quadrotor
and an external computer, and the OpenCV library should
be running as well, to compute the vision algorithm. In
this work, we adopted the solution proposed in [24], which
suitably integrates the AR.Drone SDK and the OpenCV
library, as necessary.

For a better comprehension of the implementation, Figure
7 illustrates how the algorithms interact. There, the cen-
tralized computer station runs the code under an infinity
loop. Every cycle, the sensor and video data are required
through the communication channel, established with the
AR.Drone over a Wi-Fi network. With the data available
in the centralized computer, the next step is to get the
observations xw and yw from the visual algorithm of Section
III-B. In the sequence, with or without xw and yw, the KF
is executed as described in Section III-A. Finally, with the
results of the KF state estimation the last step is to calculate
the control actions, with the algorithm of the Section IV
and send them to the AR.Drone, again through the Wi-Fi
network.

Fig. 7. Software architecture adopted. xw and yw are the global position
coordinates provided by the visual system. q is the set of variables provided
by the AR.Drone sensor board. x̂ is the KF state estimation output and U
is the set of control actions of the AR.Drone.

VI. EXPERIMENTAL RESULTS

In this Section, four different experiments related to 3D
positioning and trajectory tracking tasks are presented, us-
ing the AR.Drone aircraft. All the experiments are pre-
sented in the same way: a brief explanation about them
and some graphics of the variables of interest Xd =[
xd yd zd ψd

]T . In addition, for the trajectory tracking
experiments 3 and 4, tables containing the root mean square
error analysis are also presented, which are not presented in
the other experiments.

An observation about the experiments is the execution of
the procedures of take-off and landing, which are manually
performed. As soon as the AR.Drone is in the air, the
automatic controller is enabled. Therefore, due to initial
numerical errors, these data are deleted from the plotted
graphics, focusing only in the vehicle guidance through the
autonomous controller.

Another important characteristic to emphasize is that all
the experiments run under the same controller configuration,
i.e., the gain matrices κp and κd remain the same, to
show the robustness of the proposed framework for different
trajectories.

762

A. Experiment 1: Hovering

The experiment 1, characterized in Figure 8, has the simple
goal of keeping the rotorcraft anchored on the reference posi-
tion Xd =

[
0.0 0.0 1.2 0.0

]T . Some disturbances occur
during flight, moving the AR.Drone away from its reference.
The objective is to demonstrate the capability of the system
to hold/recover a 3D position, even under strong disturbances
and temporary loss of the visual mark. The video available
in the link http://youtu.be/dO5tlmWcyWY presents
it.

B. Experiment 2: Positioning at the Corners of a House-
shaped Polygon

The experiment 2, illustrated in Figure 9, aims at position-
ing the AR.Drone in a set of desired positions (waypoints),
whose values change from one to another in the set after an
interval of 5s. The objective here is to analyze how quick
is the AR.Drone response, when an input step is given. The
video correspondent to such an experiment can be found in
http://youtu.be/RKkoMjk58oA.

It is important to highlight that there is no lines to be
followed from a desired position to the following one. The
solid line that appears in Figure 9 is just a graphical rep-
resentation of the shortest distance between two successive
desired positions.

C. Experiment 3: Tracking a Circular Trajectory

In the experiment 3 the UAV should track a trajectory
defined by a circumference with 1 m of radius, which can be
parameterized as Xd =

[
sin(0.8t) cos(0.8t) 1.2 0.0

]T
.

Figure 10 illustrates the results of the flight mission. During
the experiment, the AR.Drone constantly looses the visual
mark due to the relationship between the dimension of the
trajectory and the angle of view of the onboard camera
(which cannot observe the whole scene). Moreover, the
obstacle that appears in the middle of the circle also causes
temporary losses of the visual mark. The video available in
http://youtu.be/amarVZp7GtY illustrates it.

Table I presents the root mean square and the maximum
errors correspondent to each degree of freedom of interest.
Notice that the largest error is in the x direction, and it
is about 148mm. Observing the experiment data, one can
observe that the larger errors occur when the trajectory
changes its direction. Such effect can be attenuated by tuning
the controller gains, what it is out of the scope of this work.

TABLE I
ERROR ANALYSIS FOR EXPERIMENT 3: CIRCULAR TRAJECTORY

TRACKING.

x (meters) y (meters) z (meters) ψ (radians)
RMSE 0.0645 0.0655 0.0374 0.0162

Max. error 0.1481 0.1404 0.0944 0.0296

D. Experiment 4: Tracking an Eight-shaped Trajectory

In the experiment 4, illustrated in Figure 11, all the four
degrees of freedom are controlled at the same time. In such

experiment a sloped eight-shape trajectory defined by

Xd =


0.5 sin(0.8t)
sin(0.4t)

1.2 + 0.5 sin(0.4t)
−π

6 sin(0.4t)


should be tracked. The objective is to demonstrate that
the control system proposed can guide the four degrees
of freedom in an independent way. The video available at
http://youtu.be/aE9r6szkQzo highlights it.

As one can see in Table II, the RMSE for the x and y
coordinates decreases, while the value correspondent to the z
coordinate and to the orientation ψ increases, in comparison
with the previous experiment. In these circumstances, this
analysis confirms the independence assumptions between
the degrees of freedom of Section II-C, in the case of the
AR.Drone quadrotor.

It is very important to highlight that the velocities along
the trajectories influence the RMSE results. In addition, as
aforementioned, the results could be improved by tuning
the parameters of the κp and κd gain matrices. Thus, one
can conclude the analysis stating that under some practical
conditions it is possible to guarantee the performance of the
system presented in this paper.

To be more specific, in a series of other non documented
experiments with the same controller gains, we have found
that all tested trajectories that require speeds ẋd and ẏd
below 1 m/s, żd below 0.5 m/s and ψ̇d below π

4 rad/s
can be performed with approximately the same results. In
trajectories that require higher speeds the results starts to
deteriorate. The reader familiar with the AR.Drone knows
that its limit values comes in part from its regulation for
manual flight (performed by the manufacturer), which also
limits the velocities in autonomous flights.

TABLE II
ERROR ANALYSIS FOR EXPERIMENT 4: EIGHT-SHAPED TRAJECTORY

TRACKING

x (meters) y (meters) z (meters) ψ (radians)
RMSE 0.0570 0.0554 0.0827 0.0211

Max. error 0.1368 0.2139 0.1571 0.0722

E. State Estimation: Kalman Filter vs Odometry

Another important practical issue to be clarified is why
not completely trust in the AR.Drone sensors to execute the
position estimation. Considering the onboard estimation of
vx, vy and ψ available, at a first look it seems to be just a
matter of rotating and integrating them to obtain the position
of the vehicle in the global coordinate frame by odometry.

Previously, in Section III-A, it was stated that this proce-
dure is not recommended for a long time flight, due to the
sensor drift. Here this statement is reinforced using the data
of the experiment 4, as it can be seen in Figure (12). The
experimental data correspondent to the x and y positions are
collected and plotted one against the other, in a way similar
to the example of Section III-A. The measurements provided

763

20 30 40 50 60 70

−0.5
0

0.5
1

X
 P

os
iti

on
 (

m
)

Time (sec)
20 30 40 50 60 70

−1

−0.5

0

Y
 P

os
iti

on
 (

m
)

Time (sec)

20 30 40 50 60 70
0.5

1

1.5

2

Z
 P

os
iti

on
 (

m
)

Time (sec)
20 30 40 50 60 70

0
0.5

1
1.5

O
rie

nt
at

io
n

Ψ
 (

ra
d)

Time (sec)

10

1

0

0.5

1

1.5

2

Hovering

Reference
System output

Fig. 8. Experiment 1: Hovering.

20 40 60 80 100 120
−0.5

0
0.5

1

X
 P

os
iti

on
 (

m
)

Time (sec)
20 40 60 80 100 120

−0.5

0

0.5

Y
 P

os
iti

on
 (

m
)

Time (sec)

20 40 60 80 100 120
1

1.2

1.4

Z
 P

os
iti

on
 (

m
)

Time (sec)
20 40 60 80 100 120

−0.2

0

0.2

O
rie

nt
at

io
n

Ψ
 (

ra
d)

Time (sec)

10

1

0

0.5

1

1.5

2

Positioning

Reference
System output

Fig. 9. Experiment 2: Positioning task (the successive desired positions are the corners of the polygon).

764

30 40 50 60 70 80
−1

0

1

X
 P

os
iti

on
 (

m
)

Time (sec)
30 40 50 60 70 80

−1

0

1

Y
 P

os
iti

on
 (

m
)

Time (sec)

30 40 50 60 70 80
1

1.2

1.4

Z
 P

os
iti

on
 (

m
)

Time (sec)
30 40 50 60 70 80

−0.2

0

0.2

O
rie

nt
at

io
n

Ψ
 (

ra
d)

Time (sec)

10

1

0

0.5

1

1.5

2

Circular Trajectory

Reference
System output

Fig. 10. Experiment 3: Circular trajectory.

20 30 40 50 60 70 80 90

−0.5

0

0.5

X
 P

os
iti

on
 (

m
)

Time (sec)
20 30 40 50 60 70 80 90

−1

0

1

Y
 P

os
iti

on
 (

m
)

Time (sec)

20 30 40 50 60 70 80 90
0.5

1

1.5

2

Z
 P

os
iti

on
 (

m
)

Time (sec)
20 30 40 50 60 70 80 90

−1

0

1

O
rie

nt
at

io
n

Ψ
 (

ra
d)

Time (sec)

10

1

0

0.5

1

1.5

2

Eight−shaped trajectory

Reference
System output

Fig. 11. Experiment 4: Eight-shaped trajectory.

765

by the odometry, the Kalman Filter and the visual algorithm
here implemented are considered to generate three different
plots.

It is interesting to notice that the drift occurs more in the
y variable. Also, the sporadically noisy data provided by the
visual system for x does not significantly interfere in the
filtered estimation. For a better perception, just a top-view
(XY-plane) of the trajectory accomplished by the aircraft is
plotted, to allow comparing the three methods of estimation.
As one can see from such a figure, the use of the Kalman
Filter improves the state estimation, considering the sensorial
data available.

VII. CONCLUSIONS

The method proposed in this work adds robustness to
the problem of 3D trajectory tracking and 3D positioning
with the AR.Drone quadrotor in indoor environments, for
being based on visual and inertial information. The method
adopts the fusion of both sensorial data, thus compensating
for the problems associated to the inertial sensors and for
the problems associated to computer vision as well.

An important contribution of this manuscript, discussed in
Sections II and VI, is that for control purposes the AR.Drone
dynamics can be approximated by four independent linear
systems, modeled considering the control signals the aircraft
accepts. This procedure makes easier to design a nonlinear
controller to guide the aircraft when navigating, as shown
in Section IV. Another important contribution is in Section
III, where it is shown to be possible to implement a simpler
tracking Kalman Filter to estimate the state of the vehicle
and to feed it back to the control algorithm.

As seen in Section VI, the method can be used to guide
the AR.Drone over different types of trajectories in the 3D
space, even under orientations ψd different of zero and under
disturbances. It is also shown that it is possible to guide the
vehicle over different trajectory velocities without needing
to constantly adjust the controller gains, respecting some
practical limitations. Also, as the experiments here discussed
confirm, the proposed procedure allows the rotorcraft to
momentarily loose the target object (it goes out of the field
of vision of the vehicle), retrieving that information later,
without loosing control, thus confirming that the system
copes suitably with sporadic disturbances.

Surely some practical limitations require attention and
treatment. Amongst them, it is important to highlight to the
reader that in practical applications the visual information is
limited to indoor environments, due to the size of the visual
mark and the algorithm of color segmentation, which implies
the system dependency on controlled illumination conditions.
Additionally, there are delays in communication, originated
by the Wi-Fi network or inherent to the system, like the no-
torious differences in the update rate between the inertial and
visual data, which requires some treatment during execution
of the Kalman Filter. In our method this problem is solved
adjusting the variance matrices after several experimental
flights. In spite of that, however, the proposed method has

proven to be effective in terms of accomplishment of the
proposed tasks.

In the future, it is intended to apply a similar method to
model and control the coordinated navigation of more than
one UAV, in formation flights.

ACKNOWLEDGMENT

The authors thank CNPq – Conselho de Desenvolvi-
mento Cientı́fico e Tecnológico, a Brazilian agency that
supports scientific and technological development (grant
473185/2012-1) – for the financial support granted to this
work. They also thank the Federal Institute of Espı́rito Santo
and the Federal University of Espı́rito Santo for supporting
the development of this research. Dr. Sarcinelli-Filho also
thanks the additional financial support of FAPES - Fundação
de Amparo à Pesquisa do Espı́rito Santo to the project. Dr.
Brandão also thanks Federal University of Viçosa, Brazil
and FAPEMIG - Fundação de Amparo à Pesquisa de Minas
Gerais - for supporting his participation in this work.

REFERENCES

[1] M. W. Müller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball jug-
gling,” in Proceedings of the 24th IEEE/RSJ International Conference
on Intelligent Robot Systems, San Francisco, USA, September 2011,
pp. 5113–5120.

[2] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proceedings of the 2011 IEEE International
Conference on Robotics and Automation, Shanghai, China, May 2011,
pp. 2520–2525.

[3] S. Weiss, M. W. Achtelik, M. Chli, and R. Siegwart, “Versatile dis-
tributed pose estimation and sensor self-calibration for an autonomous
mav,” in Proceedings of the 2012 IEEE International Conference on
Robotics and Automation, St. Paul, MN, USA, May 2012, pp. 31–38.

[4] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor indoor
navigation with a computationally constrained mav,” in Proceedings
of International Conference on Robotics and Automation, Shanghai,
China, 2011, pp. 20–25.

[5] T. Krajnik, V. Vonasek, D. Fiser, and J. Faigl, “Ar-drone as a platform
for robotic research and education,” in Research and Education in
Robotics - EUROBOT 2011, ser. Communications in Computer and
Information Science, D. Obdrzalek and A. Gottscheber, Eds. Springer,
2011, vol. 161, pp. 172–186.

[6] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a
low-cost quadrocopter,” in Proceedings of the 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Vilamoura-
Algarve, Portugal, October 2012, pp. 2815–2821.

[7] J. J. Lugo and A. Zell, “Framework for autonomous on-board navi-
gation with the ar.drone,” Journal of Intelligent & Robotic Systems,
vol. 73, no. 1-4, pp. 401–412, 2014.

[8] M. Turpin, N. Michael, and V. Kumar, “Trajectory design and control
for aggressive formation flight with quadrotors,” Auton. Robots,
vol. 33, no. 1-2, pp. 143–156, Aug. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10514-012-9279-y

[9] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient algorithm for state-to-state quadrocopter trajectory generation
and feasibility verification,” in Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 3480–
3486.

[10] J. Kim, M.-S. Kang, and S. Park, “Accurate modeling and robust
hovering control for a quadrotor vtol aircraft,” Journal of Intelligent
& Robotic Systems, vol. 57, no. 1-4, pp. 9–26, 2010.

[11] A. S. Brandão, M. Sarcinelli-Filho, and R. Carelli, “High-level under-
actuated nonlinear control for rotorcraft machines,” in Proceedings of
the IEEE International Conference on Mechatronics. Vicenza, Italy:
IEEE, Febrary 27 – March 1 2013, pp. 279–285.

[12] S. Piskorski, N. Brulez, P. Eline, and F. DHaeyer, AR.Drone Developer
Guide, Parrot, December 2012, sDK Version 2.0.

766

20 40 60 80
−1

−0.5

0

0.5

1

P
os

iti
on

 X
 (

m
)

Time (sec)
20 40 60 80

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

P
os

iti
on

 Y
 (

m
)

Time (sec)

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

Eight−shaped trajectory: odometry drift

P
os

iti
on

 Y
 (

m
)

Position X (m)

Odometry
Kalman Filter
Visual Algorithm

Fig. 12. Demonstration of the odometry drift in the case of the Experiment 4.

[13] P.-J. Bristeau, F. Callou, D. Vissiere, and N. Petit, “The navigation
and control technology inside the ar.drone micro uav,” in Proceedings
of the 18th IFAC World Congress, vol. 18, Milan, Italy, August-
September 2011, pp. 1477–1484.

[14] A. Hernandez, C. Copot, R. De Keyser, T. Vlas, and I. Nascu,
“Identification and path following control of an ar.drone quadrotor,” in
Proceedings of the 17th International Conference of System Theory,
Control and Computing (ICSTCC’13), Sinaia, Romania, October 2013.

[15] P. Falcón, A. Barreiro, and M. D. Cacho, “Modeling of parrot ardrone
and passivity-based reset control,” in Proceedings of the 9th Asian
Control Conference (ASCC’13), Istanbul, Turkish, June 2013.

[16] E. Bilgin, D. E. Sanabria, P. J. Mosterman, and
K. Zhang. (2013, october) Ar drone simulink development-kit
v1. [Online]. Available: http://www.mathworks.com/matlabcentral/
fileexchange/43719-ar-drone-simulink-development-kit-v1

[17] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[18] L. V. Santana, M. S. Filho, and R. Carelli, “Estimation and control of

the 3d position of a quadrotor in indoor environments,” in Proceedings
of the 16th International Conference on Advanced Robotics (ICAR’13),
Montevideo, Uruguay, November 2013.

[19] Y. Bar-Shalom, T. Kirubarajan, and X.-R. Li, Estimation with Applica-
tions to Tracking and Navigation. New York, NY, USA: John Wiley
& Sons, Inc., 2002.

[20] D. L. Baggio, S. Emami, D. M. Escriva, K. Ievgen, N. Mahmood,
J. Saragih, and R. Shilkrot, Mastering OpenCV with Practical Com-
puter Vision Projects. Packt Publishing, Limited, 2012.

[21] R. Laganière, OpenCV 2 Computer Vision Application Programming
Cookbook. Packt Pub Limited, 2011.

[22] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n)
solution to the pnp problem,” Int. J. Comput. Vision, vol. 81, no. 2,
Feb. 2009.

[23] J.-J. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall,
Oct. 1991.

[24] GitHub.com. (2013, january) Cv drone. [Online]. Available: https:
//github.com/puku0x/cvdrone

767

