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The purpose of this statement is to describe and define 
the phenotypic abnormalities that can be identified on vi-
sual and quantitative evaluation of computed tomographic 
(CT) images in subjects with chronic obstructive pulmo-
nary disease (COPD), with the goal of contributing to a 
personalized approach to the treatment of patients with 
COPD. Quantitative CT is useful for identifying and se-
quentially evaluating the extent of emphysematous lung 
destruction, changes in airway walls, and expiratory air 
trapping. However, visual assessment of CT scans remains 
important to describe patterns of altered lung structure 
in COPD. The classification system proposed and illus-
trated in this article provides a structured approach to 
visual and quantitative assessment of COPD. Emphysema 
is classified as centrilobular (subclassified as trace, mild, 
moderate, confluent, and advanced destructive emphy-
sema), panlobular, and paraseptal (subclassified as mild 
or substantial). Additional important visual features in-
clude airway wall thickening, inflammatory small airways 
disease, tracheal abnormalities, interstitial lung abnormal-
ities, pulmonary arterial enlargement, and bronchiectasis.
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The term chronic obstructive pul-
monary disease (COPD), currently 
defined on the basis of spirometric 

evidence of airway obstruction, encom-
passes several distinct but overlapping 
obstructive syndromes, including em-
physema, chronic bronchitis, and re-
versible or irreversible small airways 
obstruction (1). The Global Obstructive 
Lung Disease (GOLD) system has been 
widely used to identify and classify the 
severity of postbronchodilator airflow 
limitation in COPD, with GOLD stage 
I referring to subjects with a ratio of 
forced expiratory volume in 1 second 
(FEV1) to forced vital capacity (FVC) 
of less than 0.7 but with preserved 
FEV1, and GOLD stages II, III, and IV 
when the FEV1/FVC ratio is less than 
0.7 and FEV1 is less than 80%, 50%, 
and 30% of predicted, respectively (2). 
Individuals with identical GOLD stages 
may have different morphologic appear-
ances at computed tomography (CT) 
(3). Some have extensive emphysema, 
whereas others with equal functional 
impairment have an airway-dominant 
phenotype with little or no emphysema. 
These morphologic differences may re-
flect important differences in the un-
derlying pathophysiology and genomic 
profile of COPD. Furthermore, individ-
ual subtypes of emphysema may have 
different pathophysiologic importance. 
For example, Smith et al (4) showed 
that smokers with predominantly centri-
lobular emphysema (CLE) had a higher 
level of cigarette exposure, higher lung 
volumes, and lower lung diffusing capac-
ity than those without emphysema. Con-
versely, smokers with a predominantly 
“panlobular” pattern of emphysema had 
a relatively lower body mass index than 
smokers without emphysema.

In addition, morphologic changes 
of emphysema and airways disease are 
found in a substantial proportion of sub-
jects who do not meet the spirometric 
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criteria for COPD (5). Standardized 
characterization of COPD and other 
smoking-related lung changes at CT is 
particularly important given the emerg-
ing role of reduced-dose CT in screening 
for lung cancer in cigarette smokers (6).

COPD is associated with irrevers-
ible structural pulmonary changes, 
including parenchymal destruction 
(emphysema), large airway remodel-
ing, and reduction in the caliber and 
number of small airways in the lung 
(7). CT is a well-validated technique to 
visually and quantitatively assess the 
in vivo presence, pattern, and extent 
of emphysema (8–11). Bronchial wall 
thickness and the extent of emphysema 
at quantitative CT in patients with 
COPD are independent determinants 
of the degree of airflow obstruction at 
pulmonary function testing (12) and 
the risk of COPD exacerbations (13). 
Emphysema assessed quantitatively is 
also associated with increased all-cause 
mortality in patients with COPD (14). 
Quantitative CT assessment of expira-
tory gas trapping is emerging as a pow-
erful predictor of the severity of airway 
obstruction in COPD (12,15,16). Fur-
thermore, the observation that expira-
tory gas trapping correlates only weakly 
with histologic severity of emphysema 
strongly suggests that it is caused by ob-
struction in the smaller airways rather 
than emphysema (17). Quantification 
of low-attenuation areas, expiratory gas 
trapping, and airway wall thickness can 
help define specific COPD phenotypes 
with differing clinical and physiologic 
features (18).

The purpose of this statement is 
to define the phenotypic abnormalities 
recognizable at visual and quantitative 
evaluation of CT images in subjects with 
COPD. Although these abnormalities 
often overlap, we believe that identifica-
tion and quantification of the predom-
inant morphologic findings and their 
grouping into defined subtypes of COPD 

will improve diagnostic accuracy, help 
optimize treatment, facilitate genetic 
analysis, and provide a framework for 
data comparison in clinical trials. Given 
the focus on COPD and related phe-
notypes, discussion of other smoking-
related lung conditions such as pulmo-
nary Langerhans cell histiocytosis, lung 
cancer, and usual interstitial pneumonia 
is beyond the scope of this article. Al-
though COPD unrelated to smoking (eg, 
COPD related to biomass fuel exposure) 
is not discussed herein, the same con-
cepts likely apply to these conditions.

Technical Approach

CT Image Acquisition and Evaluation
CT is currently the most widely avail-
able and precise imaging method for the 
characterization of COPD. Chest radi-
ography does not allow accurate mor-
phologic assessment of COPD owing to 
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limited resolution and superimposition 
of overlapping structures. Although 
magnetic resonance (MR) imaging, 
particularly with use of hyperpolarized 
gases, offers exciting possibilities for 
measuring alveolar dimensions (19–23), 
technical issues currently limit wide ac-
ceptance. With advances in fluorine MR 
imaging, some of these limitations may 
be eliminated (24). Other potentially 
promising MR imaging techniques, such 
as ultrashort echo time pulse sequences, 
oxygen-enhanced MR imaging, or the 
use of fluorinated gases, require valida-
tion in multicenter studies.

The appropriate CT technique for 
the evaluation of COPD should op-
timize visual assessment of the lung 
structure for emphysema and airways 
disease and help identify other compli-
cations of cigarette smoking, such as 
lung cancer, lung fibrosis, and Langer-
hans cell histiocytosis. Moreover, CT 
should facilitate quantitative evaluation 
of emphysema and airway wall thicken-
ing while using the minimum possible 
radiation dose. CT images should be 
viewed at window level settings suitable 
for lung evaluation (typically a window 
level of 2700 HU and window width of 
1500 HU). A narrower window width 
(750–1000 HU) may be useful for de-
tecting or excluding early emphysema 
(25). Minimum intensity projections 
may help show the presence and extent 
of emphysema (26). Standard images 
from subjects with normal and abnor-
mal findings may improve observer 
agreement in the visual characteriza-
tion of CT changes (27).

Unenhanced volumetric thin-sec-
tion CT is generally recommended for 
COPD characterization (28). Precise 
scanner calibration, ideally with a stan-
dardized CT phantom (29), is impor-
tant for ensuring the accuracy of CT 
numbers (30,31). Scanner-specific pro-
tocols have been designed to compare 
quantitative CT indexes of parenchymal 
and airway status (32). A high-spatial-
resolution reconstruction algorithm 
is better for visual assessment of the 
lungs (28), whereas a smoother re-
construction algorithm facilitates com-
puterized analysis by reducing image 
noise (33,34). Submillimeter z-axis 

resolution, with overlapping section 
reconstructions, is recommended for 
optimal airway analysis (35,36). Expi-
ratory CT, performed at functional re-
sidual capacity or at residual volume, is 
a powerful tool for determining the se-
verity of airway obstruction in cigarette 
smokers (12,16,37,38) and can suggest 
tracheobronchomalacia, although this 
condition is better shown with dynamic 
expiratory imaging (39). In the absence 
of lung volume control with a pneumota-
chometer (40,41), it is critically impor-
tant for the CT technologist to rehearse 
breathing instructions with the patient, 
encouraging a full deep inspiration to 
total lung capacity for the inspiratory 
acquisition and expiration to functional 
residual capacity or residual volume for 
the expiratory acquisition (42).

The CT radiation dose level used 
for the evaluation of COPD is driven 
by the balance between radiation 
dose and image quality. Adequate vi-
sual characterization can be achieved 
with reduced-dose CT acquisition 
techniques, as used for lung cancer 
screening (43,44). Excessive image 
noise with a reduced CT dose can 
simulate emphysema, particularly at 
quantitative CT (45,46), and may im-
pair segmentation of the airways and 
quantitative evaluation of airway wall 
thickness. Given the older age profile 
of subjects with COPD and the impor-
tance of acquiring precise quantitative 
information, moderate radiation doses 
(,10 mSv) are probably acceptable. 
However, as CT detector technology 
and image reconstruction methods 
evolve, in combination with improve-
ments in quantitative CT, it is likely 
that the required CT dose will further 
decrease. Several large multicenter 
studies (4,47–50) have used a range 
of settings for key scan acquisition pa-
rameters, and these are summarized in 
the Table. Expiratory CT may be per-
formed with lower radiation exposure 
(tube current 50 mAs) because it is 
primarily used to quantify air trapping 
(51). Iterative reconstruction tech-
niques are not currently recommended 
because the effects on quantitative and 
visual evaluation are uncertain at the 
time of writing (37,52).

Quantitative CT Image Analysis
The goals of quantitative CT in COPD 
are to quantify the presence and per-
centage of emphysema-like lung (low-
attenuation areas), the lobar and zonal 
distribution of the low-attenuation re-
gions, changes in airway walls and lu-
minal caliber, and the severity of gas 
trapping at expiratory CT. A number 
of analysis platforms are available as 
commercial software and in academic 
institutions (36,53–55). A detailed dis-
cussion of quantitative CT methodology 
is beyond the scope of this article, but 
further details are available in recent 
review articles (54,56–58). Although 
quantitative CT provides useful infor-
mation regarding emphysema, air-
ways, and air trapping and provides a 
means of objectively characterizing and 
following these pathologic processes, 
visual assessment of CT scans remains 
important to describe patterns of al-
tered lung structure in COPD and pro-
vides distinct phenotypes not currently 
identified with quantitative CT.

Visually Defined Subtypes of COPD

Figure 1 lists the visually defined phe-
notypes of emphysematous destruction 
as well as the airway changes seen in 
COPD. Figure 2 illustrates the gross 
abnormality and micro-CT features 
of the primary lesions of each of the 
major emphysematous phenotypes of 
COPD.

CT Techniques Used for Visual and 
Quantitative Evaluation of COPD

Parameter Value

Detector configuration 16 detectors
Pitch 1–1.4
Acquisition collimation (mm) 1
Kilovolt peak 120
Effective milliampere second 40–200
Reconstruction algorithms Smooth and  

  sharp
Reconstruction section 

thickness (mm)
0.625–1

Reconstruction interval (mm) 0.5–0.9 
Reconstruction field of view Lungs only
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Figure 1

Figure 1:  Visually defined patterns of COPD at CT. ∗ = If there are fewer than four to five small (1 cm) juxtapleural circumscribed areas of lucency in the apex of 
a lung, ignore. A1AT = a

1
-antitrypsin.

CLE
McLean in Australia (59–62) and Leo-
pold and Gough in the United King-
dom (63) provided the first pathologic 
descriptions of CLE and showed that 
the primary lesion is produced by di-
lation and destruction of respiratory 
bronchioles within a single acinus. Fur-
thermore, they both demonstrated that 
the centrilobular lesions are formed by 
coalescence of several primary lesions. 
Subsequently, the destruction spreads 
to the entire lung lobule and fuses many 
destroyed lobules together to produce a 

pattern of coalescent destruction that 
sometimes disintegrates to form large 
bullous lesions. By performing three-
dimensional reconstructions of serial 
histologic sections of 90 individual cen-
trilobular spaces, Leopold and Gough 
(63) showed that all CLE lesions had a 
supplying bronchiole lined with abnor-
mal epithelium that was associated with 
varying degrees of airway wall thickening 
and lumen narrowing. In addition, they 
also described widespread evidence of 
bronchiolitis ranging from active cellular 
infiltration to fibrosis. In a subsequent 

study, they used fine particulate lead 
dust bronchograms to confirm that some 
centrilobular spaces filled easily from the 
conducting airways and suggested that 
the pathways between the mainstem 
bronchus and the centrilobular spaces 
were shorter in those with emphysema 
than in normal airways (64). Others 
used this same technique to visualize 
CLE, showing that the areas of CLE are  
hypercompliant and reach their maxi-
mum volume at very low transpulmonary 
pressures and that the resistance to col-
lateral ventilation falls to very low levels 
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Figure 2

Figure 2:  Comparison of frozen lung slices and micro-CT 
images from, A, donor (control) lung to lungs affected by, B, 
centrilobular, C, panlobular, or, D, paraseptal phenotypes of 
emphysematous destruction. A, Micro-CT image of control 
lung shows a terminal bronchiole (white arrow) connecting to 
respiratory bronchiole (green arrow) supplying alveoli of normal 
size. B, Extensive centrilobular destruction (arrowheads) is 
seen in lung slice, and micro-CT scan of primary lesion shows 
dilatation and destruction of proximal respiratory bronchioles 
(green arrow), with sparing of alveoli near lobular septa (blue 
arrow). Moreover, terminal bronchiole leading into centrilobular 
lesion is narrowed (yellow arrow) and then opens up again 
(white arrow), a feature that can be better appreciated in 
video associated with the article by McDonough et al (7). C, In 
contrast, the panlobular phenotype of emphysema in this case 
of a

1
-antitrypsin deficiency shows relatively mild destruction 

of gross specimen (arrowheads), and micro-CT scan shows 
uniform destruction of alveoli extending right up to lobular septa 
(blue arrow). Terminal bronchiole (white arrow) and respiratory 
bronchiole (green arrow) are normal. D, Paraseptal phenotype 
of emphysema shows typical lesions (arrowheads) beneath 
pleural surface on gross specimen, and micro-CT scan shows 
that alveoli adjacent to lobular septa are dilated and destroyed, 
with sparing of center of lobule. Terminal bronchiole (white 
arrow) and respiratory bronchiole (green arrow) are normal. 
Images from control lung and lung affected by PSE came from 
organ donors and were released for research when judged to be 
unsuitable for transplantation, whereas lungs affected by CLE 
and panacinar emphysema were donated by patients treated by 
means of lung transplantation. The protocol for the preparation 
of the specimens is fully described in reference 7. x on A, C, 
and D indicates interlobar fissure(s).

in regions of emphysematous destruc-
tion (65). More recent studies based on 
micro-CT confirmed earlier observations 
that the supplying bronchioles often fol-
low a tortuous pathway to reach the cen-
trilobular space (7) (see video in article 
by McDonough et al [7]). More impor-
tantly, they also showed a remarkable 
reduction in the total number of termi-
nal bronchioles per lung, from 22 300 6 
3900 per adult human lung in control 

subjects to 2400 6 600 per lung when 
CLE was present. This study provided 
histologic evidence that it was surviving 
airways with thickened walls (see figure 
4 in the article by Klein et al [5]) that 
supplied the terminal bronchioles. Most 
importantly, micro-CT measurements 
showed that the reduction in terminal 
bronchioles occurred before the onset 
of emphysematous destruction. Collec-
tively, these data support the hypothesis 

that bronchiolitis is the earliest lesion in 
COPD and suggest that CLE is formed 
distal to surviving bronchioles, sup-
ported by collateral ventilation of acini 
within the same lobule that lost terminal 
bronchioles (7).

At CT, CLE is characterized by 
small well-defined or poorly defined 
areas of low attenuation surrounded 
by normal lung. Centrilobular pulmo-
nary arteries or arterioles, which are 
often seen traversing the hypoattenu-
ated areas, mark the center of each 
lobule (9). This pattern of emphy-
sema correlates well with pathologi-
cally demonstrated CLE (59,66–68) 
and with micro-CT measurements of 
the primary lesions (Fig 2, B). This 
is the most common type of smoking-
related emphysema and is usually 
upper lung predominant (Figs 3, 4).  
The low-attenuation areas may range 



Radiology: Volume 277: Number 1—October 2015  n  radiology.rsna.org	 197

SPECIAL REPORT: CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease	 Lynch et al

Figure 6

Figure 6:  Advanced destructive emphysema. CT scan in patient with GOLD 
stage I COPD shows hyperexpansion of secondary pulmonary lobules with 
distortion of pulmonary architecture.

Figure 5

Figure 5:  Confluent CLE. CT scan in patient with GOLD stage I COPD shows 
multiple lucencies that span several secondary pulmonary lobules (circled in 
left lung) but are not associated with extensive hyperexpansion of secondary 
pulmonary lobules or distortion of pulmonary architecture.

Figure 4

Figure 4:  Moderate CLE. CT scan in patient with GOLD stage 
I COPD shows many well-defined centrilobular lucencies that 
occupy more than 5% of upper lung zone. PSE is seen in antero-
medial right and left lungs.

Figure 3

Figure 3:  Mild CLE. CT scan in patient with GOLD stage I COPD shows 
scattered centrilobular lucencies, separated by large regions of normal lung, 
involving an estimated 0.5% of upper lung zone.

manifested as a generalized decrease 
of attenuation of the lung without focal 
hypoattenuation (Fig 6) and represents 
an advanced stage of CLE. Interlobular 
septa are often preserved and splayed, 
facilitating the identification of pulmo-
nary lobular hyperexpansion. In addi-
tion, the more central pulmonary ves-
sels are often distorted, splayed, and 
narrowed with decreased branching 
(architectural distortion). Although this 
pattern may be indistinguishable at CT 
from the panlobular pattern described 

from less than 1 mm to more than 3 
cm in diameter.

Severe Emphysema
Confluent emphysema.—As CLE be-
comes more severe, the areas of low at-
tenuation become confluent (Fig 5) and 
the centrilobular distribution becomes 
less apparent. In most cases, the areas 
of low attenuation have no visible walls; 
however, very thin walls may be seen—
particularly when the areas of emphy-
sema are extensive. The apparent walls 

in such cases probably represent atel-
ectasis or interlobular septa adjacent 
to the emphysematous spaces. Conflu-
ent emphysema may be differentiated 
from advanced destructive emphysema 
by the presence of a preserved rim of 
normal lung attenuation intervening be-
tween areas of lung destruction, and by 
the absence of lobular hyperexpansion, 
architectural distortion, or splaying or 
decreased caliber of vessels.

Advanced destructive emphysema.—
Advanced destructive emphysema is 
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below, and the term panlobular has 
been previously used to describe this en-
tity (4,69), we prefer to use the term ad-
vanced destructive emphysema because 
it may not represent histologic panlobu-
lar emphysema (PLE).

PLE
PLE specifically refers to diffuse em-
physematous destruction across the 
lobule (Fig 2, C). Wyatt et al (70) first 
described this pattern, which was subse-
quently linked to low circulating levels of 
a1-antitrypsin (71). It is now known that 
low levels of a1-antitrypsin are produced 
by a genetic defect in the a1-antitrypsin 
gene that causes the protein to misfold 
after it is produced, causing it to accu-
mulate in liver cells, where it stimulates 
inflammation and subsequent cirrhosis 
without being secreted into the circu-
lating blood (72). In general, the extent 
and severity of alveolar destruction in 
PLE is milder than that in CLE, but it 
affects all of the acini within a lung lob-
ule more or less equally (see the gross 
pathology and micro-CT images of the 
primary lesion in Fig 2, C).

PLE has also been reported in the 
absence of a1-antitrypsin deficiency 
(73), including in intravenous drug 
abuse (74). In cigarette smokers, 

mixtures of PLE and CLE can be found 
within the same lungs (69). Under these 
conditions, Kim et al (69) have sug-
gested that PLE is less likely to be as-
sociated with small airway obstruction 
than CLE. However, micro-CT studies 
of a1-antitrypsin deficiency indicate that 
both CLE and PLE are associated with 
narrowing and destruction of the termi-
nal bronchioles in end-stage COPD (7).

At CT, advanced PLE in associa-
tion with a1-antitrypsin deficiency often 
occurs in a lower lobe–predominant 
distribution (Fig 7) (75,76). (CLE may 
also be found in cigarette smokers with 
a1-antitrypsin deficiency.) Earlier stages 
of PLE are quite difficult to identify at CT, 
and quantitative CT may be preferred.

Paraseptal Emphysema
Heard (77) used the term paraseptal 
emphysema (PSE) to describe emphy-
sematous lesions caused by selective 
destruction of the distal acinus (Fig 2, 
D), and subsequent reports have used 
it to describe lesions located near the 
pleural surface close to the chest wall 
and in the interlobar fissures. In some 
cases, multiple destroyed acini coa-
lesce to form striking lesions just un-
der the pleural surface on CT scans. Its 
relative frequency in radiology-based 

studies like COPDGene suggest that it 
has been underappreciated in studies 
of postmortem and surgically resected 
lungs, perhaps because these spec-
imens are rarely properly inflated 
before being examined. However,  
PSE is often not associated with sig-
nificant symptoms or physiologic im-
pairment (4).

PSE is characterized at CT by sub-
pleural and peribronchovascular foci 
of low attenuation separated by intact 
interlobular septa thickened by associ-
ated mild fibrosis (78) (Figs 8, 9). PSE 
has a special predilection for peripheral 
subpleural lobules along the mediasti-
nal and peripheral pleura and fissures, 
usually most marked in the middle and 
upper lungs and along the mediastinum. 
CT shows subpleural areas of low atten-
uation with a well-defined wall. Rows of 
PSE may mimic honeycombing, but the 
size of the cysts is larger than that of 
honeycomb cysts and architectural dis-
tortion and other signs of fibrosis are 
not present. In our experience, PSE 
is commonly associated with marked 
thickening of the walls of proximal bron-
chi and bronchioles, suggesting a signif-
icant airway inflammatory component. 
PSE occurs across the entire spectrum 
of minimal involvement to severe pa-
renchymal obstruction and can be pro-
gressive. Because minimal subpleural 
emphysematous abnormality is quite 
common even in nonsmokers (79,80), it 
is reasonable to ignore or discount the 
presence of up to four or five small cysts 
(1 cm) at the lung apices.

Bullae (avascular low-attenuation 
areas .1 cm in diameter, with a thin 
but perceptible wall) are found in all 
types of emphysema (81) but are most 
commonly associated with PSE. Bullae 
are often located in the upper lobes in 
both CLE and PSE but are more evenly 
distributed in the lungs of patients with 
advanced destructive emphysema (76). 
Bullae may be large enough to cause 
reduced expansion of the adjacent lung 
parenchyma, which may sometimes re-
sult in sufficient atelectasis to appear as 
a masslike opacity (82). The term giant 
bullous emphysema has been used to de-
scribe the presence of bullae occupying 
at least one-third of a hemithorax (83).

Figure 7

Figure 7:  PLE related to a
1
-antitrypsin deficiency. CT scan through lower 

lungs shows widespread confluent areas of hyperlucency spanning one or 
several lobules. Some lobules, outlined by intact interlobular septa, appear 
hyperexpanded (arrowheads).
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Figure 10

Figure 10:  Normal bronchial walls. CT scan in asymptomatic nonsmoker with 
normal spirometric findings demonstrates normal airways.

Figure 9

Figure 9:  Substantial PSE. CT scan in patient with GOLD stage I COPD shows 
numerous well-demarcated areas of subpleural emphysema along chest wall 
and mediastinal pleural margins.

Bronchial Wall Thickening
Bronchial wall thickening is commonly 
observed in heavy cigarette smokers 
(84), particularly those with chronic 
bronchitis, presumably because of 
bronchial inflammation and remodel-
ing. It may be visually identified at CT 
by a relative increase in bronchial wall 
thickness compared with the bronchial  
lumen and with the diameter of adja-
cent pulmonary arteries (85); how-
ever, this CT feature is subjective 
and associated with substantial in-
terobserver variation (80,86). It is 
probably best assessed by compar-
ison with visual standards obtained 

from subjects with normal (Fig 10)  
and abnormal (Fig 11) findings (27).

Quantitative CT of airway dimen-
sions is less subjective than visual eval-
uation. Quantitative CT of subsegmen-
tal airway dimensions can provide an 
estimate of small airway remodeling 
(87), probably because the same path-
ophysiologic process that causes small 
airway obstruction also takes place in 
large airways.

Increased thickness of airway walls 
is associated with the presence of 

COPD (88), with reversibility of airway 
obstruction (89), and with symptoms 
of chronic bronchitis (90). In patients 
with COPD, bronchial wall thickening is 
an important independent predictor of 
FEV1 (91,92) and of the risk of acute ex-
acerbation (13).

Small Airways Disease
Cigarette smoking has distinct effects on 
the small airways that may be visible both 
pathologically and at CT. Niewoehner et 
al (93) showed that a characteristic form 

Figure 11

Figure 11:  Bronchial wall thickening. CT scan in cigarette smoker dem-
onstrates marked thickening of segmental and subsegmental airways but no 
emphysema.

Figure 8

Figure 8:  Mild PSE. CT scan in smoker without COPD shows subpleural foci 
of low attenuation separated by intact interlobular septa along the mediastinum 
(arrows), measuring less than 1 cm.
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of respiratory bronchiolitis was present 
in the lungs of young persons who died 
suddenly outside the hospital. Although 
most of these lesions were observed in 
smokers, they were also found in non-
smokers. The authors postulated that 
this form of bronchiolitis was a precursor 
to CLE. Myers et al (94) reported a sim-
ilar but more severe form of respiratory 
bronchiolitis as the only finding at lung 
biopsies performed in six patients with 
clinical and radiologic evidence of intersti-
tial lung disease. That was confirmed by 
other authors (95). Respiratory bronchi-
olitis is dominated by infiltrating mono-
nuclear cells containing large numbers 
of macrophages with brown to black 
“smokers” inclusion bodies that stain pos-
itively with periodic acid Schiff and iron 
stains. These inclusions are thought to be 
based on abnormal lysosomal function of 
macrophages in smokers (96). Respira-
tory bronchiolitis is also commonly found 
in lung specimens removed as a treat-
ment for lung cancer (97). The decrease 
in FEV1 in COPD has also been related to 
a persistent infiltration of inflammatory 
immune cells into the walls of purely con-
ducting airways, with a tendency to form 
tertiary lymphoid organs in the later 

stages of COPD (98). A decrease in FEV1 
has also been associated with a reduc-
tion in terminal bronchiolar number and 
thickening of the walls of the bronchi that 
survive (7). Collectively, these data sug-
gest that the region of the lung where the 
smaller purely conducting airways tran-
sition into respiratory bronchioles, alve-
olar ducts, and sacs is susceptible to the 
inhalation of a variety of toxic particles 
and gases, primarily but not exclusively 
derived from tobacco smoking.

Small airway disease is often an im-
portant major component of both em-
physema-predominant disease and air-
way-predominant disease involving larger 
airways (bronchi). Isolated small airway 
disease can also occur as a primary ex-
pression of COPD. Physiologic identifica-
tion of small airway disease is difficult. 
CT can be helpful in identifying signs of 
inflammatory small airway disease and 
small airway obstruction.

Inflammatory small airway disease. 
—Inflammation in and around the 
small airways in patients with COPD 
can cause the airways to become visi-
ble at CT as poorly defined centrilobu-
lar nodules of ground-glass attenuation  
(Fig 12) (99–101). Pathologically, this 
process commonly corresponds with 
respiratory bronchiolitis (24). CLE and 
bronchial wall thickening are frequent 
associated findings. The centrilobular 
nodules of respiratory bronchiolitis may 
progress to CLE (102). Unless it is severe, 
centrilobular nodularity is a subjective vi-
sual finding and the boundary between 
normal and abnormal may be difficult to 
set. For this reason, substantial observer 
variation has been found in the assess-
ment of centrilobular nodularity (73). 
The small centrilobular nodules of respi-
ratory bronchiolitis are sometimes asso-
ciated with patchy areas of ground-glass 
opacity that reflect respiratory bronchiol-
itis–interstitial lung disease or desquama-
tive interstitial pneumonia (100).

Obstructive small airway disease.—
Obstructive small airway disease, in the 
absence of significant emphysema (de-
fined in this analysis as quantitative CT 
extent of low-attenuation area ,6%) may 
be identified by finding gas trapping at ex-
piratory CT and/or by identifying phys-
iologic obstruction (low FEV1 with low 

FEV1/FVC consistent with GOLD grades 
II, III, and IV).

At expiratory CT in healthy subjects, 
the lung attenuation usually increases in 
a homogeneous fashion. Air trapping, 
recognized as patchy or diffuse preserva-
tion of lung attenuation at expiratory CT 
(Fig 13), is common in cigarette smokers 
(12,103–106). Mechanisms of air trap-
ping identified at CT may include pro-
longed lung emptying because of bronchi-
olar narrowing and dropout (7) and/or 
emphysematous destruction with loss of 
the elastic recoil force required to drive 
air out of the lungs (17,107).

The resistance in the small conduct-
ing airways smaller than 2 mm in di-
ameter accounts for only 10%–20% of 
total lower airway resistance in healthy 
subjects (108–110). In lungs affected by 
COPD, however, small airway resistance 
increases substantially (109,110)—par-
ticularly in subjects with COPD who 
have minimal emphysematous destruc-
tion (110). Micro-CT has shown that the 
number of terminal bronchioles is re-
duced to as little as 10% of control values 
in the end stage of the CLE phenotype 
of COPD and to 25% of control values 
in the end stage of the PLE phenotype of 
COPD (7). This degree of reduction in 
numbers of terminal bronchioles proba-
bly makes a very important contribution 
to the increase in small airways resis-
tance in COPD.

Other Important CT Features in 
Cigarette Smokers and in COPD

Interstitial Lung Abnormalities
In addition to centrilobular nod-
ules, CT scans obtained in cigarette 
smokers may show abnormalities com-
patible with infiltrative lung disease, 
including ground-glass and reticu-
lar abnormalities. In a study of 2416 
COPDGene participants who were 
cigarette smokers, an interstitial lung 
abnormality was found in 194 sub-
jects (8%) (111). The prevalence of 
an interstitial abnormality increased 
with age, tobacco exposure, and cur-
rent smoking. Although the interstitial 
abnormalities were usually asymp-
tomatic, subjects with an interstitial 

Figure 12

Figure 12:  Widespread small centrilobular 
nodules. Centrilobular nodules (circled) in cigarette 
smoker are suggestive of respiratory bronchiolitis. 
Mild CLE and PSE are also present.
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Abnormalities of the Trachea and Central 
Bronchi
Tracheobronchomalacia, defined as 
a reduction in the tracheal luminal 
cross-sectional area by more than 80% 
at dynamic expiratory imaging, is found 
in about 20% of patients with COPD 
but is not correlated with physiologic 
impairment (39). Indeed, the degree 
of tracheal collapse at end expiration 
in patients with COPD does not ap-
pear to be significantly different from 
that of control subjects (121). How-
ever, narrowing of the trachea in the 
coronal plane (saber-sheath trachea) 
is associated with COPD—particularly 
with more advanced stages of COPD 
(121–123). Diverticula or outpouch-
ing from the central airways may also 
be present; although the prevalence of 
bronchial diverticula is not different 
in patients with COPD than in control 
subjects (124), an increased number of 
diverticula is associated with a history 
of cigarette smoking (125) and with 
symptoms of cough (126).

Bronchiectasis
Bronchiectasis is defined at CT as a 
dilated bronchial lumen relative to 
the adjacent pulmonary artery, lack 
of bronchial tapering, or identification 
of bronchi within 1 cm of the pleural 

abnormality were more likely to have 
a restrictive lung deficit and were less 
likely to meet the GOLD criteria for 
COPD. Similar changes were also seen 
in 2563 cigarette smokers in the MESA 
Lung Study and in the National Lung 
Screening Trial (112,113). Although 
detailed pathologic correlation is not 
available, these interstitial abnormal-
ities likely correspond to variable com-
binations of respiratory bronchiolitis, 
airspace enlargement with fibrosis, 
and smoking-related interstitial fibro-
sis (114–116).

Pulmonary Vascular Disease
Pulmonary hypertension can be a 
complication of advanced COPD and 
may be due to hypoxic vasoconstric-
tion, pulmonary vascular obliteration, 
sleep apnea, or left heart abnormal-
ity. This important comorbidity is an 
important predictor of hospitalization 
and death in COPD (117). Pulmo-
nary hypertension can be identified 
at CT with the ratio of the diameters 
of the pulmonary artery and aorta 
(118,119). Enlargement of the pulmo-
nary artery as determined by a pul-
monary artery–aorta ratio of more 
than 1 was recently shown to be an 
independent risk factor for exacerba-
tions in patients with COPD (120).

surface (81). The reported prevalence 
of bronchiectasis at CT in subjects with 
COPD ranges from 27% (127,128) to 
58% (129). Differences in prevalence 
may relate to differing populations and 
the variation in criteria for the diagno-
sis of bronchiectasis. Bronchiectasis is 
most commonly cylindrical in character 
(129). The presence of bronchiectasis 
is associated with more severe airflow 
obstruction and with hospital admis-
sion for exacerbation (129).

Summary

Integration of visual characterization 
of emphysema and airway abnormal-
ities with physiologic and quantitative 
CT assessment permits categorization 
of COPD into distinct structurally and 
functionally defined subtypes. These in-
clude identification of patients with five 
different patterns of emphysema-pre-
dominant subtypes and two patterns of 
airway-predominant subtypes (Fig 14).  
In addition, quantitative CT analysis is 
important to determine the severity of 
emphysema and the magnitude of ex-
piratory gas trapping. The subjectivity 
of visual determinations of emphysema 
severity and gas trapping suggests that 
the combination of visual scoring and 
quantitative CT is essential to define 

Figure 13

Figure 13:  Gas trapping at expiratory CT. (a) Inspiratory and (b) expiratory CT scans in patient with severe airway obstruction (GOLD stage III) 
but only minimal emphysema. Lung attenuation fails to increase on expiratory scan, which is indicative of diffuse gas trapping owing to small 
airway obstruction.
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1
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