Vector Geometry

Vectors and Lines

In this chapter we study the geometry of 3-dimensional space. We view a point in
3-space as an arrow from the origin to that point. Doing so provides a “picture” of
the point that is truly worth a thousand words. We used this idea earlier, in Section
2.6, to describe rotations, reflections, and projections of the plane R?. We now apply
the same techniques to 3-space to examine similar transformations of R*. Moreover,
the method enables us to completely describe all lines and planes in space.

Vectors in R®

Introduce a coordinate system in 3-dimensional space in the usual way. First choose
a point O called the origin, then choose three mutually perpendicular lines through
O, called the , y, and z axes, and establish a number scale on each axis with zero at
the origin. Given a point P in 3-space we associate three numbers w, y, and z with
P, as described in Figure 1. These numbers are called the coordinates of P, and we
denote the point as (x, y, z), or P(x, y, ) to emphasize the label P. The result is
called a cartesian' coordinate system for 3-space, and the resulting description of
3-space is called cartesian geometry.

As in the plane, we introduce vectors by identifying each point P(x, y, 2) with the

Py, 2)
x
v :m vector v = | Y| in R?, represented by the arrow from the origin to P as in Figure 1.
z P4

Informally, we say that the point P has vector v, and that vector v has point P. In this
y. y p

way 3-space is identified with R?, and this identification will be made throughout
Sy this chapter, often without comment. In particular, the terms “vector” and

X Py, y, 0) “point” are interchangeable.2 The resulting description of 3-space is called vector
0

M FIGURE 1 geometry. Note that the originis 0 = {0 |
0

Length and Direction

We are going to discuss two fundamental geometric properties of vectors in R’:
length and direction. First, if v is a vector with point P, the length ||v|| of vector

1 Named after René Descartes who introduced the idea in 1637.

2 Recall that we defined R” as the set of all ordered n-tuples of real numbers, and reserved the right to denote them as rows or as
columns.
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v is defined to be the distance from the origin to P, that is the length of the arrow
representing v. The following properties of length will be used frequently.

x
¥

b4

@) IVl =V& +y +2.°
(2)v=0ifand only if ||v|| = 0

(3) |lav|| = |a| ||v|| for all scalars a.*

Let v have point P = (x, y, 2).

Letv = be a vector.

(1) In Figure 2, ||v|| is the hypotenuse of the right triangle OQP, and so
|v||* = b* + 2 by Pythagoras’ theorem.’ But 4 is the hypotenuse of the
right triangle ORQ, so * = * + y°. Now (1) follows by eliminating 5
and taking positive square roots.

Q) If ||v]| = 0, then &* + y* + 2% = 0 by (1). Because squares of real numbers
are nonnegative, it follows that x = y = z = 0, and hence that v = 0. The

converse is because ||0]] = 0.

¥ FIGURE 2 (3) We have av = (ax, ay, az) so (1) gives llav])* = (ax)* + (ﬂy)2 + (a2)’ = &*||v|*
Hence ||av|| = \/;2||V||, and we are done because Va? = |#| for any real
number 4.

Of course the R*>-version of Theorem 1 also holds.

2
Ifv=|_1 |then ||v]| =V&+ 1 + 9 = VI4. Similarly if v = ﬂ i Dy
3 _

then ||v|| =V9 + 16 = 5.

When we view two nonzero vectors as arrows emanating from the origin, it is
clear geometrically what we mean by saying that they have the same or opposite
direction. This leads to a fundamental new description of vectors.

3 When we write \/p we mean the positive square root of p.

4 Recall that the absolute value || of a real number is defined by |al = a_ifaaizfzag 0
5  Pythagoras’ theorem states that if a and b are sides of right triangle with hypotenuse c, then & + & = ¢ A proof is given at the
end of this section.
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Theorem 2

Letv # 0 and w # 0 be vectors in R®. Then v = w as matrices if and only if v and w
have the same direction and the same length.®

If v = w, they clearly have the same direction and length. Conversely, let v and
w be vectors with points P(x, y, ) and Q(xy, y;, 21) respectively. If v and w have
the same length and direction then, geometrically, P and Q must be the same

X X1
point (see Figure 3). Hence x = x1, y = y;, and 2 = z, thatisv= |y |=|)1| =wW.
P4 21

M FIGURE 3

A characterization of a vector in terms of its length and direction only is called
an intrinsic description of the vector. The point to note is that such a description
does nor depend on the choice of coordinate system in R*. Such descriptions are
important in applications because physical laws are often stated in terms of vectors,
and these laws cannot depend on the particular coordinate system used to describe
the situation.

Geometric Vectors

If A and B are distinct points in space, the arrow from A4 to B has length and
direction. Hence:

Definition 4.1 Suppose that A and B are any two points in R>. In Figure 4 the line segment from A to
z B is denoted AB and is called the geometric vector from A to B. Point A is called the
tail of AB, B is called the tip of AB, and the length of AB is denoted 7:]}

A.//ﬁv b Note that if v is any vector in R with point P then v = OP is itself a geometric
vector where O is the origin. Referring to AB as a “vector” seems justified by
0 Theorem 2 because it has a direction (from A4 to B) and a length |4B]. However
" 3y there appears to be a problem because two geometric vectors can have the same
B FIGURE 4 lglgth and direction even if the tips and tails are different. For example AB and
PQ in Figure 5 have the same length V/5and the same direction (1 unit left and 2
y units up) so, by Theorem 2, they are the same vector! The best way to understand

this apparent paradox is to see AB and PQ as different representations of the same

1 B(2,3)
underlying vector 1}. Once it is clarified, this phenomenon is a great benefit
(0, 2) . .
because, thanks to Theorem 2, it means that the same geometric vector can be
1 AB,1)  positioned anywhere in space; what is important is the length and direction, not
P, 0) the location of the tip and tail. This ability to move geometric vectors about is very
o— : useful as we shall soon see.
0 x
M FIGURE 5

6 Itis Theorem 2 that gives vectors their power in science and engineering because many physical quantities are determined by
their length and magnitude (and are called vector quantities). For example, saying that an airplane is flying at 200 km/h does not
describe where it is going; the direction must also be specified. The speed and direction comprise the velocity of the airplane, a
vector quantity.

7 Fractions provide another example of quantities that can be the same but /ook different. For example and ; certainly appear
different, but they are equal fractions—both equal 3 2in “lowest terms”.
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The Parallelogram Law

We now give an intrinsic description of the sum of two vectors v and w in R?, that
is a description that depends only on the lengths and directions of v and w and
not on the choice of coordinate system. Using Theorem 2 we can think of these
vectors as having a common tail 4. If their tips are P and Q respectively, then they
both lie in a plane P contalmngA P, and Q, as shown in Figure 6. The vectors v
and w create a parallelogram® in P, shaded in Figure 6, called the parallelogram
determined by v and w.

If we now choose a coordinate system in the plane P with A4 as origin, then
the parallelogram law in the plane (Section 2.6) shows that their sum v + w is
the diagonal of the parallelogram they determine with tail 4. This is an intrinsic
description of the sum v + w because it makes no reference to coordinates. This
discussion proves:

The Parallelogram Law

In the parallelogram determined by two vectors v and w, the vector v + w is the
diagonal with the same tail as v and w.

Because a vector can be positioned with its tail at any point, the parallelogram
law leads to another way to view vector addition. In Figure 7(a) the sum v + w of
two vectors v and w is shown as given by the parallelogram law. If w is moved so its
tail coincides with the tip of v (Figure 7(b)) then the sum v + w is seen as “first v
and then w. Similarly, moving the tail of v to the tip of w shows in Figure 7(c) that
v + w is “first w and then v.” This will be referred to as the tip-to-tail rule, and it
gives a graphic illustration of why v + w = w + v.

—
Since AB denotes the vector from a point 4 to a point B, the tip-to-tail rule takes
the easily remembered form
— — —
AB + BC = AC
for any points A, B, and C. The next example uses this to derive a theorem in
geometry without using coordinates.

Show that the diagonals of a parallelogram bisect each other.

Solution > Let the parallelogram have vertices 4, B, C, and D, as shown; let E
denote the intersection of the two diagonals; and let M denote the midpoint
of diagonal AC. We must show that M = E and that this is the midpoint of

diagonal BD. This is accomplished by showing that BM = MD. (Then the fact
that these vectors have the same direction means that M = E, and the fact that
they have the same length means that M = E is the mldpomt of BD.) Now

AM = MC because M is the midpoint of AC, and BA = CD because the figure
is a parallelogram. Hence

BM = BA + AM = CD + MC = MC + CD = MD

where the first and last equalities use the tip-to-tail rule of vector addition.

8 Recall that a parallelogram is a four-sided figure whose opposite sides are parallel and of equal length.
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One reason for the importance of the tip-to-tail rule is that it means two or
more vectors can be added by placing them tip-to-tail in sequence. This gives a
useful “picture” of the sum of several vectors, and is illustrated for three vectors
in Figure 8 where u + v + w is viewed as first u, then v, then w.

There is a simple geometrical way to visualize the (matrix) difference v — w
of two vectors. If v and w are positioned so that they have a common tail 4 (see
Flgure 9), and if B and C are the1r respective tips, then the tip-to-tail rule gives

w + CB = v. Hence v — w = CB is the vector from the tip of w to the tip of v.
Thus both v — w and v + w appear as diagonals in the parallelogram determined
by v and w (see Figure 9). We record this for reference.

Theorem 3

If v and w have a common tail, then v — w is the vector from the tip of w to the tip of v.

One of the most useful applications of vector subtraction is that it gives a simple
formula for the vector from one point to another, and for the distance between the points.

Theorem 4

Let Pi(x1, y1, z1) and Py(x, 5, 25) be two points. Then:

X2 — X
1. P1P2= Y2 =01}
2 — 2

2. The distance between P; and P, is \/(xz — )+ (g2 — ) + (22 — 2)

X1 X2
If O is the origin, write vi = OP; = |y1 |and v, = OPZ ¥2 | as in Figure 10.
z1 22

Then Theorem 3 gives Pl_)Pz = v, — vy, and (1) follows. But the distance between
P1 andpz is HP?% y

Of course the R?-version of Theorem 4 is also valid: If P;(x, yp) and Py(x2, y2)
BY)

are points in R?, then PI_P)Z = {yz

: ji }, and the distance between P; and P, is

\/(xz - xl)z + (0 —)’1)2-

The distance between P;(2, —1, 3) and P(1, 1, 4) is \/(—1)2 + Q) + (1) =6,

-1
21
1

—>
and the vector from P; to P, is PP, =
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As for the parallelogram law, the intrinsic rule for finding the length and direction
of a scalar multiple of a vector in R* follows easily from the same situation in R,

Scalar Multiplication

Scalar Multiple Law
If a is a real number and v #+ 0 is a vector then:

(1) The length of av is ||av|| = |a|||v]|.

the same as v if a > 0,

9 N ;
(2) Ifav # 0, the direction of av is [ el

(1) This part of Theorem 1.

(2) Let O denote the origin in R?, let v have point P, and choose any plane
containing O and P. If we set up a coordinate system in this plane with O as

origin, then v= OP so the result in (2) follows from the scalar multiple law in
the plane (Section 2.6).

1
/( DY origin O, and let p = OP. If 1 # 0, then 7p is a point on L because it has direction
the same or opposite as that of p. Moreover 7 > 0 or ¢ < 0 according as the point p
M FIGURE 11 lies on the same or opposite side of the origin as P. This is illustrated in Figure 12.
1 0 0
0 1 0

0 0 1
are unit vectors, called the coordinate vectors. We discuss them in more detail in

Section 4.2.

v Figure 11 gives several examples of scalar multiples of a vector v.
/ -~ e Consider a line L through the origin, let P be any point on L other than the
1v

A vector u is called a unit vector if ||[u|| = 1. Theni =

,j=|1and k =

M FIGURE 12

If v # 0 show that ﬁv is the unique unit vector in the same direction as v.
v

Solution » The vectors in the same direction as v are the scalar multiples av

where 2 > 0. But ||av|| = |4|||v|| = 4||v|| when 2 > 0, so av is a unit vector if

and only if z = _

v

The next example shows how to find the coordinates of a point on the line
segment between two given points. The technique is important and will be used
again below.

9 Since the zero vector has no direction, we deal only with the case av + 0.
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Let p; and p; be the vectors of two points Py and P,. If M is the point one third
the way from P; to P,, show that the vector m of M is given by

m = %Pl + %Pz

Conclude that if Py = Pi(xy, y1, 21) and P, = Ps(x3, ¥2, 22), then M has
coordinates

M= M(§x1 + %xz, %}’1 + %)’27 %Z1 + %Zz)-
Solution » The vectors py, p;, and m are shown in the diagram We have

PlM —P1P2 because PlM is in the same direction as P1P2 and -+ as long. By
Theorem 3 we have P1P2 P2 — P1, so tip-to-tail addition glves

m=P1+P1M=P1+%(P2—P1)=§P1+%Pz

X X2
as required. For the coordinates, we have p; = | Y1 |and p; = |72, so
2] 22
2 1
Xy X 50 5t
_2 1y | |2 1
=301+ 302|= |50 + 302
2] 22
%Zl 2 %Zz

by matrix addition. The last statement follows.

Note tha.t in Example 5 m = %pl + 1p; is a “weighted average” of p; and p, with
more weight on p; because m is closer to p;.

The point M halfway between points P; and P; is called the midpoint between
these points. In the same way, the vector m of M is

m = 2P1 + ZPz 1(Pl +p2)

as the reader can verify, so m is the “average” of p; and p; in this case.

Show that the midpoints of the four sides of any quadrilateral are the vertices
of a parallelogram. Here a quadrilateral is any figure with four vertices and
straight sides.

Solution » Suppose that the vertices of the quadrilateral are A4, B, C, and D (in
that order) and that E, F, G, and H are the midpoints of the sides as shown in

the diagram. It suffices to show EF = HG (because then sides EF and HG are
parallel and of equal length) Now the fact that E is the midpoint of AB means

that EB = 1AB Similarly, BF = 1BC SO
EF = EB + BF = 4B + 1BC = (4B + BC) = 14C

A similar argument shows that HG = %A_C)' too, so EF = HG as required.
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Definition 4.2  Two nonzero vectors are called parallel if they have the same or opposite direction.

Many geometrical propositions involve this notion, so the following theorem will
be referred to repeatedly.

Two nonzero vectors v and w are parallel if and only if one is a scalar multiple of the other.

If one of them is a scalar multiple of the other, they are parallel by the scalar
multiple law.

, v
Conversely, assume that v and w are parallel and write d = H for
w

convenience. Then v and w have the same or opposite direction. If they have
the same direction we show that v = dw by showing that v and dw have the
same length and direction. In fact, ||dw|| = |d| ||w|| = ||v|| by Theorem 1; as to
the direction, dw and w have the same direction because 4 > 0, and this is the
direction of v by assumption. Hence v = dw in this case by Theorem 2. In the
other case, v and w have opposite direction and a similar argument shows that
v = —dw. We leave the details to the reader.

Given points P2, —1, 4), Q(3, —1, 3), A(0, 2, 1), and B(1, 3, 0), determine if
P—Q> and AB are parallel.

Solution » By Theorem 3, PQ = (1, 0, —1) and AB = (1, 1, —1). If PQ = tAB
then (1, 0, —=1) = (z, ¢, —t),_s)o 1 = tand 0 = ¢, which is impossible. Hence PQ
is not a scalar multiple of 4B, so these vectors are not parallel by Theorem 5.

Lines in Space

These vector techniques can be used to give a very simple way of describing straight
lines in space. In order to do this, we first need a way to specify the orientation of
such a line, much as the slope does in the plane.

Definition 4.3  With this in mind, we call a nonzero vector d # 0 a direction vector for the line if it is
parallel to AB for some pair of distinct points A and B on the line.

Of course it is then parallel to CD for any distinct points C and D on the line. In
particular, any nonzero scalar multiple of d will also serve as a direction vector of
the line.

We use the fact that there is exactly one line that passes through a particular
a

b 1. We want to describe
¢

M FIGURE 13 this line by giving a condition on , y, and z that the point P(x, y, 2) lies on

point Py(xg, yo, Z0) and has a given direction vector d =
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Xo X
this line. Let py = | Yo |and p = |y | denote the vectors of Py and P, respectively
20 zZ
(see Figure 13). Then
p = po + PoP

Hence P lies on the line if and only if Zﬁ’ is parallel to d—that is, if and only if

Iﬁ) = td for some scalar ¢ by Theorem 5. Thus p is the vector of a point on the
line if and only if p = py + #d for some scalar 7. This discussion is summed up
as follows.

Vector Equation of a Line

The line parallel to d # 0 through the point with vector py is given by
p=po+td tany scalar

In other words, the point p is on this line if and only if a real number t exists such that
p=po+td

In component form the vector equation becomes

X X0 a
Y=Y+ 1b
Z 20 c

Equating components gives a different description of the line.

Parametric Equations of a Line

a
The line through Py(xo, Yo, 2o) with direction vector d = | | # 0 is given by
c
X =xy+ ta
y=yo+tb t any scalar
2 =20+ I

In other words, the point P(x, y, 2) is on this line if and only if a real number t exists
such that x = xy + ta, y = yo + tb, and z = zq + tc.

Find the equations of the line through the points Py(2, 0, 1) and P;(4, —1, 1).

2
Solution b Let d = PyP; = |1 | denote the vector from P, to P;. Then d is
0

parallel to the line (Py and P; are o the line), so d serves as a direction vector
for the line. Using Py as the point on the line leads to the parametric equations

x =2+ 2t
y=—t t a parameter
z =l

Note that if P; is used (rather than P), the equations are
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x=4+2s
W= =il =g § a parameter
z=1

These are different from the preceding equations, but this is merely the result
of a change of parameter. In fact,s = — 1.

Find the equations of the line through Py(3, —1, 2) parallel to the line with
equations

w= =l 4 2
y=1+1
z=-=34+4
2
Solution b The coefficients of ¢ give a direction vector d = | 1 | of the given
4

line. Because the line we seek is parallel to this line, d also serves as a direction
vector for the new line. It passes through P, so the parametric equations are

x =3+ 2t
y=—1+1
z2=2+4

Determine whether the following lines intersect and, if so, find the point of
intersection.

x=1-—3t x=—1+s
y=2+5t y=3—4s
z=1+1¢ z=1—=s

Solution » Suppose p = P(x, y, 2) lies on both lines. Then

1 — 3¢ X —1+s
2+ 5¢|=1|Y|=|3 — 45 | for some ¢ and s,
1 +1¢ % 1 —s

where the first (second) equation is because P lies on the first (second) line.
Hence the lines intersect if and only if the three equations

1 -3t =—-1+s

2+5t =3—4s
1+t =1-—=5
have a solution. In this case, 7 = 1 and s = —1 satisfy all three equations, so the
lines do intersect and the point of intersection is
L= 2% =/’
P=1(2+5t|=| 7
1 +1¢ 2
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-1+
3 —4s
1—5

using ¢ = 1. Of course, this point can also be found from p = using

s=—1.

Show that the line through Py(xy, y) with slope 72 has direction vector d = [”ﬂ

and equation y — yo = m2(x — xp). This equation is called the point-slope formula.

y Solution » Let Py(xy, y1) be the point on the line one unit to the right of Py (see the
diagram). Hence x; = &y + 1. Then d = PyP; serves as direction vector of the line,
P (xy, X] — X
) 1)’1?/ andd = { ' O] = [ ! } But the slope 7z can be computed as follows:
P,y Ji—Xo Y1 = Yo
O
i1 —=Yo _ D1 —DJo _
m_xl_xo_ 1 _.)’l_yo
Ol xp xy=wg+l ¥

Hence d = L}Z] and the parametric equations are x = x + t, y = yo + #mt.

Eliminating ¢ gives y — yo = mt = m(x — x;), as asserted.

Note that the vertical line through Py(xy, yo) has a direction vector d = [(ﬂ that is

not of the form L}J for any m2. This result confirms that the notion of slope makes

no sense in this case. However, the vector method gives parametric equations for
the line:

X = Xq

y=yt+t
Because y is arbitrary here (¢ is arbitrary), this is usually written simply as x = x,.

Pythagoras’ Theorem

The pythagorean theorem was known earlier, but Pythagoras (c. 550 B.c.) is credited
with giving the first rigorous, logical, deductive proof of the result. The proof we
give depends on a basic property of similar triangles: ratios of corresponding sides
are equal.

Pythagoras’ Theorem
Given a right-angled triangle with hypotenuse ¢ and sides a and b, then a® + b* = ¢.

Let A, B, and C be the vertices of the triangle as in Figure 14. Draw a perpendicular
from C to the point D on the hypotenuse, and let p and ¢ be the lengths of BD

and DA respectively. Then DBC and CBA are similar triangles so% =4

c

M FIGURE 14
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This means #° = pe. In the same way, the similarity of DCA and CBA gives 7_ é,
2 G
whence /° = ¢c. But then
AV =petqg=0p+qc=7
because p + ¢ = ¢. This proves Pythagoras’ theorem.
EXERCISES 4.1
1. Compute [|v|| if v equals: 7. Determine whether u and v are parallel in each
2 1 of the following cases.
(@) {—1 +(b) —1] -3 5
2 2 @ u=|-65v=|10
1 -1 L3 =5
@1 0 «(d] o 3 -1
-1 2 O(b) u=|—-6v= 2
1 1 3 3 1—1
(e) 2| -1 +(f) =31 B
2 2 (C) u=|0pv= 0
L1 1
2. Find a unit vector in the direction of: ) _3
[ 7] -2 odu=| ofv=| 0
(@ |-1 +(b) | -1 -1 4
. o . _ _ 2 ) 8. Let p and q be the vectors of points P and
3. (a) ch! a unit vector in the direction from Q, respectively, and let R be the point whose
3 1 vector is p + q. Express the following in terms
—1|to]|3} of pand q.
L 4] 15 — —
(b) If u # 0, for which values of # is #u a unit (@) Q_Pi +(b) %
vector? (¢) RP +(d) RO where O is the origin

4. Find the distance between the following pairs of 9. In each case, find P_Q> and Hp_é H

points.
3 2 2 2 (a) P(17 _1) 3)’ Q(B’ 1) O)
(@) |—1]and | —1 +b) |—1]and |0 +(b) P2,0,1),Q(1, —1, 6)
0 1 2 1
-3 1 4 3 (C) P(17 0’ 1)7 Q(17 0’ _3)
(C) 5 and 3 Q(d) 0 and 2 ’(d) P(17 _1) 2)7 Q(17 _17 2)
2B -0 (&) P(1,0,-3), Q(-1,0,3)
5. Use vectors to show that the line joining the o) PG, —1,6), 01, 1, 4)
midpoints of two sides of a triangle is parallel to o .
the third side and half as long. 10. In each case, find a point Q such that PQ has

(i) the same direction as v; (ii) the opposite

6. Let A, B, and C denote the three vertices of a direction to v

triangle. 1
(a) If E is the midpoint of side BC, show that (@ P(=1,2,2),v= 3]
AE = %(@ + /TC‘). I 5
+(b) If F is the midpoint of side AC, show that «(b) PG, 0, —1),v = _1]
FE = 14B. 3
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3 4 -1
11. Letu=|—-1|,v=|0,andw=| 1|
0 1 5

In each case, find x such that:
@ 3Cu+x)+w=2x—v
o) 2Bv—x) =5w+u — 3x

1 0 1]
12. Letu=|1|,v=|1,andw =| 0} In each
2 2 —1]

case, find numbers 4, #, and ¢ such that
X =au + bv + cw.

2 1]
(a) x=1|—-1 +b) x =13
6 0l
3 4 1
13. Letu=|—-1,,v=|0,and z = |1 In each
0 1 1
case, show that there are no numbers 4, b, and ¢
such that:

(@) au + bv + cz =

1
4
1
5
6
-1

14. Let P, = P,(2, 1, —2) and P, = Py(1, —2, 0).
Find the coordinates of the point P:

(b) au + bv + cz =

(a)  the way from P; to P,
+(b)  the way from P, to Py

15. Find the two points trisecting the segment
between P(2, 3, 5) and Q(8, —6, 2).

16. Let Pl = Pl(xl,yl, Zl) and PZ = Pz(xz,yz, Zz) be
two points with vectors p; and p,, respectively. If
7 and s are positive integers, show that the point

P lying - the way from P; to P, has vector

P =GP + P2

17. In each case, find the point Q:
2
(@ PQ = { 0
-3
-1
4
7

and P = P2, -3, 1)

+(b) P—Q) = and P = P(1, 3, —4)

2 2
18. Letu=| (Olandv =] 1/ In each case find x:
-4 -2

(@) 2u—||v|v= %(u — 2x)

o(b) 3u + 7v = |lul’@x + V)

19. Find all vectors u that are parallel to v =

3
-2
1

20. Let P, Q, and R be the vertices of a parallelogram
with adjacent sides PQ and PR. In each case, find
the other vertex S.

(@ PG, —1,-1),Q0(1, —-2,0), R(1, -1, 2)
+(b) P2,0,-1), Q(-2,4, 1), R3, —1,0)

and satisty ||ul| = 3]|v]|.

21. In each case either prove the statement or give
an example showing that it is false.

(a) The zero vector 0 is the only vector of
length 0.

o(b) It ||v — w|| =0, then v = w.
(c) Ifv= —v, thenv=0.

o(d) If ||v]| = [|w]|, then v = w.
(e) If ||v|| = ||wl|, then v = +w.

o(f) If v = tw for some scalar ¢, then v and w
have the same direction.

(2) If v, w, and v + w are nonzero, and v and
v + w parallel, then v and w are parallel.

o(h) ||=5v|| = =5]|v]|, for all v.
@ If |Ivll = ||2v]|, then v = 0.
+() |lIv+ w| = |Iv|]| + ||w]|, for all vand w.

22. Find the vector and parametric equations of the
following lines.

2
(a) The line parallel to | —1 | and passing through
0
P, -1, 3).
+(b) The line passing through P(3, —1, 4) and
Q(la 07 _1)
(¢) The line passing through P(3, —1, 4) and
QG, -1, 5). 1
+(d) The line parallel to | 1 | and passing
1

through P(1, 1, 1).
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(e) The line passing through P(1, 0, —3) and
parallel to the line with parametric equations
x=—-14+2t,y=2—t,andz =3 + 3r.

+(f) The line passing through P2, —1, 1) and
parallel to the line with parametric equations
x=2—t,y=1l,andz =1

(2) The lines through P(1, 0, 1) that meet the

1 2
line with vector equation p = |2 |+ ¢ _1] at
0 2

points at distance 3 from Py(1, 2, 0).

23. In each case, verify that the points P and Q lie

on the line.
(@) x=3 -4 P(—1,3,0),Q(1,0,3)
y=2+t
z2=1-—1¢
ob) x=4—-1r PQ2,3,-3),Q(-1,3,-9
y=3
z2=1-—2t

24. Find the point of intersection (if any) of the
following pairs of lines.

(@ x=3+1 x=4+42s
y=1-2t y=6+3s
z=343t z=1+s

o) x=1-—1 x=2s
y=24+2t y=1+s
z=—-143t 2=3
el [ 3] !

© |y =|=-1|+1 1]

Lzl | 2] 1
ra 17 (2
Y|i=1| 1|+s0
lz] | =2] 13
el [ 4] 1

od) |y|=|=1]+1[0
lzl | 5] 11
e [2] [0
Y= |=7|+s=-2
Lzl 1 12] L 3

25. Show that if a line passes through the origin,
the vectors of points on the line are all scalar
multiples of some fixed nonzero vector.

26. Show that every line parallel to the z axis has
parametric equations x = xp, y = y, 2 = t for

some fixed numbers x; and yj.

27.

28.

+29.

30.

31.

32.

197
a

b
C
nonzero. Show that the equations of the line

through Py(x, yo, 20) with direction vector d
can be written in the form
X—Xy )Y —Yo_2z2—2
a b 3
"This is called the symmetric form of the
equations.

Letd =

be a vector where 4, b, and ¢ are all

A parallelogram has sides AB, BC, CD, and DA.
Given A(1, -1, 2), C(2, 1, 0), and the midpoint

M1, 0, —3) of AB, find BD.
Find all points C on the line through A(1, —1, 2)
and B = (2, 0, 1) such that HA—C)'” = 2||B—C)'H

Let A, B, C, D, E, and F be the vertices of a
regular hexagon, taken in order. Show that

AB + AC + AD + AE + AF = 3AD.

(a) Let Py, Py, Ps, P4, Ps, and Py be six points
equally spaced on a circle with centre C.

Show that
CP, + CP, + CP; + CP, + CP; + CP; = 0.

+(b) Show that the conclusion in part (a) holds for
any even set of points evenly spaced on the
circle.

(¢) Show that the conclusion in part (a) holds for
three points.

(d) Do you think it works for any finite set of
points evenly spaced around the circle?

Consider a quadrilateral with vertices 4, B, C,
and D in order (as shown in the diagram).

A B

D C

If the diagonals AC and BD bisect each other,
show that the quadrilateral is a parallelogram.
(This is the converse of Example 2.) [Hint: Let E
be the intersection of the diagonals. Show that

AB = D—)bewritingA—é = AE + E_B)]
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+33. Consider the parallelogram ABCD (see diagram),
and let E be the midpoint of side AD.

c

E
A
Show that BE and AC trisect each other; that is,
show that the intersection point is one-third of
the way from E to B and from A to C. [Hint: If
F is one-third of the way from A4 to C, show that

2EF = FB and argue as in Example 2.]

34. The line from a vertex of a triangle to the
midpoint of the opposite side is called a median
of the triangle. If the vertices of a triangle have

SECTION 4.2

35.

vectors u, v, and w, show that the point on each
median that is § the way from the midpoint to
the vertex has vector %(u + v + w). Conclude
that the point C with vector %(u + v + w) lies
on all three medians. This point C is called the

centroid of the triangle.

Given four noncoplanar points in space, the
figure with these points as vertices is called a
tetrahedron. The line from a vertex through
the centroid (see previous exercise) of the
triangle formed by the remaining vertices is
called a median of the tetrahedron. If u, v,
w, and x are the vectors of the four vertices,
show that the point on a median one-fourth
the way from the centroid to the vertex has
vector 2(u + v + w + x). Conclude that the
four medians are concurrent.

Projections and Planes

hUI

Any student of geometry soon realizes that the notion of perpendicular lines is
fundamental. As an illustration, suppose a point P and a plane are given and it is
desired to find the point Q that lies in the plane and is closest to P, as shown in

Figure 1. Clearly, what is required is to find the line through P that is perpendicular
to the plane and then to obtain Q as the point of intersection of this line with the
plane. Finding the line perpendicular to the plane requires a way to determine when
two vectors are perpendicular. This can be done using the idea of the dot product of

M FIGURE 1

Definition 4.4

two vectors.

The Dot Product and Angles

a1 L
Given vectors v = |1 |and w = | Y2 |, their dot product v - w is a number defined
2] )

T.
Vew=ux1a+9y1)2 +2120=VW

Because v + w is a number, it is sometimes called the scalar product of v and w.'°

2 1
Ifv=|—1|andw=| 4| thenvew=2:1+(=1)-4+3.(—1)=-5.
3 —1

The next theorem lists several basic properties of the dot product.

. . Xi X, 2
10 Similarly, if v = ¥ andw = ¥ in R, thenv - w = X0 + yy1)o.
1 2
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Let u, v, and w denote vectors in R® (or R’ ).
1. v+ wisareal number.

2. Ve-W=W=-V.

3. v.0=0=0-w.

4. vev=|v|~

5. (kv) « w = k(w - v) = v - (kw) for all scalars k.
6

u-(vtw)=u-.-vtu-w

(1), (2), and (3) are easily verified, and (4) comes from Theorem 1 Section 4.1.
The rest are properties of matrix arithmetic (because w « v = v'w, and are left
to the reader.

The properties in Theorem 1 enable us to do calculations like
3u-2v—-3w+4z)=6u-v) —9%u-w) + 12(u - z)

and such computations will be used without comment below. Here is an example.

Verify that ||v — 3w||* = 1 when ||v|| = 2, |w|| = 1, and v - w = 2.

Solution » We apply Theorem 1 several times:

Iv—3w|>=w—3w) - (v—3w)
=ve(v—3w)—3w. (v—3w)
=v.v—3v.w)—3(W-v)+ 9(w-w)
= [IvlI* = 6(v + W) + 9|I¥v|’
=4—-12+9=1.

There is an intrinsic description of the dot product of two nonzero vectors in R’.
To understand it we require the following result from trigonometry.

If a triangle has sides a, b, and ¢, and if 6 is the interior angle opposite ¢ then

& =a + b — 2ab cos 6.
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a p ¢
0 ¢ b—q
b
M FIGURE 2
v 0 obtuse
0
w
Y, f acute
0 »
.

M FIGURE 3

v vV —-W
0
7

M FIGURE 4

Chapter 4 Vector Geometry

We prove it when is 0 acute, that is 0 < 6 < J; the obtuse case is similar. In

Figure 2 we have p = 4 sin 6 and ¢ = # cos 0. Hence Pythagoras’ theorem gives
E=p+ b — g =dsin’ 0+ (b — acos 0)
= #*(sin® 0 + cos’ 0) + b* — 2ab cos 6.

The law of cosines follows because sin® 6 + cos® 6 = 1 for any angle 6.

Note that the law of cosines reduces to Pythagoras’ theorem if € is a right angle
(because cos T = 0).

Now let v and w be nonzero vectors positioned with a common tail as in
Figure 3. Then they determine a unique angle ¢ in the range

0<f<m

This angle § will be called the angle between v and w. Figure 2 illustrates when 6
is acute (less than 7) and obtuse (greater than 7). Clearly v and w are parallel if 6 is
either 0 or . Note that we do not define the angle between v and w if one of these
vectors is 0.

The next result gives an easy way to compute the angle between two nonzero
vectors using the dot product.

Let v and w be nonzero vectors. If 0 is the angle between v and w, then

v w = [|v]|[[w][cos

We calculate ||v — w]|” in two ways. First apply the law of cosines to the triangle
in Figure 4 to obtain:
2 2 2
v —wll” = Ivll” + lIwll” = 2[Ivll[[wl[cos 6
On the other hand, we use Theorem 1:
v =wl=@-w-F-w
=VeV—V W—W+V+W-+W
= IVIP = 267+ w) + [[wl)

Comparing these we see that — 2||v||||w]|cos § = —2(v « w), and the result follows.

If v and w are nonzero vectors, Theorem 2 gives an intrinsic description of v « w
because ||v||, ||w]|, and the angle 6 between v and w do not depend on the choice of
coordinate system. Moreover, since ||v|| and ||v|| are nonzero (v and w are nonzero
vectors), it gives a formula for the cosine of the angle 6:

cos = VW (%)
[l {lwll

Since 0 < 6 < T, this can be used to find 6.
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=] 2
Compute the angle betweenu =| 1 |andv = 1].
2 —1
Solution » Compute cos = ——2_ = =2+41-2 _ 1 Now recall that
[Iv]l 1wl V6V6 2

cos  and sin 6 are defined so that (cos 6, sin 6) is the point on the unit circle
determined by the angle 6 (drawn counterclockwise, starting from the positive
x axis). In the present case, we know that cos § = —1 and that 0 < 6 < .

Because cos T = 1, it follows that § = 2 (see the diagram).

If v and w are nonzero, (x) shows that cos 6 has the same sign as v « w, so

vew>0 ifandonlyif 6isacute(0<0<7)
vew <0 ifandonlyif 6isobtuse (7 <0 <0)
vew=0 ifandonlyif 6=7F

In this last case, the (nonzero) vectors are perpendicular. The following terminology
is used in linear algebra:

Two vectors v and w are said to be orthogonal if v = 0 or w = 0 or the angle between

them is 7.

Since v « w = 0 if either v = 0 or w = 0, we have the following theorem:

Two vectors v and w are orthogonal if and only if v « w = 0.

Show that the points P(3, —1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a
right triangle.

Solution > The vectors along the sides of the triangle are

N B R . 2
PQ=|2, PR=|1|, and QR=|-1
3 3 0

Evidently P—Q) . @é =2-2+4+0=0,s0 P—(j and @é are orthogonal vectors.
This means sides PQ and QR are perpendicular—that is, the angle at Q is a
right angle.

Example 5 demonstrates how the dot product can be used to verify geometrical
theorems involving perpendicular lines.
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A parallelogram with sides of equal length is called a rhombus. Show that the
diagonals of a rhombus are perpendicular.

Solution P Let u and v denote vectors along two adjacent sides of a rhombus, as
shown in the diagram. Then the diagonals are u — v and u + v, and we compute

u—v)e(u+v)=u-u+v)—ve@u-+v
=u-.u+u-.v—veu—VevV
2 2
llall” = Ivll
=0

because ||lu|| = ||v|| (itis a rhombus). Hence u — v and u + v are orthogonal.

Projections

In applications of vectors, it is frequently useful to write a vector as the sum of two
orthogonal vectors. Here is an example.

Suppose a ten-kilogram block is placed on a flat surface inclined 30° to the
horizontal as in the diagram. Neglecting friction, how much force is required
to keep the block from sliding down the surface?

Solution > Let w denote the weight (force due to gravity) exerted on the block.
Then [|w|| = 10 kilograms and the direction of w is vertically down as in the
diagram. The idea is to write w as a sum w = w; + w, where wy is parallel to
the inclined surface and wj is perpendicular to the surface. Since there is no
friction, the force required is —w; because the force w; has no effect parallel to
the surface. As the angle between w and w; is 30° in the diagram, we have
[[wi
[[wli
force has a magnitude of 5 kilograms weight directed up the surface.

= sin 30° = 1. Hence [lwy|| = 3|lw|| = 310 = 5. Thus the required

If a nonzero vector d is specified, the key idea in Example 6 is to be able to write
an arbitrary vector u as a sum of two vectors,

u=u +w

where uy is parallel to d and u; = u — u; is orthogonal to d. Suppose that u and
d # 0 emanate from a common tail Q (see Figure 5). Let P be the tip of u, and let
P, denote the foot of the perpendicular from P to the line through Q parallel to d.

Then u; = Q_P)l has the required properties:
1.y is parallel to d.

2. w, =u — uy is orthogonal to d.

M FIGURE 5 3 u=u t+u

Definition 4.6  The vectoru; = Q—P)l in Figure 5 is called the projection of u on d. It is denoted

u; = projgu
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In Figure 5(a) the vector u; = projgq u has the same direction as d; however, u;
and d have opposite directions if the angle between u and d is greater than 7.

(Figure 5(b)). Note that the projection u; = projq u is zero if and only if u and d
are orthogonal.

Calculating the projection of u on d # 0 is remarkably easy.

Let u and d #+ 0 be vectors.
1. The projection of u on d is given by projq u =

u-dg
I

2. The vector u — projq u is orthogonal to d.

The vector u; = projq u is parallel to d and so has the form u; = td for some
scalar z. The requirement that u — u; and d are orthogonal determines z. In fact,
it means that (u — u;) « d = 0 by Theorem 3. If u; = #d is substituted here, the
condition is

0=u—-td)+d=u-d—td-d)y=u-d—7d|}
u-d

It follows that t = >
|d]l

|d||* # 0.

where the assumption that d # 0 guarantees that

2 1
Find the projection of u = | -3 |ond = | —1 | and express u = u; + u, where
1 3

u is parallel to d and wu, is orthogonal to d.

Solution » The projection u; of u on d is

1 1
. u- d 2 + 3 aF 3 8
u; = projgu = d= —i|l=2& =3
i 1P (=1 + 3 s
14
Hence u, = u — u; = ;| —25 |, and this is orthogonal to d by Theorem 4
=5

(alternatively, observe that d « u; = 0). Since u = u; + u,, we are done.

P(1,3,-2)
Find the shortest distance (see diagram) from the point P(1, 3, —2) to the line
1
through Py(2, 0, —1) with direction vector d = | —1 |. Also find the point Q that
0

lies on the line and is closest to P.
P.,2,0,-1)
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1 2 —1
Solution » Letu=| 3|— { 0|=| 3 |denote the vector from P, to P, and let
-2 —1 —1
u; denote the projection of u on d. Thus
=2
w=Udgo 12340 g g,
(ld]| "+ (=1)"+0 0

by Theorem 4. We see geometrically that the point Q on the line is closest to
P, so the distance is

07
[Pl = fu - will = | 1 H —V3
~1J
To find the coordinates of Q, let py and q denote the vectors of Py and Q,
2 [0
respectively. Then py=| 0|and q = pg + u; = 2].
-1 L—1

Hence Q(0, 2, —1) is the required point. It can be checked that the distance
from Q to P isV/3, as expected.

Planes

It is evident geometrically that among all planes that are perpendicular to a given
straight line there is exactly one containing any given point. This fact can be used to
give a very simple description of a plane. To do this, it is necessary to introduce the
following notion:

Definition 4.7 A nonzero vector n is called a normal for a plane if it is orthogonal to every vector in
the plane.

For example, the coordinate vector k is a normal for the x-y plane.
P Given a point Py = Py(xo, Yo, 29) and a nonzero vector n, there is a unique plane

n
- through Py with normal n, shaded in Figure 6. A point P = P(x, y, 2) lies on this
= plane if and only if the vector PyP is orthogonal to n—that is, if and only if
0 X — Xo
n « PyP = 0. Because PyP = | ¥ — Yo | this gives the following result:
Z — 2
M FIGURE 6

Scalar Equation of a Plane

a

b

c

alx = x0) + b(y = yo) + ez = 20) = 0

The plane through Py(xy, yo, 20) with normaln = | p | # 0 as a normal vector is given by

In other words, a point P(x, y, 2) is on this plane if and only if x, y, and z satisfy this
equation.
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3
—1
2

Find an equation of the plane through Py(1, —1, 3) withn = as normal.

Solution > Here the general scalar equation becomes
3 — 1) — (y + DI+ 2(z — 3) =0
This simplifies to 3x — y + 2z = 10.

If we write d = axy + by + czo, the scalar equation shows that every plane with
a
b

c

normal n = || has a linear equation of the form

ax + by +cz=d (%)
a

b

c

for some constant d. Conversely, the graph of this equation is a plane with n =

as a normal vector (assuming that 4, 4, and ¢ are not all zero).

Find an equation of the plane through Py(3, —1, 2) that is parallel to the plane
with equation 2x — 3y = 6.

2
=3

0
the two planes are parallel, n serves as a normal for the plane we seek, so the
equation is 2x — 3y = d for some d by equation (x). Insisting that Py(3, —1, 2)
lies on the plane determines d; thatis, d = 23 — 3(—1) = 9. Hence, the
equation is 2x — 3y = 9.

Solution > The plane with equation 2x — 3y = 6 has normal n = . Because

X0 X
Consider points Py(xg, o, o) and P(x, y, z) with vectors py = | Yo |and p = |¥ |
20 Z
Given a nonzero vector n, the scalar equation of the plane through Py(xy, yo, 29) with
a
normal n = |} | takes the vector form:
c

Vector Equation of a Plane

The plane with normal n # 0 through the point with vector py is given by

n.(p—py)=0
In other words, the point with vector p is on the plane if and only if p satisfies this condition.

Moreover, equation () translates as follows:
Every plane with normal n has vector equation n « p = d for some number d.

This is useful in the second solution of Example 11.
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Find the shortest distance from the point P(2, 1, —3) to the plane with equation
3x —y + 4z = 1. Also find the point Q on this plane closest to P.
3
—1
4
Py on the plane—say Py(0, —1, 0)—and let Q(x, y, 2) be the point on the plane
2
2
-3
n with its tail at Py. Then QP = u; and u; is the projection of u on n:

3 3
~1 ~1
4 4

Solution 1 » The plane in question has normal n = . Choose any point

closest to P (see the diagram). The vector from P to Pisu = . Now erect

n-u_ _ -8

Sl

= =4
13

uy

Hence the distance is H @6” = |lwy| = @. To calculate the point Q, let
0
—1
0

X

q=1y

Z

and py = be the vectors of Q and P,. Then

3
-1
4

0
—1
0

2

2
=3

q=potu—u = + +

"This gives the coordinates of Q(%, %, ’1—233 .
2
1
-3
the line through P with direction vector n, so q = p + tn for some scalar z. In
addition, Q lies on the plane, so n - q = 1. This determines #:

X

J
%

Solution2 P Letq = |y |and p = be the vectors of Q and P. Then Q is on

l=n-q=n-(+m)=n-p+t|n|> = -7 + #26)

This gives r = & = 1, so
x 2 3 38
Y=q=p+m=| 1|+H-1(=1 9
& -3 & =23

as before. This determines Q (in the diagram), and the reader can verify that
the required distance is H Q_ﬁH = %\/26, as before.

The Cross Product

If P, Q, and R are three distinct points in R? that are not all on some line, it is clear
—

geometrically that there is a unique plane containing all three. The vectors PQ and

—

PR both lie in this plane, so finding a normal amounts to finding a nonzero vector

orthogonal to both PQ and PR. The cross product provides a systematic way to
do this.
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X X2
Definition 4.8  Given vectors vi = |)1|and v, = |)2|, define the cross product v; X v, by
2] 22
Y122 — 212
Vi X V) = | —(w125 — 2142) |-
X1)2 — )1%2

(Because it is a vector, v; X v; is often called the vector product.) There is an easy
way to remember this definition using the coordinate vectors:

1 0 0
i=|0,j=|1,and k=0
0 0 1

They are vectors of length 1 pointing along the positive x, y, and z axes,
respectively, as in Figure 7. The reason for the name is that any vector can be

M FIGURE 7 written as

X

y

z

=ui+yj + zk.

With this, the cross product can be described as follows:

Determinant Form of the Cross Product

X1 EY)
If vy = |1 |and v, = | Y2 | are two vectors, then
21 2)
i X1 X
)1 )2, X1 X2, X1 X3
= d 1 = —
VixXva=det oy Z1 % Z1 2 3’1)’2’
k Z1 23
where the determinant is expanded along the first column.
2 1
Ifv=|_1|and w = |3, then
4 7
Pl 13 21 21
=] 1 5] =L 2l '+‘ ‘k
Vi j —13 47 47” ~13
k 47
=—19i — 10j + 7k
[—19
=|-10
7

Observe that v x w is orthogonal to both v and w in Example 12. This holds in
general as can be verified directly by computing v « (v X w) and w « (v X w), and
is recorded as the first part of the following theorem. It will follow from a more
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general result which, together with the second part, will be proved in Section 4.3
where a more detailed study of the cross product will be undertaken.

Let v and w be vectors in R’
1. v X w is a vector orthogonal to both v and w.

2. Ifvandw are nonzero, then v X w = 0 if and only if vand w are parallel.

It is interesting to contrast Theorem 5(2) with the assertion (in Theorem 3) that

v.w =0 ifand only if vand w are orthogonal.

Find the equation of the plane through P(1, 3, —2), Q(1, 1, 5), and R(2, -2, 3).

0 1
Solution » The vectors PQ = | —2 |and PR = | —5 |lie in the plane, so
7 5
i 0 1 25
PQ x PR = det j =2 -5 =251+ 7j+ 2k = 7]
kK 7 5 2

is a normal for the plane (being orthogonal to both P—Q> and ﬁé). Hence the
plane has equation

25x 4+ 7y + 2z =d for some number d.

Since P(1, 3, —2) lies in the plane we have 25+1 + 7+3 + 2(—2) = d. Hence
d = 42 and the equation is 25x + 7y 4+ 2z = 42. Incidentally, the same

equation is obtained (verify) if @; and Q—R), or RP and R—Q), are used as the
vectors in the plane.

Find the shortest distance between the nonparallel lines

x 1 2 x 3 1
Yi=| 0|+¢t0| and |[¥|=|1]|+s 1
= -1 1 2zl 10 -1
Then find the points 4 and B on the lines that are closest together.
2 1
Solution » Direction vectors for the two lines are d; = |0|and d, =| 1}, so
L1 -1
i 2 1] 4
n=d; xdy=det| j 0 1|=]| 3
k 1-1] ' 2
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EXERCISES 4.2

1. Compute u - v where:

2] -1
@u=|—1|v= 1]
3] 1
1
o) u=| 2[v=u
[—1]
(1] 2
@Qu=| 1,v= —1]
-3 1
3] 6
odu=|_1,v=|—7
L 5] -5
roc a
e)u=|y,v=1|p
Lz ¢
ra
of)y u=|p,v=0
Lc

is perpendicular to both lines. Consider the plane shaded in the diagram
containing the first line with n as normal. This plane contains P;(1, 0, —1)
and is parallel to the second line. Because P,(3, 1, 0) is on the second line, the
distance in question is just the shortest distance between P,(3, 1, 0) and this

2
—
plane. The vector u from P to P, isu = P;P; = |1 |and so, as in Example 11,
1
the distance is the length of the projection of u on n.
lu-n| ViE
distance = n = =3 — 4
” In H LIRS

Note that it is necessary that n = d; x d; be nonzero for this calculation to be
possible. As is shown later (Theorem 4 Section 4.3), this is guaranteed by the
fact that d; and d, are not parallel.

The points 4 and B have coordinates A(1 + 2z, 0, # — 1) and
. 2 +5—2¢
B3 + 5,1 + 5, —s) for some s and ¢, so AB = 1 +s | This vector is
l—s5s—1¢
orthogonal to both d; and d;, and the conditions AB - d, =0 and AB - dz =0
give equations 57 — s = 5 and # — 35 = 2. The solution is s = = and # = 12, s0
the points are A(?g’ 0, Ii) and B(iz, 194, 14) We have ||AB” 14 , as before.

2. Find the angle between the following pairs of

vectors.
(1 2 3
@ u=0,v=10 eb)u=|_1,v=
13 1 0
7 1
u=|—-1,v=| 4
3 -1
2 3 1 0
sdu=| 1,v=16 (@u=|-1|v=|1
[—1 3 0 1
0 5V2
s u=3,v=| -7
14 -1
3. Find all real numbers x such that:
2 x
(a) | —1|and | —2 |are orthogonal.
3 1
2 1
+(b) | —1|and |« |are at an angle of .
1 2

-6
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x
4. Find all vectors v = |y | orthogonal to both:
2z
[—1] [0
@ u=|-3u=|]
2] L1
3] 2
b))y =|-1,wm=\0
2] L1
2] [—4
©@u=| 0jwm=| 0
L—1] L 2
[ 2] [0
o(du=-1,wm=\0
3] L0
5. Find two orthogonal vectors that are both
1
orthogonal tov =2 |
0

6. Consider the triangle with vertices P(2, 0, —3),
Q@5, =2, 1),and R(7, 5, 3).

(a) Show that it is a right-angled triangle.

+(b) Find the lengths of the three sides and verify
the Pythagorean theorem.

7. Show that the triangle with vertices 44, —7, 9),
B(6, 4, 4), and C(7, 10, —6) is not a right-angled
triangle.

8. Find the three internal angles of the triangle
with vertices:

(a) A(—?” 17 _2)’ B(?” 0’ _1)’ and C(S, 27 _1)
’(b) A(—?” 17 _2)’ B(S’ 2’ _1)’ and C(4, 37 _3)

9. Show that the line through Py(3, 1, 4) and
Py(2, 1, 3) is perpendicular to the line through
Py(1, —1, 2) and P5(0, 5, 3).

10. In each case, compute the projection of u on v.

(5 2
@u=|7,v= —1]
L1 3

[ 3 (4
eb)u=|-2v=|1
1 L1

1 3
ou=|—-1v=|-1

odu=|2,v=| 4

Vector Geometry

11. In each case, write u = u; + uy, where u; is
parallel to v and u, is orthogonal to v.

(@) u=

+(b) u=

(c) u=

o(d) u=

3

L0

2
—1
1

’V:

1

7V:

2
-1
0
3
-2
1

)V:

’V:

=2

1
-1
3

1
4

3
1
-1

—6
4
-1

12. Calculate the distance from the point P to the
line in each case and find the point Q on the line
closest to P.

x 2 3
(a) P(3,2,—1) line:|y|=|1|+ ¢ -1
z 3 -2
x 1 3
+b) P, —1,3) line:|y|=| 0|+ 121
z -1 4
13. Compute u x v where:
(1 1
@u=2,v=|1
13 2
[ 3] [—6
eb)u=|-1,v=]| 2
L 0. L 0
[ 3] (1
(c)u=|=2|v= 1]
1] [—1
2] (1
od)u=| o,v=1|4
[—1] L7

14. Find an equation of each of the following planes.

(a) Passing through A2, 1, 3), B3, —1, 5), and

(1,2, =3).
+(b) Passing through A(1, —1, 6), B(0, 0, 1), and
C#4,7,—11).

(c) Passing through P(2, —3, 5) and parallel to
the plane with equation 3x — 2y — 2z = 0.

+(d) Passing through P(3, 0, —1) and parallel to
the plane with equation 2x — y + z = 3.
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(e) Containing P(3, 0, —1) and the line

x 0 1
YI=10]+ 10}
lz] |2 1
+(f) Containing P(2, 1, 0) and the line
el [ 3] (1
Yi=|-1|+¢t 0}
lzl | 2] =1
(g) Containing the lines
e [ 17 1 x 0 1
Y|l=|=1|+¢1]|and |¥|=|0 +t_1].
Lzl L 2] L1 z 2 0
x 3 1
+(h) Containing the lines |y |=|1|+ 7 _1]
z 0 3
x 0 2
and |V |=|—2|+ ¢ 1].
z 5 -1

(i) Each point of which is equidistant from
PQ, —1,3)and Q(1, 1, —1).

+(j) Each point of which is equidistant from
P, 1, —1) and Q(, —1, —3).
15. In each case, find a vector equation of the line.

(a) Passing through P(3, —1, 4) and
perpendicular to the plane 3x — 2y — 2 = 0.

+(b) Passing through P2, —1, 3) and
perpendicular to the plane 2x + y = 1.

(¢) Passing through P(0, 0, 0) and perpendicular
to the lines

x 1 2 x 2 1
YI=|1|+¢ Oland |y|=| 1|+ -1}
z 0 -1 z -3 5
+(d) Passing through P(1, 1, —1), and
perpendicular to the lines
x 2] 1 x S 1
Yi=|0|+¢ 1|and|y|=| 5|+t z].
z 1] -2 2 =2 -3
(e) Passing through P(2, 1, —1), intersecting
r 1 3
the line |y |=| 2|+ #0|, and
E3 0 D I

perpendicular to that line.

+(f) Passing through (1, 1, 2), intersecting the line

x 2 1
Y|=|1|+ t|1|, and perpendicular
z 0 1

to that line.

1

16. In each case, find the shortest distance from the
point P to the plane and find the point Q on the
plane closest to P.

(a) P2, 3, 0); plane with equation 5x +y + z = 1.
+(b) P(3, 1, —1); plane with equation

2x+y—z=6.
17. (a) Does the line through P(1, 2, —3) with
1
direction vector d =| 2 |lie in the plane
-3

2x —y — z = 3? Explain.

+(b) Does the plane through P4, 0, 5), Q(2, 2, 1),
and R(1, —1, 2) pass through the origin?
Explain.

18. Show that every plane containing P(1, 2, —1) and
Q(2, 0, 1) must also contain R(—1, 6, —5).

19. Find the equations of the line of intersection of
the following planes.

(@ 2x—3y+2z=5andx + 2y — 2 =4
ob) 3x+y—2z=1landx +y+2=>5.

20. In each case, find all points of intersection of the

X 1 2
given plane and the line |y |=|-2|+ 1 5|
z 3 -1

@ x—3y+2z2=4 ob) 2x—y—2=35

©3x—y+z2=8 od) —x—4y—-32=6

21. Find the equation of 4// planes:
x 2 2
(a) Perpendicular to the line |y |=|—1|+#|1|
z 3 3
x 1 3
+(b) Perpendicular to the line |y [=| 0|+ #0|
2 —1 2

(¢) Containing the origin.
+(d) Containing P(3, 2, —4).

(e) Containing P(1, 1, —1) and Q(0, 1, 1).
+(f) Containing P2, —1, 1) and Q(1, 0, 0).

X 2 1

(2) Containing the line |y |= 1|4+ # 1|
2 0 0
X 3 1

+(h) Containing the line |y |[=|0|+ ¢ _2].
2 2 -1
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22. If a plane contains two distinct points Py and

P,, show that it contains every point on the line
through P; and P;.

23. Find the shortest distance between the following
pairs of parallel lines.

X 2 1] rx 1 1

(@ |Y]|=|=1|+1t=1}|Y|=|0|+ -1

z 3 4) Lzl |1 4
X 3 37 1x -1 3
o) [y[=|0|+t1}|y|=| 2[+11
zl 2 0] Lz 2 0

24. Find the shortest distance between the following
pairs of nonparallel lines and find the points on
the lines that are closest together.

a1 [3 2 x 1] 1]
@ |y[=|0|+s 1} [Y|=]| 1|+1¢0
2] 1 -3 L=l -1 1]
rxT 1 1 X 2] (3]
ob) |y|=|=1|+s1} |[¥]=|-1|+11
2] 0 1 Lz 3] o]
"X 3 17 7 [17 T1]
© |Y[=| L|+s 1} |[Y|=|2|+10
2l -1 -1 =l lo] [2]
1 [1 2 x 3] 1]
od) |y|=1|2]+3 0 |¥|=|-1|+11
2l (3 -1) L=z ol Lol

25. Show that two lines in the plane with slopes 7z
and 2, are perpendicular if and only if
mymy = —1. [Hint: Example 11 Section 4.1.]

26. (a) Show that, of the four diagonals of a cube,
no pair is perpendicular.

+(b) Show that each diagonal is perpendicular to
the face diagonals it does not meet.

27. Given a rectangular solid with sides of lengths 1,
1, and V2, find the angle between a diagonal and
one of the longest sides.

+28. Consider a rectangular solid with sides of lengths
a, b, and ¢. Show that it has two orthogonal
diagonals if and only if the sum of two of 4%, /%,
and ¢ equals the third.

29. Let A, B, and C(2, —1, 1) be the vertices of a
1

triangle where A—B) is parallel to | —1, A—(} is
1
2
parallel to | (], and angle C = 90°. Find the
-1

equation of the line through B and C.

30. If the diagonals of a parallelogram have equal
length, show that the parallelogram is a

rectangle.
x

Y

z
projections of v on i, j, and k are «i, yj, and zk,
respectively.

31. Given v = | |in component form, show that the

32. (a) Canu+v=—7if [Jul]| =3 and ||v|| = 2?
Defend your answer.

2
-1
2
angle between u and v is

(b) Findu -vifu= , |Iv|l = 6, and the

pi
o

33. Show that (u + v) « (w — v) = |[u|* — ||v||’
for any vectors u and v.

34. (a) Show that
lw+vI* + [lu = vII* = 2(Jul* + IvI1%)
for any vectors u and v.

+(b) What does this say about parallelograms?

35. Show that if the diagonals of a parallelogram
are perpendicular, it is necessarily a rhombus.
[Hint: Example 5.]

36. Let A and B be the end points of a diameter of a
circle (see the diagram). If C' is any point on the
circle, show that AC and BC are perpendicular.

[(Hint: Express AC and BC in terms of u = OA
and v = OC, where O is the centre.]

C

37. Show that u and v are orthogonal, if and only if
lw + vl = flull® + (vl

38. Letu, v, and w be pairwise orthogonal vectors.

(a) Show that
2 2 2 2
lu + v+ wll* = [lull” + [Iv]" + [Iw]|".

+(b) If u, v, and w are all the same length, show
that they all make the same angle with
u+v+w.
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39. (a) Show thatn = [Z} is orthogonal to every
vector along the line ax + by + ¢ = 0.

+(b) Show that the shortest distance from
. axy + byy + ¢

Po(x9, yo) to the line is

Vadt + .
[Hint: If Py is on the line, project u = PP,
on n.]

40. Assume u and v are nonzero vectors that are
not parallel. Show that w = ||u||lv + ||v||uis a
nonzero vector that bisects the angle between u
and v.

41. Let o, 3, and  be the angles a vector
v # 0 makes with the positive x, y, and z axes,
respectively. Then cos «, cos 3, and cos v are

called the direction cosines of the vector v.

a
(a) If v =|p|, show that cos a = —%,
c lIvll
cos 3 = L, and cos y = -
[Ivll [Ivll

+(b) Show that cos’ o + cos’ 3 + cos® v = 1.

42. Let v # 0 be any nonzero vector and suppose
that a vector u can be written asu = p + q,
where p is parallel to v and q is orthogonal to v.
Show that p must equal the projection of u on v.
[Hint: Argue as in the proof of Theorem 4.]
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43. Let v # 0 be a nonzero vector and let # # 0 be a
scalar. If u is any vector, show that the projection
of u on v equals the projection of u on av.

44. (a) Show that the Cauchy-Schwarz inequality
|u - v| < ||u||||v|| holds for all vectors u and
v. [Hint: |cos 6| < 1 for all angles 6.]

(b) Show that |u « v| = |jul|||v|| if and only if
u and v are parallel.
[Hint: When is cos 0 = £17]

(¢c) Show that
vy + y1y2 + 212

7, 2 2./ 2, 2 2
<\l 4y +2Vad + 9] + 23
holds for all numbers xy, x5, y1, y2, 21, and 2,.

+(d) Show that |xy + yz + 2x| < & +y* + 2 for
all v, y, and =.

(e) Show that (v + y + 2)* < 3(x* +y* + 29
holds for all «, y, and z.

45. Prove that the triangle inequality
|[a-v| < ||l + ||v]| holds for all vectors u
and v. [Hint: Consider the triangle with u and v

as two sides.]

More on the Cross Product

The cross product v x w of two R*-vectors v =

X1 X2
Y1 |and w = | Y2 | was defined in
21 2)

Section 4.2 where we observed that it can be best remembered using a determinant:

ix1

vxw=det|j y

k 21
1 0
Herei=|0},j=|1),andk =
0 0

X2
J1 2. Xy X2, X1 X

”|= - )
21 2 21 2 Y10

22

1

0 | are the coordinate vectors, and the determinant

0

is expanded along the first column. We observed (but did not prove) in Theorem 5
Section 4.2 that v X w is orthogonal to both v and w. This follows easily from the
next result.
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X0

Yo
20

X1

B
21

X2

¥
2)

Ay Ay Ay
Ifu=|Yo|,v=|)1}|andw = ,thenu-(vxw)=detyo i Doy

Ey E %

Recall that u « (v x w) is computed by multiplying corresponding components of
uand v X w and then adding. Using (x), the result is:

Xy X X

SV X W) = )12 n % * + X1 X2 — det
weVXwW) =20\ |5, Yo\ 7|z, 2, 2|y y,| )T 9€H Jo 02
20 21 %

where the last determinant is expanded along column 1.

The result in Theorem 1 can be succinctly stated as follows: If u, v, and w are three
vectors in R?, then

u-(vxw) =detluvw]

where [u v w] denotes the matrix with u, v, and w as its columns. Now it is clear
that v x w is orthogonal to both v and w because the determinant of a matrix is
zero if two columns are identical.

Because of (%) and Theorem 1, several of the following properties of the cross
product follow from properties of determinants (they can also be verified directly).

Letu, v, and w denote arbitrary vectors in R,
u X v is a vector.
u X v is orthogonal to both u and v.
ux0=0=0xu

uxu=_0.

(ku) X v = k(u X v) = u X (kv) for any scalar k.
uxX (vV+w) =xv)+ (uxw).

1
2
3
4
5 uxv=—(vxu).
6
7.
8 (v+w)Xxu=(vxu + (wxu).

(1) is clear; (2) follows from Theorem 1; and (3) and (4) follow because the
determinant of a matrix is zero if one column is zero or if two columns are
identical. If two columns are interchanged, the determinant changes sign, and
this proves (5). The proofs of (6), (7), and (8) are left as Exercise 15.
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We now come to a fundamental relationship between the dot and cross products.

Lagrange Identity"!

Ifu and v are any two vectors in R®, then

2 2 2 2
[lu > v||” = [[al[*[|v]]” = (a - v)

Given u and v, introduce a coordinate system and write u = |¥1|and v = |2 |in
21 22

X1 X2

component form. Then all the terms in the identity can be computed in terms of
the components. The detailed proof is left as Exercise 14.

An expression for the magnitude of the vector u X v can be easily obtained
from the Lagrange identity. If 0 is the angle between u and v, substituting
u + v = ||ul|||v]| cos @ into the Lagrange identity gives

2 210112 21012 el 21012 cin?

[ > vl = [lal["[[vII® = fal[*v]}" cos” & = [lu["|[v][" sin” &
using the fact that 1 — cos” = sin® 6. But sin 6 is nonnegative on the range
0 < 0 <, so taking the positive square root of both sides gives

llw > v][ = [lulliv] sin 6

"This expression for ||u X v|| makes no reference to a coordinate system and,
moreover, it has a nice geometrical interpretation. The parallelogram determined
by the vectors u and v has base length ||v|| and altitude ||ul| sin 0 (see Figure 1).
Hence the area of the parallelogram formed by u and v is

(I[ull sin 6) fIv]l = [lu x v]|

This proves the first part of Theorem 4.

Ifu and v are two nonzero vectors and 6 is the angle between u and v, then
L. |la x v|| = ||ul||||v]| sin @ = area of the parallelogram determined by u and v.

2. uandv are parallel if and only ifu X v.= 0.

11 Joseph Louis Lagrange (1736-1813) was born in Italy and spent his early years in Turin. At the age of 19 he solved a famous
problem by inventing an entirely new method, known today as the calculus of variations, and went on to become one of the greatest
mathematicians of all time. His work brought a new level of rigour to analysis and his Mécanique Analytique is a masterpiece in
which he introduced methods still in use. In 1766 he was appointed to the Berlin Academy by Frederik the Great who asserted
that the “greatest mathematician in Europe” should be at the court of the “greatest king in Europe.” After the death of Frederick,
Lagrange went to Paris at the invitation of Louis XVI. He remained there throughout the revolution and was made a count
by Napoleon.
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PROOF OF (2)

By (1), u x v = 0 if and only if the area of the parallelogram is zero. By Figure 1
the area vanishes if and only if u and v have the same or opposite direction—that
is, if and only if they are parallel.

Find the area of the triangle with vertices P(2, 1, 0), Q(3, —1, 1), and R(1, 0, 1).

1 . 2
Solution » We have RP =| 1 |and RQ = | —1 | The area of the triangle is half
—1 0

the area of the parallelogram (see the diagram), and so equals %H RP x R—Q)H We
have

o i 1 2 -1
RP x RQ = det i 1 -1 =[—§],
k -1 0

so the area of the triangle is %Hﬁ X R—Q)H =Vi+4+9=1V14

If three vectors u, v, and w are given, they determine a “squashed” rectangular
solid called a parallelepiped (Figure 2), and it is often useful to be able to find the
volume of such a solid. The base of the solid is the parallelogram determined by
u and v, so it has area 4 = ||u X v|| by Theorem 4. The height of the solid is the
length A of the projection of w on u X v. Hence
_wemxwv)

I

[wexv)| |we-(uxv)
lux vl = =
[la x v A

|la x v

Thus the volume of the parallelepiped is 4 = |w « (u X v)|. This proves

The volume of the parallelepiped determined by three vectors w, u, and v (Figure 2) is
given by |w « (u X v)|.

Find the volume of the parallelepiped determined by the vectors

1 1 -2
w=| 2 u=|1|,andv=| 0
-1 0 1
112
Solution » By Theorem I, w-(u xv)=det|] 2 1 0|=-3.
-1 0 1

Hence the volume is |[w « (u X v)| = |[=3| = 3 by Theorem 5.
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0 We can now give an intrinsic description of the cross product u x v. Its
xw magnitude ||u X v|| = |Jul|||v] sin 6 is coordinate-free. If u X v # 0, its direction
is very nearly determined by the fact that it is orthogonal to both u and v and so
2 points along the line normal to the plane determined by u and v. It remains only
to decide which of the two possible directions is correct.
Before this can be done, the basic issue of how coordinates are assigned must be
. clarified. When coordinate axes are chosen in space, the procedure is as follows: An
origin is selected, two perpendicular lines (the x and y axes) are chosen through the
origin, and a positive direction on each of these axes is selected quite arbitrarily.
Then the line through the origin normal to this x-y plane is called the z axis,

¥ 0 ¥ but there is a choice of which direction on this axis is the positive one. The two

possibilities are shown in Figure 3, and it is a standard convention that cartesian
Right-hand system coordinates are always right-hand coprdinate systems. Th.e reason for this ’

B FIGURE 3 terminology is that, in such a system, if the z axis is grasped in the right hand with
the thumb pointing in the positive z direction, then the fingers curl around from
the positive x axis to the positive y axis (through a right angle).

Suppose now that u and v are given and that 6 is the angle between them
(s0 0 < 0 < 7). Then the direction of ||u X v]|| is given by the right-hand rule.

Right-hand Rule

If the vector u X v is grasped in the right hand and the fingers curl around from u to v
through the angle 6, the thumb points in the direction for u X v.

Left-hand system

To indicate why this is true, introduce coordinates in R* as follows: Let u and v

have a common tail O, choose the origin at O, choose the x axis so that u points in
the positive x direction, and then choose the y axis so that v is in the x-y plane and
the positive y axis is on the same side of the x axis as v. Then, in this system, u and

a b
v have component form u = |( |and v = c] where 2 > 0 and ¢ > 0. The situation
0 0
M FIGURE 4 is depicted in Figure 4. The right-hand rule asserts that u x v should point in the
positive z direction. But our definition of u X v gives
ialb 0
u x v = det j O c|=]0 = (ak
ko o]
and (ac)k has the positive z direction because 2c > 0.
EXERCISES 4.3
1. If i, j, and k are the coordinate vectors, verify 3. Find two unit vectors orthogonal to both u and
thatix j=k,jxk=iandk xi=}j. vif:
1 2 1 3
2. Show that u x (v X w) need not equal @ u=2v=|_1]| s®) u=| 2| v=]1
(u X v) X w by calculating both when 5 ’ 7 1 ’ 5
1 1 0
u=|1,v=|1andw=10|
1 0 1
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4. Find the area of the triangle with the following

vertices.

(@) A(, —1,2), B(1, 1, 0), and C(1, 2, —1)
+(b) A@G, 0, 1), B(5, 1, 0), and C(7, 2, —1)

(¢) A1, 1, —1), B2, 0, 1), and C(1, —1, 3)
+(d) AG3, -1, 1), B4, 1, 0), and C(2, -3, 0)

5. Find the volume of the parallelepiped
determined by w, u, and v when:

2 1 2

@ w=|1,v=|0,andu=| 1
1 2 -1

1 2 1

ob) w=|0,v=]| 1andu=]|1
3 -3 1

6. Let Py be a point with vector py, and let

ax + by + cz = d be the equation of a plane with
a
bl

c

normal n =

(a) Show that the point on the plane closest to
Py has vector p given by

d—(po- n)n.
[In?

[Hint: p = po + m for some ¢, and

p-n=d]

P=pPo+

+(b) Show that the shortest distance from P to
|4 — (po - m)|
([l
(¢) Let Py denote the reflection of Py in the
plane—that is, the point on the opposite side
of the plane such that the line through P,
and Py is perpendicular to the plane.
d— (py -
Show that py + 2 %
n

the plane is

n is the vector
Of PO/.
7. Simplify (su + bv) X (cu + dv).

8. Show that the shortest distance from a point P
to the line through P, with direction vector d

i<l
1d]]

9. Let u and v be nonzero, nonorthogonal vectors.
If 6 is the angle between them, show that
[[u x ]|

tan 0 = ——~—

+10. Show that points A, B, and C are all on one line
if and only if AB x AC = 0.

11. Show that points A4, B, C, and D are all on one
plane if and only if AB - (AB X AC) =0.

+12. Use Theorem 5 to confirm that, if u, v, and w
are mutually perpendicular, the (rectangular)
parallelepiped they determine has volume
l[alll[vIlliwll-

13. Show that the volume of the parallelepiped
determined by u, v, and u x v is |Ju x v|°.

14. Complete the proof of Theorem 3.

15. Prove the following properties in Theorem 2.

(a) Property 6 +(b) Property 7

(c) Property 8

16. (a) Show that
weuXv)=u-{vVXw=vX(WXu
holds for all vectors w, u, and v.

+(b) Show that v — w and
(u X v) + (v X w) + (w X u) are orthogonal.

17. Show thatu X (v X w) = (u - w)v — (u X v)w.
[Hint: First do it for u = i, j, and k; then write
u = xi + yj + zk and use Theorem 2.]

18. Prove the Jacobi identity:
uX (vXW+vXx(wxu +wx(uxv)=0.
[Hint: The preceding exercise.]

19. Show that W -z
(uXV)-(WXZ)zdet[V.W V.Z].

[Hint: Exercises 16 and 17.]

20. Let P, Q, R, and S be four points, not all on one
plane, as in the diagram. Show that the volume
of the pyramid they determine is

[Hint: The volume of a cone with base area
A and height 4 as in the diagram below right
is LA4h.]

Q



SECTION 4.4 Linear Operators on R®

21. Consider a triangle with vertices A, B, and
C, as in the diagram below. Let «, 3, and
denote the angles at 4, B, and C, respectively,
and let 4, b, and ¢ denote the lengths of the
sides opp051teA B, and C, respectlvely Write

u—AB V—BC and w = CA

(a) Deduce thatu + v+ w = 0.

(b) Show thatu X v=w X u =v X w. [Hint:

Compute u X (u + v + w) and
v u+v+w).

(c) Deduce the law of sines:

sin o _ sin /3 sin 7y
a b c
+22. Show that the (shortest) distance between two
planesn«p =4d;andn - p = 4, with n as
|d, — d,|
[[n]]

SECTION 4.4

normal is

23.

24.

25.
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Let A and B be points other than the origin, and
let a and b be their vectors. If a and b are not
parallel, show that the plane through A4, B, and
the origin is given by

{P(x, y, 2)||Y | = sa + tb for some s and #}.
2z

Let A be a 2 x 3 matrix of rank 2 with rows
r; and r;. Show that P = {XA|X = [x y]; x, y
arbitrary} is the plane through the origin with
normal r; X r,.

Given the cube with vertices P(x, y, 2), where
each of x, y, and z is either 0 or 2, consider the
plane perpendicular to the diagonal through
P(0, 0, 0) and P(2, 2, 2) and bisecting it.

(a) Show that the plane meets six of the edges of
the cube and bisects them.

(b) Show that the six points in (a) are the vertices
of a regular hexagon.

Linear Operators on R®

Recall that a transformation 7": R” — R" is called Jinear if T(x + y) =

Tx) + T(y)

and T(ax) = aT(x) holds for all x and y in R” and all scalars 4. In this case we showed
(in Theorem 2 Section 2.6) that there exists an 7z X 7 matrix A such that T(x) =
for all x in R”, and we say that T is the matrix transformation induced by 4.

Definition 4.9 A linear transformation

is called a linear operator on R”.

T:R" - R”

In Section 2.6 we investigated three important linear operators on R?: rotations
about the origin, reflections in a line through the origin, and pro]ectlons on this line.
In this section we 1nvest1gate the analogous operators on R’: Rotations about a

line through the origin, reflections in a plane through the origin, and projections
onto a plane or line through the origin in R?. In every case we show that the
operator is linear, and we find the matrices of all the reflections and projections.
To do this we must prove that these reflections, projections, and rotations
are actually linear operators on R’. In the case of reflections and rotations, itis
convenient to examine a more general situation. A transformation T : R — R’ is
said to be distance preserving if the distance between 7(v) and 7(w) is the same as
the distance between v and w for all v and w in R’; that is,

ITv) —

Tw)|| = ||[v — w]| for all v and w in R’ (*)

Clearly reflections and rotations are distance preserving, and both carry 0 to 0, so
the following theorem shows that they are both linear.
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If T: R® — R’ is distance preserving, and if T(0) = 0, then T is linear.

Since 7T(0) = 0, taking w = 0 in (%) shows that ||7(v)|| = ||v|| for all v in R?,
that is 7 preserves length. Also, || T(v) — T(w)||* = ||v — w||* by (%). Since
Iv—wl|*=|[v||* = 2v - w + ||w||* always holds, it follows that

T(v) « T(w) = v« w for all vand w. Hence (by Theorem 2 Section 4.2) the
angle between 7(v) and T{w) is the same as the angle between v and w for
all (nonzero) vectors v and w in R®.

With this we can show that T is linear. Given nonzero vectors v and w in R?,
the vector v + w is the diagonal of the parallelogram determined by v and w. By
the preceding paragraph, the effect of T'is to carry this entire parallelogram to the
parallelogram determined by 7(v) and 7T{w), with diagonal 7(v + w). But this
diagonal is T(v) + T(w) by the parallelogram law (see Figure 1).

In other words, T(v + w) = T(v) + T(w). A similar argument shows that
T(av) = a’T(v) for all scalars 4, proving that T is indeed linear.

Distance-preserving linear operators are called isometries, and we return to them
in Section 10.4.

Reflections and Projections

In Section 2.6 we studied the reflection Q,,: R? — R” in the line y = 7x and
projection P,,: R> — R? on the same line. We found (in Theorems 5 and 6,
Section 2.6) that they are both linear and

1 — 2m
2m m* — 1

Q,,, has matrix

2

and P,, has matrix 1 [ 1 mz }

1 +m L+w? m m

We now look at the analogues in R*.

Let L denote a line through the origin in R’. Given a vector v in R’ the
reflection Q;(v) of vin L and the projection P;(v) of v on L are defined in Figure 2.
In the same figure, we see that

Pr(v) = v +3[Q1(v) — v] = 3[QL(¥) + V] (%)
so the fact that Q, is linear (by Theorem 1) shows that Py is also linear.'? However,
a
Theorem 4 Section 4.2 gives us the matrix of Py directly. In fact, ifd = [p|# O isa
X C
direction vector for L, and we write v = |y |, then
z
2
a ab ac
. +by + 2|’ v
Pw=Ydg -T2 L 5 aey
Id]| a+b+ce] S+ 4o C e Al

as the reader can verify. Note that this shows directly that Py is a matrix
transformation and so gives another proof that it is linear.

12 Note that Theorem 1 does ot apply to P, since it does not preserve distance.
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a
Let L denote the line through the origin in R® with direction vectord = | p| # 0. Then
P and Qp, are both linear and ¢
at ab ac
Py, has matrix % i e
a + b+ 5
ac be ¢
] at —bt = 2ab 2ac
Q; has matrix —————— 2_ 2 _ 2
2Lt d 2ab b” —a @ 2 21725 :
2ac 2bc " —a” —b

It remains to find the matrix of Q;. But (xx) implies that Q;(v) = 2P;(v) — v for

x
each vin R’ so if v = |y | we obtain (with some matrix arithmetic):
z
a> ab oac 10 0]|ry
QW) =3 —2——|ab b be|-[0 1 0py
coEre ac be o 00 1]
Py 2ab 2ac ¥
2+22+ A 2w R-s-d e |
a ¢
2ac 2be A

as required.

In R® we can reflect in planes as well as lines. Let M denote a plane through
the origin in R®. Given a vector v in R?, the reflection Q,(v) of v in M and the
projection Py(v) of von M are defined in Figure 3. As above, we have

Py(v) = v + 3[Qu(v) — vl = 3[Qu(¥) + V]

so the fact that Q) is linear (again by Theorem 1) shows that Py is also linear.
Again we can obtain the matrix directly. If n is a normal for the plane M, then
Figure 3 shows that

* 1 for all vectors v.

Py(v) = v — proj,(v) = v — ‘|’

n||’
a x
Ifn=|p|# 0and v =|y| a computation like the above gives
¢ 2z
P+ —ab —ac

1O Ol e ax + by + cz|” 1 , x
Pyv) =301 0\ |= 55 —5|b| =57 —| @ atc b |7
P a + b+ a + b+ z

001 —ac ~be B+
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This proves the first part of

a
Let M denote the plane through the origin in R® with normaln = | p| # 0. Then Py,
and Qyy are both linear and ¢
: b2 +c?  —ab —ac
PM has matrlx ﬁ _ﬂb ﬂz +['2 _bf ’
a + b+
—ac b a4’ +b?
P+ -a —2ab —2ac
QM haS matrix m —Zﬂb ﬂz +62 _bz _sz
—2ac —2bc A+ -

It remains to compute the matrix of Q,;. Since Qy(v) = 2Py, (v) — v for each
vin R?, the computation is similar to the above and is left as an exercise for
the reader.

Rotations

In Section 2.6 we studied the rotation R, : R> — R? counterclockwise about the
origin through the angle 6. Moreover, we showed in Theorem 4 Section 2.6 that
cos f —sin 6

Ry is linear and has matrix |
sin® cos 6

. One extension of this is given in the

following example.

Let R4 : R’ — R’ denote rotation of R® about the z axis through an angle ¢
from the positive x axis toward the positive y axis. Show that R, y is linear and
find its matrix.

Solution P First R is distance preserving and so is linear by Theorem 1.
Hence we apply Theorem 2 Section 2.6 to obtain the matrix of R, 4.

1 0 0
Leti=|0},j =|1|, and k = |0 | denote the standard basis of RB; we must find
0 0 1

R, o), R. ¢(j), and R, 4(k). Clearly R, 4(k) = k. The effect of R, y on the x-y plane
is to rotate it counterclockwise through the angle 0. Hence Figure 4 gives

cos 0 —sin 6
R, (i) = |sin 0], R,p()=| cosb
0 0
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so, by Theorem 2 Section 2.6, R, y has matrix

cosf —sinf 0

[Rzﬁ(i) Rz,&(j) Rz,ﬁ(k)] =|sinf cos@ O}
0 0 1

Example 1 begs to be generalized. Given a line L through the origin in R?, every
rotation about L through a fixed angle is clearly distance preserving, and so is a
linear operator by Theorem 1. However, giving a precise description of the matrix
of this rotation is not easy and will have to wait until more techniques are available.

Transformations of Areas and Volumes

Let v be a nonzero vector in R’. Each vector in the same direction as v whose
length is a fraction s of the length of v has the form sv (see Figure 5). With this,
scrutiny of Figure 6 shows that a vector u is in the parallelogram determined by v
and w if and only if it has the form u = sv + rw where 0 <s < 1and 0 <7 < 1. But
then, if 7: R* — R’ is a linear transformation, we have

T(sv + tw) = T(sv) + Taw) = sTw) + tT(w).

Hence T(sv + tw) is in the parallelogram determined by 7(v) and 7T{w). Conversely,
every vector in this parallelogram has the form 7(sv + tw) where sv + tw is in the
parallelogram determined by v and w. For this reason, the parallelogram determined
by T(v) and T(w) is called the image of the parallelogram determined by v and w.
We record this discussion as:

IfT:R® — R’ (or R — R?) is a linear operator, the image of the parallelogram
determined by vectors v and w is the parallelogram determined by T(v) and T(w).

This result is illustrated in Figure 7, and was used in Examples 15 and 16 Section
2.2 to reveal the effect of expansion and shear transformations.

Now we are interested in the effect of a linear transformation 7': R* — R’ on
the parallelepiped determined by three vectors u, v, and w in R? (see the discussion
preceding Theorem 5 Section 4.3). If T has matrix A, Theorem 4 shows that this
parallelepiped is carried to the parallelepiped determined by T(u) = Au, T(v) = Av,
and T(w) = Aw. In particular, we want to discover how the volume changes, and it
turns out to be closely related to the determinant of the matrix A4.

Let vol(u, v, w) denote the volume of the parallelepiped determined by three vectors u, v,
and w in R, and let area(p, q) denote the area of the parallelogram determined by two
vectors p and q in R”. Then:

1. IfAisa3 X 3 matrix, then vol(Au, Av, Aw) = |det(A)
2. IfAisa?2 X 2 matrix, then area(Ap, Aq) = |det(A)

- vol(u, v, w).

- area(p, Q).
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1. Let [u v w] denote the 3 x 3 matrix with columns u, v, and w. Then

. Given p = [ﬂ in ]Rz, write p; =

Vector Geometry

vol(Au, Av, Aw) = |Au « (Av x Aw)|
by Theorem 5 Section 4.3. Now apply Theorem 1 Section 4.3 twice to get

Au - (Av x Aw) = det[Au Av Aw] = det{A[u v w]}
= det(4)det[u v w]
= det(4)(u - (v X w))

where we used Definition 2.9 and the product theorem for determinants.
Finally (1) follows from Theorem 5 Section 4.3 by taking absolute values.
x
¥ |in R*. By the diagram,
0
area(p, q) = vol(py, qi, k) where k is the (length 1) coordinate vector

along the z axis. If A is a 2 X 2 matrix, write 4; = {1(4)1 ﬂ in block form,

and observe that (4v); = (4,v,) for all v in R? and 4,k = k. Hence

part (1) if this theorem shows

area(Ap, Aq) = VOl(Alpl, Alch, Alk)

as required.

= |det(4;)|vol(py, qi, k)
= |det(4)| area(p, q)

Define the unit square and unit cube to be the square and cube corresponding
to the coordinate vectors in R? and R, respectively. Then Theorem § gives a
geometrical meaning to the determinant of a matrix A:

o IfAisa 2 X 2 matrix, then |det(A)| is the area of the image of the unit square

under multiplication by A;

o IfAisa 3 X 3 matrix, then |det(A)| is the volume of the image of the unit cube

under multiplication by A.

These results, together with the importance of areas and volumes in geometry, were
among the reasons for the initial development of determinants.

EXERCISES 4.4

1. In each case show that that 7 is either projection
on a line, reflection in a line, or rotation through
an angle, and find the line or angle.

o + 2 o rx —
@ T =1 77 Loy 7[¥]=17 y}
LY 2x+ 4y Lyl Ay
Fa] —x—y 1 =3+ 4y
szL[ } d) 7]*|=1L
O T 1= % x—y "D TL=5 4013
R e =y
@ 7(M=[2]  «® T[}]=}
L] o D NV3Bx+y

2. Determine the effect of the following
transformations.

(a) Rotation through 7, followed by projection
on the y axis, followed by reflection in the

line y = «.

+(b) Projection on the line y = x followed by
projection on the line y = —x.

(c) Projection on the x axis followed by
reflection in the line y = .
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3. In each case solve the problem by finding the 5. Find the matrix of the rotation in R* about the x
matrix of the operator. axis through the angle 0 (from the positive y axis
M7 to the positive z axis).
(a) Find the projection of v = | —2 | on the plane ) ] ) )
3 +6. Find the matrix of the rotation about the y axis
with equation 3x — Sy + 2z = 0. through the angle 6 (from the positive x axis to
T 07 the positive z axis).
+(b) Find the projection of v = ; on the plane 7. If Ais 3 x 3, show that the image of the line in

R’ through p, with direction vector d is the line

with equation 2x — y + 4z_= 0 through Ap, with direction vector Ad, assuming

) ) 1 ) that Ad # 0. What happens if Ad = 0?
(c) Find the reflection of v = | —2 |in the plane
. . L 3 8. If Ais 3 x 3 and invertible, show that the image
with equation x — y + 3z = 0-_ of the plane through the origin with normal
. . 0] n is the plane through the origin with normal
+(d) Find the reflection of v=| 1|in the plane n; = Bn where B = (4~Y)’. [Hint: Use the fact
. . [—3] that v+ w = v/w to show thatn; + (Ap) =n - p
with equation 2x +y — 5z = 0. for each p in R’.]
s
(e) Find the reflection of v =| 5|in the line 9. Let L be the line through the origin in R? with
L—1] direction vector d = V] +0.
x 1 b
with equation |y | =14 1| +(a) If P; denotes projection on L, show that P;,
. =2 [ 2
1 has matrix 3 “ ﬂl; A
+(f) Find the projection of v =| —1 |on the line @’ +blab b
7 (b) If Q; denotes reflection in L, show that Q;,
x 3 [ 2 52
with equation [y | =10 |. has matrix 5 1 5 a—b ) Zﬂbz}-
2 4 a+ bl 2ab b —a
' o 1 ’ 10. Let n be a nonzero vector in R?, let L be the
(g) Find the projection of v =| 1 |on the line line through the origin with direction vector n,
=3 and let M be the plane through the origin with
) o [* 2 normal n. Show that P;(v) = Qr(v) + Py(v) for
with equation g =1 0} all v in R’. [In this case, we say that
=30 Pr = Qr + Pyl
h) Find the reflection of v =| —5 |in the li
+(b) Find the reflection of v (5) in the fine 11. If M is the plane through the origin in R* with
; ra
with equation § _, i ' normal n = [Z , show that Q;; has matrix
z - (12, 2_ 2
F 1 b*+c —a —2ab —2uac
- | _ 2, 2 32
4. (a) Find the rotation of v =| 3 |about the P+ b+ E 2ab & tc—h . ch 5
1 —2ac —2bc  a”+b -
z axis through 6 = 7.
(1
+(b) Find the rotation of v = | | about the z axis
13

through 6 = 7.
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An Application to Computer Graphics
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Computer graphics deals with images displayed on a computer screen, and so

arises in a variety of applications, ranging from word processors, to Star Wars
animations, to video games, to wire-frame images of an airplane. These images
consist of a number of points on the screen, together with instructions on how to
fill in areas bounded by lines and curves. Often curves are approximated by a set of
short straight-line segments, so that the curve is specified by a series of points on
the screen at the end of these segments. Matrix transformations are important here
because matrix images of straight line segments are again line segments."* Note that
a colour image requires that three images are sent, one to each of the red, green,
and blue phosphorus dots on the screen, in varying intensities.

Consider displaying the letter A. In reality, it is depicted on the screen, as in
Figure 1, by specifying the coordinates of the 11 corners and filling in the interior.
For simplicity, we will disregard the thickness of the letter, so we require only five
coordinates as in Figure 2. This simplified letter can then be stored as a data matrix

Vertex 12345
06513
D_[00339}

where the columns are the coordinates of the vertices in order. Then if we want to
transform the letter by a 2 X 2 matrix 4, we left-multiply this data matrix by A (the
effect is to multiply each column by A4 and so transform each vertex).

For example, we can slant the letter to the right by multiplying by an x-shear

matrix A = {(1) (1)'2}—566: Section 2.2. The result is the letter with data matrix
AD = {1 O.ZHO 651 3} _ [0 6 5.6 1.6 4.8}
01 /00339 003 3 9
which is shown in Figure 3. If we want to make this slanted matrix narrower, we can
now apply an x-scale matrix B = {0'8 0} that shrinks the x-coordinate by 0.8. The
result is the composite transforma?ion1

0.8 OHI O.ZMO 651 3}_ [O 4.8 4.48 1.28 3.84}

0 1J01 “loo 3 3 9

BAD:[
003309

which is drawn in Figure 4.
On the other hand, we can rotate the letter about the origin through % (or 30°)

o

cos(%) —sin(%) _
by multiplying by the matrix Rx = | | 6 ¢ :[0'866 0.5 }
P [sin(g)  cos(y) 0.5 0.866
This gives
RD = [0.866 —0.5 HO 651 3}: [O 5.196 2.83 —0.634 —1.902}
? 0.5 0.866J10 0 3 39 03 5.098 3.098 9.294

and is plotted in Figure 5.

This poses a problem: How do we rotate at a point other than the origin? It
turns out that we can do this when we have solved another more basic problem. It
is clearly important to be able to translate a screen image by a fixed vector w, that is
apply the transformation T}, : R? — R? given by Ty,(v) = v + w for all v in R%. The
problem is that these translations are not matrix transformations R?> — R? because
they do not carry 0 to 0 (unless w = 0). However, there is a clever way around this.

13 If vy and v, are vectors, the vector from vg to v is d = v; — v,. So a vector v lies on the line segment between v, and v if and only
if v. = vy + fd for some number t in the range 0 < t < 1. Thus the image of this segment is the set of vectors Av = Avy + tAd with
0 < t< 1, that is the image is the segment between Avg and Av,.
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x
¥ |, called the
1

can be achieved

"The idea is to represent a point v = B} asa 3 x 1 column

homogeneous coordinates of v. Then translation by w = P
by multiplying by a 3 x 3 matrix:

1 0 pil« xtp
01 glly|=|y+ty
00 1]L1 1

Thus, by using homogeneous coordinates we can implement the translation 75, in
the top two coordinates. On the other hand, the matrix transformation induced by

TW(v)
1

A=1|" z is also given by a 3 x 3 matrix:
¢
a b 0l x ax + by v
cd Olly|T|aw+dy|= 1
0 0 1][1 1

So everything can be accomplished at the expense of using 3 x 3 matrices and
homogeneous coordinates.

Rotate the letter 4 in Figure 2 through % about the point

4

Solution » Using homogenous coordinates for the vertices of the letter results in
| a data matrix with three rows:

—_— 9 =
— O W

06
K;={0 0
11
€ac

- Origin

If we write w = [ﬂ, the idea is to use a composite of transformations: First

translate the letter by —w so that the point w moves to the origin, then rotate
M FIGURE 6 this translated letter, and then translate it by w back to its original position.
The matrix arithmetic is as follows (remember the order of composition!):

1 0 4({0866—0.5 01|10 4|06 513
01 5(]0.5 0.866 00 1 =5{/0 0 3 3 9
00 1JL0 0 1jJf0 0 111111
3.036 8.232 5.866 2.402 1.134
=|-1.33 1.67 3.768 1.768 7.964
1 1 1 1 1

"This is plotted in Figure 6.

"This discussion merely touches the surface of computer graphics, and the
reader is referred to specialized books on the subject. Realistic graphic rendering
requires an enormous number of matrix calculations. In fact, matrix multiplication
algorithms are now embedded in microchip circuits, and can perform over 100
million matrix multiplications per second. This is particularly important in the
field of three-dimensional graphics where the homogeneous coordinates have four
components and 4 X 4 matrices are required.
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EXERCISES 4.5

1.

2.

3.

Consider the letter 4 described in Figure 2.
Find the data matrix for the letter obtained by:

(2) Rotating the letter through 7 about the
origin.
+(b) Rotating the letter through 7 about the
1
2 }
Find the matrix for turning the letter 4 in
Figure 2 upside-down in place.

point

Find the 3 x 3 matrix for reflecting in the line

y =mx + b. Use [711] as direction vector for the
line.

4

5

. Find the 3 x 3 matrix for rotating through the

angle 6 about the point P(a, b).

. Find the reflection of the point P in the line

y =1+ 2xinR?if
@ P=P(1,1)
+(b) P=P(1,4)

(¢) What about P = P(1, 3)? Explain.
[Hint: Example 1 and Section 4.4.]

SUPPLEMENTARY EXERCISES FOR CHAPTER 4

1.

4.

Suppose that u and v are nonzero vectors. If u
and v are not parallel, and au + bv = aju + by,
show that 2 = 4; and b = b,.

. Consider a triangle with vertices 4, B, and

C. Let E and F be the midpoints of sides AB
and AC, respectively, and let the medians

EC and FB meet at O. Write EO = s EC

and F—O) = tﬁiz, where s and ¢ are scalars. Show
that s = 7 = 1 by expressing A0 two ways in

the form ¢ EO + bA—(}, and applying Exercise 1.
Conclude that the medians of a triangle meet
at the point on each that is one-third of the
way from the midpoint to the vertex (and so are
concurrent).

. A river flows at 1 km/h and a swimmer moves

at 2 km/h (relative to the water). At what angle
must he swim to go straight across? What is his
resulting speed?

A wind is blowing from the south at 75 knots,
and an airplane flies heading east at 100 knots.
Find the resulting velocity of the airplane.

. An airplane pilot flies at 300 km/h in a direction

30° south of east. The wind is blowing from the
south at 150 km/h.

(a) Find the resulting direction and speed of the
airplane.

+0.

10.

(b) Find the speed of the airplane if the wind is
from the west (at 150 km/h).

A rescue boat has a top speed of 13 knots. The
captain wants to go due east as fast as possible

in water with a current of 5 knots due south.
Find the velocity vector v = (x, y) that she must
achieve, assuming the x and y axes point east and
north, respectively, and find her resulting speed.

. A boat goes 12 knots heading north. The current

is 5 knots from the west. In what direction does
the boat actually move and at what speed?

. Show that the distance from a point 4 (with

vector a) to the plane with vector equation
n-p:dis”—i“|n~a—d|.

. If two distinct points lie in a plane, show that

the line through these points is contained in
the plane.

The line through a vertex of a triangle,
perpendicular to the opposite side, is called
an altitude of the triangle. Show that the
three altitudes of any triangle are concurrent.
(The intersection of the altitudes is called the
orthocentre of the triangle.) [Hinz: If P is the
intersection of two of the altitudes, show that
the line through P and the remaining vertex is
perpendicular to the remaining side.]



SECTION 1

The Vector Space R"

Subspaces and Spanning

Definition 5.1

In Section 2.2 we introduced the set R” of all z-tuples (called vectors), and began our
investigation of the matrix transformations R” — R" given by matrix multiplication
by an 7 x n matrix. Particular attention was paid to the euclidean plane R? where
certain simple geometric transformations were seen to be matrix transformations.
Then in Section 2.6 we introduced linear transformations, showed that they are all
matrix transformations, and found the matrices of rotations and reflections in R”.
We returned to this in Section 4.4 where we showed that projections, reflections,
and rotations of R? and R* were all linear, and where we related areas and volumes
to determinants.

In this chapter we investigate R” in full generality, and introduce some of the
most important concepts and methods in linear algebra. The z-tuples in R” will
continue to be denoted x, y, and so on, and will be written as rows or columns
depending on the context.

Subspaces of R"

A set' U of vectors in R” is called a subspace of R” if it satisfies the following properties:
S1. The zero vector Q is in U.
S2. Ifx andy are in U, then x + y is also in U.

S3. Ifx is in U, then ax is in U for every real number a.

We say that the subset U is closed under addition if S2 holds, and that U is closed
under scalar multiplication if S3 holds.

Clearly R” is a subspace of itself. The set U = {0}, consisting of only the zero
vector, is also a subspace because 0 + 0 = 0 and 20 = 0 for each # in R; it is called
the zero subspace. Any subspace of R” other than {0} or R” is called a proper
subspace.

1 We use the language of sets. Informally, a set Xis a collection of objects, called the elements of the set. The fact that x is an
element of Xis denoted x € X. Two sets X'and Y are called equal (written X = ¥) if they have the same elements. If every element of
Xis in the set ¥, we say that Xis a subset of ¥, and write X C Y. Hence X € Yand Y < X both hold if and only if X = V.
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We saw in Section 4.2 that every plane M through the origin in R’ has equation

a
ax + by + cz = 0 where 4, b, and ¢ are not all zero. Here n = | | is a normal for the
¢
plane and
M={inR|n.v=0}
x
where v = |y |and n -+ v denotes the dot product introduced in Section 2.2 (see the
z

diaglram).2 Then M is a subspace of R®. Indeed we show that M satisfies S1, S2, and
S3 as follows:

S1. 0is in M becausen « 0 = 0;
S2. If vandvyarein M, thenn+«(v+v))=n.v+n.-vi=04+0=0,s0v + vy is
in M;
S3. Ifvisin M, thenn « (av) = a(n « v) = a(0) = 0, so av is in M.
"This proves the first part of

Planes and lines through the origin in R’ are all subspaces of R®.

Solution » We dealt with planes above. If L is a line through the origin with
direction vector d, then L = {rd | 7 in R} (see the diagram). We leave it as an
exercise to verify that L satisfies S1, S2, and S3.

Example 1 shows that lines through the origin in R? are subspaces; in fact, they are the
only proper subspaces of R? (Exercise 24). Indeed, we shall see in Example 14 Section
5.2 that lines and planes through the origin in R? are the only proper subspaces of R’
Thus the geometry of lines and planes through the origin is captured by the subspace
concept. (Note that every line or plane is just a translation of one of these.)

Subspaces can also be used to describe important features of an 7 X » matrix 4.
The null space of A, denoted null A4, and the image space of 4, denoted im A, are
defined by

null 4 ={xinR"|Ax =0} and imA = {Ax|xin R"}

In the language of Chapter 2, null A consists of all solutions x in R” of the
homogeneous system Ax = 0, and im A is the set of all vectors y in R” such that
Ax =y has a solution x. Note that x is in null A4 if it satisfies the condition Ax = 0,
while im A4 consists of vectors of the form Ax for some x in R”. These two ways to
describe subsets occur frequently.

If A is an 7 X n matrix, then:
1. null A is a subspace of R”.

2. im A is a subspace of R™.

2 We are using set notation here. In general {g | p} means the set of all objects g with property p.
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Solution »

1. The zero vector 0 in R” lies in null 4 because A0 = 0.” If x and x,
are in null 4, then x + x; and #x are in null A because they satisfy the
required condition:

Ax+x)=Ax+Ax; =0+ 0=0 and A(ex) = a(Ax) = a0 = 0
Hence null A4 satisfies S1, S2, and S3, and so is a subspace of R”.

2. The zero vector 0 in R™ lies in im A because 0 = A0. Suppose that y and
y; are in im A, say y = Ax and y; = Ax; where x and x; are in R”. Then

y+y =Ax + Ax; = AX + x;) and ay = a(Ax) = A(ax)

show that'y + y; and #y are both in im A (they have the required
form). Hence im A is a subspace of R™.

There are other important subspaces associated with a matrix A that clarify basic
properties of A. If A is an » X » matrix and X is any number, let

E\A) = {xinR" | Ax = Ax}.
A vector x is in E\(A4) if and only if (\] — A)x = 0, so Example 2 gives:

E\(A) = null(\I — A) is a subspace of R” for each # X 7 matrix A and
number \.

E\(A) is called the eigenspace of A corresponding to A. The reason for the name
is that, in the terminology of Section 3.3, X is an eigenvalue of A if E,(A4) # {0}.
In this case the nonzero vectors in Ey(A4) are called the eigenvectors of 4
corresponding to A.

The reader should not get the impression that every subset of R” is a subspace.
For example:

U, = {[ﬂ | o = 0} satisfies S1 and S2, but not S3;
U, = ﬂﬂ | xz :yz} satisfies S1 and S3, but not S2;

Hence neither U; nor U, is a subspace of R (However, see Exercise 20.)

Spanning Sets

Let v and w be two nonzero, nonparallel vectors in R? with their tails at the
origin. The plane M through the origin containing these vectors is described in
Section 4.2 by saying that n = v X w is a normal for M, and that M consists of all
vectors p such that n « p = 0.* While this is a very useful way to look at planes,
there is another approach that is at least as useful in R* and, more importantly,
works for all subspaces of R” for any # > 1.

3 We are using 0 to represent the zero vector in both R” and R". This abuse of notation is common and causes no confusion once
everybody knows what is going on.

4 The vector n = v x w is nonzero because v and w are not parallel.
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The idea is as follows: Observe that, by the diagram, a vector p is in M if and
only if it has the form

p=av+bw

for certain real numbers # and & (we say that p is a linear combination of v and w).
Hence we can describe M as

M = {ax + bw | a, b in R}.

and we say that {v, w} is a spanning set for M. It is this notion of a spanning set that
provides a way to describe all subspaces of R”.
As in Section 1.3, given vectors Xy, X, ..., X; in R”, a vector of the form

X + 6Hx; + -+ + 1%, where the ¢, are scalars

is called a linear combination of the x;, and ¢; is called the coefficient of x; in the
linear combination.

The set of all such linear combinations is called the span of the x; and is denoted
span{xl, X% 0oog X/e} = {tlxl + HX) + - + 11X, | 1 in ]R}

If V = span{xy, Xy, ..., X}, we say that V is spanned by the vectors X, X5, ..., X;, and
that the vectors Xy, Xy, ..., X, span the space V.

Two examples:
span{x} = {tx | #in R},
which we write as span{x} = Rx for simplicity.
span{x, y} = {ix + sy| r, s in R}.

In particular, the above discussion shows that, if v and w are two nonzero,
nonparallel vectors in R?, then
M = span{v, w}

is the plane in R’ containing v and w. Moreover, if d is any nonzero vector in R’

(or R?), then
L = span{v} = {td | rin R} = Rd

is the line with direction vector d (see also Lemma 1 Section 3.3). Hence lines and
planes can both be described in terms of spanning sets.

Letx=(2,—-1,2,1)andy = (3,4, —1, 1) in R*. Determine whether
p=(,—-11,8,1)or q = (2, 3, 1, 2) are in U = span{x, y}.

Solution » The vector p is in U if and only if p = sx + ty for scalars s and z.
Equating components gives equations

2s+3t=0, —s+4=-11, 2s—t=8, and s+t=1.

"This linear system has solution s = 3 and t = —2, so p is in U. On the other
hand, asking that q = sx + ty leads to equations

2s+3t=2, —s+4=3, 2s—t=1, and s+t=2

and this system has no solution. So q does not lie in U.

5 In particular, this implies that any vector p orthogonal to v x w must be a linear combination p = av + bw of v and w for some a
and b. Can you prove this directly?
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Let U = span{xy, xy, ..., x3} in R". Then:
1. Uis a subspace of R" containing each X;.
2. If Wis a subspace of R” and each X; is in W, then U C W.

Write U = span{xy, x,, ..., x;} for convenience.

1. The zero vector 0 is in U because 0 = 0x; + Ox, + -+ + 0x; is a linear
combination of the x;. If x = ;x| + t;%x, + -+ + ;% and
y = $1X; + % + -+ + g are in U, then x + y and ax are in U because
X+y=( +s5s)x + (B +5)x + - + (# +5px;, and
ax = (ﬂtl)Xl + (ﬂtz)Xz + .- + (ﬂtk)Xl.
Hence S1, S2, and S3 are satisfied for U, proving (1).
2. Letx = t;x; + 5%, + -+ + ;%3 where the #; are scalars and each x; is in .

Then each tx; is in W because W satisfies S3. But then x is in  because W
satisfies S2 (verify). This proves (2).

Condition (2) in Theorem 1 can be expressed by saying that span{x;, x,, ..., x;} is
the smallest subspace of R” that contains each x;. This is useful for showing that two
subspaces U and W are equal, since this amounts to showing that both U € ¥ and
W < U. Here is an example of how it is used.

If x and y are in R”, show that spanfx, y} = span{x + y, x — y}.

Solution > Since both x + y and x — y are in span{x, y}, Theorem 1 gives

span{x + y, x — y} € span{x, y}.
Butx = 1(x +y) + 1(x —y) and y = X(x + y) — 1(x — y) are both in
span{x + y, X — y}, so

span{x, y} C span{x +y, x — y}
again by Theorem 1. Thus span{x, y} = span{x + y, x — y}, as desired.

It turns out that many important subspaces are best described by giving a
spanning set. Here are three examples, beginning with an important spanning set
for R” itself. Column j of the 7 x 7 identity matrix I, is denoted e; and called the jth
coordinate vector in R”, and the set {e|, e,, ..., ¢,} is called the standard basis of

X1
R Ifx = x:2 is any vector in R”, then x = xje; + xye; + -+ + x,€,, as the reader
xn

can verify. This proves:
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R” = spanfey, e,, ..., €,} where ey, e, ..., e, are the columns of ,.

If A is an 7 x n matrix 4, the next two examples show that it is a routine matter
to find spanning sets for null 4 and im A.

Given an 7 X n matrix A, let x;, x,, ..., x; denote the basic solutions to the
system Ax = 0 given by the gaussian algorithm. Then

null A4 = spanfxy, x,, ..., xz}.
Solution P If x is in null A, then Ax = 0 so Theorem 2 Section 1.3
shows that x is a linear combination of the basic solutions; that is,

null A4 € spanfxy, x,, ..., x;}. On the other hand, if x is in span{xy, x,, ..., X4},
then x = ;x; + 6%, + -+ + ;% for scalars 2, so

Ax = tlAXI S tzAXz aF oco qF t]eAXk = t10 aF t20 aF eo0 qp tkO =0.

"This shows that x is in null 4, and hence that span{xy, x, ..., x;} € null 4.
Thus we have equality.

Let ¢y, ¢y, ..., ¢, denote the columns of the 7 X n matrix A. Then

im A = span{cy, ¢, ..., C,}.

Solution b If {e}, e,, ..., e,} is the standard basis of R”, observe that
[Ae, Ae; --- Ae,| = Ale; e; - e,] =Al, =A=[c; ¢; -+ ¢,].

Hence ¢; = Ae; is in im A for each 4, so span{c, ¢, ..., ¢,} € im A.
X1

Conversely, let y be in im A4, say y = Ax for some x in R". If x = x:Z , then
%
Definition 2.5 gives

y = Ax = x1¢1 + 2,6, + -+ + x,¢, 1s in span{cy, ¢y, ..., C,}.

This shows that im 4 € span{cy, ¢, ..., ¢,}, and the result follows.

EXERCISES 5.1

We often write vectors in R” as rows. © U={@,s1)|r,sand rin R, —r + 35 + 2t = O}
1. In each case determine whether U is a subspace o(d) U={@,3s,7—2)| rand sin R}.
3
of R’. Support your answer. (€ U=1{(r,0,5 |7+ =0,randsin R},

@ U={{ls2|sandzin R}. of) U={Qr, =%, 1) | r, 5, and ¢ in R},
+b) U={0,s, 1) |sandrin R}.
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2. In each case determine if x lies in U = spanly, z}.
If x is in U, write it as a linear combination of
y and z; if x is not in U, show why not.

(a) X = (z’ _17 0, l)’ y = (17 0, 07 1)7 and
z=1(0,1,0,1).
o(b) x=(1,2,15,11),y = (2, -1, 0, 2), and
z=(1,—-1,-3,1).
(©) x=(8,3,-13,20),y= (2,1, =3,5), and
z=(-1,0,2,=3).

’(d) X = (2, 57 87 3), y= (27 _1, 0, 5)7 and
z=(-1,2,2,-3).

3. In each case determine if the given vectors
span R*. Support your answer.

(@ {(1,1,1,1),(0, 1,1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}

’(b) {(1’ 3) _57 O)) (_2; 1) 0’ 0)) (07 2, 1) _1)’
(1’ _47 57 0)}

4. Is it possible that {(1, 2, 0), (2, 0, 3)} can span the
subspace U = {(r, 5, 0) |  and s in R}? Defend

your answer.
5. Give a spanning set for the zero subspace {0} of R".
6. Is R? a subspace of R*? Defend your answer.

7. If U = span{x, y, z} in R”, show that
U = span{x + 1z, y, z} for every ¢ in R.

8. If U = span{x, y, z} in R”, show that
U=span{x +y,y + z,z + x}.

9. If # # 0 is a scalar, show that
span{ax} = span{x} for every vector x in R".

+10. If 4y, ay, ..., 4, are nonzero scalars, show that
span{a Xy, 4,%, ..., 4;X;} = span{xy, Xy, ..., X}
for any vectors x; in R”.

11. If x # 0 in R”, determine all subspaces of
span{x}.

+12. Suppose that U = span{xy, x,, ..., x;} where each
x;is in R”. If A is an m X »n matrix and Ax; = 0
for each 7, show that Ay = 0 for every vector y
in U.

13. If A is an m X » matrix, show that, for each
invertible 772 X 7z matrix U, null(4) = null(UA).

14. If A is an m X »n matrix, show that, for each
invertible # X n matrix V, im(A4) = im(AV).
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15. Let U be a subspace of R”, and let x be a vector
in R”.

(a) If ax is in U where # # 0 is a number, show
that x is in U.

+(b) Ifyand x + y are in U where y is a vector in
R”, show that xis in U.

16. In each case either show that the statement is
true or give an example showing that it is false.

(a) If U # R" is a subspace of R” and x + y is in
U, then x and y are both in U.

+(b) If Uis a subspace of R” and 7x is in U for all
7in R, then x is in U.

(c) If Uis a subspace of R” and x is in U, then
—x is also in U.

+(d) Ifxisin Uand U = spanly, z}, then
U = span{x, y, z}.

(e) The empty set of vectors in R” is a subspace
of R".

0 i }3]

17. (a) If A and B are m X n matrices, show that
U = {xin R" | Ax = Bx} is a subspace of R".

(b) Whatif Aism X n, Bis k X n, and m + k?

18. Suppose that xy, x;, ..., x; are vectors in R”. If
y = a1x; + 4% + -+ + ayx;, where a; # 0, show
that span{xy, x, ..., X;} = spanfyy, x5, ..., Xz}.

19. If U # {0} is a subspace of R, show that U = R.

+20. Let U be a nonempty subset of R”. Show that U
is a subspace if and only if S2 and S3 hold.

21. If S and T are nonempty sets of vectors in R,
and if S € 7, show that span{S} < span{7}.

22. Let U and W be subspaces of R”. Define their
intersection U N W and their sum U + W as
follows:

Un W= {xinR" | x belongs to both U and I}

U+ W= {xinR"|xisasum of a vector in U
and a vector in W}.

(a) Show that U N Wis a subspace of R”.
+(b) Show that U + I is a subspace of R”".

23. Let P denote an invertible # X 7 matrix. If \ is
a number, show that E\(PAP™") = {Px | x is in
E\(A)} for each n X n matrix A.
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24. Show that every proper subspace U of R is a the line with direction vector d. If u is in U but
line through the origin. [Hinz: If d is a nonzero not in L, argue geometrically that every vector v
vector in U, let L. = Rd = {rd | » in R} denote in R? is a linear combination of u and d.]

SECTION 5.2

Independence and Dimension

Definition 5.3

Some spanning sets are better than others. If U = span{x;, x,, ..., X} is a subspace of
R", then every vector in U can be written as a linear combination of the x; in at least
one way. Our interest here is in spanning sets where each vector in U has a exactly
one representation as a linear combination of these vectors.

Linear Independence

Given xq, X3, ..., X in R”, suppose that two linear combinations are equal:
71X+ Xy + s+ Xy = 51Xy + 95X + o0+ X

We are looking for a condition on the set {x;, x,, ..., X} of vectors that guarantees
that this representation is unigue; that is, 7; = s; for each 7. Taking all terms to the
left side gives

(ry = s)x1 + (1 — )% + - + (1 — s)x = 0.

so the required condition is that this equation forces all the coefficients 7; — s; to be zero.

With this in mind, we call a set {X{, X5, ..., X3} of vectors linearly independent (or
simply independent) if it satisfies the following condition:

If t1X1+Z’2X2+"'+thk:0 then t1=t2="'=tk:0.

We record the result of the above discussion for reference.

If{xy, X3, ..., X} is an independent set of vectors in R", then every vector in
span{xy, X,, ..., X;} has a unique representation as a linear combination of the x;.

It is useful to state the definition of independence in different language. Let us
say that a linear combination vanishes if it equals the zero vector, and call a linear
combination trivial if every coefficient is zero. Then the definition of independence
can be compactly stated as follows:

A set of vectors is independent if and only if the only
linear combination that vanishes is the trivial one.

Hence we have a procedure for checking that a set of vectors is independent:

Independence Test

To verify that a set {X{, X5, ..., X3} of vectors in R" is independent, proceed as follows:
1. Set a linear combination equal to zero: t;x; + 1%, + -+ + t;x;, = 0.
2. Show that t; = 0 for each i (that is, the linear combination is trivial).

Of course, if some nontrivial linear combination vanishes, the vectors are not independent.
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Determine whether {(1, 0, =2, 5), (2, 1, 0, —1), (1, 1, 2, 1)} is independent
in RY.

Solution P Suppose a linear combination vanishes:
(1,0, =2, 5) + 52, 1,0, —=1) + #(1, 1,2, 1) = (0, 0, 0, 0).
Equating corresponding entries gives a system of four equations:
r+2s+t=0, s+t=0, —2r+2t=0, and 5r—s+t=0.

The only solution is the trivial one » = s = ¢ = 0 (verify), so these vectors are
independent by the independence test.

Show that the standard basis {ey, e,, ..., €;} of R” is independent.
Solution » The components of te; + e, + --- + t,e, are ty, t, ..., t,, (see the

discussion preceding Example 6 Section 5.1) So the linear combination vanishes
if and only if each #; = 0. Hence the independence test applies.

If {x, y} is independent, show that {2x + 3y, x — Sy} is also independent.
Solution b If s(2x + 3y) + #(x — 5y) = 0, collect terms to get
(25 + )x + (3s — 5t)y = 0. Since {x, y} is independent this combination

must be trivial; that is, 25 + ¢ = 0 and 3s — 57 = 0. These equations have
only the trivial solution s = # = 0, as required.

Show that the zero vector in R” does not belong to any independent set.

Solution » No set {0, x;, x,, ..., x;} of vectors is independent because we have a
vanishing, nontrivial linear combination 1 - 0 + 0x; + 0x; + --- + Ox;, = 0.

Given x in R”, show that {x} is independent if and only if x # 0.

Solution > A vanishing linear combination from {x} takes the form #x = 0,
¢ in R. This implies that # = 0 because x # 0.
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{u, v, w} independent

M
{u, v, w} not independent
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The next example will be needed later.

Show that the nonzero rows of a row-echelon matrix R are independent.

Solution » We illustrate the case with 3 leading 1s; the general case is

0 1 % *x *x =x*

analogous. Suppose R has the form R = 00 01 % here % indicates
000 0 1 =
000 0O0O

a nonspecified number. Let Ry, Ry, and R; denote the nonzero rows of R. If
1Ry + R, + t3R; = 0 we show that 7; = 0, then #, = 0, and finally #; = 0.
The condition #1R; + ©,R, + 3R; = 0 becomes

(0’ tl’ *7 *’ *’ *) + (0’ O’ 0’ tZ) *’ *) + (0’ 0’ O’ O’ t}’ *) = (O’ O’ 07 O’ O’ 0)'

Equating second entries show that #; = 0, so the condition becomes
1R, + t3R; = 0. Now the same argument shows that #, = 0. Finally,
this gives #3R; = 0 and we obtain #; = 0.

A set of vectors in R” is called linearly dependent (or simply dependent) if it is

not linearly independent, equivalently if some nontrivial linear combination vanishes.

If v and w are nonzero vectors in R?, show that {v, w} is dependent if and only
if v and w are parallel.

Solution > If v and w are parallel, then one is a scalar multiple of the other
(Theorem 4 Section 4.1), say v = aw for some scalar 2. Then the nontrivial
linear combination v — aw = 0 vanishes, so {v, w} is dependent.

Conversely, if {v, w} is dependent, let sv + tw = 0 be nontrivial, say s # 0.
Then v = —iw, so v and w are parallel (by Theorem 4 Section 4.1). A similar
argument works if 7 # 0.

With this we can give a geometric description of what it means for a set {u, v, w}

in R’ to be independent. Note that this requirement means that {v, w} is also
independent (#v + bw = 0 means that Ou + av + bw = 0), so M = span{v, w} is the
plane containing v, w, and 0 (see the discussion preceding Example 4 Section 5.1).
So we assume that {v, w} is independent in the following example.

Let u, v, and w be nonzero vectors in R® where {v, w} independent. Show that
{u, v, w} is independent if and only if u is not in the plane M = span{v, w}.
This is illustrated in the diagrams.
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Solution P If {u, v, w} is independent, suppose u is in the plane M = span{v, w},
say u = av + bw, where # and b are in R. Then 1lu — av — bw = 0,
contradicting the independence of {u, v, w}.

On the other hand, suppose that u is not in M; we must show that {u, v, w} is
independent. If 7u + sv + tw = 0 where 7, 5, and 7 are in R?, then 7 = 0 since
otherwise u = v + Zfw is in M. But then sv + tw = 0, so s = ¢ = 0 by our
assumption. This shows that {u, v, w} is independent, as required.

By Theorem 5 Section 2.4, the following conditions are equivalent for an z X #
matrix A4:

1. A is invertible.
2. IfAx = 0 wherex is in R”, thenx = 0.
3. Ax = b has a solution x for every vector b in R”.

While condition 1 makes no sense if A4 is not square, conditions 2 and 3 are

meaningful for any matrix 4 and, in fact, are related to independence and spanning.
X1

Indeed, if ¢, ¢, ..., ¢, are the columns of A, and if we write x = x:2 , then
x,
Ax = x1¢1 + 156 + -+ + x,¢,
by Definition 2.5. Hence the definitions of independence and spanning show,
respectively, that condition 2 is equivalent to the independence of {cy, ¢, ..., ¢}

and condition 3 is equivalent to the requirement that spanfcy, ¢, ..., ¢,} = R”.
"This discussion is summarized in the following theorem:

If A is an m X n matrix, let {c1, ¢,, ..., ¢,} denote the columns of A.
L. {cy, ¢ ..., ¢} is independent in R™ if and only if Ax = 0, x in R”, implies x = 0.

2. R” = spanfcy, ¢, ..., ¢,} if and only if Ax = b has a solution x for every vector
b in R™.

For a square matrix A, Theorem 2 characterizes the invertibility of A in terms
of the spanning and independence of its columns (see the discussion preceding
Theorem 2). It is important to be able to discuss these notions for rows. If
X1, X, ..., X are 1 X n rows, we define span{xy, x,, ..., x;} to be the set of all linear
combinations of the x; (as matrices), and we say that {x;, x, ..., x;} is linearly
independent if the only vanishing linear combination is the trivial one (that is, if
{xlT, xZT, e x[} is independent in R”, as the reader can Verify).6

The following are equivalent for an n X n matrix A:
1. A is invertible.

6 Itis best to view columns and rows as just two different notations for ordered n-tuples. This discussion will become redundant in
Chapter 6 where we define the general notion of a vector space.
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The columns of A are linearly independent.
The columns of A span R".
The rows of A are linearly independent.

SN

The rows of A span the set of all 1 X n rows.

Let ¢y, ¢y, ..., ¢, denote the columns of A.

(1) & (2). By Theorem 5 Section 2.4, A4 is invertible if and only if 4x = 0
implies x = 0; this holds if and only if {c, c,, ..., ¢,} is independent by
Theorem 2.

(1) & (3). Again by Theorem 5 Section 2.4, A is invertible if and only if
Ax = b has a solution for every column B in R”; this holds if and only if
span{cy, ¢y, ..., ¢,} = R” by Theorem 2.

(1) & (4). The matrix A is invertible if and only if AT is invertible (by the
Corollary to Theorem 4 Section 2.4); this in turn holds if and only if A” has
independent columns (by (1) < (2)); finally, this last statement holds if and
only if A has independent rows (because the rows of A are the transposes of
the columns of A%).

(1) < (5). The proof is similar to (1) < (4).

Show that S = {(2, =2, 5), (=3, 1, 1), (2, 7, —4)} is independent in R’.

2 =2 5
Solution » Consider the matrix 4 =|—3 1 1 |with the vectors in S as its
2 7 -4

rows. A routine computation shows that det 4 = —117 # 0, so A is invertible.
Hence S is independent by Theorem 3. Note that Theorem 3 also shows that
R’ = span S.

Dimension

It is common geometrical language to say that R? is 3-dimensional, that planes are
2-dimensional and that lines are 1-dimensional. The next theorem is a basic tool
for clarifying this idea of “dimension”. Its importance is difficult to exaggerate.

Fundamental Theorem
Let U be a subspace of R”. If U is spanned by m vectors, and if U contains k linearly
independent vectors, then k < m.

"This proof is given in Theorem 2 Section 6.3 in much greater generality.
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If Uis a subspace of R", a set {xy, Xy, ..., X,,} of vectors in U is called a basis of U if it
satisfies the following two conditions:

1. {xy, X, ..., X,,} is linearly independent.
2. U= span{xy, x;, ..., X,,,}.

The most remarkable result about bases’ is:

Theorem 5

Invariance Theorem
If{xy, X3, ..., X,,} and {y1, 2, ..., yi} are bases of a subspace U of R, then m = k.

We have k < m by the fundamental theorem because {x;, x,, ..., X,,} spans U,
and {yy, y2, ..., yi} is independent. Similarly, by interchanging xs and ys we get
m < k. Hence m = k.

The invariance theorem guarantees that there is no ambiguity in the following
definition:

If Uis a subspace of R" and {xy, x5, ..., X,,,} is any basis of U, the number, m, of vectors
in the basis is called the dimension of U, denoted

dim U = m.

The importance of the invariance theorem is that the dimension of U can be
determined by counting the number of vectors in ny basis.®

Let {ej, e, ..., e,} denote the standard basis of R”, that is the set of columns of
the identity matrix. Then R” = span{ey, e, ..., €,} by Example 6 Section 5.1, and
{ey, ey, ..., €,} is independent by Example 2. Hence it is indeed a basis of R” in the
present terminology, and we have

dim(R”) = # and {e, e,, ..., €,} is a basis.

This agrees with our geometric sense that R? is two-dimensional and R? is
three-dimensional. It also says that R' = R is one-dimensional, and {1} is a basis.
Returning to subspaces of R”, we define

dim {0} = 0.

This amounts to saying {0} has a basis containing 7o vectors. This makes sense
because 0 cannot belong to any independent set (Example 4).

7 The plural of “basis” is “bases”.
8  We will show in Theorem 6 that every subspace of R" does indeed have a basis.
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,
Let U :{ s} | 7, s in ]R}. Show that U is a subspace of R?, find a basis, and
7
calculate dim U.
P 1 0
Solution » Clearly, [s} =u + svwhere u =|(|and v=|1| It follows that
7 1 0
U = spanf{u, v}, and hence that U is a subspace of R®. Moreover, if
0
,
7a +sv =0, then |s|=|0|so 7 =s = 0. Hence {u, v} is independent, and so a
7
0

basis of U. This means dim U = 2.

Let B = {x;, x5, ..., x,,} be a basis of R”. If A is an invertible » X # matrix, then
D = {Ax,, Ax;, ..., Ax,} is also a basis of R”.

Solution » Let x be a vector in R”. Then A~ 'x is in R” so, since B is a basis,

we have A7'x = t;x; + £:%, + -+ + 1,X, for #; in R. Left multiplication by A
gives x = t1(Axy) + t,(Ax;) + --+ + 1,(4x,), and it follows that D spans R". To
show independence, let s;(Ax;) + 5,(Ax;) + -+ + 5,(Ax,) = 0, where the s; are
in R. Then A(six; + 5% + -+ + 5,%,) = 0 so left multiplication by A7l gives
$1X1 + 5% + -+ + 5,%, = 0. Now the independence of B shows that each s; = 0,
and so proves the independence of D. Hence D is a basis of R”.

While we have found bases in many subspaces of R”, we have not yet shown that
every subspace has a basis. This is part of the next theorem, the proof of which is
deferred to Section 6.4 where it will be proved in more generality.

Let U + {0} be a subspace of R". Then:
U has a basis and dim U < n.

2. Any independent set in U can be enlarged (by adding vectors from the standard
basis) to a basis of U.

3. Any spanning set for U can be cut down (by deleting vectors) to a basis of U.

Find a basis of R containing S = {u, v} whereu = (0, 1, 2, 3)and v = (2, —1, 0, 1).

Solution » By Theorem 6 we can find such a basis by adding vectors from the
standard basis of R* to S. If we try e; = (1, 0, 0, 0), we find easily that {e;, u, v}
is independent. Now add another vector from the standard basis, say e,.



SECTION 5.2 Independence and Dimension 243

Again we find that B = {ey, e,, u, v} is independent. Since B has 4 = dim R*
vectors, then B must span R* by Theorem 7 below (or simply verify it directly).
Hence B is a basis of R*.

Theorem 6 has a number of useful consequences. Here is the first.

Let U be a subspace of R” where dim U = m and let B = {x, x5, ..., X,,} be a set of m
vectors in U. Then B is independent if and only if B spans U.

Suppose B is independent. If B does not span U then, by Theorem 6, B can be
enlarged to a basis of U containing more than 7 vectors. This contradicts the
invariance theorem because dim U = m, so B spans U. Conversely, if B spans U
but is not independent, then B can be cut down to a basis of U containing fewer
than 7 vectors, again a contradiction. So B is independent, as required.

As we saw in Example 13, Theorem 7 is a “labour-saving” result. It asserts
that, given a subspace U of dimension 7 and a set B of exactly » vectors in U, to
prove that B is a basis of U it suffices to show either that B spans U or that B is
independent. It is not necessary to verify both properties.

Let U € W be subspaces of R". Then:
1. dim U < dim W.
2. Ifdim U= dim W, then U= W.

Write dim W = k, and let B be a basis of U.

1. If dim U > k, then B is an independent set in /¥ containing more than
vectors, contradicting the fundamental theorem. So dim U < k = dim W.

2. If dim U = k, then B is an independent set in W containing k¥ = dim W
vectors, so B spans W by Theorem 7. Hence W = span B = U, proving (2).

It follows from Theorem 8 that if U is a subspace of R”, then dim U is one of the
integers 0, 1, 2, ..., n, and that:

dim U= 0 ifand onlyif U= {0},

dim U=#n ifandonlyif U=R"

The other subspaces are called proper. The following example uses Theorem 8
to show that the proper subspaces of R? are the lines through the origin, while the
proper subspaces of R® are the lines and planes through the origin.
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1. If Uis a subspace of R? or R?, then dim U = 1 if and only if Uis a line
through the origin.

2. If Uis a subspace of R’, then dim U = 2 if and only if U is a plane
through the origin.

1. Since dim U = 1, let {u} be a basis of U. Then U = span{u} = {ru | # in R}, so
U is the line through the origin with direction vector u. Conversely each line
L with direction vector d # 0 has the form L = {td | # in R}. Hence {d} is a
basis of U, so U has dimension 1.

2. If U € R has dimension 2, let {v, w} be a basis of U. Then v and w are not
parallel (by Example 7) son =v X w# 0. Let P = xin R’ | n « x = 0}
denote the plane through the origin with normal n. Then P is a subspace of
R’ (Example 1 Section 5.1) and both v and w lie in P (they are orthogonal to
n), so U = span{v, w} C P by Theorem 1 Section 5.1. Hence

UcCPCR.

Since dim U = 2 and dim(R*) = 3, it follows from Theorem 8 that dim P = 2
or 3, whence P = U or R’. But P # R’ (for example, n is not in P) and so
U = P is a plane through the origin.

Conversely, if U is a plane through the origin, then dim U= 0, 1, 2, or 3
by Theorem 8. But dim U # 0 or 3 because U # {0} and U # R?, and dim
U # 1 by (1). Sodim U = 2.

Note that this proof shows that if v and w are nonzero, nonparallel vectors in
R?, then span{v, w} is the plane with normal n = v x w. We gave a geometrical
verification of this fact in Section 5.1.

EXERCISES 5.2

In Exercises 1-6 we write vectors R” as rows. ob) x+y,y+zz+x}

1. Which of the following subsets are independent? © &x—-yvy—z,z—w,w—x}
Support your answer.

() {1, —1,0),(3,2,-1), 3,5, =2)}in R’
«0b) {1, 1,1),d,-1,1),,0, 1)} in R>.

od) x+y,y+z,z+w,w+x}

3. Find a basis and calculate the dimension of the
following subspaces of R*,

© {0, =1, 1, 1), 2,0, 1,0, (0, =2, 1, =2} in R, (@) span{(1, —1,2,0),(2,3,0,3), (1,9, =6, 6)}.
+(d) §(01’11’00’1(;§"(13R9*’ 1,0), (0,0, 1, 1), +(b) span{(2, 1,0, =1), (=1, 1, 1, 1), 2, 7, 4, 1)}.
, 1,0, Dlin R,
(C) Span{(_l’ 27 11 0)’ (2$ 0, 3, _l)a (47 4: 11, _3)?
2. Let{x,y, z, w} be an independent set in R". (3,-2,2, -1}

Which of the following sets is independent?

Support yOllI‘ answer. ’(d) Span{(—Z, 0, 3’ 1)’ (1, 2, _1$ 0), (_2’ 87 5a 3),

(_l, 27 2’ 1)}
@ x-yy—-zz-x
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4. Find a basis and calculate the dimension of the
following subspaces of R*.

4
a+b
a—b

b

(@ + b]

a—b
b

a
a

b

c+a
L ¢

(@) U= | #and bin R.

| #and bin R .

| 4, b, and ¢ in R}.

(@ — b

b;c | 4, b, and cin R .
Lb+¢

ra
b
c
Ld

a
b
¢
d

(e) U=

|ﬂ+b—c+d:0in]R}.

of) U= |la+b=c+dinR

5. Suppose that {x, y, z, w} is a basis of R*. Show
that:

(a) {x + aw,y, z, w} is also a basis of R* for any
choice of the scalar 4.

+(b) {x +w,y +w, z+ w, w}is also a basis
of R,

© Xx+y,x+y+z,x+y+z+ whisalso
a basis of R*.

6. Use Theorem 3 to determine if the following
sets of vectors are a basis of the indicated space.

@) {3, 1), (2,2)}in R%.
«(b) {(1,1, 1), (1, =1, 1), (0, 0, 1)} in R’.
© {(=1,1,=1),(1, —1,2), (0,0, 1)} in R.
o(d) {5,2,-1), (1,0, 1), 3, =1, 0)} in R’

(e) {(2, 17 _la 3)7 (17 la 07 2), (O, 1, 07 _3)’
(-1,2,3, D}in R*.
’(f) {(la 07 _Za 5)7 (4a 4a _3’ Z)a (07 1’ Oa _3)7
(1, 3,3, —10)} in R*.

7. In each case show that the statement is true or
give an example showing that it is false.

(a) If {x, y} is independent, then {x, y, x + y} is
independent.

Independence and Dimension

+10.

11.

e12.

13.

14.

15.
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+(b) If {x, y, z} is independent, then {y, z} is
independent.

(¢) If {y, z} is dependent, then {x, y, z} is
dependent for any x.

o(d) Ifall of xq, x5, ..

{x1, %, ..

., X; are nonzero, then
., X} is independent.

(e) If one of x, x, ..
{x1, %, ..

o(f) If ax + by + cz = 0, then {x, y, z} is
independent.

., X;, is zero, then
., X} is dependent.

() If {x, y, z} is independent, then
ax + by + cz = 0 for some 4, b, and ¢ in R.

o(h) If {x, Xy, ..., x4} is dependent, then
Hhx, + HXy; + - + %, = 0 for some
numbers ¢; in R not all zero.

@) If {xy, x5, ..., x4} is independent, then
Hhx, + Hxy; + --- + ;x;, = 0 for some ¢; in R.

. If A is an n X n matrix, show that det 4 = 0

if and only if some column of A is a linear
combination of the other columns.

Let {x, y, z} be a linearly independent set in R*.
Show that {x, y, z, e;} is a basis of R* for some e,
in the standard basis {e;, e, €3, €4}.

If {x1, x5, X3, X4, Xs5, X4} is an independent set of
vectors, show that the subset {x,, x3, x5} is also
independent.

Let A be any 7 X n matrix, and let by, b,

b;, ..., b, be columns in R” such that the
system Ax = b; has a solution x; for each 7. If
{by, by, bs, ..., by} is independent in R”, show
that {xi, X, x3, ..., X3} is independent in R”.

If {x1, x5, X3, ..., X} is independent, show that
{Xh X1 + Xy, X1 + X7 + X3, ooy X + X7 + - 4+ X/e}
is also independent.

If {y, x1, x5, x3, ..., X;} is independent, show
that {y + x;, y + X0, y + X3, ..., ¥ + x¢} is also
independent.

If {x, X3, ..., X;} is independent in R”, and if y is
not in span{x;, X, ..., X3}, show that
{x1, X3, ..., X}, y} is independent.

If A and B are matrices and the columns of AB
are independent, show that the columns of B are
independent.
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16. Suppose that {x, y} is a basis of R?, and let 18. Let A denote an 7z X n matrix.
A=[20 } (a) Show that im A = im(4V) for every
cd invertible » X 7 matrix V.
(a) If A is invertible, show that {#x + by, cx + dy} o o
is a basis of R%. (b) Show .that d.1m(1m A) = dlm(.1m(UA)). for
) _ , every invertible 7 X m matrix U. [Hinz: If
+(b) If {ax + 17.}’, x+ dy} is a basis of R", show {¥1, Y2, .-+, Y&} is a basis of im(UA), show that
that A is invertible. {U 'y, Uy, ..., U”ly,} is a basis of im A.]
17. Let A denote an X n matrix. 19. Let U and W denote subspaces of R”, and
(a) Show that null 4 = null(UA) for every assume that UC W. If dim U = n — 1, show
invertible 72 X m matrix U. that either W= Uor W =R".
+(b) Show that dim(null A) = dim(null(4})) +20. Let U and W denote subspaces of R”, and
for every invertible » x # matrix V. [Hint: assume that U € W. If dim W = 1, show that
If {xq, x5, ..., X;} is a basis of null A, show either U = {0} or U = WV.

that (I 'x;, V'xy, ..., V" 'x} is a basis of

null(A7).]

SECTION 5.3

Orthogonality

Definition 5.6

Length and orthogonality are basic concepts in geometry and, in R? and R?, they
both can be defined using the dot product. In this section we extend the dot product
to vectors in R”, and so endow R” with euclidean geometry. We then introduce the
idea of an orthogonal basis—one of the most useful concepts in linear algebra, and
begin exploring some of its applications.

Dot Product, Length, and Distance

Ifx = (xf, x5, ..., x,) and 'y = (y1, ¥2, ---, V) are two n-tuples in R”, recall that their
dot product was defined in Section 2.2 as follows:

Xey=x1y; + 2392 + -0 + X,

Observe that if x and y are written as columns then x « y = x’y is a matrix product
(and x - y = xy if they are written as rows). Here x « yis a 1 x 1 matrix, which we
take to be a number.

As in R®, the length ||x|| of the vector is defined by
Ixl| =vE =Vl + 23+ o+

Where /() indicates the positive square root.

A vector x of length 1 is called a unit vector. If x # 0, then ||x|| # 0 and it follows

easily that -L-x is a unit vector (see Theorem 6 below), a fact that we shall use later.

I

Ifx=(,-1,-3,Dandy=(2,1,1,0)inR*, thenx e y=2—1-3 + 0= -2
and ||x|| =V1+1+9+1=V12 =2V3. Hence %xisaunitvector;

similarly %y is a unit vector.
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These definitions agree with those in R? and R?, and many properties carry over to R":

Let x, y, and z denote vectors in R”. Then:

X y=y-X

X (y+z)=x-y+x-2

(ax) <y = a(x + y) = x « (ay) for all scalars a.
Ix]? =x - x

||| = 0, and ||x|| = 0 if and only if x = 0.

ISR SIS

||ax|| = | a| ||x]| for all scalars a.

(1), (2), and (3) follow from matrix arithmetic because x « y = xTy; (4) is clear
from the definition; and (6) is a routine verification since |2| = Vi If

x = (x1, 23, ..., %), then ||x|| =V/x} + 23 + -+ + 22, so0 ||x|| = 0 if and only if
xt + x5 + -+ + 22 = 0. Since each x; is a real number this happens if and only

if &; = 0 for each 7; that is, if and only if x = 0. This proves (5).

Because of Theorem 1, computations with dot products in R” are similar to those
in R*. In particular, the dot product

X1+ % + o+ %) s (1 +Hy2 + o )
equals the sum of 72k terms, x; - yj, one for each choice of 7 and j. For example:

(3x — 4y) - (7x + 2y) = 21(x+ %) + 6(x - y) — 28(y - ) — 8y - y)
= 21[Ixll? - 22(x - y) — 8llyIP

holds for all vectors x and y.

Show that ||x + y||* = ||x]|* + 2(x - y) + |ly||* for any x and y in R”.

Solution » Using Theorem 1 several times:

||X+Y||2=(X";Y)'(X+y)=x-2x+x-y+y-x+y-y
= [IxlI” + 2 - y) + llyl

Suppose that R” = span{fj, f,, ..., f;} for some vectors f;. If x « f; = 0 for each 7
where x is in R”, show that x = 0.
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Solution » We show x = 0 by showing that ||x|| = 0 and using (5) of Theorem 1.
Since the f; span R”, write x = #©1f] + 1,f;, + -+ + £, where the #; are in R. Then

Ix[|* =x-x=x- (tf; + tofs + -+ + 1)
=ti(x-f) +rx6H) + -+ px- )
= tl(O) SI tz(O) 4F eco qF tk(O)
=0.

We saw in Section 4.2 that if u and v are nonzero vectors in R?, then
u-v
[lal{Iv]

angle 0, this shows that |u « v| < |Jul|||v|]. In this form the result holds in R".

Cauchy Inequality’
Ifx and y are vectors in R”, then

= cos 0 where 0 is the angle between u and v. Since |cos 0] < 1 for any

-yl < lIxlllyll-
Moreover |x « y| = ||x||||yll if and only if one of x and'y is a multiple of the other.

Augustin Louis Cauchy "The inequality holds if x = 0 or y = 0 (in fact it is equality). Otherwise,
Photo © Corbis. ’ write ||x|]| =2 > 0 and |ly]| = & > 0 for convenience. A computation like
that preceding Example 2 gives

lbx — ay||* = 2ab(ab — x +y) and ||bx — ay||* = 2ab(ab + x - y). (%)

It follows that #b — x + y = 0 and #b + x + y = 0, and hence that —ab < x -y < ab.
Hence |x - y| < ab = ||x||||yl|, proving the Cauchy inequality.

If equality holds, then |x + y| = ab, sox «y = ab or x - y = —ab. Hence (x)
shows that bx — a2y = 0 or bx + ay = 0, so one of x and y is a multiple of the
other (even if 2 = 0 or b = 0).

The Cauchy inequality is equivalent to (x  y)* < ||x||*||ly||*. In R’ this becomes

2
(e1y1 + oy2 + a3y3 + xqy4 + x5Y5)
2 2 2 2 2Y. 2 2 2 2 2
S(x1 + a3+ a3+ x5 +x5XJ1 ty2+ystys "‘J’s)
for all x; and y; in R.

There is an important consequence of the Cauchy inequality. Given x and y in
R", use Example 2 and the fact that x - y < ||x]|||y]| to compute

Ix + ylI* = lIxll® + 26« y) + liyll* < [1xI* + 2lIxllllyll + lIyll* = dllx + yl)*

Taking positive square roots gives:

9 Augustin Louis Cauchy (1789-1857) was born in Paris and became a professor at the Ecole Polytechnique at the age of 26. He was
one of the great mathematicians, producing more than 700 papers, and is best remembered for his work in analysis in which he
established new standards of rigour and founded the theory of functions of a complex variable. He was a devout Catholic with a long-
term interest in charitable work, and he was a royalist, following King Charles X into exile in Prague after he was deposed in 1830.
Theorem 2 first appeared in his 1812 memoir on determinants.
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Corollary 1

Triangle Inequality
Ifx andy are vectors in R”, then ||x + y|| < ||x|| + |ly]|-

The reason for the name comes from the observation that in R’ the inequality
asserts that the sum of the lengths of two sides of a triangle is not less than the
length of the third side. This is illustrated in the first diagram.

Ifx and'y are two vectors in R”, we define the distance d(x, y) between x and'y by
d(x, y) = [lx = yll

The motivation again comes from R as is clear in the second diagram. This
distance function has all the intuitive properties of distance in R’ including
another version of the triangle inequality.

Ifx,y, and z are three vectors in R" we have:
1. dxy) =0 forallxandy.
2. dx, y)=0ifandonlyifx =y.
3. dx y) = d(y, x).
4. dx, z) <dx,y) + dly, z). Triangle inequality.

(1) and (2) restate part (5) of Theorem 1 because d(x, y) = ||x — y||, and (3)
follows because ||u|| = ||—u]| for every vector u in R”. To prove (4) use the
Corollary to Theorem 2:

dx,z) = x —zl| =[x —y) + (y — 2)|
<[[x=yl + Iy — 2l = dx,y) + dy, z)

Orthogonal Sets and the Expansion Theorem

We say that two vectors x and y in R" are orthogonal ifx - y = 0, extending the
terminology in R® (See Theorem 3 Section 4.2). More generally, a set {x;, X, ..., X;}
of vectors in R” is called an orthogonal set if

x;+x;j=0foralli#; and x; # 0 for all '

249

Note that {x} is an orthogonal set if x #+ 0. A set {x, X, ..., X3} of vectors in R" is called

orthonormal if it is orthogonal and, in addition, each x; is a unit vector:

||x;|| = 1 for each i.

10 The reason for insisting that orthogonal sets consist of nonzero vectors is that we will be primarily concerned with orthogonal bases.
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The standard basis {e;, e, ..., €,} is an orthonormal set in R”.

The routine verification is left to the reader, as is the proof of:

If {xy, x5, ..., x;} is orthogonal, so also is {#1x1, #%;, ..., 4;x;} for any nonzero
scalars a;.

If x # 0, it follows from item (6) of Theorem 1 that 1 4 is a unit vector,

that is it has length 1. [l
Definition 5.9  Hence if {x;, x,, ..., X} is an orthogonal set, then{ 1 X1, 1 > ST 1 Xk} is an
il x|l [

orthonormal set, and we say that it is the result of normalizing the orthogonal set

{x1, x5, ..., X3}
1 1 -1 -1
Iff,=| Ll|f= ,f = ?,and £, = _"{ then {f;, 5, f;, £} is an
—1 z 0 1

orthogonal set in R as is easily verified. After normalizing, the corresponding
orthonormal set 15{ fi, \/_fz, \/_f3, 2\/_f4}

W The most important result about orthogonality is Pythagoras’ theorem Given
orthogonal vectors v and w in R?, it asserts that ||v + w]|* = ||v||* + ||w]|® as in the
diagram. In this form the result holds for any orthogonal set in R”.

Pythagoras’ Theorem
If{xy, X3, ..., X3} is a orthogonal set in R”, then

V+w

2 2 2 2
%+ %0 + -+ xll” = lxall” + ™ + -+ el

The fact that x; - x; = 0 whenever i # j gives
ki + %+ xl = x4 X)X X+ e+ X
=(x1-x1+x2-x2+---+Xk-xk)+2xi-)(]
2 2 2 i#]
= Ilxill” + [l + - + [Ixll” + 0.

This is what we wanted.
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If v and w are orthogonal, nonzero vectors in R?, then they are certainly not
parallel, and so are linearly independent by Example 7 Section 5.2. The next
theorem gives a far-reaching extension of this observation.

Every orthogonal set in R” is linearly independent.

Let {xy, X3, ..., X} be an orthogonal set in R” and suppose a linear combination
vanishes: #;x; + %, + -+ + £;x, = 0. Then
0=x;-0=x;-(t1x; + 1% + - + ;%)
=1(x1 + x1) + H(X1 X)) + oo + (X 2 xp)
= tillxi I’ + 1(0) + -+ + 1(0)
= 1lx[|?

Since ||x;]|* # 0, this implies that #; = 0. Similarly #; = 0 for each i.

Theorem 5 suggests considering orthogonal bases for R”, that is orthogonal sets
that span R”. These turn out to be the best bases in the sense that, when expanding
a vector as a linear combination of the basis vectors, there are explicit formulas for
the coefficients.

Expansion Theorem
Let {f}, 5, ..., £,} be an orthogonal basis of a subspace U of R". If x is any vector in U,

we hal/e

Since {f}, 5, ..., £,,} spans U, we have x = tf; + ©,f, + --- + 1,f,, where the 7; are
scalars. To find #; we take the dot product of both sides with f;:

x-fi =@f + 66 + - +t,£,) - fi
=t(f; - £) + r(fy - £) + - + 2, - £)
= tllfill” + 50) + - + 1,(0)
= 1Ify]|?

X f;. Similarly, ; = X—z’ for each i.
11l £

Since f; # 0, this gives t; =

The expansion in Theorem 6 of x as a linear combination of the orthogonal

basis {f}, f5, ..., f,,} is called the Fourier expansion of x, and the coefficients
= fz’ are called the Fourier coefficients. Note that if {f}, 5, ..., f,} is actually

I
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orthonormal, then #; = x « {; for each 7. We will have a great deal more to say about

this in Section 10.5.

Expand x = (4, b, ¢, d) as a linear combination of the orthogonal basis
{f, 6, £, £} of R given in Example 6.

Solution » We have f; = (1,1, 1, —1), £, = (1,0, 1, 2), f; = (-1, 0, 1, 0), and
f, = (=1, 3, —1, 1) so the Fourier coefficients are

X'fl 1 X'f3 1
i = =A(a+b+c+4d 3= =—(—a+ 9
I£° [
x-f x - f.
= ; i:%(ﬂ+€+2d) Iy = . :=%(—ﬂ+3b—f+d)
Il [1£41l

The reader can verify that indeed x = #,f; + »f; + 5y + nfs.

A natural question arises here: Does every subspace U of R” have an orthogonal
basis? The answer is “yes”; in fact, there is a systematic procedure, called the Gram-
Schmidt algorithm, for turning any basis of U into an orthogonal one. This leads
to a definition of the projection onto a subspace U that generalizes the projection
along a vector used in R” and R®. All this is discussed in Section 8.1.

EXERCISES 5.3

We often write vectors in R” as row z-tuples.

1. Obtain orthonormal bases of R® by normalizing
the following.

(a) {(17 _1’ 2)7 (07 2’ 1)) (57 1’ _2)}
’(b) {(17 17 1)’ (4a 17 _S)a (27 _3a 1)}

2. In each case, show that the set of vectors is
orthogonal in R*.

(a) {(1’ _1’ 2’ 5)’ (47 ]-’ 1’ _1)’ (_77 287 5’ 5)}
(b) {(2’ _1’ 4’ 5)’ (07 _17 17 _1)7 (07 3’ 27 _1)}

3. In each case, show that B is an orthogonal basis
of R* and use Theorem 6 to expand x = (4, b, ¢)
as a linear combination of the basis vectors.

@ B=1{1,-1,3),(-2,1,1),&,7, 1)}
+b) B={1,0,-1), (1,4, 1), 2, -1, 2)}

(o B=1{(1,2,3),(-1,-1,1), (5, -4, 1)}
od) B={1,1,1),(, —-1,0), (1, 1, =2)}

4. In each case, write x as a linear combination of
the orthogonal basis of the subspace U.

@) x = (13, =20, 15);
U= span{(l, _21 3)7 (_1’ 17 1)}
’(b) X = (14’ 17 _81 5)7
U: span{(27 _11 07 3)7 (2’ 17 _21 _1)}

5. In each case, find all (4, &, ¢, d) in R* such that
the given set is orthogonal.

(a) {(1’ 2’ 1’ 0)’ (17 _]-’ 1’ 3)7 (2’ _17 0’ _1)7

(a, b, c, d)}
+(b) {(1,0,-1,1),(2, 1,1, -1),(1, =3, 1, 0),
(a, b, ¢, d)}
6. If ||x]] =3, |lyll = 1, and x  y = —2, compute:
@ 3% = Syl +(b) [|2x + Ty]|

© Gx-y)-Qy—x
o(d) (x—2y) - Bx + 5y)

7. In each case either show that the statement is
true or give an example showing that it is false.

(a) Every independent set in R” is orthogonal.

+(b) If {x, y} is an orthogonal set in R”, then
{x, x + y} is also orthogonal.
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(0) If {x, y} and {z, w} are both orthogonal in R”,
then {x, y, z, w} is also orthogonal.

o(d) If {xq, xo} and {yy, y3, y3} are both orthogonal
and x; - y; = 0 for all / and /, then
{x1, X2, Y1, ¥2, ¥3} is orthogonal.

(e) If {xy, xy, ..., x,,} is orthogonal in R”, then
R" = span{xy, x5, ..., X,}.

o) If x # 0 in R”, then {x} is an orthogonal set.

8. Let v denote a nonzero vector in R”.

(a) Show that P={xinR" |x-v=10}isa
subspace of R".

(b) Show that Rv = {#v | # in R} is a subspace of R".

(¢) Describe P and Rv geometrically when
n=3.

+9. If A is an m X n matrix with orthonormal
columns, show that 474 = I,.

[Hint: If ¢, ¢, ..., ¢, are the columns of A,
show that column j of 4”4 has entries
Cp - C]*, Cy e Cj, ey Gy 0 C]]

10. Use the Cauchy inequality to show that
VA < 2 +y) forall x = 0 and y = 0. Here
@y and 1(x + y) are called, respectively, the
geometric mean and arithmetic mean of x and y.

j_j?, and 'y = [zg]]

11. Use the Cauchy inequality to prove that:

[Hint: Use x =

@ (1 + 7+ 1) <t 475+ )
forall 7;in R and all » > 1.
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o(b) 77y 4+ 773 + rary < 71+ 73 4 73 for all 7,
7y, and 73 in R. [Hint: See part (a).]

12. (a) Show that x and y are orthogonal in R” if
and only if [}x + y|| = x — y]I.

+(b) Show that x + y and x — y are orthogonal in
R” if and only if ||x|| = ||y]|.

13. (2) Show that ||x + y||* = ||x||* + |ly||® if and
only if x is orthogonal to y.
1 1
b 1Fx=| 1|y =
v ! yz 0 2 2 2
Ix +y +z[I” = [[x]" + llyll” + l|z[|" but
x.y#0,x-z#0,andy -z # 0.

_§ , show that

and z =

14. (a) Show thatx -y = %[”X + y||2 —|Ix = y||2] for
all x, y in R".
(b) Show that
I + lIyll* = 5% + vl + [Ix =yl
for all x, y in R".
#15. If A is n x n, show that every eigenvalue of 4”4

is nonnegative. [Hint: Compute ||4x||* where x is
an eigenvector.]

16. If R" = span{xy, ..., x,,} and x « x; = 0 for all 4,
show that x = 0. [Hint: Show ||x|| = 0.]

17. If R" = span{xy, ..., x,,} and x - x; = y - x; for all
i, show that x = y. [Hint: Preceding Exercise.]

18. Let {ey, ..., e,} be an orthogonal basis of R".
Given x and y in R", show that
_ (X * el)(y ° el) oot (X ° en)(y * en)

X e
2 2
lledll lleall

In this section we use the concept of dimension to clarify the definition of the rank
of a matrix given in Section 1.2, and to study its properties. This requires that we
deal with rows and columns in the same way. While it has been our custom to
write the z-tuples in R” as columns, in this section we will frequently write them
as rows. Subspaces, independence, spanning, and dimension are defined for rows
using matrix operations, just as for columns. If 4 is an 7 X » matrix, we define:

Definition 5.10

The column space, col A, of A is the subspace of R™ spanned by the columns of A.

The row space, row A, of A is the subspace of R" spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:



254

Chapter 5 The Vector Space R"

Let A and B denote m X n matrices.
1. IfA — B by elementary row operations, then row A = row B.

2. IfA — B by elementary column operations, then col A = col B.

We prove (1); the proof of (2) is analogous. It is enough to do it in the case
when A — B by a single row operation. Let Ry, R;, ..., R,, denote the rows of A.
The row operation 4 — B either interchanges two rows, multiplies a row by a
nonzero constant, or adds a multiple of a row to a different row. We leave the
first two cases to the reader. In the last case, suppose that # times row p is added
to row ¢ where p < ¢. Then the rows of B are Ry, ..., R, ..., R, + 4R, ..., R,
and Theorem 1 Section 5.1 shows that

span{Ry, ..., Ry, ..., R, ..., R} = span{Ry, ..., Ry, ..., R, + aR,, ..., R,}.
That is, row A = row B.

VR

If A is any matrix, we can carry A — R by elementary row operations where R is
a row-echelon matrix. Hence row 4 = row R by Lemma 1; so the first part of the
following result is of interest.

If R is a row-echelon matrix, then
1. The nonzero rows of R are a basis of row R.

2. The columns of R containing leading ones are a basis of col R.

The rows of R are independent by Example 6 Section 5.2, and they span row R
by definition. This proves I.

Let ¢jy, ¢, ..., ¢, denote the columns of R containing leading 1s. Then
{c/1, ¢/, .., ¢j,} is independent because the leading 1s are in different rows (and
have zeros below and to the left of them). Let U denote the subspace of all
columns in R” in which the last 7z — 7 entries are zero. Then dim U = r (it is
just R” with extra zeros). Hence the independent set {cj;, ¢/, ..., ¢j,} is a basis of
U by Theorem 7 Section 5.2. Since each ¢; is in col R, it follows that col R = U,
proving (2).

With Lemma 2 we can fill a gap in the definition of the rank of a matrix given
in Chapter 1. Let A be any matrix and suppose A is carried to some row-echelon
matrix R by row operations. Note that R is not unique. In Section 1.2 we defined
the rank of 4, denoted rank A, to be the number of leading 1s in R, that is the
number of nonzero rows of R. The fact that this number does not depend on the
choice of R was not proved in Section 1.2. However part 1 of Lemma 2 shows that
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rank A = dim(row A)

and hence that rank A is independent of R.
Lemma 2 can be used to find bases of subspaces of R” (written as rows). Here is
an example.

Find a basis of U = span{(1, 1, 2, 3), 2, 4, 1, 0), (1, 5, —4, —9)}.

11 2 3
Solution » U is the row space of | 2 4 1 0 | This matrix has row-echelon
1549
11 2 3
form| 0 1 -3 -3 }s0{(1,1,2,3),(0, 1, =3, =3)} is basis of U by Lemma 2.
00 0 O

Note that {(1, 1, 2, 3), (0, 2, —3, —6)} is another basis that avoids fractions.

Lemmas 1 and 2 are enough to prove the following fundamental theorem.

Let A denote any m X n matrix of rank . Then
dim(col A) = dim(row A) = 7.
Moreover, if A is carried to a row-echelon matrix R by row operations, then
1. The r nonzero rows of R are a basis of row A.

2. Ifthe leading Is lie in columns ji, jy, ..., j, of R, then columns jy, j,, ..., j, of A are
a basis of col A.

We have row A = row R by Lemma 1, so (1) follows from Lemma 2. Moreover,
R = UA for some invertible matrix U by Theorem 1 Section 2.5. Now write
A=1lc; ¢ --- ¢,] where ¢, ¢, ..., ¢, are the columns of A. Then

R=UA=Ulc; ¢ -+ ¢,] =[Uc; Uc, --- Uc,].

Thus, in the notation of (2), the set B = {Uc;, Ucj,, ..., Ug;} is a basis of col R

by Lemma 2. So, to prove (2) and the fact that dim(col A) = r, it is enough to

show that D = {c;, ¢;,, ..., ¢;} is a basis of col A. First, D is linearly independent
because U is invertible (verify), so we show that, for each j, column ¢; is a linear

combination of the ¢;. But Ug; is column j of R, and so is a linear combination of
the Uc;, say Ucj = 4,Uc;, + a,Ucj, + -+ + a,Uc; where each 4; is a real number.

Since U is invertible, it follows that ¢; = ,¢;, + 4,¢j, + -+ + 4,¢j and the proof
is complete.
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—_

122
Compute the rankof 4 =|3 ¢ 5 ¢ |and find bases for row 4 and col 4.
121 2

Solution » The reduction of A to row-echelon form is as follows:

122 -1 12 2 -1 122 -1
365 0|—/[00 -1 3|—(0O01 -3
121 2 00 -1 3 000 O

Hence rank A = 2, and {[1 2 2 —1], [0 0 1 —3]}is a basis of row A4 by
Lemma 2. Since the leading 1s are in columns 1 and 3 of the row-echelon
matrix, Theorem 1 shows that columns 1 and 3 of A4 are a basis

172
31,15 of col A.
1] [1

Theorem 1 has several important consequences. The first, Corollary 1 below,
follows because the rows of 4 are independent (respectively span row A) if and only
if their transposes are independent (respectively span col A4).

Corollary 1

If A is any matrix, then rank A = rank(47).

If A is an 7 X n matrix, we have col A € R” and row A € R”. Hence Theorem 8
Section 5.2 shows that dim(col A) < dim(R™) = 7 and dim(row A) < dim(R") = 7.
Thus Theorem 1 gives:

Corollary 2

If A is an m X n matrix, then rank A < m and rank A < n.

Corollary 3

Rank A = rank(UA) = rank(AV') whenever U and V are invertible.

Lemma 1 gives rank 4 = rank(UA). Using this and Corollary 1 we get
rank(4V) = rank(AV)T = rank(P7A") = rank(4”) = rank 4.

The next corollary requires a preliminary lemma.
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Let A, U, and V' be matrices of sizes m X n, p X m, and n X q respectively.
(1) col(AV') S col A, with equality if Vis (square and) invertible.
(2) row(UA) S row A, with equality if U is (square and) invertible.

For (1), write V' = [v}, v3, ..., v,] where v; is column j of V. Then we

have AV = [Av,, Av,, ..., Av/], and each Av; is in col A by Definition 1
Section 2.2. It follows that col(4V) € col A. If V'is invertible, we obtain
col A = col[(AV)V'] € col(AV) in the same way. This proves (1).

As to (2), we have col[(UA)"] = col(4"U) € col(4”) by (1), from which
row(UA) € row A. If U is invertible, this is equality as in the proof of (1).

Corollary 4

IfAism X n and B is n X m, then rank AB < rank A and rank AB < rank B.

By Lemma 3, col(4B) € col 4 and row(BA) € row A, so Theorem 1 applies.

In Section 5.1 we discussed two other subspaces associated with an 7 x »
matrix A: the null space null(4) and the image space im(A4)

nulld) = xinR” | Ax =0} and im(A4) = {4Ax | xin R"}.
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Using rank, there are simple ways to find bases of these spaces. If A has rank 7, we

have im(A4) = col(4) by Example 8 Section 5.1, so dim[im(4)] = dim[col(4)] = 7.

Hence Theorem 1 provides a method of finding a basis of im(4). This is recorded

as part (2) of the following theorem.

Let A denote an m X n matrix of rank . Then

(1) The n — r basic solutions to the system Ax = 0 provided by the gaussian
algorithm are a basis of null(A4), so dim[null(4)] =7 — .

(2) Theorem 1 provides a basis of im(A) = col(A), and dim[im(A4)] = .

It remains to prove (1). We already know (Theorem 1 Section 2.2) that null(4) is
spanned by the # — 7 basic solutions of Ax = 0. Hence using Theorem 7 Section

5.2, it suffices to show that dim[null(4)] = » — . So let {xy, ..., x;} be a basis

of null(4), and extend it to a basis {xy, ..., Xz, X4 1, ..., X,} of R” (by Theorem 6
Section 5.2). It is enough to show that {4x;,1, ..., 4Ax,} is a basis of im(A4); then

n — k = r by the above and so ¥ = # — 7 as required.
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Spanning. Choose Ax in im(4), x in R”, and write
X =a1X] + - + 4pXp + ap 1 Xpq + 000+ 4,X, where the 4; are in R.
Then Ax = a1 Axp 1 + -+ + a,4x, because {xi, ..., x;} € null(4).

Independence. Let tj 1 Axp 1 + -+ + t,4x, = 0, t;in R. Then . 1Xp41 + -+ + 1,X,
isin null 4, so #,1X4 1 + -+ + t,x, = 11X + -+ + 1%, for some 7y, ..., in R.
But then the independence of the x; shows that 7; = 0 for every i.

1 211
IfA=|-1 2 0 1} findbases of null(4) and im(4), and so find their dimensions.
2410

Solution P If x is in null(4), then Ax = 0, so x is given by solving the system
Ax = 0. The reduction of the augmented matrix to reduced form is

1 =2 1 110 1 -2 0 -1(0

-1 20 1j0|—=|0 0 1 2|0
2 4 100 0 00 0]0

111
Hence » = rank(A4) = 2. Here, im(A4) = col(A4) has basis{ —1h10 }by
2] L1

Theorem 1 because the leading 1s are in columns 1 and 3. In particular,
dim[im(A)] = 2 = 7 as in Theorem 2.

Turning to null(4), we use gaussian elimination. The leading variables are
x1 and x3, so the nonleading variables become parameters: x; = s and x4 = 7.
It follows from the reduced matrix that x; = 25 + # and a3 = —2¢, so the
general solution is

ﬁl 25+ ¢ % (1)

_|%_| 5 |_ _ _

x= =1 5, = 5x| + tx; where x; = O,andxz— S
X4 t 0 1

Hence null(4). But x; and x, are solutions (basic), so
null(4) = span{x;, x,}

However Theorem 2 asserts that {x;, x,} is a basis of null(4). (In fact it is
easy to verify directly that {x;, x,} is independent in this case.) In particular,
dim[null(4)] = 2 = » — 7, as Theorem 2 asserts.

Let A be an m x n matrix. Corollary 2 of the Theorem 1 asserts that
rank A < m and rank A < n, and it is natural to ask when these extreme cases
arise. If ¢y, ¢, ..., ¢, are the columns of A, Theorem 2 Section 5.2 shows that
{c1, ¢, ..., ¢,} spans R™ if and only if the system Ax = b is consistent for every
b in R™, and that {cy, ¢, ..., ¢,} is independent if and only if Ax = 0, x in R”,
implies x = 0. The next two useful theorems improve on both these results, and
relate them to when the rank of 4 is # or 7.
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The following are equivalent for an m X n matrix A:
1. rank A4 =n.
The rows of A span R”".
The columns of A are linearly independent in R".

2
3
4. Then x n matrix ATA is invertible.
5. CA = I, for some n X m matrix C.
6.

IfAx =0,xinR", thenx = 0.

(1) = (2). We have row A € R”, and dim(row A) = n by (1), so row 4 = R” by
Theorem 8 Section 5.2. This is (2).

(2) = (3). By (2), row A = R”, so rank 4 = n. This means dim(col 4) = n. Since
the 7 columns of A span col 4, they are independent by Theorem 7 Section 5.2.

(3) = @). If (A7A)x = 0, x in R”, we show that x = 0 (Theorem 5 Section 2.4).
We have

|l 4x||* = (Ax)"Ax = x"A"Ax = x0 = 0.
Hence Ax = 0, so x = 0 by (3) and Theorem 2 Section 5.2.
@) = (5). Given (4), take C = (47A) ' AT
(5) = (6). If Ax = 0, then left multiplication by C (from (5)) gives x = 0.

(6) = (1). Given (6), the columns of A are independent by Theorem 2 Section
5.2. Hence dim(col A) = #n, and (1) follows.

The following are equivalent for an m X n matrix A:
1. rank A =m.

The columns of A span R™.

The rows of A are linearly independent in R”.

The m x m matrix AA” is invertible.

AC = 1, for some n X m matrix C.

S S

The system Ax = b is consistent for every b in R”™.

(1) = (2). By (1), dim(col A) = m, so col A = R” by Theorem 8 Section 5.2.

(2) = (3). By (2), col A = R™, so rank 4 = . This means dim(row A) = . Since
the 72 rows of A span row A, they are independent by Theorem 7 Section 5.2.
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(3) = (4). We have rank 4 = m by (3), so the # X 7 matrix AT has rank 7.
Hence applying Theorem 3 to A” in place of A shows that (47)7A” is invertible,
proving (4).

@) = (5). Given (4), take C = AT(AAT) " in (5).

(5) = (6). Comparing columns in AC = [,, gives Ac; = e; for each j, where ¢; and

e; denote column j of C and I,, respectively. Given b in R”, write b = 2}117’]‘
7;in R. Then Ax = b holds with x = > 7,c;, as the reader can verify.
]_

(6) = (1). Given (6), the columns of A span R” by Theorem 2 Section 5.2. Thus
col A = R” and (1) follows.

e]',

3 gangrE g
Show that xtyta A )/2 L2 | invertible if «, y, and 2z are not all equal.
1 x
Solution b The given matrix has the form 4”4 where 2 = |1 y | has independent
1 z

columns because w, y, and z are not all equal (verify). Hence Theorem 3 applies.

Theorems 4 and 5 relate several important properties of an 7z X 7 matrix A to
the invertibility of the square, symmetric matrices 4’4 and AA”. In fact, even if
the columns of A are not independent or do not span R”, the matrices 4”4 and
AA" are both symmetric and, as such, have real eigenvalues as we shall see. We
return to this in Chapter 7.

EXERCISES 5.4

1. In each case find bases for the row and column +(b) U=span{(1,-1,2,51),(3,1,4,2,7),
spaces of A and determine the rank of 4. (1,1,0,0,0),(,1,6,7, 8)}
(2 -46 8 2 -11 11707111770
2 =13 2 -2 11 — 1/10]1]0] |1
A = b A = (C) U - SPan ’ ) )
@A=14 5910 @ 4-23 O[T |1f |0
0 -1 1 2 -6 30 )
_ 1 2 317 4
bobs =22 od) U=spani| 5,| 6} 7|8
©A=| 22 -2 51 —6l L—8) [—10] [12
0 0 -12 9 -3
-1 1 7 -7 1 3. (a) Can a3 x 4 matrix have independent
- columns? Independent rows? Explain.
WA= 1 213
-3 -6 3 -2 o) If Ais 4 x 3 and rank A = 2, can A4 have

independent columns? Independent rows?
2. In each case find a basis of the subspace U. Explain.

(a) U: Span{(l’ _17 07 3)’ (27 17 57 1)’ (4’ _27 57 7)}
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(c) If A is an 7z X » matrix and rank A = m,
show that m < n.

+(d) Can a nonsquare matrix have its rows
independent and its columns independent?
Explain.

(e) Can the null space of a 3 X 6 matrix have
dimension 2? Explain.

+(f) Suppose that 4 is 5 x 4 and null(4) = Rx for
some column x # 0. Can dim(im A) = 2?

o4. If A is m x n show that col(4) = {Ax | x in R"}.

5. If Aism x nand B is n X m, show that AB = 0
if and only if col B € null 4.

6. Show that the rank does not change when
an elementary row or column operation is
performed on a matrix.

7. In each case find a basis of the null space of
A. Then compute rank 4 and verify (1) of
Theorem 2.

3 11
(a)Azz 01
4 21
|1 -11
(35 5 2 0
ob) A = 10 2 2 1
11 1 -2 =2
-2 0 -4 -4 -2

8. Let A = cR where ¢ # 0 is a column in R” and
r # 0isarowin R”.

(a) Show that col 4 = span{c} and
row A = span{r}.

+(b) Find dim(null A4).
(¢) Show that null A = null r.

9. Let A be m x n with columns ¢y, ¢, ..., C,.
(@) If {cy, ..., ¢} is independent, show
null 4 = {0}.
+(b) If null A = {0}, show that {cy, ..., ¢,} is
independent.

10. Let A be an # X 7 matrix.

(a) Show that A* = 0 if and only if
col A C null 4.
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+(b) Conclude that if 4> = 0, then rank 4 < 5
(c) Find a matrix A for which col A = null A.

11. Let Bbe 7z x n and let AB be k x n. If
rank B = rank(A4B), show that null B = null(4B).
[Hint: Theorem 1.]

+12. Give a careful argument why rank(4”) = rank A.

13. Let A be an 2 X n matrix with columns
¢y, €y, ..., C,. If rank A = n, show that

{AT¢c,, A%c,, ..., Ac,} is a basis of R”.

14. If Aism x nand b is 7 x 1, show that b
lies in the column space of 4 if and only if
rank[A b] = rank A.

15. (a) Show that Ax = b has a solution if and only
if rank A = rank[A b]. [Hint: Exercises 12
and 14.]

+(b) If Ax = b has no solution, show that
rank[4 b] = 1 + rank A.

16. Let X be a k x m matrix. If I is the m X m
identity matrix, show that I + X”X is invertible.

(Hint: I + X'X = ATA where A = [ I } in block
form.] X

17. If A is m x n of rank r, show that 4 can be
factored as A = PQ where P is m X r with r
independent columns, and Q is 7 x n with

1.0
independent rows. [Hint: Let UAV = [Or 0 by
Theorem 3, Section 2.5, and write

U, U, V
Ut :[ ! 2}amd ol = s in block
Us Uy 3 Vs

form, where U, and V| are » X r.]

18. (a) Show that if 4 and B have independent
columns, so does AB.

(b) Show that if A and B have independent rows,
so does AB.

19. A matrix obtained from A by deleting rows and
columns is called a submatrix of A. If A has an
invertible £ X k submatrix, show that rank 4 > k.
[Hint: Show that row and column operations

I, P
carry A — L)k 0 in block form.] Remark: It can

be shown that rank A is the largest integer 7 such
that 4 has an invertible 7 X 7 submatrix.
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Similarity and Diagonalization

Definition 5.11

In Section 3.3 we studied diagonalization of a square matrix 4, and found important
applications (for example to linear dynamical systems). We can now utilize the
concepts of subspace, basis, and dimension to clarify the diagonalization process,
reveal some new results, and prove some theorems which could not be demonstrated
in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of
diagonalization, and is used throughout the book.

Similar Matrices

If A and B are n X n matrices, we say that A and B are similar, and write A ~ B, if
B = P™'AP for some invertible matrix P.

Note that 4 ~ B if and only if B = QAQ™" where Q is invertible (write P! = Q).
The language of similarity is used throughout linear algebra. For example, a matrix
A is diagonalizable if and only if it is similar to a diagonal matrix.

If A ~ B, then necessarily B ~ 4. To see why, suppose that B = P~'AP. Then
A = PBP~! = Q7'BQ where Q = P! is invertible. This proves the second of the
following properties of similarity (the others are left as an exercise):

1. A ~ A for all square matrices A.
2. IfA~ B, then B~ A. (*)
3. IfA~BandB ~ C, then A ~ C.

These properties are often expressed by saying that the similarity relation ~ is an
equivalence relation on the set of # X 7 matrices. Here is an example showing how
these properties are used.

If A is similar to B and either 4 or B is diagonalizable, show that the other is
also diagonalizable.

Solution » We have A ~ B. Suppose that A4 is diagonalizable, say 4 ~ D where
D is diagonal. Since B ~ A by (2) of (x), we have B ~ A and A ~ D. Hence

B ~ D by (3) of (%), so B is diagonalizable too. An analogous argument works if
we assume instead that B is diagonalizable.

Similarity is compatible with inverses, transposes, and powers:
IfA~B then A" ~B ' A" ~ BT and A* ~ B* for all integers k > 1.

The proofs are routine matrix computations using Theorem 1 Section 3.3. Thus,
for example, if A is diagonalizable, so also are A7, A™" (if it exists), and A* (for
each k# = 1). Indeed, if 4 ~ D where D is a diagonal matrix, we obtain AT ~ DT,
A"~ D!, and A* ~ D*, and each of the matrices D7, D!, and D is diagonal.
We pause to introduce a simple matrix function that will be referred to later.
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Definition 5.12  The trace tr A of an n X n matrix A is defined to be the sum of the main diagonal
elements of A.

In other words:

IfA = [a;], then tr A = ayy + a3; + -+ + 4,

It is evident that tr(4 + B) = tr A + tr B and that tr(c4) = ¢ tr A holds for all » x =
matrices A and B and all scalars ¢. The following fact is more surprising.

Let A and B be n X n matrices. Then tr(AB) = tr(BA).

Write A = [4;] and B = [b;]. For each i, the (i, /)-entry d; of the matrix AB is
di = apby; + apby + - + ayb,; = Z ;b Hence
tw(AB) =dy + dy + -+ d, = ) ;= Zi(zjﬂijbﬁ)-

Similarly we have tr(BA) = E ,-(Z jbim;). Since these two double sums are the
same, Lemma 1 is proved.

As the name indicates, similar matrices share many properties, some of which are
collected in the next theorem for reference.

If A and B are similar n X n matrices, then A and B have the same determinant, rank,
trace, characteristic polynomial, and eigenvalues.

Let B = P~'AP for some invertible matrix P. Then we have
det B = det(P~") det 4 det P = det A because det(P~') = 1/det P.

Similarly, rank B = rank(P~'AP) = rank A4 by Corollary 3 of Theorem 1
Section 5.4. Next Lemma 1 gives

tr(P~'AP) = a[P~'(4P)] = u[(AP)P"'] = tr A.
As to the characteristic polynomial,
cp(x) = det(x] — B) = det{x(P~'IP) — P"'AP}
= det{P'(xI — A)P}
= det(x] — A)
= cy(x).

Finally, this shows that 4 and B have the same eigenvalues because the
eigenvalues of a matrix are the roots of its characteristic polynomial.
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Sharing the five properties in Theorem 1 does not guarantee that two matrices

are similar. The matrices 4 = B ”and = [(1) (1)
rank, trace, characteristic polynomial, and eigenvalues, but they are not similar

because P~'IP = I for any invertible matrix P.

have the same determinant,

Diagonalization Revisited

Recall that a square matrix A is diagonalizable if there exists an invertible matrix
P such that P"'AP = D is a diagonal matrix, that is if 4 is similar to a diagonal

matrix D. Unfortunately, not all matrices are diagonalizable, for example {(l) ”

(see Example 10 Section 3.3). Determining whether A is diagonalizable is closely
related to the eigenvalues and eigenvectors of A. Recall that a number A is called
an eigenvalue of 4 if Ax = Ax for some nonzero column x in R”, and any such
nonzero vector x is called an eigenvector of A corresponding to A (or simply a
A-eigenvector of A). The eigenvalues and eigenvectors of A are closely related to
the characteristic polynomial ¢(x) of 4, defined by

cy(x) = det(xl — A).

If A is » x n this is a polynomial of degree 7, and its relationship to the eigenvalues
is given in the following theorem (a repeat of Theorem 2 Section 3.3).

Let A be ann X n matrix.
1. The eigenvalues X of A are the roots of the characteristic polynomial c4(x) of A.
2. The X-eigenvectors x are the nonzero solutions to the homogeneous system
M—-A)x=0

of linear equations with \I — A as coefficient matrix.

Show that the eigenvalues of a triangular matrix are the main diagonal entries.

Solution P Assume that A4 is triangular. Then the matrix x/ — A is also triangular
and has diagonal entries (x — 4yy), (v — a33), ..., (x — 4,,,) where A = [4;].
Hence Theorem 4 Section 3.1 gives

cqx) = (v — ap)(w — ax)+(x — a,,)

and the result follows because the eigenvalues are the roots of ¢(x).

Theorem 4 Section 3.3 asserts (in part) that an #» X » matrix A is diagonalizable if
and only if it has » eigenvectors xy, ..., X, such that the matrix P = [x; --- x,] with
the x; as columns is invertible. This is equivalent to requiring that {xy, ..., x,} is a
basis of R” consisting of eigenvectors of 4. Hence we can restate Theorem 4 Section
3.3 as follows:
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Let A be an n X n matrix.

1. A is diagonalizable if and only if R" has a basis {x, X3, ..., X,,} consisting of
eigenvectors of A.

2. When this is the case, the matrix P = [x; x, --- X,] is invertible and
PlAP = diag(Ay, Ay, ..., A,) where, for each i, \; is the eigenvalue of A
corresponding to X;.

The next result is a basic tool for determining when a matrix is diagonalizable.
It reveals an important connection between eigenvalues and linear independence:
Eigenvectors corresponding to distinct eigenvalues are necessarily linearly
independent.

Let xq, X3, ..., X;, be eigenvectors corresponding to distinct eigenvalues Aj, Ay, ..., A of
ann X n matrix A. Then {X1, Xy, ..., X} is a linearly independent set.

We use induction on k. If £ = 1, then {x} is independent because x; # 0.
In general, suppose the theorem is true for some 4 > 1. Given eigenvectors
{x1, X2, ..., Xz41}, suppose a linear combination vanishes:

Xy + 6Xp + o0 + Xy = 0. (%)

We must show that each #; = 0. Left multiply (x) by 4 and use the fact that
Ax; = A\x; to get

nAXp + HAxy + 0+ BN X = 0. (%)

If we multiply (%) by A; and subtract the result from (xx), the first terms cancel
and we obtain

HA = A + B3 = ADx3 + -0 + 1 (Mg — A)Xeq = 0.

Since x3, X3, ..., X341 correspond to distinct eigenvalues Ay, A3, ..., A¢y1, the set
{x2, X3, ..., X;41} 1s independent by the induction hypothesis. Hence,

HA —A) =0, 5 —A)=0, ..., trp (Mg — A1) =0,
andsot, = 3 = --- = ;.1 = 0 because the ); are distinct. Hence (*) becomes

t1x; = 0, which implies that #; = 0 because x; # 0. This is what we wanted.

Theorem 4 will be applied several times; we begin by using it to give a useful
condition for when a matrix is diagonalizable.

If A is an n X n matrix with n distinct eigenvalues, then A is diagonalizable.
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Choose one eigenvector for each of the # distinct eigenvalues. Then these
eigenvectors are independent by Theorem 4, and so are a basis of R” by
Theorem 7 Section 5.2. Now use Theorem 3.

1
Show that 4 =| 1

-110

Solution > A routine computation shows that c4(x) = (x — 1)(x — 3)(x + 1) and
so has distinct eigenvalues 1, 3, and —1. Hence Theorem 5 applies.

00
2 3|is diagonalizable.

However, a matrix can have multiple eigenvalues as we saw in Section 3.3. To
deal with this situation, we prove an important lemma which formalizes a technique
that is basic to diagonalization, and which will be used three times below.

Let {xy, X, ..., X3} be a linearly independent set of eigenvectors of an n X n matrix A,
extend it to a basis {X{, X5, ..., Xp, .., X,,} of R”, and let

P=[x; x, -+ x,]

be the (invertible) m X n matrix with the x; as its columns. If A, \a, ..., A are the (not
necessarily distinct) eigenvalues of A corresponding to X1, Xy, ..., X;, respectively, then
P~'AP has block form
diag()\l, )\2, coey Ak) B

0 Ay
where B has size k X (n — k) and A, has size (n — k) X (n — k).

PlAP =

If {e, ey, ..., €,} is the standard basis of R”, then

[el € ... en] :In:P_IP:P_I[Xl Xy oo Xn]
=[P 'x; P7'x; - P7'x)]

Comparing columns, we have P~'x; = e, for each 1 < i < n. On the other hand,
observe that

PUAP = PTUA[x; x; -+ x,] = (Pl A)x; (Pl A%, - (P A)x,).
Hence, if 1 <7 < k, column 7 of P~'4P is
(P Ax; = P (\x) = MP'x) = Ae;

This describes the first # columns of P~'4P, and Lemma 2 follows.

Note that Lemma 2 (with # = #) shows that an # X » matrix A is diagonalizable if
R" has a basis of eigenvectors of 4, as in (1) of Theorem 3.
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If X is an eigenvalue of an n X n matrix A, define the eigenspace of A corresponding to
A by

EyA) = {xin R" | Ax = Ax}.

"This is a subspace of R” and the eigenvectors corresponding to \ are just the
nonzero vectors in Ey(A). In fact E,(A) is the null space of the matrix (A — A):

E\A) = {x| M — A)x = 0} = null(\ — A).
Hence, by Theorem 2 Section 5.4, the basic solutions of the homogeneous system
(M — A)x = 0 given by the gaussian algorithm form a basis for E\(A4). In particular
dim E,(A) is the number of basic solutions x of (Al — A)x = 0. (k%)

Now recall (Definition 3.7) that the multiplicity'' of an eigenvalue ) of A is the
number of times A occurs as a root of the characteristic polynomial ¢4(x) of 4. In
other words, the multiplicity of X is the largest integer 7 > 1 such that

calx) = (x — A)"g(x)

for some polynomial g(x). Because of (xxx), the assertion (without proof) in
Theorem 5 Section 3.3 can be stated as follows: A square matrix is diagonalizable if
and only if the multiplicity of each eigenvalue A equals dim[E,(A4)]. We are going to
prove this, and the proof requires the following result which is valid for any square
matrix, diagonalizable or not.

Let X be an eigenvalue of multiplicity m of a square matrix A. Then dim[Ey\(A4)] < m.

Write dim[E(A4)] = d. It suffices to show that c4(x) = (x — )\)dg(x) for some

polynomial g(x), because 7z is the highest power of (v — \) that divides c4(x).

To this end, let {x{, x5, ..., X;} be a basis of E,(4). Then Lemma 2 shows that an

invertible #» X n matrix P exists such that
M; B

plap=|""

0 A,

in block form, where I, denotes the d x d identity matrix. Now write A’ = P~'AP

and observe that ¢4(x) = c4(x) by Theorem 1. But Theorem 5 Section 3.1 gives

SN —-B
%@=Mw=@m@—ﬁﬁﬂﬁwo»dﬁw—&}

= det[(x — N)I,] det[(x],_; — A})]
= (x — Vg

where g(x) = ¢4 (x). This is what we wanted.

It is impossible to ignore the question when equality holds in Lemma 3 for
each eigenvalue A. It turns out that this characterizes the diagonalizable 7 X »
matrices A for which c4(x) factors completely over R. By this we mean that
cqlx) = (0 — A — Ap)-+-(x — A,), where the \; are rea/ numbers (not necessarily

11 This is often called the algebraic multiplicity of \.
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distinct); in other words, every eigenvalue of A is real. This need not happen

(consider A = [0 -1
1 0

The following are equivalent for a square matrix A for which c4(x) factors completely.

]), and we investigate the general case below.

1. A is diagonalizable.
2. dim[E\(A)] equals the multiplicity of X for every eigenvalue X of the matrix A.

Let A be n x n and let Af, Ay, ..., A\, be the distinct eigenvalues of A. For each i,
let 722; denote the multiplicity of \; and write d; = dim[E, (4)]. Then

cae) = (v = A" = A" = A)™

somy + -+- + my, = n because c4(x) has degree n. Moreover, d; < m; for each i by
Lemma 3.

(1) = (2). By (1), R” has a basis of # eigenvectors of 4, so let #; of them lie in
E,(A) for each i. Since the subspace spanned by these #; eigenvectors has
dimension #;, we have t; < d; for each 7 by Theorem 4 Section 5.2. Hence

n=t1+---+tde1+---+dkSm1+---+mk=n.

It follows that d; + -+ + dj, = my + «-- + my, so, since d; < m; for each i, we must
have d; = m;. This is (2).

(2) = (1). Let B; denote a basis of E, (A) for each 7, and let B= B, U --- U By.
Since each B; contains »z; vectors by (2), and since the B; are pairwise disjoint (the
); are distinct), it follows that B contains # vectors. So it suffices to show that B
is linearly independent (then B is a basis of R"). Suppose a linear combination

of the vectors in B vanishes, and let y; denote the sum of all terms that come
from B,. Then y, lies in E, (4) for each , so the nonzero y; are independent by
Theorem 4 (as the ); are distinct). Since the sum of the y; is zero, it follows that
y; = 0 for each 7. Hence all coefficients of terms in y; are zero (because B; is
independent). Since this holds for each 7, it shows that B is independent.

5 8 16 21 1
IfA=| 4 1 glandB=| 2 1 -2} show that A is diagonalizable but
-4 -4 -11 -1 0 -2

B is not.

Solution » We have c4(x) = (x + 3)’(x — 1) so the eigenvalues are A\ = —3
and )\, = 1. The corresponding eigenspaces are E, (4) = span{x;, x,} and
E, (A) = span{x;} where

—1 -2 2
x1=| 1) %= 0, x3=| 1
0 1 —1
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as the reader can verify. Since {x;, x,} is independent, we have
dim(E, (4)) = 2 which is the multiplicity of A;. Similarly, dim(E, (4)) = 1
equals the multiplicity of \,. Hence A is diagonalizable by Theorem 6, and
a diagonalizing matrix is P = [x; x; x3].

Turning to B, cp(x) = (v + 1)*(x — 3) so the eigenvalues are \; = —1
and \; = 3. The corresponding eigenspaces are E,1(B) = span{y;} and
E\2(B) = spanf{y,} where

—1 5
Yyi=| 2 Y2=| 6}
1 -1

Here dim(E) (B)) = 1 is smaller than the multiplicity of A;, so the matrix B is
not diagonalizable, again by Theorem 6. The fact that dim(E, (B)) = 1 means
that there is no possibility of finding #hree linearly independent eigenvectors.

Complex Eigenvalues

All the matrices we have considered have had real eigenvalues. But this need not be

0 —1]

the case: The matrix A = has characteristic polynomial ¢4(x) = «* + 1 which

has no real roots. Nonetheless, this matrix is diagonalizable; the only difference is
that we must use a larger set of scalars, the complex numbers. The basic properties
of these numbers are outlined in Appendix A.

Indeed, nearly everything we have done for real matrices can be done for
complex matrices. The methods are the same; the only difference is that the
arithmetic is carried out with complex numbers rather than real ones. For example,
the gaussian algorithm works in exactly the same way to solve systems of linear
equations with complex coefficients, matrix multiplication is defined the same way,
and the matrix inversion algorithm works in the same way.

But the complex numbers are better than the real numbers in one respect: While
there are polynomials like x> 4+ 1 with real coefficients that have no real root, this
problem does not arise with the complex numbers: Every nonconstant polynomial
with complex coefficients has a complex root, and hence factors completely as a
product of linear factors. This fact is known as the fundamental theorem of algebra."”

Diagonalize the matrix 4 = {(1) _(1)

Solution P The characteristic polynomial of A is
cir) =detel —A) =2 + 1 = (v — Hx + 1)

where 7 = —1. Hence the eigenvalues are \; = 7 and \; = —7, with

1}and X; = [1

—i i
by the complex version of Theorem 5, and the complex version of Theorem 3

shows that P = [x; x,] = [ 1. 1 is invertible and P~'AP = Fl 0 = [Z 0} Of
—11 0N 0 —;

corresponding eigenvectors x; = [ ] Hence A is diagonalizable

course, this can be checked directly.

We shall return to complex linear algebra in Section 8.6.

12 This was a famous open problem in 1799 when Gauss solved it at the age of 22 in his Ph.D. dissertation.
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Symmetric Matrices'®

On the other hand, many of the applications of linear algebra involve a real matrix 4
and, while A4 will have complex eigenvalues by the fundamental theorem of algebra,
it is always of interest to know when the eigenvalues are, in fact, real. While this
can happen in a variety of ways, it turns out to hold whenever A is symmetric. This
important theorem will be used extensively later. Surprisingly, the theory of complex
eigenvalues can be used to prove this useful result about rea/ eigenvalues.

Let Z denote the conjugate of a complex number z. If 4 is a complex matrix, the
conjugate matrix A is defined to be the matrix obtained from A4 by conjugating
every entry. Thus, if 4 = [z;], then A= [z;]. For example,

—i+2 5 i+2 5 }

i 344 —i 3—4
Recall that z + w = Z + w and 2w = Zw hold for all complex numbers z and w. It
follows that if 4 and B are two complex matrices, then

A+B=A+B, AB=AB and M = \B
hold for all complex scalars A. These facts are used in the proof of the following
theorem.

Let A be a symmetric real matrix. If X is any complex eigenvalue of A, then X is rea

IfA:[

then 2:{

l.14

Observe that A = A because A is real. If A is an eigenvalue of A, we show that
A is real by showing that A = A. Let x be a (possibly complex) eigenvector

corresponding to ), so that x # 0 and Ax = Ax. Define ¢ = x'X.
If we write x = (21, 2y, ..., 2,) where the z; are complex numbers, we have
T— _ — 2 a2 2
C=XX=22] + 2% + -+ 2,5, =7+ |3+ + |z

Thus ¢ is a real number, and ¢ > 0 because at least one of the 2; # 0 (as x # 0).
We show that A = X by verifying that Ac = Ac. We have

e = Ax'X) = %)% = Uxn)x =x4"x.

At this point we use the hypothesis that 4 is symmetric and real. This means
AT = A = A, so we continue the calculation:
e =x'Ax = x1(A%) = x (4x) = x'(\x)
=x'(\X)
= Ax'x
Ac

as required.

The technique in the proof of Theorem 7 will be used again when we return to
complex linear algebra in Section 8.6.

13 This discussion uses complex conjugation and absolute value. These topics are discussed in Appendix A.
14 This theorem was first proved in 1829 by the great French mathematician Augustin Louis Cauchy (1789-1857).



EXERCISES 5.5

1. By computing the trace, determinant, and rank,

show that 4 and B are

12
A= B =
@ A=, 1}’ L
B
b) A = , B =
A=
.
A= . B=
©A=17 _]
-
d) A= . B=
+d) ~1 2
(211
eA=(101})B=
110
1 2-3
ofy A=|1-1 2|B
[0 3 -5
12-1 0
2. Show that 20 11
0-1
430 0

are not similar.

3. If A ~ B, show that:
() AT ~ BT

11

1
2
3
1
2
13 2
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Verify Theorem 7 for every real, symmetric 2 X 2 matrix A4.

Solution b If A = |4 ?
b ¢

we have c4(x) = & — (@ + ox + (ac — b*), so the

eigenvalues are given by A = % [(tl = \/ (@ + o) — 4ac — V) ] But here

@+ —Mac—P)=@—+4°>0

for any choice of 4, b, and ¢. Hence, the eigenvalues are real numbers.

not similar in each case.
1 1}

]
1

0
-1
-1

[ B —

o(b) A"~ B!

(¢) rA~rBforrinR (d) A" ~ B"forn=>1

4. In each case, decide whether the matrix A4 is
diagonalizable. If so, find P such that P~'AP

is diagonal.
100
@121
001

306
+b) |0 -30
5 002

31 6 400
@} 210 s 022
-10 -3 231

. If A is invertible, show that AB is similar to BA

for all B.

. Show that the only matrix similar to a scalar

matrix A = 71, 7 in R, is A itself.

. Let X be an eigenvalue of A with corresponding

eigenvector x. If B = P~'AP is similar to 4, show
that P~'x is an eigenvector of B corresponding
to A\

. If A ~ B and A has any of the following

properties, show that B has the same property.
(a) Idempotent, that is 4> = A.
+(b) Nilpotent, that is A* =0 for some k > 1.

(¢) Invertible.

9. Let A denote an # X n upper triangular matrix.

(a) If all the main diagonal entries of A are
distinct, show that A4 is diagonalizable.

+(b) If all the main diagonal entries of A are
equal, show that 4 is diagonalizable only if it
is already diagonal.

101
(c¢) Show that| 0 1 0 |is diagonalizable but that

002
110

0 1 0 |is not diagonalizable.
002
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10.

11.

12.

13.

14.

15.

16.

17.
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Let A be a diagonalizable » X 7 matrix
with eigenvalues Ay, Ay, ..., A, (including
multiplicities). Show that:

(a) detA 2)‘1)‘2"')‘”
o) rA=X N+ X+ -+ )\,

n

Given a polynomial p(x) = 7y + 70 + -+ + 7%
and a square matrix A, the matrix

pA) =rol + A + -+ + 7,4" is called the
evaluation of p(x) at 4. Let B = P~'4AP. Show
that p(B) = P~ 'p(A)P for all polynomials p(x).

Let P be an invertible #» x » matrix. If A is any
n X n matrix, write Tp(4) = P~ AP. Verify that:

@@ Tol) =1
+(b) Tp(AB) = THA)Tp(B)
(©) ToAd + B) = Tp(A) + Tr(B)
(d) Te(rd) = rTpA)
(e) Tp(A") = [TpA)) for k=1
(f) If A is invertible, Tp(A™") = [TpA)] "
(2) If Q is invertible, To[Tp(A)] = Tpo(A).

(a) Show that two diagonalizable matrices are
similar if and only if they have the same
eigenvalues with the same multiplicities.

+(b) If A is diagonalizable, show that 4 ~ AL
() Show that A ~ AT if A = [(1) ”
If A is 2 x 2 and diagonalizable, show that
CA) = {X | XA = AX} has dimension 2 or 4.
[Hint: If P~'AP = D, show that X is in C(4) if
and only if P7'XP is in C(D).]

If A is diagonalizable and p(x) is a polynomial
such that p(\) = 0 for all eigenvalues X of 4,
show that p(A4) = 0 (see Example 9 Section 3.3).
In particular, show c4(4) = 0. [Remark: c4(A) = 0
for all square matrices A—this is the Cayley-
Hamilton theorem (see Theorem 2 Section 9.4).]

Let A be n x n with # distinct real eigenvalues. If

AC = CA, show that C is diagonalizable.
0albd
LetA=|20 c|and B =
b C 0 b c a
(a) Show that &’ — (&* + b* + Hx — 2abc has
real roots by considering A.

calb
alb c|

The Vector Space R"

18

19.

20.

+(b) Show that #* + b* + ¢ = ab + ac + bc by
considering B.

. Assume the 2 X 2 matrix A4 is similar to an upper

triangular matrix. If r 4 = 0 = tr A?, show that
A* = 0.

Show that A is similar to A” for all 2 x 2

matrices A. [Hint: Let A = ab

c
the cases & = 0 and b # 0 separately. If ¢ #+ 0,
reduce to the case ¢ = 1 using Exercise 12(d).]

. Ifc = 0, treat

Refer to Section 3.4 on linear recurrences.
Assume that the sequence x, x1, x5, ... satisfies

Xy = T0% + "1Xpq1 + o0+ 71Xy 1

for all # = 0. Define

o1 0 - 0
xﬂ
o 01 - 0
A=|: : : : V. = Pt
00 0 - 1 :
Xp+k—1
o T2 ot Tpe
Then show that:
(a) V,, = A"V, for all n.
(b) cy(x) = K — rk_lx/“l — e — X — 7.

(¢) If X is an eigenvalue of A, the eigenspace E),
has dimension 1, and x = (1, A\, A%, ..., N*™HT
is an eigenvector. [Hint: Use c4(\) = 0 to
show that E, = Rx.]

(d) A is diagonalizable if and only if the
eigenvalues of A4 are distinct. [Hint: See part
(c¢) and Theorem 4.]

(e) If A\, Ay, ..., N are distinct real eigenvalues,
there exist constants ty, t, ..., t such that
x, = A} 4+ -+ + A7 holds for all z.
[Hint: If D is diagonal with Ay, Ay, ..., A,
as the main diagonal entries, show that
A" = PD"P~! has entries that are linear
combinations of AT, A7, ..., \}.
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Best Approximation and Least Squares

;/]""—
0 Az '\] u

Definition 5.14

Often an exact solution to a problem in applied mathematics is difficult to obtain.
However, it is usually just as useful to find arbitrarily close approximations to a
solution. In particular, finding “linear approximations” is a potent technique in applied
mathematics. One basic case is the situation where a system of linear equations has no
solution, and it is desirable to find a “best approximation” to a solution to the system.
In this section best approximations are defined and a method for finding them is
described. The result is then applied to “least squares” approximation of data.

Suppose A4 is an 7 x n matrix and b is a column in R”, and consider the system

Ax=Db
of 7 linear equations in 7 variables. This need not have a solution. However, given
any column z in R”, the distance ||b — Az|| is a measure of how far Az is from b.

Hence it is natural to ask whether there is a column z in R” that is as close as
possible to a solution in the sense that

Ib — Az||

is the minimum value of ||b — Ax|| as x ranges over all columns in R".
The answer is “yes”, and to describe it define

U = {4x | x lies in R"}.

This is a subspace of R” (verify) and we want a vector Az in U as close as possible
to b. That there is such a vector is clear geometrically if # = 3 by the diagram. In
general such a vector Az exists by a general result called the projection theorem that
will be proved in Chapter 8 (Theorem 3 Section 8.1). Moreover, the projection
theorem gives a simple way to compute z because it also shows that the vector

b — Az is orthogonal to every vector Ax in U. Thus, for all x in R”,

0=(Ax) - (b —Az) = (Ax) (b — Az) = x’A(b — Az)
=x- [AT(b — Az)]

In other words, the vector A”(b — Az) in R” is orthogonal to every vector in R” and
so must be zero (being orthogonal to itself). Hence z satisfies

ATz = A™.
This is a system of linear equations called the normal equations for z.

Note that this system can have more than one solution (see Exercise 5). However,
the # x n matrix A”4 is invertible if (and only if) the columns of A are linearly
independent (Theorem 3 Section 5.4); so, in this case, z is uniquely determined and
is given explicitly by z = (47A4)~'A"b. However, the most efficient way to find z is
to apply gaussian elimination to the normal equations.

"This discussion is summarized in the following theorem.

Best Approximation Theorem
Let A be an m X n matrix, let b be any column in R"™, and consider the system

Ax=b

of m equations in n variables.
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(1) Any solution z to the normal equations
ATA)z = A™
is a best approximation to a solution to Ax = b in the sense that ||b — Az|| is the
minimum value of |b — Ax|| as x ranges over all columns in R”.

(2) If the columns of A are linearly independent, then A" A is invertible and z is given
uniquely by z = (A"A)~'A"b.

We note in passing that if 4 is z X » and invertible, then

z=A"A""ATb =4
is the solution to the system of equations, and ||b — Az|| = 0. Hence if A has
independent columns, then (47A4) "' A" is playing the role of the inverse of the
nonsquare matrix A. The matrix 47(A4A")~" plays a similar role when the rows of A

are linearly independent. These are both special cases of the generalized inverse
of a matrix A (see Exercise 14). However, we shall not pursue this topic here.

The system of linear equations

3w— y=4
x+2y=0
20+ y=1

has no solution. Find the vector z =

y : g
P ] that best approximates a solution.
0

Solution » In this case,

1 _
A:i 21, soATAz[ 312}? ;]Z[Hl}
)1 -121, | 16
is invertible. The normal equations ATA)z = A™ are
[141z=[14 soz:i[ 87}.
16 =37 8156

Thus xy = % and yo = 238 With these values of x and y, the left sides of the
equations are, approximately,

3xg— yo= 3= 3.82

x0 + 2y = ;—235 = —0.30

2+ yo=2= 142

This is as close as possible to a solution.

The average number g of goals per game scored by a hockey player seems to
be related linearly to two factors: the number x; of years of experience and the
number x, of goals in the preceding 10 games. The data on the following page
were collected on four players. Find the linear function g = 2y + 2y%; + a,x,
that best fits these data.



g X X
0.8 5 3
0.8 3 4
0.6 1 5
0.4 2 1
Linel
Line2
(x5, y5)
(x4, y4)
Ge,01) 7 @3, 3)

(xZ’yZ)
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Solution P If the relationship is given by g = 7y + 712; + 7,x,, then the data can
be described as follows:

15 301 0.8
13 4|,|=08
11 5] [06
19 1 0.4

Using the notation in Theorem 1, we get

z=A"A)"'4™

119 =17 -191 1 1 1 8~§ 0.14
=3 -17 5 1|53 1 2(g6l=]0.09
-19 1 53 45 14 L0.08

Hence the best-fitting function is g = 0.14 + 0.09x; + 0.08x,. The amount
of computation would have been reduced if the normal equations had been
constructed and then solved by gaussian elimination.

Least Squares Approximation

In many scientific investigations, data are collected that relate two variables. For
example, if x is the number of dollars spent on advertising by a manufacturer and y
is the value of sales in the region in question, the manufacturer could generate data
by spending xy, x3, ..., x, dollars at different times and measuring the corresponding
sales values y1, 2, .-+, Y-

Suppose it is known that a linear relationship exists between the variables x and y—
in other words, that y =  + bx for some constants # and 4. If the data are plotted, the
points (xy, y1), (2, ¥2), --+, (¥, ¥,) may appear to lie on a straight line and estimating #
and b requires finding the “best-fitting” line through these data points. For example,
if five data points occur as shown in the diagram, line 1 is clearly a better fit than line
2. In general, the problem is to find the values of the constants # and & such that the
line y = & + bx best approximates the data in question. Note that an exact fit would
be obtained if # and b were such that y; = # + bx; were true for each data point (x;, y;).
But this is too much to expect. Experimental errors in measurement are bound to
occur, so the choice of # and & should be made in such a way that the errors between
the observed values y; and the corresponding fitted values # + bx; are in some sense
minimized. Least squares approximation is a way to do this.

The first thing we must do is explain exactly what we mean by the best fit of a
line y = @ + bx to an observed set of data points (xy, y1), (¥2, 2), -+, (X, ¥,,). For
convenience, write the linear function 7, + 7x as

flo) =7+ rx
so that the fitted points (on the line) have coordinates (x1, f(x1)), ..., (¥, f(x,)). The
second diagram is a sketch of what the line y = f(x) might look like. For each 7 the
observed data point (x;, y;) and the fitted point (x;, f(x;)) need not be the same, and
the distance d; between them measures how far the line misses the observed point.
For this reason d; is often called the error at x;, and a natural measure of how close
the line y = f(x) is to the observed data points is the sum d; + d> + --- + d, of all
these errors. However, it turns out to be better to use the sum of squares

S=di+d5+ -+ d2
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as the measure of error, and the line y = f(x) is to be chosen so as to make this sum
as small as possible. This line is said to be the least squares approximating line for
the data points (x1, y1), (¥2, ¥2), -5 (s ¥nr)-

The square of the error d; is given by d; = [y; — f(x;)]* for each i, so the quantity
S to be minimized is the sum:

S=y — fa)l + [y — fC)P + - + [y, — flx)

Note that all the numbers x; and y; are given here; what is required is that the
function f'be chosen in such a way as to minimize S. Because f(x) = 7 + 1, this
amounts to choosing 7y and 7; to minimize S. This problem can be solved using
Theorem 1. The following notation is convenient.

X )1 Sl 7o + 11Xy
X = x:z y= }’:2 and f(x) = f (xZ) — 1|7 +: "X
.X:n .n f(~;€n) 7o +. X,

Then the problem takes the following form: Choose 7 and 7 such that

S=ln = f@l + I = f@F + - + Iy, = f@)) = lly — f®II*

is as small as possible. Now write

le

M = lxz and rzro.
Do 8
1 x,

70

Then Mr = f(x), so we are looking for a column r = [V such that ||y — Mr||? is as
1

small as possible. In other words, we are looking for a best approximation z to the
system Mr = y. Hence Theorem 1 applies directly, and we have

Suppose that n data points (xy, y1), (X2, ¥2), ..., (%, ¥,,) are given, where at least two of
X1, X2, ..., X, are distinct. Put

yl 1x1
y=|" M=|] @
n 1 x,

Then the least squares approximating line for these data points has equation

y =29+ 21x

20] . . Lo ]
where z = 21] is found by gaussian elimination from the normal equations
MMz = My.
The condition that at least two of x1, x5, ..., x,, are distinct ensures that M™ is an

invertible matrix, so z is unique:

z = M'M)"'My.
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Let data points (x1, 1), (2, y2), ---, (x5, ¥5) be given as in the accompanying
table. Find the least squares approximating line for these data.

Solution P In this case we have
N ]. X1
My=| 1 1 1]l
Xy Xy Tt Xs P
B 1 X5
[ 5 X+ ot s _[5 21}
P e A B A ) U

)i

and My = bl =
Loy a2 o X5 )
Js

[ ntyptetys :[15},
| X101 + xy; Tt x5 ys 78

so the normal equations MMz = MTy forz =
{ 5 21} _
21 111

The solution (using gaussian elimination) is z =

2(
become
21

=13

20 0.24

il 0.66
decimal places, so the least squares approximating line for these data is

y = 0.24 + 0.66x. Note that M"M is indeed invertible here (the
determinant is 114), and the exact solution is

Ty by 111 —217[15 27 9
z=MM) MY:JT[_ZI 5“78}:1}7[75}:3 [25}'

20
21

to two

oo"—‘

Least Squares Approximating Polynomials
Suppose now that, rather than a straight line, we want to find a polynomial
y=fx) =rg+rx+ a4 e+ A"

of degree m that best approximates the data pairs (x1, y1), (x2, y2), -+, X0, V)-
As before, write
xl _)/1 f(‘xl)

X = x.z y = )/.2 and f(x) = f(J.CZ)
%, 'n f,)

For each x; we have two values of the variable y, the observed value y,, and the
computed value f(x;). The problem is to choose f(x)—that is, choose 7, 71, ..., 73,
—such that the f(x;) are as close as possible to the y,. Again we define “as close as
possible” by the least squares condition: We choose the 7; such that

ly = F®N7 = [y — fe)l + [y2 — fa)l + - + [y, — fx))

is as small as possible.

277
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Definition 5.15 A4 polynomial f(x) satisfying this condition is called a least squares approximating
polynomial of degree m for the given data pairs.

If we write
1 ox af - aff .
M= 1 xz x% x;” and r= T(IJ
SR

we see that f(x) = Mr. Hence we want to find R such that ||y — Mr||* is as small as
possible; that is, we want a best approximation z to the system Mr = y. Theorem 1
gives the first part of Theorem 3.

Let n data pairs (x1, y1), (X2, ¥2), ---, (X, V) be given, and write

2 m
1 x; af - ay
)1 20
)2 1wy a5 o a 2]
y=|"S| M= B 2| z=|"
z
Y 2 m K
1 x, x, - x,

1. Ifzis any solution to the normal equations
M™Myz = My
then the polynomial
20 + 210 + 208" + oo + ZA"
is a least squares approximating polynomial of degree m for the given data pairs.

2. Ifatleastm + 1 of the numbers xy, x5, ..., x, are distinct (son = m + 1), the
matrix MM is invertible and z is uniquely determined by

z=M'M)"'M'y

It remains to prove (2), and for that we show that the columns of M are linearly
independent (Theorem 3 Section 5.4). Suppose a linear combination of the
columns vanishes:

1 X1 xZ 0
rol L]+ 7| %2+ - 41, 2 | = |9
Dl ol 1o
If we write g(x) = 79 + riv + --- + 7,4, equating coefficients shows that
q(x) = q(az) = -+ = ¢g(x,) = 0. Hence ¢(x) is a polynomial of degree 7 with at

least 7z + 1 distinct roots, so ¢(x) must be the zero polynomial (see Appendix D
or Theorem 4 Section 6.5). Thus 7y = 7y = --- = 7,, = 0 as required.
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Find the least squares approximating quadratic y = 2 + zjx 4 2,2 for the
following data points.

(_3, 3)a (_11 l)a (0, l)a (1, 2)7 (3’ 4)

Solution » This is an instance of Theorem 3 with 7z = 2. Here

3 1 -3 9
1 1 -1 1
y=[1| M=[1 0 0
2 1 1 1
4 1 39
Hence,
1 -39
1 111171 -11 5 0 20
MM=|-3-1013]|/1 00[=|02 0
9 10191 11 20 0 164
1 39
3
1 11111 11
My=|-3-1013|[1]|=]| 4
9 101 9]|2| L66
4
The normal equations for z are
50 20 11 1.15
0 20 O|z=| 4| whencez=0.20
20 0 164 66 0.26

This means that the least squares approximating quadratic for these data is
y=1.15 + 0.20x + 0.26x7.

Other Functions

There is an extension of Theorem 3 that should be mentioned. Given data pairs
(@15 Y1), (X2, ¥2)y -5 (X, ¥,), that theorem shows how to find a polynomial

f@)=ryg+rx+ - +r,x"

such that ||y — f(x)||2 is as small as possible, where x and f(x) are as before.
Choosing the appropriate polynomial f{x) amounts to choosing the coefficients

705 71y ++-5 Ty and Theorem 3 gives a formula for the optimal choices. Here f(x) is a
linear combination of the functions 1, x, %, ..., ¥” where the 7; are the coefficients,
and this suggests applying the method to other functions. If fy(x), f1(x), ..., f,,(x) are
given functions, write

J&) = rofo@) + 71fi@) + - 4 7uf(%)
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where the 7; are real numbers. Then the more general question is whether

70, 1y -+-5 Ty, canl be found such that ||y — f(x)||* is as small as possible where
flaey)
f(X) — f(xz)
£

Such a function f{(x) is called a least squares best approximation for these data
pairs of the form ryfo(x) + r1f1(x) + -+ + 7,,,f,,(x), 7, in R. The proof of Theorem 3
goes through to prove

Let n data pairs (x1, y1), (2, ¥2)s . (%, ) be given, and suppose that m + 1 functions
fox), 1), ..., fru(x) are specified. Write

folxy) filx) -+ fr(x)

)1 2l
- )’:z M= f()(:xz) f1(f€z) fm(:xZ) 2= |2
’ fo) fi) - fu) .
(1) If z is any solution to the normal equations

MMz = My,
then the function
zofo(®) + 21f1(¥) + -+ + Zf(®)

is the best approximation for these data among all functions of the form
rofol®) + r1fi@e) + -+ + 7,,f,,(x) where the 7; are in R.

2) IfMTM is invertible (that is, if rank(M) = m + 1), then z is uniquely
determined; in fact, z = (MT]W)_I(MTy).

Clearly Theorem 4 contains Theorem 3 as a special case, but there is no simple test
in general for whether M”M is invertible. Conditions for this to hold depend on the
choice of the functions fo(x), f1(®), ..., f(x).

Given the data pairs (—1, 0), (0, 1), and (1, 4), find the least squares
approximating function of the form 7y + 72"

Solution » The functions are fo(x) = « and fi(x) = 27 so the matrix M is

foler)  filar) -1 2! -2 1
M=|fyte) filx)|=| o 20 [=3| 0 2
folws)  filxs) 1 2 2 4

In this case MM = %{8 6} is invertible, so the normal equations

6 21
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have a unique solution z = L[ 10}

{2 -l
6 21 9 116

Hence the best-fitting function of the form ryx + 72" is f(x) = %x + %2”.

fen] 5 0

Note that f(x) = £0) | =] 18|, compared withy = |1
ry 4
JONENES

EXERCISES 5.6

1. Find the best approximation to a solution of each +(b) (-1, %), 0, 1),2,5),3,9

of the following systems of equations.
6. If M is a square invertible matrix, show that

@ x+ y— z=5 z = My (in the notation of Theorem 3).
2y — y+6z=1
3x+2y— z2=6 +7. Newton’s laws of motion imply that an object
v+ + 2=0 dropped from rest at a height of 100 metres will

be at a height s = 100 — g’ metres  seconds
later, where g is a constant called the acceleration
due to gravity. The values of s and ¢ given in the
table are observed. Write x = #2, find the least
squares approximating line s = # + bx for these

2. Find the least squares approximating line data, and use & to estimate g.

y = 2y + 2z« for each of the following sets of
data points.

ob) 3x+ y+ z2=6
x4+ 3y — z=1
2e— y+ z2=0
3 —3y+3z2=38

Then find the least squares approximating
quadratic s = 4 + a;t + at* and use the value of

(a) (17 1)’ (3’ 2)’ (47 3)7 (6’ 4) a; to estimate g.
’(b) (27 4)’ (4’ 3)’ (77 2)’ (8’ 1) t 1 2 3
(C) (_L _1)7 (O’ 1)’ (la 2)7 (2: 4)’ (3’ 6) § 95 80 56
o (=2,3), (=1, 1), (0,0, 1, =2), @, =9 8. A naturalist measured the heights y; (in metres)
3. Find the least squares approximating quadratic of several spruce trees with trunk diameters «; (in
y = 20 + 2% + 200 for each of the following sets centimetres). The data are as given in the table.
of data points. Find the least squares approximating line for
these data and use it to estimate the height of a
(@ (O, 1),@2,2),3,3),*5) spruce tree with a trunk of diameter 10 cm.

4. Find a least squares approximating function ¥ 2 3.3 4 73 | 7.9 | 10.1
of the form ryx + 7x° + 7,2* for each of the
following sets of data pairs. +9. The yield y of wheat in bushels per acre
appears to be a linear function of the number
@ (=1, 1),(0,3),,1), 2,0 of days x; of sunshine, the number of inches
«b) (0, 1), (1, 1), 2, 5), (3, 10) x, of rain, and the number of pounds x3 of
tertilizer applied per acre. Find the best fit to
5. Find the least squares approximating function the data in the table by an equation of the form
of the form 7y + r1a” + rsin ¢ for each of the y =71+ rxy + a5 + 133, [Hine: If a calculator
following sets of data pairs. for inverting A”A is not available, the inverse is

@ (0,3),(1,0), 1, 1), (~1,2) given in the answer.]
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13. Given the situation in Theorem 4, write
Y X1 X2 X3
28 | 50 | 18 | 10 J) = ropox) + 11p1(x) + -+ + 7p(x)
30 | 40 | 20 16 Suppose that f(x) has at most & roots for any
21 35 14 10 choice of the coefficients 7, 74, ..., 7,,, not all
23 | 40 | 12 | 12 zero.
23 30 16 14 (a) Show that M”M is invertible if at least & + 1

of the x; are distinct.

10. (a) Use 7 = 0 in Theorem 3 to show that the
best-fitting horizontal line y = 4, through
the data points (xy, y1), .., (x,, y,) is

¥y =x(y1 + 52 + ==+ +,), the average of

the y coordinates. (c) If at least three of the «; are distinct, show

o ) ) that there is always a best approximation
+(b) Deduce the conclusion in (a) without using of the form 7y + 7 + 7eé*. [Calculus is

Theorem 3. needed.]

+(b) If at least two of the «; are distinct, show that
there is always a best approximation of the
form 7y + re".

11. Assume 2 = 72 + 1 in Theorem 3 (so M is 14. If A is an 2 X n matrix, it can be proved that

square). If the «x; are distinct, use Theorem there exists a unique 7 X  matrix A* satisfying
6 Section 3.2 to show that M is invertible. the following four conditions: A4*4 = A;
Deduce that z = M~ 'y and that the least squares A*AA* = A*. A4* and A*A are s mmetric, The
polynomial is the interpolating polynomial ’ Y i
(Theorem 6 Section 3.2) and actually passes
through all the data points.

matrix A is called the generalized inverse of 4,
or the Moore-Penrose inverse.

(a) If A is square and invertible, show that
12. Let A be any 7 X n matrix and write A = 471

K = {x | AAx = 0}. Let B be an m-column.
Shovi t}|13t, if z is aI}l n-column such that (b) If rank A = m, show that 4" = A7(44")7".
|[b — Az|| is minimal, then #// such vectors (c) If rank A = n, show that A* = (474)~'4".
have the form z + x for some x in K.

[Hint: ||b — Ay|| is minimal if and only if

Ay = A™.]

An Application to Correlation and Variance

Suppose the heights by, b, ..., b, of » men are measured. Such a data set is called
a sample of the heights of all the men in the population under study, and various
questions are often asked about such a sample: What is the average height in the
sample? How much variation is there in the sample heights, and how can it be
measured? What can be inferred from the sample about the heights of all men in
the population? How do these heights compare to heights of men in neighbouring
countries? Does the prevalence of smoking affect the height of a man?

The analysis of samples, and of inferences that can be drawn from them, is a
subject called mathematical statistics, and an extensive body of information has been
developed to answer many such questions. In this section we will describe a few
ways that linear algebra can be used.

It is convenient to represent a sample {xy, x5, ..., x,} as a sample vector”’

x = [x; x; --- x,] in R”. This being done, the dot product in R” provides a
convenient tool to study the sample and describe some of the statistical concepts

15 We write vectors in R” as row matrices, for convenience.
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related to it. The most widely known statistic for describing a data set is the sample
mean ¥ defined by'®

n
x = %(xl + X) + -0+ xn) = %Zx,

i=1
The mean ¥ is “typical” of the sample values «;, but may not itself be one of them.
The number x; — x is called the deviation of x; from the mean x. The deviation is
positive if x; > ¥ and it is negative if x; < ¥. Moreover, the sum of these deviations
is zero:

g}(xi —%x) = (gx,) —nx =nx —nx = 0. (*)

"This is described by saying that the sample mean ¥ is central to the sample values x;.
If the mean ¥ is subtracted from each data value x;, the resulting data x; — ¥ are
said to be centred. The corresponding data vector is

sz[xl_y xz—f xn_y]

and (x) shows that the mean ¥, = 0. For example, the samplex =[—-1 0 1 4 6]
is plotted in the first diagram. The mean is ¥ = 2, and the centred sample
x, = [-3 =2 —1 2 4] is also plotted. Thus, the effect of centring is to shift the
data by an amount ¥ (to the left if ¥ is positive) so that the mean moves to 0.
Another question that arises about samples is how much variability there is in the
sample x = [x; x; --- x,]; that is, how widely are the data “spread out” around the
sample mean x. A natural measure of variability would be the sum of the deviations
of the x; about the mean, but this sum is zero by (x); these deviations cancel out.
To avoid this cancellation, statisticians use the squares (x; — %)’ of the deviations as
a measure of variability. More precisely, they compute a statistic called the sample
variance 52, defined!” as follows:

n
se =il = 4 @0 =B 4+ (=B = 5 - B
The sample variance will be large if there are many «; at a large distance from the
mean %, and it will be small if all the «; are tightly clustered about the mean. The
variance is clearly nonnegative (hence the notation 52, and the square root s, of the
variance is called the sample standard deviation.

The sample mean and variance can be conveniently described using the dot
product. Let

1=[11-1]

denote the row with every entry equal to 1. If x = [x; &, --- x,], then
x+1=uw 4+ x; + -+ + x,, so the sample mean is given by the formula

—_1
X =4x-1).
Moreover, remembering that ¥ is a scalar, we have ¥1 = [¥ ¥ --- %], so the centred
sample vector x, is given by
Xx,=x—xl=[x—-% xp—% -+ x,— %]

Thus we obtain a formula for the sample variance:

2 2 2
sy =Ll =Ll — #1)%

Linear algebra is also useful for comparing two different samples. To illustrate
how, consider two examples.

16 The mean is often called the “average” of the sample values x; but statisticians use the term “mean”.

17 Since there are n sample values, it seems more natural to divide by n here, rather than by n — 1. The reason for using n — 1 is that
then the sample variance sZ provides a better estimate of the variance of the entire population from which the sample was drawn.
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The following table represents the number of sick days at work per year and the
yearly number of visits to a physician for 10 individuals.

Individual 11 2] 3| 4| 5| 6 7| 8| 9|10
Doctor visits 21 6| 8| 1] 5|10 3| 9
Sick days 20 4 8| 3| 5| 9| 4| 7| 7| 2

The data are plotted in the scatter diagram where it is evident that, roughly
speaking, the more visits to the doctor the more sick days. This is an example
of a positive correlation between sick days and doctor visits.

Now consider the following table representing the daily doses of vitamin C
and the number of sick days.

Individual | 2| 3| 4] 5| 6| 7| 8| 9|10
Vitamin C Ly 5] 7] 0 4| 9| 2| 8| 6| 3
Sick days S 21 20 6| 2| 1| 4| 3] 2| 5

The scatter diagram is plotted as shown and it appears that the more vitamin C
taken, the fewer sick days. In this case there is a negative correlation between daily
vitamin C and sick days.

In both these situations, we have paired samples, that is observations of two
variables are made for ten individuals: doctor visits and sick days in the first case;
daily vitamin C and sick days in the second case. The scatter diagrams point to
a relationship between these variables, and there is a way to use the sample to
compute a number, called the correlation coefficient, that measures the degree to
which the variables are associated.

To motivate the definition of the correlation coefficient, suppose two paired
samplesx = [x; x; -+ «,], andy = [y; y; -+ ¥,] are given and consider the
centred samples

x, =[x —% x—-% - x,—% and Y. = b’l =y -y - _)’n_y]
If «;, is large among the x/’s, then the deviation x;, — ¥ will be positive; and x, — ¥

will be negative if x; is small among the «;’s. The situation is similar for y, and the
following table displays the sign of the quantity (x; — ¥)(y, — ¥) in all four cases:

Sign of (x; — ®)(yx — J):

x; large x; small
y; large positive negative
y; small negative positive

Intuitively, if x and y are positively correlated, then two things happen:
1. Large values of the x; tend to be associated with large values of the y;, and
2. Small values of the x; tend to be associated with small values of the y;.

It follows from the table that, if x and y are positively correlated, then the dot
product

n
Xy = Zl(xl - E)()’z - _7)
1=
is positive. Similarly x, - y, is negative if x and y are negatively correlated. With this
in mind, the sample correlation coefficient'® 7 is defined by
18 The idea of using a single number to measure the degree of relationship between different variables was pioneered by Francis Galton

(1822-1911). He was studying the degree to which characteristics of an offspring relate to those of its parents. The idea was refined
by Karl Pearson (1857-1936) and r is often referred to as the Pearson correlation coefficient.
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Il lyell”

Bearing the situation in R® in mind, 7 is the cosine of the “angle” between the
vectors x, and y,, and so we would expect it to lie between —1 and 1. Moreover,
we would expect 7 to be near 1 (or —1) if these vectors were pointing in the same
(opposite) direction, that is the “angle” is near zero (or ).

This is confirmed by Theorem 1 below, and it is also borne out in the examples
above. If we compute the correlation between sick days and visits to the physician
(in the first scatter diagram above) the result is 7 = 0.90 as expected. On the other
hand, the correlation between daily vitamin C doses and sick days (second scatter
diagram) is 7 = —0.84.

However, a word of caution is in order here. We cannot conclude from the
second example that taking more vitamin C will reduce the number of sick days
at work. The (negative) correlation may arise because of some third factor that is
related to both variables. For example, case it may be that less healthy people are
inclined to take more vitamin C. Correlation does nor imply causation. Similarly,
the correlation between sick days and visits to the doctor does not mean that having
many sick days causes more visits to the doctor. A correlation between two variables
may point to the existence of other underlying factors, but it does not necessarily
mean that there is a causality relationship between the variables.

Our discussion of the dot product in R” provides the basic properties of the
correlation coefficient:

Letx =[xy x; -+ x,] andy = [y; y2 -+ y,] be (nonzero) paired samples, and let
7 = 7(X, y) denote the correlation coefficient. Then:

1. —1<r<l.

r=rlxy) =

2. r=1ifand only if there exist # and b > 0 such that y; = a + bx; for each .
3. r= —1ifand only if there exist a and b < 0 such that y; = a + bx; for each i.

The Cauchy inequality (Theorem 2 Section 5.3) proves (1), and also shows that
r = £1 if and only if one of x, and y, is a scalar multiple of the other. This in
turn holds if and only if y, = x, for some & # 0, and it is easy to verify that 7 = 1
when & > 0 and 7 = —1 when 4 < 0.

Finally, y, = bx, means y; — y = b(x; — %) for each 4; thatis, y; = @ + bx;
where @ =y — bx. Conversely, if y; = a + bx;, then j = 2 + bx (verify), so

y1 — 5§ = (@ + bx;) — (@ + bx) = b(x; — %) for each 7. In other words, y, = /x..
This completes the proof.

Properties (2) and (3) in Theorem 1 show that 7(x, y) = 1 means that there is
a linear relation with positive slope between the paired data (so large x values are
paired with large y values). Similarly, 7(x, y) = —1 means that there is a linear
relation with negative slope between the paired data (so small x values are paired
with small y values). This is borne out in the two scatter diagrams above.
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We conclude by using the dot product to derive some useful formulas for
computing variances and correlation coefficients. Given samples x = [x; x; -+
andy = [y; y2 -+ y,l, the key observation is the following formula:

X, * V., =Xy —nXx}y.
Indeed, remembering that ¥ and ¥y are scalars:

Xy =& —=x1)-(y—71)
=x.y—x-:@l) —(x1) -y + (x1) - (1)
=xy—yx-H—xl-y)+ayl-1)
=Xy = yux) — x(ny) + xy(n)
=Xy —nxy.

Taking y = x in (x*) gives a formula for the variance 53 = ﬁ||x[||2 of x.

Variance Formula

Ifx is a sample vector, then s> = ﬁ(”xfﬂ2 — @),

We also get a convenient formula for the correlation coefficient,
Xy

x|yl

Moreover, () and the fact that 52 = -L_||x,||* give:

n—1

r=xy) =

Correlation Formula

Ifx and y are sample vectors, then
. Xy —nxy
r=rXx,y) = o~ D, o .

Finally, we give a method that simplifies the computations of variances and
correlations.

Data Scaling

Letx =[xy xy -+ x,] andy = [y; y2 -+ y,] be sample vectors. Given constants a, b, c,

and d, consider new samplesz = [z 2z, -+ 2z, andw = [w; w; --- w,] where
2; = a + b, for each i and w; = ¢ + dy, for each i. Then:

(a) 2 =a + bx.

(b) st = b2, 505, = |bls,.

(c) If b and d have the same sign, then 7(x, y) = 7(z, W).

The verification is left as an exercise.

For example, if x = [101 98 103 99 100 97], subtracting 100 yields
z=1[1 =2 3 —1 0 —=3]. A routine calculation shows that z = —% and 52 = %,
s0% =100 — 1 =99.67,and 57 = 1 = 4.67.
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EXERCISES 5.7

1. The following table gives 1Q scores for 10
fathers and their eldest sons. Calculate the
means, the variances, and the correlation
coefficient 7. (The data scaling formula is useful.)

Individual 1(2(3|4|5(6|7|8|9]|10
Years of education |12 16|13 |18 |19|12|18|19|12 |14

Yearly income

31[48(35[28(55/40(39]60(32]35
(1000s)

1123 |4|5|6/|7/|8]9]10

Father’s IQ |140(131|120{115|110(106|100| 95 | 91 | 86
Son’s IQ 130 (138 [110| 99 [ 109|120 {105 | 99 [100 | 94

+2. The following table gives the number of years of

education and the annual income (in thousands)
of 10 individuals. Find the means, the variances,
and the correlation coefficient. (Again the data
scaling formula is useful.)

3. If x is a sample vector, and x, is the centred
sample, show that ¥, = 0 and the standard
deviation of x, is s,.

4. Prove the data scaling formulas found on page

292: (a), «(b), and (c).

SUPPLEMENTARY EXERCISES FOR CHAPTER 5

1.

In each case either show that the statement is

true or give an example showing that it is false.

Throughout, x, y, z, x1, X3, ..., X, denote vectors

in R”.

(a) If Uis a subspace of R” and x + y is in U,
then x and y are both in U.

+(b) If Uis a subspace of R” and 7x is in U, then x
isin U.
(¢) If Uis a nonempty set and sx + ty is in U for

any s and ¢ whenever x and y are in U, then
U is a subspace.

+(d) If Uis a subspace of R” and x is in U, then
—x isin U.

(e) If {x, y} is independent, then {x, y, x + y} is
independent.

o) If {x, y, z} is independent, then {x, y} is
independent.

() If {x, y} is not independent, then {x, y, z} is
not independent.

*(j) If ax + by + cz = 0 where 4, b, and ¢ are in
R, then {x, y, z} is independent.

(k) If {x, y, z} is independent, then
ax + by + cz = 0 for some 4, b, and ¢ in R.

o) If {xq, x5, ..., x,,} is not independent, then
LX) + Hxp; + -+ + £,x, = 0 for ; in R not all
zero.

(m) If {xq, x,, ..., x,} is independent, then
HX) + bhxp; + -+ + £,x, = 0 for some #; in R.

+(n) Every set of four non-zero vectors in R* is a
basis.

(0) No basis of R® can contain a vector with a
component 0.

+(p) R® has a basis of the form {x, x + y, y} where
x and y are vectors.

(qQ) Every basis of R’ contains one column of I;.

+(r) Every nonempty subset of a basis of R? is
again a basis of R’

(5) If {xy, X5, x5, x4} and {yy, y, v, v} are bases

+(h) Ifall of xy, x, ..., X, are nonzero, then
(k) ), x ! an} is in?e endent of R, then {x; + y1, % + v2, X5 + ¥3, X4 + 4}
b B2 wee P : is also a basis of R*.
(i) If one of xy, x5, ..., X, is zero, then

{x1, X3, ..., X,} is not independent.



