
Vector Geometry

4
Vectors and Lines
In this chapter we study the geometry of 3-dimensional space. We view a point in 
3-space as an arrow from the origin to that point. Doing so provides a “picture” of 
the point that is truly worth a thousand words. We used this idea earlier, in Section 
2.6, to describe rotations, reflections, and projections of the plane �2. We now apply 
the same techniques to 3-space to examine similar transformations of �3. Moreover, 
the method enables us to completely describe all lines and planes in space. 

Vectors in �3

Introduce a coordinate system in 3-dimensional space in the usual way. First choose 
a point O called the origin, then choose three mutually perpendicular lines through 
O, called the x, y, and z axes, and establish a number scale on each axis with zero at 
the origin. Given a point P in 3-space we associate three numbers x, y, and z with 
P, as described in Figure 1. These numbers are called the coordinates of P, and we 
denote the point as (x, y, z), or P(x, y, z) to emphasize the label P. The result is 
called a cartesian1 coordinate system for 3-space, and the resulting description of 
3-space is called cartesian geometry. 

As in the plane, we introduce vectors by identifying each point P(x, y, z) with the 

vector v =   S  
x
 

 
 y   

z
   T  in �3, represented by the arrow from the origin to P as in Figure 1. 

Informally, we say that the point P has vector v, and that vector v has point P. In this 
way 3-space is identified with �3, and this identification will be made throughout 
this chapter, often without comment. In particular, the terms “vector” and 
“point” are interchangeable.2 The resulting description of 3-space is called vector 

geometry. Note that the origin is 0 =   S  0 
 

 0   
0

  T . 
Length and Direction
We are going to discuss two fundamental geometric properties of vectors in �3: 
length and direction. First, if v is a vector with point P, the length ‖v‖ of vector 

1 Named after René Descartes who introduced the idea in 1637.

2 Recall that we defined �n as the set of all ordered n-tuples of real numbers, and reserved the right to denote them as rows or as 
columns.
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v is defined to be the distance from the origin to P, that is the length of the arrow 
representing v. The following properties of length will be used frequently. 

Theorem 1

Let v =   S  
x
 

 
 y   

z
   T  be a vector. 

(1) ‖v‖ =  √ 
___________

  x 2  +  y 2  +  z 2   . 3

(2) v = 0 if and only if ‖v‖ = 0 
(3) ‖av‖ = |a| ‖v‖ for all scalars a.4

34

PROOF

Let v have point P = (x, y, z).

 (1) In Figure 2, ‖v‖ is the hypotenuse of the right triangle OQP, and so 
‖v‖

2 = h2 + z2 by Pythagoras’ theorem.5 But h is the hypotenuse of the 
right triangle ORQ, so h2 = x2 + y2. Now (1) follows by eliminating h2 
and taking positive square roots. 

 (2) If ‖v‖ = 0, then x2 + y2 + z2 = 0 by (1). Because squares of real numbers 
are nonnegative, it follows that x = y = z = 0, and hence that v = 0. The 
converse is because ‖0‖ = 0.

 (3) We have av = (ax, ay, az) so (1) gives ‖av‖
2 = (ax)2 + (ay)2 + (az)2 = a2

‖v‖
2.

Hence ‖av‖ =  √ 

__

 a2  ‖v‖, and we are done because  √ 

__

 a2   = |a| for any real 
number a.

5

Of course the �2-version of Theorem 1 also holds.

EXAMPLE 1

If v =   S     2
 

 
 −1   

  3
   T  then ‖v‖ =  √ 

_________

 4 + 1 + 9   =  √ 

___

 14  . Similarly if v =   S     3   
−4

  T  in 2-space 

then ‖v‖ =  √ 
______

 9 + 16   = 5.

When we view two nonzero vectors as arrows emanating from the origin, it is 
clear geometrically what we mean by saying that they have the same or opposite 
direction. This leads to a fundamental new description of vectors. 

3 When we write  √
__
p we mean the positive square root of p.

4 Recall that the absolute value |a| of a real number is defined by  |a | = { a if a ≥ 0 
-a if a < 0  

 .

5 Pythagoras’ theorem states that if a and b are sides of right triangle with hypotenuse c, then a2
+ b2

= c2. A proof is given at the 
end of this section.
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Theorem 2

Let v ≠ 0 and w ≠ 0 be vectors in �3. Then v = w as matrices if and only if v and w 
have the same direction and the same length.6

6

PROOF

If v = w, they clearly have the same direction and length. Conversely, let v and 
w be vectors with points P(x, y, z) and Q(x1, y1, z1) respectively. If v and w have 
the same length and direction then, geometrically, P and Q must be the same 

point (see Figure 3). Hence x = x1, y = y1, and z = z1, that is v =   S  
x
 

 
 y   

z
   T  =   S  

x1

 
 

 y1   
z1

   T   = w.

A characterization of a vector in terms of its length and direction only is called 
an intrinsic description of the vector. The point to note is that such a description 
does not depend on the choice of coordinate system in �3. Such descriptions are 
important in applications because physical laws are often stated in terms of vectors, 
and these laws cannot depend on the particular coordinate system used to describe 
the situation. 

Geometric Vectors
If A and B are distinct points in space, the arrow from A to B has length and 
direction. Hence:

 Suppose that A and B are any two points in �3. In Figure 4 the line segment from A to 
B is denoted  

 _
 

›

 AB  and is called the geometric vector from A to B. Point A is called the 
tail of  

 _
 

›

 AB , B is called the tip of  
 _

 

›

 AB , and the length of  
 _

 

›

 AB  is denoted  ‖  
 _

 

›

 AB  ‖ .

Note that if v is any vector in �3 with point P then v =  
 _

 

›

 OP  is itself a geometric 
vector where O is the origin. Referring to  

 _
 

›

 AB  as a “vector” seems justified by 
Theorem 2 because it has a direction (from A to B) and a length  ‖  

 _
 

›

 AB  ‖ . However 
there appears to be a problem because two geometric vectors can have the same 
length and direction even if the tips and tails are different. For example  

 _
 

›

 AB  and  
 

_

 

›

 PQ  in Figure 5 have the same length  √ 

__

 5  and the same direction (1 unit left and 2 
units up) so, by Theorem 2, they are the same vector! The best way to understand 
this apparent paradox is to see  

 _
 

›

 AB  and  
 _

 

›

 PQ  as different representations of the same 

underlying vector   S  -1   
2

  T .7 Once it is clarified, this phenomenon is a great benefit 

because, thanks to Theorem 2, it means that the same geometric vector can be 
positioned anywhere in space; what is important is the length and direction, not 
the location of the tip and tail. This ability to move geometric vectors about is very 
useful as we shall soon see. 

6 It is Theorem 2 that gives vectors their power in science and engineering because many physical quantities are determined by 
their length and magnitude (and are called vector quantities). For example, saying that an airplane is flying at 200 km/h does not 
describe where it is going; the direction must also be specified. The speed and direction comprise the velocity of the airplane, a 
vector quantity.

7 Fractions provide another example of quantities that can be the same but look different. For example   6 _ 9   and   14
 __ 21   certainly appear 

different, but they are equal fractions—both equal   2 _ 3   in “lowest terms”.
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The Parallelogram Law
We now give an intrinsic description of the sum of two vectors v and w in �3, that 
is a description that depends only on the lengths and directions of v and w and 
not on the choice of coordinate system. Using Theorem 2 we can think of these 
vectors as having a common tail A. If their tips are P and Q respectively, then they 
both lie in a plane  containing A, P, and Q, as shown in Figure 6. The vectors v 
and w create a parallelogram8 in , shaded in Figure 6, called the parallelogram 
determined by v and w. 

If we now choose a coordinate system in the plane  with A as origin, then 
the parallelogram law in the plane (Section 2.6) shows that their sum v + w is 
the diagonal of the parallelogram they determine with tail A. This is an intrinsic 
description of the sum v + w because it makes no reference to coordinates. This 
discussion proves:

The Parallelogram Law

In the parallelogram determined by two vectors v and w, the vector v + w is the 
diagonal with the same tail as v and w.

Because a vector can be positioned with its tail at any point, the parallelogram 
law leads to another way to view vector addition. In Figure 7(a) the sum v + w of 
two vectors v and w is shown as given by the parallelogram law. If w is moved so its 
tail coincides with the tip of v (Figure 7(b)) then the sum v + w is seen as “first v 
and then w. Similarly, moving the tail of v to the tip of w shows in Figure 7(c) that 
v + w is “first w and then v.” This will be referred to as the tip-to-tail rule, and it 
gives a graphic illustration of why v + w = w + v.

Since  
	

 AB   denotes the vector from a point A to a point B, the tip-to-tail rule takes 
the easily remembered form

 
	

 AB   +  
	

 BC   =  
	

 AC  

for any points A, B, and C. The next example uses this to derive a theorem in 
geometry without using coordinates.

EXAMPLE 2

Show that the diagonals of a parallelogram bisect each other.

Solution ► Let the parallelogram have vertices A, B, C, and D, as shown; let E 
denote the intersection of the two diagonals; and let M denote the midpoint 
of diagonal AC. We must show that M = E and that this is the midpoint of 
diagonal BD. This is accomplished by showing that   

	
 BM  =   

	
 MD . (Then the fact 

that these vectors have the same direction means that M = E, and the fact that 
they have the same length means that M = E is the midpoint of BD.) Now 
  
	

 AM  =   
	

 MC  because M is the midpoint of AC, and  
	

 BA   =   
	

 CD  because the figure 
is a parallelogram. Hence

  
	

 BM  =  
	

 BA   +   
	

 AM  =   
	

 CD  +   
	

 MC  =   
	

 MC  +   
	

 CD  =   
	

 MD 

where the first and last equalities use the tip-to-tail rule of vector addition.

8 Recall that a parallelogram is a four-sided figure whose opposite sides are parallel and of equal length.
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One reason for the importance of the tip-to-tail rule is that it means two or 
more vectors can be added by placing them tip-to-tail in sequence. This gives a 
useful “picture” of the sum of several vectors, and is illustrated for three vectors 
in Figure 8 where u + v + w is viewed as first u, then v, then w.

There is a simple geometrical way to visualize the (matrix) difference v - w 
of two vectors. If v and w are positioned so that they have a common tail A (see 
Figure 9), and if B and C are their respective tips, then the tip-to-tail rule gives 
w +  

	
 CB   = v. Hence v - w =  

	
 CB   is the vector from the tip of w to the tip of v. 

Thus both v - w and v + w appear as diagonals in the parallelogram determined 
by v and w (see Figure 9). We record this for reference.

Theorem 3

If v and w have a common tail, then v - w is the vector from the tip of w to the tip of v.

One of the most useful applications of vector subtraction is that it gives a simple 
formula for the vector from one point to another, and for the distance between the points.

Theorem 4

Let P1(x1, y1, z1) and P2(x2, y2, z2) be two points. Then:

1.   
	

 P1P2  =   S  
x2 - x1

 
   

 y2 - y1     
z2 - z1

   T .
2. The distance between P1 and P2 is  √ 

______________________________

   (x2 - x1)
2 + ( y2 - y1)

2 + (z2 - z1)
2  .

PROOF

If O is the origin, write v1 =   
	

 OP1  =   S  
x1

 
 

 y1   
z1

   T  and v2 =   
	

 OP2  =   S  
x2

 
 

 y2   
z2

   T  as in Figure 10.

Then Theorem 3 gives   
	

 P1P2  = v2 - v1, and (1) follows. But the distance between 

P1 and P2 is  ‖   
	

 P1P2  ‖ , so (2) follows from (1) and Theorem 1.

Of course the �2-version of Theorem 4 is also valid: If P1(x1, y1) and P2(x2, y2)

are points in �2, then   
	

 P1P2  =   S   x2 - x1             y2 - y1
   T  , and the distance between P1 and P2 is 

 √ 
___________________

  (x2 - x1)
2 + ( y2 - y1)

2  .

EXAMPLE 3

The distance between P1(2, -1, 3) and P2(1, 1, 4) is  √ 
_________________

  (-1)2 + (2)2 + (1)2   =  √ 

__

 6  , 

and the vector from P1 to P2 is   
	

 P1P2  =   S  -1
 

 
   2   

  1
   T .
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As for the parallelogram law, the intrinsic rule for finding the length and direction 
of a scalar multiple of a vector in �3 follows easily from the same situation in �2.

Scalar Multiplication

Scalar Multiple Law
If a is a real number and v ≠ 0 is a vector then:

(1) The length of av is ‖av‖ = |a|‖v‖.

(2) If av ≠ 0,9 the direction of av is  { the same as v if a > 0,    opposite to v if a < 0.  
 

9

PROOF

 (1) This part of Theorem 1. 

 (2) Let O denote the origin in �3, let v have point P, and choose any plane 
containing O and P. If we set up a coordinate system in this plane with O as 

origin, then v =  
 _

 

›

 OP  so the result in (2) follows from the scalar multiple law in 
the plane (Section 2.6).

Figure 11 gives several examples of scalar multiples of a vector v.
Consider a line L through the origin, let P be any point on L other than the 

origin O, and let p =  
	

 OP  . If t ≠ 0, then tp is a point on L because it has direction 
the same or opposite as that of p. Moreover t > 0 or t < 0 according as the point tp 
lies on the same or opposite side of the origin as P. This is illustrated in Figure 12. 

A vector u is called a unit vector if ‖u‖ = 1. Then i =   S  1 
 

 0   
0

  T  , j =   S  0 
 

 1   
0

  T  , and k =   S  0 
 

 0   
1

  T  
are unit vectors, called the coordinate vectors. We discuss them in more detail in 
Section 4.2.

EXAMPLE 4

If v ≠ 0 show that   1 ____ 
‖v‖

  v is the unique unit vector in the same direction as v.

Solution ► The vectors in the same direction as v are the scalar multiples av 
where a > 0. But ‖av‖ = |a|‖v‖ = a‖v‖ when a > 0, so av is a unit vector if 

and only if a =   1 ____ 
‖v‖

  .

The next example shows how to find the coordinates of a point on the line 
segment between two given points. The technique is important and will be used 
again below.

9 Since the zero vector has no direction, we deal only with the case av ≠ 0.

( )−2 v2v
v

( )− 1
2

v
1
2 v

� FIGURE 11

O

P

L

1
2

3
2

− 1
2 p

p
p

p

� FIGURE 12

189SECTION 4.1 Vectors and Lines



EXAMPLE 5

Let p1 and p2 be the vectors of two points P1 and P2. If M is the point one third 
the way from P1 to P2, show that the vector m of M is given by 

m =   2 _ 3  p1 +   1 _ 3  p2

Conclude that if P1 = P1(x1, y1, z1) and P2 = P2(x2, y2, z2), then M has 
coordinates

M = M(  2 _ 3  x1 +   1 _ 3  x2,   2 _ 3   y1 +   1 _ 3   y2,   2 _ 3  z1 +   1 _ 3  z2). 

Solution ► The vectors p1, p2, and m are shown in the diagram. We have 

  
	

 P1M  =   1 _ 3    
	

 P1P2  because   
	

 P1M  is in the same direction as   
	

 P1P2  and   1 _ 3   as long. By 
Theorem 3 we have   

	
 P1P2  = p2 - p1, so tip-to-tail addition gives

m = p1 +   
	

 P1M  = p1 +   1 _ 3  (p2 - p1) =   2 _ 3  p1 +   1 _ 3  p2

as required. For the coordinates, we have p1 =   S  
x1

 
 

 y1   
z1

   T  and p2 =   S  
x2

 
 

 y2   
z2

   T  , so

m =   2 _ 3    S  
x1

 
 

 y1   
z1

   T  +   1 _ 3    S  
x2

 
 

 y2   
z2

   T  =   S  
  2 _ 3   x1 +   1 _ 3   x2

 
   

   2 _ 3   y1 +   1 _ 3   y2    
 

  2 _ 3   z1 +   1 _ 3   z2

   T 
by matrix addition. The last statement follows.

Note that in Example 5 m =   2 _ 3  p1 +   1 _ 3  p2 is a “weighted average” of p1 and p2 with 
more weight on p1 because m is closer to p1.

The point M halfway between points P1 and P2 is called the midpoint between 
these points. In the same way, the vector m of M is

m =   1 _ 2  p1 +   1 _ 2  p2 =   1 _ 2  (p1 + p2)

as the reader can verify, so m is the “average” of p1 and p2 in this case. 

EXAMPLE 6

Show that the midpoints of the four sides of any quadrilateral are the vertices 
of a parallelogram. Here a quadrilateral is any figure with four vertices and 
straight sides.

Solution ► Suppose that the vertices of the quadrilateral are A, B, C, and D (in 
that order) and that E, F, G, and H are the midpoints of the sides as shown in 
the diagram. It suffices to show  

	
 EF   =   

	
 HG  (because then sides EF and HG are 

parallel and of equal length). Now the fact that E is the midpoint of AB means 
that  

	
 EB   =   1 _ 2   

	
 AB  . Similarly,  

	
 BF   =   1 _ 2   

	
 BC  , so

 
	

 EF   =  
	

 EB   +  
	

 BF   =   1 _ 2   
	

 AB   +   1 _ 2   
	

 BC   =   1 _ 2  ( 
	

 AB   +  
	

 BC  ) =   1 _ 2   
	

 AC  

A similar argument shows that   
	

 HG  =   1 _ 2   
	

 AC   too, so  
	

 EF   =   
	

 HG  as required.

P1

P2

M

O m

p1

2p

B 
F C 

G 

D 
H 

A 

E 

190 Chapter 4 Vector Geometry



Two nonzero vectors are called parallel if they have the same or opposite direction.

Many geometrical propositions involve this notion, so the following theorem will 
be referred to repeatedly.

Theorem 5

Two nonzero vectors v and w are parallel if and only if one is a scalar multiple of the other.

PROOF

If one of them is a scalar multiple of the other, they are parallel by the scalar 
multiple law. 

Conversely, assume that v and w are parallel and write d =   
‖v‖

 ____ 
‖w‖

   for 

convenience. Then v and w have the same or opposite direction. If they have 
the same direction we show that v = dw by showing that v and dw have the 
same length and direction. In fact, ‖dw‖ = |d| ‖w‖ = ‖v‖ by Theorem 1; as to 
the direction, dw and w have the same direction because d > 0, and this is the 
direction of v by assumption. Hence v = dw in this case by Theorem 2. In the 
other case, v and w have opposite direction and a similar argument shows that 
v = -dw. We leave the details to the reader.

EXAMPLE 7

Given points P(2, -1, 4), Q(3, -1, 3), A(0, 2, 1), and B(1, 3, 0), determine if 
	

 PQ   and  
	

 AB   are parallel.

Solution ► By Theorem 3,  
	

 PQ   = (1, 0, -1) and  
	

 AB   = (1, 1, -1). If  
	

 PQ   = t 
	

 AB   
then (1, 0, -1) = (t, t, -t), so 1 = t and 0 = t, which is impossible. Hence  

	
 PQ   

is not a scalar multiple of  
	

 AB  , so these vectors are not parallel by Theorem 5.

Lines in Space
These vector techniques can be used to give a very simple way of describing straight 
lines in space. In order to do this, we first need a way to specify the orientation of 
such a line, much as the slope does in the plane. 

With this in mind, we call a nonzero vector d ≠ 0 a direction vector for the line if it is 
parallel to  

	
 AB   for some pair of distinct points A and B on the line.

Of course it is then parallel to   
	

 CD  for any distinct points C and D on the line. In 
particular, any nonzero scalar multiple of d will also serve as a direction vector of 
the line. 

We use the fact that there is exactly one line that passes through a particular 

point P0(x0, y0, z0) and has a given direction vector d =   S  
a
 

 
 b   

c
   T . We want to describe 

this line by giving a condition on x, y, and z that the point P(x, y, z) lies on 

Definition 4.2

Definition 4.3

Origin
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d
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p
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this line. Let p0 =   S  
x0

 
 

 y0   
z0

   T  and p =   S  
x
 

 
 y   

z
   T  denote the vectors of P0 and P, respectively 

(see Figure 13). Then 

p = p0 +   
	

 P0P 

Hence P lies on the line if and only if   
	

 P0P  is parallel to d—that is, if and only if 
	

 P0P  = td for some scalar t by Theorem 5. Thus p is the vector of a point on the 
line if and only if p = p0 + td for some scalar t. This discussion is summed up 
as follows.

Vector Equation of a Line

The line parallel to d ≠ 0 through the point with vector p0 is given by 

p = p0 + td t any scalar

In other words, the point p is on this line if and only if a real number t exists such that 
p = p0 + td.

In component form the vector equation becomes

  S  
x
 

 
 y   

z
   T  =   S  

x0

 
 

 y0   
z0

   T  + t   S  
a
 

 
 b   

c
   T 

Equating components gives a different description of the line.

Parametric Equations of a Line

The line through P0(x0, y0, z0) with direction vector d =   S  
a
 

 
 b   

c
   T  ≠ 0 is given by

 x = x0 + ta
 y = y0 + tb  t any scalar
 z = z0 + tc

In other words, the point P(x, y, z) is on this line if and only if a real number t exists 
such that x = x0 + ta, y = y0 + tb, and z = z0 + tc.

EXAMPLE 8

Find the equations of the line through the points P0(2, 0, 1) and P1(4, -1, 1).

Solution ► Let d =   
	

 P0P1  =   S  2 
 

 1   
0

  T  denote the vector from P0 to P1. Then d is 

parallel to the line (P0 and P1 are on the line), so d serves as a direction vector 
for the line. Using P0 as the point on the line leads to the parametric equations

 x = 2 + 2t
 y = -t t a parameter
 z = 1

Note that if P1 is used (rather than P0), the equations are
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 x = 4 + 2s
 y = -1 - s s a parameter
 z = 1

These are different from the preceding equations, but this is merely the result 
of a change of parameter. In fact, s = t - 1.

EXAMPLE 9

Find the equations of the line through P0(3, -1, 2) parallel to the line with 
equations

 x = -1 + 2t
 y = 1 + t
 z = -3 + 4t

Solution ► The coefficients of t give a direction vector d =   S  2 
 

 1   
4

  T  of the given 

line. Because the line we seek is parallel to this line, d also serves as a direction 
vector for the new line. It passes through P0, so the parametric equations are

 x = 3 + 2t
 y = -1 + t
 z = 2 + 4t

EXAMPLE 10

Determine whether the following lines intersect and, if so, find the point of 
intersection.

 x = 1 - 3t x = -1 + s
 y = 2 + 5t y = 3 - 4s
 z = 1 + t z = 1 - s

Solution ► Suppose p = P(x, y, z) lies on both lines. Then 

  S  1 - 3t
 

  
 2 + 5t    

1 + t
   T  =   S  

x
 

 
 y   

z
   T  =   S  -1 + s

 
   

 3 - 4s     
1 - s

   T  for some t and s,

where the first (second) equation is because P lies on the first (second) line. 
Hence the lines intersect if and only if the three equations

 1 - 3t = -1 + s
 2 + 5t = 3 - 4s
 1 + t = 1 - s

have a solution. In this case, t = 1 and s = -1 satisfy all three equations, so the 
lines do intersect and the point of intersection is 

p =   S  1 - 3t
 

  
 2 + 5t    

1 + t
   T  =   S  -2

 
 

   7   
  2

   T 
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using t = 1. Of course, this point can also be found from p =   S  -1 + s
 

   
 3 - 4s     

1 - s
   T  using 

s = -1.

EXAMPLE 11

Show that the line through P0(x0, y0) with slope m has direction vector d =   S   1   
m

  T  
and equation y - y0 = m(x - x0). This equation is called the point-slope formula.

Solution ► Let P1(x1, y1) be the point on the line one unit to the right of P0 (see the 
diagram). Hence x1 = x0 + 1. Then d = P0P1 serves as direction vector of the line, 

and d =   S   x1 - x0             y1 - y0
   T  =   S   1             y1 - y0

   T . But the slope m can be computed as follows:

m =   
y1 - y0 _______ x1 - x0

   =   
y1 - y0 ______ 

1
   = y1 - y0

Hence d =   S   1   
m

  T  and the parametric equations are x = x0 + t, y = y0 + mt. 
Eliminating t gives y - y0 = mt = m(x - x0), as asserted.

Note that the vertical line through P0(x0, y0) has a direction vector d =   S  0   
1

  T  that is 

not of the form   S   1   
m

  T  for any m. This result confirms that the notion of slope makes 

no sense in this case. However, the vector method gives parametric equations for 
the line:

 x = x0
 y = y0 + t

Because y is arbitrary here (t is arbitrary), this is usually written simply as x = x0.

Pythagoras’ Theorem
The pythagorean theorem was known earlier, but Pythagoras (c. 550 b.c.) is credited 
with giving the first rigorous, logical, deductive proof of the result. The proof we 
give depends on a basic property of similar triangles: ratios of corresponding sides 
are equal. 

Theorem 6

Pythagoras’ Theorem
Given a right-angled triangle with hypotenuse c and sides a and b, then a2 + b2 = c2.

PROOF

Let A, B, and C be the vertices of the triangle as in Figure 14. Draw a perpendicular 
from C to the point D on the hypotenuse, and let p and q be the lengths of BD 

and DA respectively. Then DBC and CBA are similar triangles so   
p
 __ a   =   a __ c  .

y

xO x1 = x0+1x0

P0(x0,y0)

P1(x1,y1)

b 

a c
q 

D p 

C A 

B 

� FIGURE 14
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This means a2 = pc. In the same way, the similarity of DCA and CBA gives   
q
 __ 

b
   =   b __ c  , 

whence b2 = qc. But then 

a2 + b2 = pc + qc = (p + q)c = c2

because p + q = c. This proves Pythagoras’ theorem.

E X E R C I S E S  4 . 1

 1. Compute ‖v‖ if v equals:

 (a)   S     2
 

 
 -1   

  2
   T  �(b)   S     1

 
 

 -1   
  2

   T 
 (c)   S     1

 
 

   0   
-1

  T  �(d)   S  -1
 

 
   0   

  2
   T 

 (e) 2  S     1
 

 
 -1   

  2
   T  �(f ) -3  S  1 

 
 1   

2
  T 

 2. Find a unit vector in the direction of:

 (a)   S     7
 

 
 -1   

  5
   T  �(b)   S  -2

 
 

 -1   
  2

   T 
 3. (a) Find a unit vector in the direction from 

     S     3
 

 
 -1   

  4
   T  to   S  1 

 
 3   

5
  T .

 (b) If u ≠ 0, for which values of a is au a unit 
vector?

 4. Find the distance between the following pairs of 
points.

 (a)   S     3
 

 
 -1   

  0
   T  and   S     2

 
 

 -1   
  1

   T  �(b)   S     2
 

 
 -1   

  2
   T  and   S  2 

 
 0   

1
  T 

 (c)   S  -3
 

 
   5   

  2
   T  and   S  1 

 
 3   

3
  T  �(d)   S     4

 
 

   0   
-2

  T  and   S  3 
 

 2   
0

  T 
 5. Use vectors to show that the line joining the 

midpoints of two sides of a triangle is parallel to 
the third side and half as long.

 6. Let A, B, and C denote the three vertices of a 
triangle.

 (a) If E is the midpoint of side BC, show that 

 
	

 AE   =   1 _ 2  ( 
	

 AB   +  
	

 AC  ).
 �(b) If F is the midpoint of side AC, show that 

 
	

 FE   =   1 _ 2   
	

 AB  .

 7. Determine whether u and v are parallel in each 
of the following cases.

 (a) u =   S  -3
 

 
 -6   

  3
   T ; v =   S     5

 
 

  10   
-5

   T 
 �(b) u =   S     3

 
 

 -6   
  3

   T ; v =   S  -1
 

 
   2   

-1
  T 

 (c) u =   S  1 
 

 0   
1

  T ; v =   S  -1
 

 
   0   

  1
   T 

 �(d) u =   S     2
 

 
   0   

-1
  T ; v =   S  -8

 
 

   0   
  4

   T 
 8. Let p and q be the vectors of points P and 

Q, respectively, and let R be the point whose 
vector is p + q. Express the following in terms 
of p and q.

 (a)   
	

 QP   �(b)  
	

 QR 

 (c)   
	

 RP   �(d)  
	

 RO  where O is the origin

 9. In each case, find  
	

 PQ   and  ‖  
	

 PQ   ‖ .

 (a) P(1, -1, 3), Q(3, 1, 0)

 �(b) P(2, 0, 1), Q(1, -1, 6)

 (c) P(1, 0, 1), Q(1, 0, -3)

 �(d) P(1, -1, 2), Q(1, -1, 2)

 (e) P(1, 0, -3), Q(-1, 0, 3)

 �(f ) P(3, -1, 6), Q(1, 1, 4)

 10. In each case, find a point Q such that  
	

 PQ   has 
(i) the same direction as v; (ii) the opposite 
direction to v.

 (a) P(-1, 2, 2), v =   S  1 
 

 3   
1

  T 
 �(b) P(3, 0, -1), v =   S     2

 
 

 -1   
  3

   T 
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 11. Let u =   S     3
 

 
 -1   

  0
   T  , v =   S  4 

 
 0   

1
  T  , and w =   S  -1

 
 

   1   
  5

   T . 
  In each case, find x such that:

 (a) 3(2u + x) + w = 2x - v

 �(b) 2(3v - x) = 5w + u - 3x

 12. Let u =   S  1 
 

 1   
2

  T  , v =   S  0 
 

 1   
2

  T  , and w =   S     1
 

 
   0   

-1
  T . In each 

case, find numbers a, b, and c such that 
x = au + bv + cw.

 (a) x =   S     2
 

 
 -1   

  6
   T  �(b) x =   S  1 

 
 3   

0
  T 

 

 13. Let u =   S     3
 

 
 -1   

  0
   T  , v =   S  4 

 
 0   

1
  T  , and z =   S  1 

 
 1   

1
  T . In each 

case, show that there are no numbers a, b, and c 
such that:

 (a) au + bv + cz =   S  1 
 

 2   
1

  T 
 (b) au + bv + cz =   S     5

 
 

   6   
-1

  T 
 14. Let P1 = P1(2, 1, -2) and P2 = P2(1, -2, 0). 

Find the coordinates of the point P:

 (a)    1 _ 5   the way from P1 to P2

 �(b)    1 _ 4   the way from P2 to P1

 15. Find the two points trisecting the segment 
between P(2, 3, 5) and Q(8, -6, 2).

 16. Let P1 = P1(x1, y1, z1) and P2 = P2(x2, y2, z2) be 
two points with vectors p1 and p2, respectively. If 
r and s are positive integers, show that the point 
P lying   r

 ___ r + s   the way from P1 to P2 has vector

p = (  s
 ___ r + s  )p1 + (  r

 ___ r + s  )p2.

 17. In each case, find the point Q:

 (a)   
	

 PQ   =   S     2
 

 
   0   

-3
  T  and P = P(2, -3, 1)

 �(b)   
	

 PQ   =   S  -1
 

 
   4   

  7
   T  and P = P(1, 3, -4)

 18. Let u =   S     2
 

 
   0   

-4
  T  and v =   S     2

 
 

   1   
-2

  T . In each case find x: 

 (a) 2u - ‖v‖v =   3 _ 2  (u - 2x)

 �(b) 3u + 7v = ‖u‖
2(2x + v)

 19. Find all vectors u that are parallel to v =   S     3
 

 
 -2   

  1
   T  

and satisfy ‖u‖ = 3‖v‖.

 20. Let P, Q, and R be the vertices of a parallelogram 
with adjacent sides PQ and PR. In each case, find 
the other vertex S.

 (a) P(3, -1, -1), Q(1, -2, 0), R(1, -1, 2)

 �(b) P(2, 0, -1), Q(-2, 4, 1), R(3, -1, 0)

 21. In each case either prove the statement or give 
an example showing that it is false. 

 (a) The zero vector 0 is the only vector of 
length 0. 

 �(b) If ‖v - w‖ = 0, then v = w. 

 (c) If v = -v, then v = 0. 

 �(d) If ‖v‖ = ‖w‖, then v = w.

 (e) If ‖v‖ = ‖w‖, then v = ±w. 

 �(f ) If v = tw for some scalar t, then v and w 
have the same direction. 

 (g) If v, w, and v + w are nonzero, and v and 
v + w parallel, then v and w are parallel.

 �(h) ‖-5v‖ = -5‖v‖, for all v. 

 (i) If ‖v‖ = ‖2v‖, then v = 0. 

 �(j) ‖v + w‖ = ‖v‖ + ‖w‖, for all v and w.

 22. Find the vector and parametric equations of the 
following lines. 

 (a) The line parallel to   S     2
 

 
 -1   

  0
   T  and passing through 

P(1, -1, 3).

 �(b) The line passing through P(3, -1, 4) and 
Q(1, 0, -1).

 (c) The line passing through P(3, -1, 4) and 
Q(3, -1, 5).

 �(d) The line parallel to   S  1 
 

 1   
1

  T  and passing 

through P(1, 1, 1).
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 (e) The line passing through P(1, 0, -3) and 
parallel to the line with parametric equations 
x = -1 + 2t, y = 2 - t, and z = 3 + 3t.

 �(f ) The line passing through P(2, -1, 1) and 
parallel to the line with parametric equations 
x = 2 - t, y = 1, and z = t.

 (g) The lines through P(1, 0, 1) that meet the 

line with vector equation p =   S  1 
 

 2   
0

  T  + t   S     2
 

 
 -1   

  2
   T  at 

points at distance 3 from P0(1, 2, 0).

 23. In each case, verify that the points P and Q lie 
on the line.

 (a) x = 3 - 4t P(-1, 3, 0), Q(11, 0, 3)
y = 2 + t
z = 1 - t

 �(b) x = 4 - t P(2, 3, -3), Q(-1, 3, -9)
y = 3
z = 1 - 2t

 24. Find the point of intersection (if any) of the 
following pairs of lines.

 (a) x = 3 + t x = 4 + 2s
y = 1 - 2t y = 6 + 3s
z = 3 + 3t z = 1 + s

 �(b) x = 1 - t x = 2s
y = 2 + 2t y = 1 + s
z = -1 + 3t z = 3

 (c)   S  
x
 

 
 y   

z
   T  =   S     3

 
 

 -1   
  2

   T  + t   S     1
 

 
   1   

-1
  T 

    S  
x
 

 
 y   

z
   T  =   S     1

 
 

   1   
-2

  T  + s   S  2 
 

 0   
3

  T 
 �(d)   S  

x
 

 
 y   

z
   T  =   S     4

 
 

 -1   
  5

   T  + t   S  1 
 

 0   
1

  T 
    S  

x
 

 
 y   

z
   T  =   S     2

 
 

 -7   
 12

  T  + s   S     0
 

 
 -2   

  3
   T 

 25. Show that if a line passes through the origin, 
the vectors of points on the line are all scalar 
multiples of some fixed nonzero vector.

 26. Show that every line parallel to the z axis has 
parametric equations x = x0, y = y0, z = t for 
some fixed numbers x0 and y0.

 27. Let d =   S  
a
 

 
 b   

c
   T  be a vector where a, b, and c are all 

nonzero. Show that the equations of the line 
through P0(x0, y0, z0) with direction vector d 
can be written in the form

  
x - x0 ______ a   =   

y - y0 ______ 
b
   =   

z - z0 ______ c  

  This is called the symmetric form of the 
equations.

 28. A parallelogram has sides AB, BC, CD, and DA. 
Given A(1, -1, 2), C(2, 1, 0), and the midpoint 
M(1, 0, -3) of AB, find   

	
 BD .

 �29. Find all points C on the line through A(1, -1, 2) 

and B = (2, 0, 1) such that  ‖  
	

 AC   ‖  = 2 ‖  
	

 BC   ‖ .

 30. Let A, B, C, D, E, and F be the vertices of a 
regular hexagon, taken in order. Show that 
 
	

 AB   +  
	

 AC   +   
	

 AD  +  
	

 AE   +  
	

 AF   = 3  
	

 AD .

 31. (a) Let P1, P2, P3, P4, P5, and P6 be six points 
equally spaced on a circle with centre C. 
Show that

  
	

 CP1  +   
	

 CP2  +   
	

 CP3  +   
	

 CP4  +   
	

 CP5  +   
	

 CP6  = 0.

 �(b) Show that the conclusion in part (a) holds for 
any even set of points evenly spaced on the 
circle.

 (c) Show that the conclusion in part (a) holds for 
three points.

 (d) Do you think it works for any finite set of 
points evenly spaced around the circle?

 32. Consider a quadrilateral with vertices A, B, C, 
and D in order (as shown in the diagram). 

D 

B 

C 

A 

  If the diagonals AC and BD bisect each other, 
show that the quadrilateral is a parallelogram. 
(This is the converse of Example 2.) [Hint: Let E 
be the intersection of the diagonals.  Show that  
	

 AB   =   
	

 DC  by writing  
	

 AB   =  
	

 AE   +  
	

 EB  .]
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 �33. Consider the parallelogram ABCD (see diagram), 
and let E be the midpoint of side AD. 

A 
E 

F 

C 

D 

B 

  Show that BE and AC trisect each other; that is, 
show that the intersection point is one-third of 
the way from E to B and from A to C. [Hint: If 
F is one-third of the way from A to C, show that 
2 

	
 EF   =  

	
 FB   and argue as in Example 2.]

 34. The line from a vertex of a triangle to the 
midpoint of the opposite side is called a median 
of the triangle. If the vertices of a triangle have 

vectors u, v, and w, show that the point on each 
median that is   1 _ 3   the way from the midpoint to 
the vertex has vector   1 _ 3  (u + v + w). Conclude 
that the point C with vector   1 _ 3  (u + v + w) lies 
on all three medians. This point C is called the 
centroid of the triangle.

 35. Given four noncoplanar points in space, the 
figure with these points as vertices is called a 
tetrahedron. The line from a vertex through 
the centroid (see previous exercise) of the 
triangle formed by the remaining vertices is 
called a median of the tetrahedron. If u, v, 
w, and x are the vectors of the four vertices, 
show that the point on a median one-fourth 
the way from the centroid to the vertex has 
vector   1 _ 4  (u + v + w + x). Conclude that the 
four medians are concurrent.

Projections and Planes
Any student of geometry soon realizes that the notion of perpendicular lines is 
fundamental. As an illustration, suppose a point P and a plane are given and it is 
desired to find the point Q that lies in the plane and is closest to P, as shown in 
Figure 1. Clearly, what is required is to find the line through P that is perpendicular 
to the plane and then to obtain Q as the point of intersection of this line with the 
plane. Finding the line perpendicular to the plane requires a way to determine when 
two vectors are perpendicular. This can be done using the idea of the dot product of 
two vectors.

The Dot Product and Angles 

Given vectors v =   S  
x1

 
 

 y1   
z1

   T  and w =   S  
x2

 
 

 y2   
z2

   T  , their dot product v · w is a number defined

v · w = x1x2 + y1 y2 + z1z2 = vTw

Because v · w is a number, it is sometimes called the scalar product of v and w.10

EXAMPLE 1

If v =   S     2
 

 
 -1   

  3
   T  and w =   S     1

 
 

   4   
-1

  T  , then v · w = 2 · 1 + (-1) · 4 + 3 · (-1) = -5.

The next theorem lists several basic properties of the dot product.

10 Similarly, if v =   S  x1   y1
  T  and w =   S  x2   y2

  T  in �2, then v · w = x1x2 + y1y2.

S E C T I O N  4 . 2

P 

Q 

� FIGURE 1
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Theorem 1

Let u, v, and w denote vectors in �3 (or �2).
1. v · w is a real number. 
2. v · w = w · v. 
3. v · 0 = 0 = 0 · v. 
4. v · v = ‖v‖

2. 
5. (kv) · w = k(w · v) = v · (kw) for all scalars k.
6. u · (v ± w) = u · v ± u · w

PROOF

(1), (2), and (3) are easily verified, and (4) comes from Theorem 1 Section 4.1. 
The rest are properties of matrix arithmetic (because w · v = vTw, and are left 
to the reader.

The properties in Theorem 1 enable us to do calculations like

3u · (2v - 3w + 4z) = 6(u · v) - 9(u · w) + 12(u · z)

and such computations will be used without comment below. Here is an example.

EXAMPLE 2

Verify that ‖v - 3w‖
2 = 1 when ‖v‖ = 2, ‖w‖ = 1, and v · w = 2.

Solution ► We apply Theorem 1 several times:

 ‖v - 3w‖
2 = (v - 3w) · (v - 3w)

 = v · (v - 3w) - 3w · (v - 3w)
 = v · v - 3(v · w) - 3(w · v) + 9(w · w)
 = ‖v‖

2 - 6(v · w) + 9‖v‖
2

 = 4 - 12 + 9 = 1.

There is an intrinsic description of the dot product of two nonzero vectors in �3. 
To understand it we require the following result from trigonometry.

Law of Cosines

If a triangle has sides a, b, and c, and if θ is the interior angle opposite c then 

c2 = a2 + b2 - 2ab cos θ.
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PROOF

We prove it when is θ acute, that is 0 ≤ θ <   π __ 2  ; the obtuse case is similar. In 
Figure 2 we have p = a sin θ and q = a cos θ. Hence Pythagoras’ theorem gives

 c2 = p2 + (b - q)2 = a2 sin2 θ + (b - a cos θ)2

  = a2(sin2 θ + cos2 θ) + b2 - 2ab cos θ.

The law of cosines follows because sin2 θ + cos2 θ = 1 for any angle θ.

Note that the law of cosines reduces to Pythagoras’ theorem if θ is a right angle 
(because cos   π __ 2   = 0).

Now let v and w be nonzero vectors positioned with a common tail as in 
Figure 3. Then they determine a unique angle θ in the range

0 ≤ θ ≤ π

This angle θ will be called the angle between v and w. Figure 2 illustrates when θ 
is acute (less than   π __ 2  ) and obtuse (greater than   π __ 2  ). Clearly v and w are parallel if θ is 
either 0 or π. Note that we do not define the angle between v and w if one of these 
vectors is 0.

The next result gives an easy way to compute the angle between two nonzero 
vectors using the dot product.

Theorem 2

Let v and w be nonzero vectors. If θ is the angle between v and w, then 

v · w = ‖v‖‖w‖cos θ

PROOF

We calculate ‖v - w‖
2 in two ways. First apply the law of cosines to the triangle 

in Figure 4 to obtain:

‖v - w‖
2 = ‖v‖

2 + ‖w‖
2 - 2‖v‖‖w‖cos θ

On the other hand, we use Theorem 1:

 ‖v - w‖
2 = (v - w) · (v - w)

 = v · v - v · w - w · v + w · w
 = ‖v‖

2 - 2(v · w) + ‖w‖
2

Comparing these we see that - 2‖v‖‖w‖cos θ = -2(v · w), and the result follows.

If v and w are nonzero vectors, Theorem 2 gives an intrinsic description of v · w 
because ‖v‖, ‖w‖, and the angle θ between v and w do not depend on the choice of 
coordinate system. Moreover, since ‖v‖ and ‖v‖ are nonzero (v and w are nonzero 
vectors), it gives a formula for the cosine of the angle θ:

 cos θ =   
v · w _______ 

‖v‖‖w‖
   (∗)

Since 0 ≤ θ ≤ π, this can be used to find θ.

b
b − q

a c

q

p

θ

� FIGURE 2

θ obtuse

θ acute

θ

θ

v

w

v

w

� FIGURE 3

θ

v

w

v w− 

� FIGURE 4
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EXAMPLE 3

Compute the angle between u =   S  -1
 

 
   1   

  2
   T  and v =   S     2

 
 

   1   
-1

  T .
Solution ► Compute cos θ =   

v · w _______ 
‖v‖‖w‖

   =   
-2 + 1 - 2  ___________ 

 √ 

__

 6    √ 

__

 6  
   = -  

1 __ 
2

  . Now recall that 

cos θ and sin θ are defined so that (cos θ, sin θ) is the point on the unit circle 
determined by the angle θ (drawn counterclockwise, starting from the positive 
x axis). In the present case, we know that cos θ = -  1 _ 2   and that 0 ≤ θ ≤ π. 
Because cos   π __ 3   =   1 _ 2  , it follows that θ =   2π

 __ 3   (see the diagram).

If v and w are nonzero, (∗) shows that cos θ has the same sign as v · w, so 

 v · w > 0 if and only if θ is acute (0 ≤ θ <   π __ 2  )
 v · w < 0 if and only if θ is obtuse (  π __ 2   < θ ≤ 0)
 v · w = 0 if and only if θ =   π __ 2  

In this last case, the (nonzero) vectors are perpendicular. The following terminology 
is used in linear algebra: 

Two vectors v and w are said to be orthogonal if v = 0 or w = 0 or the angle between 
them is   π 

__ 2  .

Since v · w = 0 if either v = 0 or w = 0, we have the following theorem:

Theorem 3

Two vectors v and w are orthogonal if and only if v · w = 0.

EXAMPLE 4

Show that the points P(3, -1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a 
right triangle.

Solution ► The vectors along the sides of the triangle are

 
	

 PQ   =   S  1 
 

 2   
3

  T  ,  
	

 PR   =   S  3 
 

 1   
3

  T  , and  
	

 QR  =   S     2
 

 
 -1   

  0
   T 

Evidently  
	

 PQ   ·  
	

 QR  = 2 - 2 + 0 = 0, so  
	

 PQ   and  
	

 QR  are orthogonal vectors. 
This means sides PQ and QR are perpendicular—that is, the angle at Q is a 
right angle.

Example 5 demonstrates how the dot product can be used to verify geometrical 
theorems involving perpendicular lines.

y

xO

2
3
�

−1
2

( , )−1
2

3
2

Definition 4.5
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EXAMPLE 5

A parallelogram with sides of equal length is called a rhombus. Show that the 
diagonals of a rhombus are perpendicular.

Solution ► Let u and v denote vectors along two adjacent sides of a rhombus, as 
shown in the diagram. Then the diagonals are u - v and u + v, and we compute

 (u - v) · (u + v) = u · (u + v) - v · (u + v)
 = u · u + u · v - v · u - v · v
 = ‖u‖

2 - ‖v‖
2

 = 0

because ‖u‖ = ‖v‖ (it is a rhombus). Hence u - v and u + v are orthogonal.

Projections
In applications of vectors, it is frequently useful to write a vector as the sum of two 
orthogonal vectors. Here is an example.

EXAMPLE 6

Suppose a ten-kilogram block is placed on a flat surface inclined 30° to the 
horizontal as in the diagram. Neglecting friction, how much force is required 
to keep the block from sliding down the surface?

Solution ► Let w denote the weight (force due to gravity) exerted on the block. 
Then ‖w‖ = 10 kilograms and the direction of w is vertically down as in the 
diagram. The idea is to write w as a sum w = w1 + w2 where w1 is parallel to 
the inclined surface and w2 is perpendicular to the surface. Since there is no 
friction, the force required is -w1 because the force w2 has no effect parallel to 
the surface. As the angle between w and w2 is 30° in the diagram, we have 

  
‖w1‖

 _____ 
‖w‖

   = sin 30° =   1 _ 2  . Hence ‖w1‖ =   1 _ 2  ‖w‖ =   1 _ 2  10 = 5. Thus the required 

force has a magnitude of 5 kilograms weight directed up the surface.

If a nonzero vector d is specified, the key idea in Example 6 is to be able to write 
an arbitrary vector u as a sum of two vectors,

u = u1 + u2

where u1 is parallel to d and u2 = u - u1 is orthogonal to d. Suppose that u and 
d ≠ 0 emanate from a common tail Q (see Figure 5). Let P be the tip of u, and let 
P1 denote the foot of the perpendicular from P to the line through Q parallel to d. 
Then u1 =   

	
 QP1  has the required properties:

1. u1 is parallel to d.
2. u2 = u - u1 is orthogonal to d.
3. u = u1 + u2.

The vector u1 =   
	

 QP1  in Figure 5 is called the projection of u on d. It is denoted

u1 = projd u

v

u
u − v

u + v

30° 

30° 
w

w1 

w2 

P

P1

Q
(a)

P1

(b)

Q

P

u1

u1

u

u

d

d

u− 1u

u− 1u

� FIGURE 5
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In Figure 5(a) the vector u1 = projd u has the same direction as d; however, u1
and d have opposite directions if the angle between u and d is greater than   π __ 2  . 
(Figure 5(b)). Note that the projection u1 = projd u is zero if and only if u and d 
are orthogonal.

Calculating the projection of u on d ≠ 0 is remarkably easy.     

Theorem 4

Let u and d ≠ 0 be vectors.
1. The projection of u on d is given by projd u =   u · d _____ 

‖d‖
2
   d.

2. The vector u - projd u is orthogonal to d.

PROOF

The vector u1 = projd u is parallel to d and so has the form u1 = td for some 
scalar t. The requirement that u - u1 and d are orthogonal determines t. In fact, 
it means that (u - u1) · d = 0 by Theorem 3. If u1 = td is substituted here, the 
condition is

0 = (u - td) · d = u · d - t(d · d) = u · d - t‖d‖
2

It follows that t =   u · d _____ 
‖d‖

2
  , where the assumption that d ≠ 0 guarantees that 

‖d‖
2 ≠ 0.

EXAMPLE 7

Find the projection of u =   S     2
 

 
 -3   

  1
   T  on d =   S     1

 
 

 -1   
  3

   T  and express u = u1 + u2 where 

u1 is parallel to d and u2 is orthogonal to d.

Solution ► The projection u1 of u on d is

u1 = projd u =   u · d _____ 
‖d‖

2
   d =   2 + 3 + 3  ______________  

12 + (-1)2 + 32
    S     1

 
 

 -1   
  3

   T  =   8 __ 11    S     1
 

 
 -1   

  3
   T 

Hence u2 = u - u1 =   1 __ 11     S     14
 

  
 -25    

-13
  T  , and this is orthogonal to d by Theorem 4 

(alternatively, observe that d · u2 = 0). Since u = u1 + u2, we are done.

EXAMPLE 8

Find the shortest distance (see diagram) from the point P(1, 3, -2) to the line 

through P0(2, 0, -1) with direction vector d =   S     1
 

 
 -1   

  0
   T . Also find the point Q that 

lies on the line and is closest to P.

P(1, 3, −2) 

P 0 (2, 0, −1) 

Q 
u

u1 

u u− 1 

d
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Solution ► Let u =   S     1
 

 
   3   

-2
  T  -   S     2

 
 

   0   
-1

  T  =   S  -1
 

 
   3   

-1
  T  denote the vector from P0 to P, and let 

u1 denote the projection of u on d. Thus

u1 =   u · d _____ 
‖d‖

2
   d =   -1 - 3 + 0  ______________  

12 + (-1)2 + 02
   d = -2d =   S  -2

 
 

   2   
  0

   T 
by Theorem 4. We see geometrically that the point Q on the line is closest to 
P, so the distance is

 ‖  
	

 QP   ‖  = ‖u - u1‖ =  ‖   S     1
 

 
   1   

-1
  T  ‖  =  √ 

__

 3  

To find the coordinates of Q, let p0 and q denote the vectors of P0 and Q, 

respectively. Then p0 =   S     2
 

 
   0   

-1
  T  and q = p0 + u1 =   S     0

 
 

   2   
-1

  T . 
Hence Q(0, 2, -1) is the required point. It can be checked that the distance 
from Q to P is  √ 

__

 3  , as expected.

Planes
It is evident geometrically that among all planes that are perpendicular to a given 
straight line there is exactly one containing any given point. This fact can be used to 
give a very simple description of a plane. To do this, it is necessary to introduce the 
following notion: 

A nonzero vector n is called a normal for a plane if it is orthogonal to every vector in 
the plane.

For example, the coordinate vector k is a normal for the x-y plane. 
Given a point P0 = P0(x0, y0, z0) and a nonzero vector n, there is a unique plane 

through P0 with normal n, shaded in Figure 6. A point P = P(x, y, z) lies on this 
plane if and only if the vector   

	
 P0P  is orthogonal to n—that is, if and only if 

n ·   
	

 P0P  = 0. Because   
	

 P0P  =   S  
x - x0

 
  

 y - y0    
z - z0

   T  this gives the following result:

Scalar Equation of a Plane

The plane through P0(x0, y0, z0) with normal n =   S  
a
 

 
 b   

c
   T  ≠ 0 as a normal vector is given by 

a(x - x0) + b( y - y0) + c(z - z0) = 0

In other words, a point P(x, y, z) is on this plane if and only if x, y, and z satisfy this 
equation.

Definition 4.7

P 0 

P n

� FIGURE 6
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EXAMPLE 9

Find an equation of the plane through P0(1, -1, 3) with n =   S     3
 

 
 -1   

  2
   T  as normal.

Solution ► Here the general scalar equation becomes 

3(x - 1) - ( y + 1) + 2(z - 3) = 0

This simplifies to 3x - y + 2z = 10.

If we write d = ax0 + by0 + cz0, the scalar equation shows that every plane with 

normal n =   S  
a
 

 
 b   

c
   T  has a linear equation of the form

ax + by + cz = d (∗)

for some constant d. Conversely, the graph of this equation is a plane with n =   S  
a
 

 
 b   

c
   T 

as a normal vector (assuming that a, b, and c are not all zero).

EXAMPLE 10

Find an equation of the plane through P0(3, -1, 2) that is parallel to the plane 
with equation 2x - 3y = 6.

Solution ► The plane with equation 2x - 3y = 6 has normal n =   S     2
 

 
 -3   

  0
   T . Because 

the two planes are parallel, n serves as a normal for the plane we seek, so the 
equation is 2x - 3y = d for some d by equation (∗). Insisting that P0(3, -1, 2) 
lies on the plane determines d; that is, d = 2 · 3 - 3(-1) = 9. Hence, the 
equation is 2x - 3y = 9.

Consider points P0(x0, y0, z0) and P(x, y, z) with vectors p0 =   S  
x0

 
 

 y0   
z0

   T  and p =   S  
x
 

 
 y   

z
   T . 

Given a nonzero vector n, the scalar equation of the plane through P0(x0, y0, z0) with 

normal n =   S  
a
 

 
 b   

c
   T  takes the vector form:

Vector Equation of a Plane

The plane with normal n ≠ 0 through the point with vector p0 is given by 

n · (p - p0) = 0

In other words, the point with vector p is on the plane if and only if p satisfies this condition.

Moreover, equation (∗) translates as follows: 

Every plane with normal n has vector equation n · p = d for some number d.

This is useful in the second solution of Example 11.
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EXAMPLE 11

Find the shortest distance from the point P(2, 1, -3) to the plane with equation 
3x - y + 4z = 1. Also find the point Q on this plane closest to P.

Solution 1 ► The plane in question has normal n =   S     3
 

 
 -1   

  4
   T . Choose any point 

P0 on the plane—say P0(0, -1, 0)—and let Q(x, y, z) be the point on the plane 

closest to P (see the diagram). The vector from P0 to P is u =   S     2
 

 
   2   

-3
  T . Now erect 

n with its tail at P0. Then  
	

 QP   = u1 and u1 is the projection of u on n:

u1 =   n · u _____ 
‖n‖

2
   n =   -8 __ 26    S     3

 
 

 -1   
  4

   T  =   -4 __ 13    S     3
 

 
 -1   

  4
   T 

Hence the distance is  ‖  
	

 QP   ‖  = ‖u1‖ =   4  √ 

___

 26  
 ____ 13  . To calculate the point Q, let 

q =   S  
x
 

 
 y   

z
   T  and p0 =   S     0

 
 

 -1   
  0

   T  be the vectors of Q and P0. Then 

q = p0 + u - u1 =   S     0
 

 
 -1   

  0
   T  +   S     2

 
 

   2   
-3

  T  +   4 __ 13     S     3
 

 
 -1   

  4
   T  =   S   

  38 __ 13  

 
 

   9 __ 13    
 

  -23 ___ 13  

  T 
This gives the coordinates of Q(  38 __ 13  ,   

9 __ 13  ,   
-23 ___ 13  ).

Solution 2 ► Let q =   S  
x
 

 
 y   

z
   T  and p =   S     2

 
 

   1   
-3

  T  be the vectors of Q and P. Then Q is on 

the line through P with direction vector n, so q = p + tn for some scalar t. In 
addition, Q lies on the plane, so n · q = 1. This determines t:

1 = n · q = n · (p + tn) = n · p + t‖n‖
2 = -7 + t(26)

This gives t =   8 __ 26   =   4 __ 13  , so

  S  
x
 

 
 y   

z
   T  = q = p + tn =   S     2

 
 

   1   
-3

  T  +   4 __ 13    S     3
 

 
 -1   

  4
   T  =   1 __ 13    S     38

 
  

    9    
-23

  T 
as before. This determines Q (in the diagram), and the reader can verify that 

the required distance is  ‖  
	

 QP   ‖  =   4 __ 13   √ 

___

 26  , as before.

The Cross Product
If P, Q, and R are three distinct points in �3 that are not all on some line, it is clear 
geometrically that there is a unique plane containing all three. The vectors  

	
 PQ   and  

	
 PR   both lie in this plane, so finding a normal amounts to finding a nonzero vector 

orthogonal to both  
	

 PQ   and  
	

 PR  . The cross product provides a systematic way to 
do this. 

P(2, 1, −3) 

P0(0, −1, 0) Q(x, y, z) 
u

u1 

n
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Given vectors v1 =   S  
x1

 
 

 y1   
z1

   T  and v2 =   S  
x2

 
 

 y2   
z2

   T  , define the cross product v1 × v2 by

v1 × v2 =   S   
y1z2 - z1y2

  
     

  -(x1z2 - z1x2)         
x1 y2 - y1x2

   T  .
(Because it is a vector, v1 × v2 is often called the vector product.) There is an easy 
way to remember this definition using the coordinate vectors: 

i =   S  1 
 

 0   
0

  T  , j =   S  0 
 

 1   
0

  T  , and k =   S  0 
 

 0   
1

  T 
They are vectors of length 1 pointing along the positive x, y, and z axes, 
respectively, as in Figure 7. The reason for the name is that any vector can be 
written as 

  S  
x
 

 
 y   

z
   T  = xi + yj + zk.

With this, the cross product can be described as follows:

Determinant Form of the Cross Product

If v1 =   S  
x1

 
 

 y1   
z1

   T  and v2 =   S  
x2

 
 

 y2   
z2

   T  are two vectors, then

v1 × v2 = det 
i x

j y

k z

x

y

z

1 2

1 2

1 2

 =  |   
y1 y2           z1 z2

   |  i -  |   
x1 x2           z1 z2

   |  j +  |   
x1 x2          y1 y2

   |  k

where the determinant is expanded along the first column.

EXAMPLE 12

If v =   S     2
 

 
 -1   

  4
   T  and w =   S  1 

 
 3   

7
  T  , then 

 v1 × v2 = det 
i

j

k

−

2 1

1 3

4 7

 =  |  -1 3    
4 7

  |  i -  |  2 1    
4 7

  |  j +  |   2 1    
-1 3

  |  k

  = -19i - 10j + 7k

  =   S  -19
 

  
 -10    

   7
   T 

Observe that v × w is orthogonal to both v and w in Example 12. This holds in 
general as can be verified directly by computing v · (v × w) and w · (v × w), and 
is recorded as the first part of the following theorem. It will follow from a more 

Definition 4.8

z

x

O 

y

ji

k

� FIGURE 7
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general result which, together with the second part, will be proved in Section 4.3 
where a more detailed study of the cross product will be undertaken. 

Theorem 5

Let v and w be vectors in �3.
1. v × w is a vector orthogonal to both v and w. 
2. If v and w are nonzero, then v × w = 0 if and only if v and w are parallel.

It is interesting to contrast Theorem 5(2) with the assertion (in Theorem 3) that

v · w = 0 if and only if v and w are orthogonal.

EXAMPLE 13

Find the equation of the plane through P(1, 3, -2), Q(1, 1, 5), and R(2, -2, 3).

Solution ► The vectors  
	

 PQ   =   S     0
 

 
 -2   

  7
   T  and  

	
 PR   =   S     1

 
 

 -5   
  5

   T  lie in the plane, so

 
	

 PQ   ×  
	

 PR   = det 
i

j

k

− −
0 1

2 5

7 5

 = 25i + 7j + 2k =   S  25
 

 
  7   

 2
   T 

is a normal for the plane (being orthogonal to both  
	

 PQ   and  
	

 PR  ). Hence the 
plane has equation 

25x + 7y + 2z = d for some number d.

Since P(1, 3, -2) lies in the plane we have 25 · 1 + 7 · 3 + 2(-2) = d. Hence 
d = 42 and the equation is 25x + 7y + 2z = 42. Incidentally, the same 
equation is obtained (verify) if  

	
 QP   and  

	
 QR , or  

	
 RP   and  

	
 RQ , are used as the 

vectors in the plane.

EXAMPLE 14

Find the shortest distance between the nonparallel lines 

  S  
x
 

 
 y   

z
   T  =   S     1

 
 

   0   
-1

  T  + t   S  2 
 

 0   
1

  T  and   S  
x
 

 
 y   

z
   T  =   S  3 

 
 1   

0
  T  + s   S     1

 
 

   1   
-1

  T 
Then find the points A and B on the lines that are closest together.

Solution ► Direction vectors for the two lines are d1 =   S  2 
 

 0   
1

  T  and d2 =   S     1
 

 
   1   

-1
  T  , so 

n = d1 × d2 = det 

i

j

k −
0

1

2

1

1

1

 =   S  -1
 

 
   3   

  2
   T 

208 Chapter 4 Vector Geometry



is perpendicular to both lines. Consider the plane shaded in the diagram 
containing the first line with n as normal. This plane contains P1(1, 0, -1) 
and is parallel to the second line. Because P2(3, 1, 0) is on the second line, the 
distance in question is just the shortest distance between P2(3, 1, 0) and this 

plane. The vector u from P1 to P2 is u =   
	

 P1P2  =   S  2 
 

 1   
1

  T  and so, as in Example 11, 

the distance is the length of the projection of u on n.

distance =  ‖   u · n _____ 
‖n‖

2
   n ‖  =   

|u · n|
 ______ 

‖n‖
   =   3 ___ 

 √ 

___

 14  
   =   3 √ 

___

 14  
 ____ 14  

Note that it is necessary that n = d1 × d2 be nonzero for this calculation to be 
possible. As is shown later (Theorem 4 Section 4.3), this is guaranteed by the 
fact that d1 and d2 are not parallel.

 The points A and B have coordinates A(1 + 2t, 0, t - 1) and 

B(3 + s, 1 + s, -s) for some s and t, so  
	

 AB   =   S  2 + s - 2t
 

    
 1 + s      

1 - s - t
   T . This vector is 

orthogonal to both d1 and d2, and the conditions  
	

 AB   · d1 = 0 and  
	

 AB   · d2 = 0 
give equations 5t - s = 5 and t - 3s = 2. The solution is s =   -5 __ 14   and t =   13 __ 14  , so 

the points are A Q   40 __ 14  , 0,   -1 __ 14   R  and B Q   37 __ 14  ,   
9 __ 14  ,   

5 __ 14   R . We have  ‖  
	

 AB   ‖  =   3 √ 

___

 14  
 ____ 14  , as before.

E X E R C I S E S  4 . 2

 1. Compute u · v where:

 (a) u =   S     2
 

 
 -1   

  3
   T  , v =   S  -1

 
 

   1   
  1

   T 
 �(b) u =   S     1

 
 

   2   
-1

  T  , v = u

 (c) u =   S     1
 

 
   1   

-3
  T  , v =   S     2

 
 

 -1   
  1

   T 
 �(d) u =   S     3

 
 

 -1   
  5

   T  , v =   S     6
 

 
 -7   

-5
  T 

 (e) u =   S  
x
 

 
 y   

z
   T  , v =   S  

a
 

 
 b   

c
   T 

 �(f ) u =   S  
a
 

 
 b   

c
   T  , v = 0

 2. Find the angle between the following pairs of 
vectors.

 (a) u =   S  1 
 

 0   
3

  T  , v =   S  2 
 

 0   
1

  T  �(b) u =   S     3
 

 
 -1   

  0
   T  , v =   S  -6

 
 

   2   
  0

   T 
 (c) u =   S     7

 
 

 -1   
  3

   T  , v =   S     1
 

 
   4   

-1
  T 

 �(d) u =   S     2
 

 
   1   

-1
  T  , v =   S  3 

 
 6   

3
  T  (e) u =   S     1

 
 

 -1   
  0

   T  , v =   S  0 
 

 1   
1

  T 
 �(f ) u =   S  0 

 
 3   

4
  T  , v =   S  5 √ 

__

 2  
 

  
 -7    

-1
   T 

 3. Find all real numbers x such that:

 (a)   S     2
 

 
 -1   

  3
   T  and   S   

  x
 

 
 -2   

  1
   T  are orthogonal.

 �(b)   S     2
 

 
 -1   

  1
   T  and   S  1 

 
 x   

2
  T  are at an angle of   π __ 3  .

P2

B

P1
A

u

n
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 4. Find all vectors v =   S  
x
 

 
 y   

z
   T  orthogonal to both:

 (a) u1 =   S  -1
 

 
 -3   

  2
   T  , u2 =   S  0 

 
 1   

1
  T 

 �(b) u1 =   S     3
 

 
 -1   

  2
   T  , u2 =   S  2 

 
 0   

1
  T 

 (c) u1 =   S     2
 

 
   0   

-1
  T  , u2 =   S  -4

 
 

   0   
  2

   T 
 �(d) u1 =   S     2

 
 

 -1   
  3

   T  , u2 =   S  0 
 

 0   
0

  T 
 5. Find two orthogonal vectors that are both 

orthogonal to v =   S  1 
 

 2   
0

  T .
 6. Consider the triangle with vertices P(2, 0, -3), 

Q(5, -2, 1), and R(7, 5, 3).

 (a) Show that it is a right-angled triangle.

 �(b) Find the lengths of the three sides and verify 
the Pythagorean theorem.

 7. Show that the triangle with vertices A(4, -7, 9), 
B(6, 4, 4), and C(7, 10, -6) is not a right-angled 
triangle.

 8. Find the three internal angles of the triangle 
with vertices:

 (a) A(3, 1, -2), B(3, 0, -1), and C(5, 2, -1)

 �(b) A(3, 1, -2), B(5, 2, -1), and C(4, 3, -3)

 9. Show that the line through P0(3, 1, 4) and 
P1(2, 1, 3) is perpendicular to the line through 
P2(1, -1, 2) and P3(0, 5, 3).

 10. In each case, compute the projection of u on v.

 (a) u =   S  5 
 

 7   
1

  T  , v =   S     2
 

 
 -1   

  3
   T 

 �(b) u =   S     3
 

 
 -2   

  1
   T  , v =   S  4 

 
 1   

1
  T 

 c) u =   S     1
 

 
 -1   

  2
   T  , v =   S     3

 
 

 -1   
  1

   T 
 �(d) u =   S     3

 
 

 -2   
-1

  T  , v =   S  -6
 

 
   4   

  2
   T 

 11. In each case, write u = u1 + u2, where u1 is 
parallel to v and u2 is orthogonal to v.

 (a) u =   S     2
 

 
 -1   

  1
   T  , v =   S     1

 
 

 -1   
  3

   T 
 �(b) u =   S  3 

 
 1   

0
  T  , v =   S  -2

 
 

   1   
  4

   T 
 (c) u =   S     2

 
 

 -1   
  0

   T  , v =   S     3
 

 
   1   

-1
  T 

 �(d) u =   S     3
 

 
 -2   

  1
   T  , v =   S  -6

 
 

   4   
-1

  T 
 12. Calculate the distance from the point P to the 

line in each case and find the point Q on the line 
closest to P.

 (a) P(3, 2, -1) line:   S  
x
 

 
 y   

z
   T  =   S  2 

 
 1   

3
  T  + t   S     3

 
 

 -1   
-2

  T 
 �(b) P(1, -1, 3) line:   S  

x
 

 
 y   

z
   T  =   S     1

 
 

   0   
-1

  T  + t   S  3 
 

 1   
4

  T 
 13. Compute u × v where:

 (a) u =   S  1 
 

 2   
3

  T  , v =   S  1 
 

 1   
2

  T 
 �(b) u =   S     3

 
 

 -1   
  0

   T  , v =   S  -6
 

 
   2   

  0
   T 

 (c) u =   S     3
 

 
 -2   

  1
   T  , v =   S     1

 
 

   1   
-1

  T 
 �(d) u =   S     2

 
 

   0   
-1

  T  , v =   S  1 
 

 4   
7

  T 
 14. Find an equation of each of the following planes.

 (a) Passing through A(2, 1, 3), B(3, -1, 5), and 
C(1, 2, -3).

 �(b) Passing through A(1, -1, 6), B(0, 0, 1), and 
C(4, 7, -11).

 (c) Passing through P(2, -3, 5) and parallel to 
the plane with equation 3x - 2y - z = 0.

 �(d) Passing through P(3, 0, -1) and parallel to 
the plane with equation 2x - y + z = 3.
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 (e) Containing P(3, 0, -1) and the line 

    S  
x
 

 
 y   

z
   T  =   S  0 

 
 0   

2
  T  + t   S  1 

 
 0   

1
  T .

 �(f ) Containing P(2, 1, 0) and the line 

    S  
x
 

 
 y   

z
   T  =   S     3

 
 

 -1   
  2

   T  + t   S     1
 

 
   0   

-1
  T .

 (g) Containing the lines 

    S  
x
 

 
 y   

z
   T  =   S     1

 
 

 -1   
  2

   T  + t   S  1 
 

 1   
1

  T  and   S  
x
 

 
 y   

z
   T  =   S  0 

 
 0   

2
  T  + t   S     1

 
 

 -1   
  0

   T .
 �(h) Containing the lines   S  

x
 

 
 y   

z
   T  =   S  3 

 
 1   

0
  T  + t   S     1

 
 

 -1   
  3

   T  
  and   S  

x
 

 
 y   

z
   T  =   S     0

 
 

 -2   
  5

   T  + t   S     2
 

 
   1   

-1
  T .

 (i) Each point of which is equidistant from 
P(2, -1, 3) and Q(1, 1, -1).

 �(j) Each point of which is equidistant from 
P(0, 1, -1) and Q(2, -1, -3).

 15. In each case, find a vector equation of the line.

 (a) Passing through P(3, -1, 4) and 
perpendicular to the plane 3x - 2y - z = 0.

 �(b) Passing through P(2, -1, 3) and 
perpendicular to the plane 2x + y = 1.

 (c) Passing through P(0, 0, 0) and perpendicular 
to the lines 

    S  
x
 

 
 y   

z
   T  =   S  1 

 
 1   

0
  T  + t   S     2

 
 

   0   
-1

  T  and   S  
x
 

 
 y   

z
   T  =   S     2

 
 

   1   
-3

  T  + t   S     1
 

 
 -1   

  5
   T .

 �(d) Passing through P(1, 1, -1), and 
perpendicular to the lines 

    S  
x
 

 
 y   

z
   T  =   S  2 

 
 0   

1
  T  + t   S     1

 
 

   1   
-2

  T  and   S  
x
 

 
 y   

z
   T  =   S     5

 
 

   5   
-2

  T  + t   S     1
 

 
   2   

-3
  T .

 (e) Passing through P(2, 1, -1), intersecting 

  the line   S  
x
 

 
 y   

z
   T  =   S     1

 
 

   2   
-1

  T  + t   S  3 
 

 0   
1

  T  , and 

  perpendicular to that line.

 �(f ) Passing through P(1, 1, 2), intersecting the line 

    S  
x
 

 
 y   

z
   T  =   S  2 

 
 1   

0
  T  + t   S  1 

 
 1   

1
  T  , and perpendicular 

  to that line.

 16. In each case, find the shortest distance from the 
point P to the plane and find the point Q on the 
plane closest to P.

 (a) P(2, 3, 0); plane with equation 5x + y + z = 1.

 �(b) P(3, 1, -1); plane with equation 
2x + y - z = 6.

 17. (a) Does the line through P(1, 2, -3) with 

direction vector d =   S     1
 

 
   2   

-3
  T  lie in the plane 

2x - y - z = 3? Explain.

 �(b) Does the plane through P(4, 0, 5), Q(2, 2, 1), 
and R(1, -1, 2) pass through the origin? 
Explain.

 18. Show that every plane containing P(1, 2, -1) and 
Q(2, 0, 1) must also contain R(-1, 6, -5).

 19. Find the equations of the line of intersection of 
the following planes.

 (a) 2x - 3y + 2z = 5 and x + 2y - z = 4.

 �(b) 3x + y - 2z = 1 and x + y + z = 5.

 20. In each case, find all points of intersection of the 

given plane and the line   S  
x
 

 
 y   

z
   T  =   S     1

 
 

 -2   
  3

   T  + t   S     2
 

 
   5   

-1
  T .

 (a) x - 3y + 2z = 4 �(b) 2x - y - z = 5

 (c) 3x - y + z = 8 �(d) -x - 4y - 3z = 6

 21. Find the equation of all planes:

 (a) Perpendicular to the line   S  
x
 

 
 y   

z
   T  =   S     2

 
 

 -1   
  3

   T  + t   S  2 
 

 1   
3

  T .
 �(b) Perpendicular to the line   S  

x
 

 
 y   

z
   T  =   S     1

 
 

   0   
-1

  T  + t   S  3 
 

 0   
2

  T .
 (c) Containing the origin.

 �(d) Containing P(3, 2, -4).

 (e) Containing P(1, 1, -1) and Q(0, 1, 1).

 �(f ) Containing P(2, -1, 1) and Q(1, 0, 0).

 (g) Containing the line   S  
x
 

 
 y   

z
   T  =   S  2 

 
 1   

0
  T  + t   S     1

 
 

 -1   
  0

   T .
 �(h) Containing the line   S  

x
 

 
 y   

z
   T  =   S  3 

 
 0   

2
  T  + t   S     1

 
 

 -2   
-1

  T .

211SECTION 4.2 Projections and Planes



 22. If a plane contains two distinct points P1 and 
P2, show that it contains every point on the line 
through P1 and P2.

 23. Find the shortest distance between the following 
pairs of parallel lines.

 (a)   S  
x
 

 
 y   

z
   T  =   S     2

 
 

 -1   
  3

   T  + t   S     1
 

 
 -1   

  4
   T ;   S  x 

 
 y   

z
   T  =   S  1 

 
 0   

1
  T  + t   S     1

 
 

 -1   
  4

   T 
 �(b)   S  

x
 

 
 y   

z
   T  =   S  3 

 
 0   

2
  T  + t   S  3 

 
 1   

0
  T ;   S  x 

 
 y   

z
   T  =   S  -1

 
 

   2   
  2

   T  + t   S  3 
 

 1   
0

  T 
 24. Find the shortest distance between the following 

pairs of nonparallel lines and find the points on 
the lines that are closest together.

 (a)   S  
x
 

 
 y   

z
   T  =   S  3 

 
 0   

1
  T  + s   S     2

 
 

   1   
-3

  T ;   S  
x
 

 
 y   

z
   T  =   S     1

 
 

   1   
-1

  T  + t   S  1 
 

 0   
1

  T 
 �(b)   S  

x
 

 
 y   

z
   T  =   S     1

 
 

 -1   
  0

   T  + s   S  1 
 

 1   
1

  T ;   S  
x
 

 
 y   

z
   T  =   S     2

 
 

 -1   
  3

   T  + t   S  3 
 

 1   
0

  T 
 (c)   S  

x
 

 
 y   

z
   T  =   S     3

 
 

   1   
-1

  T  + s   S     1
 

 
   1   

-1
  T ;   S  

x
 

 
 y   

z
   T  =   S  1 

 
 2   

0
  T  + t   S  1 

 
 0   

2
  T 

 �(d)   S  
x
 

 
 y   

z
   T  =   S  1 

 
 2   

3
  T  + s   S     2

 
 

   0   
-1

  T ;   S  
x
 

 
 y   

z
   T  =   S     3

 
 

 -1   
  0

   T  + t   S  1 
 

 1   
0

  T 
 25. Show that two lines in the plane with slopes m1 

and m2 are perpendicular if and only if 
m1m2 = -1. [Hint: Example 11 Section 4.1.]

 26. (a) Show that, of the four diagonals of a cube, 
no pair is perpendicular.

 �(b) Show that each diagonal is perpendicular to 
the face diagonals it does not meet.

 27. Given a rectangular solid with sides of lengths 1, 
1, and  √ 

__

 2  , find the angle between a diagonal and 
one of the longest sides.

 �28. Consider a rectangular solid with sides of lengths 
a, b, and c. Show that it has two orthogonal 
diagonals if and only if the sum of two of a2, b2, 
and c2 equals the third.

 29. Let A, B, and C(2, -1, 1) be the vertices of a 

triangle where  
	

 AB   is parallel to   S     1
 

 
 -1   

  1
   T  ,  	 AC   is 

parallel to   S     2
 

 
   0   

-1
  T  , and angle C = 90°. Find the 

equation of the line through B and C.

 30. If the diagonals of a parallelogram have equal 
length, show that the parallelogram is a 
rectangle.

 31. Given v =   S  
x
 

 
 y   

z
   T  in component form, show that the 

projections of v on i, j, and k are xi, yj, and zk, 
respectively.

 32. (a) Can u · v = -7 if ‖u‖ = 3 and ‖v‖ = 2? 
Defend your answer.

 (b) Find u · v if u =   S     2
 

 
 -1   

  2
   T  , ‖v‖ = 6, and the 

angle between u and v is   2π
 __ 3  .

 33. Show that (u + v) · (u - v) = ‖u‖
2 - ‖v‖

2 
for any vectors u and v.

 34. (a) Show that 
‖u + v‖

2 + ‖u - v‖
2 = 2(‖u‖

2 + ‖v‖
2) 

for any vectors u and v.

 �(b) What does this say about parallelograms?

 35. Show that if the diagonals of a parallelogram 
are perpendicular, it is necessarily a rhombus. 
[Hint: Example 5.]

 36. Let A and B be the end points of a diameter of a 
circle (see the diagram). If C is any point on the 
circle, show that AC and BC are perpendicular. 
[Hint: Express  

	
 AC   and  

	
 BC   in terms of u =   

	
 OA  

and v =   
	

 OC , where O is the centre.]

C 

B A 
O 

 37. Show that u and v are orthogonal, if and only if
‖u + v‖

2 = ‖u‖
2 + ‖v‖

2.

 38. Let u, v, and w be pairwise orthogonal vectors.

 (a) Show that 
‖u + v + w‖

2 = ‖u‖
2 + ‖v‖

2 + ‖w‖
2.

 �(b) If u, v, and w are all the same length, show 
that they all make the same angle with 
u + v + w.
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 39. (a) Show that n =   S  a   
b
  T  is orthogonal to every 

vector along the line ax + by + c = 0.

 �(b) Show that the shortest distance from 

  P0(x0, y0) to the line is   
|ax0 + by0 + c|

  _____________ 
 √ 

_______

 a2 + b2  
  .

  [Hint: If P1 is on the line, project u =   
	

 P1P0  
on n.]

 40. Assume u and v are nonzero vectors that are 
not parallel. Show that w = ‖u‖v + ‖v‖u is a 
nonzero vector that bisects the angle between u 
and v.

 41. Let α, β, and γ be the angles a vector 
v ≠ 0 makes with the positive x, y, and z axes, 
respectively. Then cos α, cos β, and cos γ are 
called the direction cosines of the vector v.

 (a) If v =   S  
a
 

 
 b   

c
   T  , show that cos α =   a ____ 

‖v‖
  , 

  cos β =   b ____ 
‖v‖

  , and cos γ =   c ____ 
‖v‖

  .

 �(b) Show that cos2 α + cos2
 β + cos2 γ = 1.

 42. Let v ≠ 0 be any nonzero vector and suppose 
that a vector u can be written as u = p + q, 
where p is parallel to v and q is orthogonal to v. 
Show that p must equal the projection of u on v. 
[Hint: Argue as in the proof of Theorem 4.]

 43. Let v ≠ 0 be a nonzero vector and let a ≠ 0 be a 
scalar. If u is any vector, show that the projection 
of u on v equals the projection of u on av.

 44. (a) Show that the Cauchy-Schwarz inequality 
|u · v| ≤ ‖u‖‖v‖ holds for all vectors u and 
v. [Hint: |cos θ| ≤ 1 for all angles θ.]

 (b) Show that |u · v| = ‖u‖‖v‖ if and only if 
u and v are parallel. 
[Hint: When is cos θ = ±1?]

 (c) Show that 
|x1x2 + y1 y2 + z1z2| 

≤  √ 
___________

   x  1  
2  +  y  1  

2  +  z  1  
2     √ 

___________

   x  2  
2  +  y  2  

2  +  z  2  
2    

holds for all numbers x1, x2, y1, y2, z1, and z2.

 �(d) Show that |xy + yz + zx| ≤ x2 + y2 + z2 for 
all x, y, and z.

 (e) Show that (x + y + z)2 ≤ 3(x2 + y2 + z2) 
holds for all x, y, and z.

 45. Prove that the triangle inequality 
‖u · v‖ ≤ ‖u‖ + ‖v‖ holds for all vectors u 
and v. [Hint: Consider the triangle with u and v 
as two sides.]

More on the Cross Product

The cross product v × w of two �3-vectors v =   S  
x1

 
 

 y1   
z1

   T  and w =   S  
x2

 
 

 y2   
z2

   T  was defined in 

Section 4.2 where we observed that it can be best remembered using a determinant:

 v × w = det 

i

j

k

x x

y y

z z

1 2

1 2

1 2

 =  |   
y1  y2           z1 z2

   |  i -  |   
x1 x2           z1 z2

   |  j +  |   
x1 x2          y1 y2

   |  k (∗)

Here i =   S  1 
 

 0   
0

  T  , j =   S  0 
 

 1   
0

  T  , and k =   S  1 
 

 0   
0

  T  are the coordinate vectors, and the determinant 

is expanded along the first column. We observed (but did not prove) in Theorem 5 
Section 4.2 that v × w is orthogonal to both v and w. This follows easily from the 
next result.
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Theorem 1

If u =   S  
x0

 
 

 y0   
z0

   T  , v =   S  
x1

 
 

 y1   
z1

   T  , and w =   S  
x2

 
 

 y2   
z2

   T  , then u · (v × w) = det 
x0 x1 x2

y0 y1 y2

z0 z1 z2

.

PROOF

Recall that u · (v × w) is computed by multiplying corresponding components of 
u and v × w and then adding. Using (∗), the result is:

u · (v × w) = x0 a |   
y1  y2           z1 z2

   | b + y0 a- |   
x1 x2           z1 z2

   |   b + z0a |   
x1 x2          y1 y2

   |  b = det 
x x x
y y y
z z z

0 1

0 1

2

2

0 1 2

where the last determinant is expanded along column 1.

The result in Theorem 1 can be succinctly stated as follows: If u, v, and w are three 
vectors in �3, then 

u · (v × w) = det[u v w]

where [u v w] denotes the matrix with u, v, and w as its columns. Now it is clear 
that v × w is orthogonal to both v and w because the determinant of a matrix is 
zero if two columns are identical.

Because of (∗) and Theorem 1, several of the following properties of the cross 
product follow from properties of determinants (they can also be verified directly). 

Theorem 2

Let u, v, and w denote arbitrary vectors in �3.
1. u × v is a vector.
2. u × v is orthogonal to both u and v.
3. u × 0 = 0 = 0 × u.
4. u × u = 0.
5. u × v = -(v × u).
6. (ku) × v = k(u × v) = u × (kv) for any scalar k.
7. u × (v + w) = (u × v) + (u × w).
8. (v + w) × u = (v × u) + (w × u).

PROOF

(1) is clear; (2) follows from Theorem 1; and (3) and (4) follow because the 
determinant of a matrix is zero if one column is zero or if two columns are 
identical. If two columns are interchanged, the determinant changes sign, and 
this proves (5). The proofs of (6), (7), and (8) are left as Exercise 15.
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We now come to a fundamental relationship between the dot and cross products.

Theorem 3

Lagrange Identity11

If u and v are any two vectors in �3, then

‖u × v‖
2 = ‖u‖

2
‖v‖

2 - (u · v)
2

11

PROOF

Given u and v, introduce a coordinate system and write u =   S  
x1

 
 

 y1   
z1

   T  and v =   S  
x2

 
 

 y2   
z2

   T  in 

component form. Then all the terms in the identity can be computed in terms of 
the components. The detailed proof is left as Exercise 14.

An expression for the magnitude of the vector u × v can be easily obtained 
from the Lagrange identity. If θ is the angle between u and v, substituting 
u · v = ‖u‖‖v‖ cos θ into the Lagrange identity gives

‖u × v‖
2 = ‖u‖

2
‖v‖

2 - ‖u‖
2
‖v‖

2 cos2 θ = ‖u‖
2
‖v‖

2 sin2 θ 

using the fact that 1 - cos2 θ = sin2 θ. But sin θ is nonnegative on the range 
0 ≤ θ ≤ π, so taking the positive square root of both sides gives 

‖u × v‖ = ‖u‖‖v‖ sin θ

This expression for ‖u × v‖ makes no reference to a coordinate system and, 
moreover, it has a nice geometrical interpretation. The parallelogram determined 
by the vectors u and v has base length ‖v‖ and altitude ‖u‖ sin θ (see Figure 1). 
Hence the area of the parallelogram formed by u and v is

(‖u‖ sin θ) ‖v‖ = ‖u × v‖

This proves the first part of Theorem 4.

Theorem 4

If u and v are two nonzero vectors and θ is the angle between u and v, then
1. ‖u × v‖ = ‖u‖‖v‖ sin θ = area of the parallelogram determined by u and v. 
2. u and v are parallel if and only if u × v = 0.

11 Joseph Louis Lagrange (1736–1813) was born in Italy and spent his early years in Turin. At the age of 19 he solved a famous 
problem by inventing an entirely new method, known today as the calculus of variations, and went on to become one of the greatest 
mathematicians of all time. His work brought a new level of rigour to analysis and his Mécanique Analytique is a masterpiece in 
which he introduced methods still in use. In 1766 he was appointed to the Berlin Academy by Frederik the Great who asserted 
that the “greatest mathematician in Europe” should be at the court of the “greatest king in Europe.” After the death of Frederick, 
Lagrange went to Paris at the invitation of Louis XVI. He remained there throughout the revolution and was made a count 
by Napoleon.

Joseph Louis Lagrange. 
Photo © Corbis.

θ
v

u ‖u‖ sin θ

� FIGURE 1
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PROOF OF (2)

By (1), u × v = 0 if and only if the area of the parallelogram is zero. By Figure 1 
the area vanishes if and only if u and v have the same or opposite direction—that 
is, if and only if they are parallel.

EXAMPLE 1

Find the area of the triangle with vertices P(2, 1, 0), Q(3, -1, 1), and R(1, 0, 1).

Solution ► We have  
	

 RP   =   S     1
 

 
   1   

-1
  T  and  

	
 RQ  =   S     2

 
 

 -1   
  0

   T . The area of the triangle is half 

the area of the parallelogram (see the diagram), and so equals   1 _ 2   ‖  
	

 RP   ×  
	

 RQ  ‖ . We 
have

 
	

 RP   ×  
	

 RQ  = det 
i

j

k

−

−

1 2

1 1

1 0

 =   S  -1
 

 
 -2   

-3
  T  ,

so the area of the triangle is   1 _ 2   ‖  
	

 RP   ×  
	

 RQ  ‖  =   1 _ 2    √ 
_________

 1 + 4 + 9   =   1 _ 2    √ 

___

 14  .

If three vectors u, v, and w are given, they determine a “squashed” rectangular 
solid called a parallelepiped (Figure 2), and it is often useful to be able to find the 
volume of such a solid. The base of the solid is the parallelogram determined by 
u and v, so it has area A = ‖u × v‖ by Theorem 4. The height of the solid is the 
length h of the projection of w on u × v. Hence

h =  |   
w · (u × v)

 __________ 
‖u × v‖

2
   | ‖u × v‖ =   

|w · (u × v)|
  ___________ 

‖u × v‖
   =   

|w · (u × v)|
  ___________ 

A
  

Thus the volume of the parallelepiped is hA = |w · (u × v)|. This proves

Theorem 5

The volume of the parallelepiped determined by three vectors w, u, and v (Figure 2) is 
given by |w · (u × v)|.

EXAMPLE 2

Find the volume of the parallelepiped determined by the vectors 

w =   S     1
 

 
   2   

-1
  T  , u =   S  1 

 
 1   

0
  T  , and v =   S  -2

 
 

   0   
  1

   T .
Solution ► By Theorem 1, w · (u × v) = det 

−

−

1 2
2 0

01 1
1
1

 = -3. 

Hence the volume is |w · (u × v)| = |-3| = 3 by Theorem 5.

R 

Q 

P 

h

u v×

v
w

u

� FIGURE 2
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We can now give an intrinsic description of the cross product u × v. Its 
magnitude ‖u × v‖ = ‖u‖‖v‖ sin θ is coordinate-free. If u × v ≠ 0, its direction 
is very nearly determined by the fact that it is orthogonal to both u and v and so 
points along the line normal to the plane determined by u and v. It remains only 
to decide which of the two possible directions is correct.

Before this can be done, the basic issue of how coordinates are assigned must be 
clarified. When coordinate axes are chosen in space, the procedure is as follows: An 
origin is selected, two perpendicular lines (the x and y axes) are chosen through the 
origin, and a positive direction on each of these axes is selected quite arbitrarily. 
Then the line through the origin normal to this x-y plane is called the z axis, 
but there is a choice of which direction on this axis is the positive one. The two 
possibilities are shown in Figure 3, and it is a standard convention that cartesian 
coordinates are always right-hand coordinate systems. The reason for this 
terminology is that, in such a system, if the z axis is grasped in the right hand with 
the thumb pointing in the positive z direction, then the fingers curl around from 
the positive x axis to the positive y axis (through a right angle).

Suppose now that u and v are given and that θ is the angle between them 
(so 0 ≤ θ ≤ π). Then the direction of ‖u × v‖ is given by the right-hand rule.

Right-hand Rule

If the vector u × v is grasped in the right hand and the fingers curl around from u to v 
through the angle θ, the thumb points in the direction for u × v.

To indicate why this is true, introduce coordinates in �3 as follows: Let u and v 
have a common tail O, choose the origin at O, choose the x axis so that u points in 
the positive x direction, and then choose the y axis so that v is in the x-y plane and 
the positive y axis is on the same side of the x axis as v. Then, in this system, u and 

v have component form u =   S   
a
 

 
 0   

0
  T  and v =   S   b 

 
 c   

0
  T  where a > 0 and c > 0. The situation 

is depicted in Figure 4. The right-hand rule asserts that u × v should point in the 
positive z direction. But our definition of u × v gives

u × v = det 
i
j
k

a b
c0

0 0

 =   S   0 
 

 0   
ac

  T  = (ac)k

and (ac)k has the positive z direction because ac > 0.

E X E R C I S E S  4 . 3

 1. If i, j, and k are the coordinate vectors, verify 
that i × j = k, j × k = i, and k × i = j.

 2. Show that u × (v × w) need not equal 
(u × v) × w by calculating both when 

u =   S  1 
 

 1   
1

  T  , v =   S  1 
 

 1   
0

  T  , and w =   S  0 
 

 0   
1

  T .

 3. Find two unit vectors orthogonal to both u and 
v if: 

 (a) u =   S  1 
 

 2   
2

  T  , v =   S     2
 

 
 -1   

  2
   T  �(b) u =   S     1

 
 

   2   
-1

  T  , v =   S  3 
 

 1   
2

  T 

Left-hand system 

x y
O 

z

O 

Right-hand system 

x y

z

� FIGURE 3

z

O 

y
x

b 
c a θ

vu

� FIGURE 4
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 4. Find the area of the triangle with the following 
vertices.

 (a) A(3, -1, 2), B(1, 1, 0), and C(1, 2, -1)

 �(b) A(3, 0, 1), B(5, 1, 0), and C(7, 2, -1)

 (c) A(1, 1, -1), B(2, 0, 1), and C(1, -1, 3)

 �(d) A(3, -1, 1), B(4, 1, 0), and C(2, -3, 0)

 5. Find the volume of the parallelepiped 
determined by w, u, and v when:

 (a) w =   S  2 
 

 1   
1

  T  , v =   S  1 
 

 0   
2

  T  , and u =   S     2
 

 
   1   

-1
  T 

 �(b) w =   S  1 
 

 0   
3

  T  , v =   S     2
 

 
   1   

-3
  T  , and u =   S  1 

 
 1   

1
  T 

 6. Let P0 be a point with vector p0, and let 
ax + by + cz = d be the equation of a plane with 

normal n =   S  
a
 

 
 b   

c
   T .

 (a) Show that the point on the plane closest to 
P0 has vector p given by

 p = p0 +   
d - (p0 · n)

 __________ 
‖n‖

2
   n.

  [Hint: p = p0 + tn for some t, and 
p · n = d.]

 �(b) Show that the shortest distance from P0 to 

the plane is   
|d - (p0 · n)|

  ___________ 
‖n‖

  .

 (c) Let P0′ denote the reflection of P0 in the 
plane—that is, the point on the opposite side 
of the plane such that the line through P0 
and P0′ is perpendicular to the plane.

   Show that p0 + 2   
d - (p0 · n)

 __________ 
‖n‖

2
   n is the vector 

of P0′.

 7. Simplify (au + bv) × (cu + dv).

 8. Show that the shortest distance from a point P 
to the line through P0 with direction vector d 

is   
 ‖   

	
 P0P  × d ‖ 
 __________ 

‖d‖
  .

 9. Let u and v be nonzero, nonorthogonal vectors. 
If θ is the angle between them, show that 

tan θ =   
‖u × v‖

 ________ u · v  .

 �10. Show that points A, B, and C are all on one line 
if and only if  

	
 AB   ×  

	
 AC   = 0.

 11. Show that points A, B, C, and D are all on one 
plane if and only if  

	
 AB   ·  Q  

	
 AB   ×  

	
 AC   R  = 0.

 �12. Use Theorem 5 to confirm that, if u, v, and w 
are mutually perpendicular, the (rectangular) 
parallelepiped they determine has volume 
‖u‖‖v‖‖w‖.

 13. Show that the volume of the parallelepiped 
determined by u, v, and u × v is ‖u × v‖

2.

 14. Complete the proof of Theorem 3.

 15. Prove the following properties in Theorem 2.

 (a) Property 6 �(b) Property 7

 (c) Property 8

 16. (a) Show that 
w · (u × v) = u · (v × w) = v × (w × u) 
holds for all vectors w, u, and v.

 �(b) Show that v - w and 
(u × v) + (v × w) + (w × u) are orthogonal.

 17. Show that u × (v × w) = (u · w)v - (u × v)w. 
[Hint: First do it for u = i, j, and k; then write 
u = xi + yj + zk and use Theorem 2.]

 18. Prove the Jacobi identity: 
u × (v × w) + v × (w × u) + w × (u × v) = 0. 
[Hint: The preceding exercise.]

 19. Show that
(u × v) · (w × z) = det   S   u · w u · z                       v · w v · z   T .

  [Hint: Exercises 16 and 17.]

 20. Let P, Q, R, and S be four points, not all on one 
plane, as in the diagram. Show that the volume 
of the pyramid they determine is

  1 _ 6   |  
	

 PQ   ·  Q  
	

 PR   ×  
	

 PS   R  | .

  [Hint: The volume of a cone with base area 
A and height h as in the diagram below right 
is   1 _ 3  Ah.]

Q

S 

R 

P 

h 
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 21. Consider a triangle with vertices A, B, and 
C, as in the diagram below. Let α, β, and γ 
denote the angles at A, B, and C, respectively, 
and let a, b, and c denote the lengths of the 
sides opposite A, B, and C, respectively. Write 

u =  
	

 AB  , v =  
	

 BC  , and w =  
	

 CA  .
B 

C A 
b 

a c β

α γ

 (a) Deduce that u + v + w = 0.

 (b) Show that u × v = w × u = v × w. [Hint: 
Compute u × (u + v + w) and 
v × (u + v + w).]

 (c) Deduce the law of sines:

    sin α
 _____ a   =   

sin β
 _____ 

b
   =   

sin γ
 _____ c  

 �22. Show that the (shortest) distance between two 
planes n · p = d1 and n · p = d2 with n as 

normal is   
|d2 - d1|

 ________ 
‖n‖

  .

 23. Let A and B be points other than the origin, and 
let a and b be their vectors. If a and b are not 
parallel, show that the plane through A, B, and 
the origin is given by 

  {P(x, y, z)|  S  
x
 

 
 y   

z
   T  = sa + tb for some s and t}.

 24. Let A be a 2 × 3 matrix of rank 2 with rows 
r1 and r2. Show that P = {XA|X = [x y]; x, y 
arbitrary} is the plane through the origin with 
normal r1 × r2.

 25. Given the cube with vertices P(x, y, z), where 
each of x, y, and z is either 0 or 2, consider the 
plane perpendicular to the diagonal through 
P(0, 0, 0) and P(2, 2, 2) and bisecting it.

 (a) Show that the plane meets six of the edges of 
the cube and bisects them.

 (b) Show that the six points in (a) are the vertices 
of a regular hexagon.

Linear Operators on �3 
Recall that a transformation T : �n → �m is called linear if T(x + y) = T(x) + T(y) 
and T(ax) = aT(x) holds for all x and y in �n and all scalars a. In this case we showed 
(in Theorem 2 Section 2.6) that there exists an m × n matrix A such that T(x) = Ax 
for all x in �n, and we say that T is the matrix transformation induced by A. 

A linear transformation 
T : �n → �n

is called a linear operator on �n.

In Section 2.6 we investigated three important linear operators on �2: rotations 
about the origin, reflections in a line through the origin, and projections on this line.

In this section we investigate the analogous operators on �3: Rotations about a 
line through the origin, reflections in a plane through the origin, and projections 
onto a plane or line through the origin in �3. In every case we show that the 
operator is linear, and we find the matrices of all the reflections and projections. 

To do this we must prove that these reflections, projections, and rotations 
are actually linear operators on �3. In the case of reflections and rotations, it is 
convenient to examine a more general situation. A transformation T : �3 → �3 is 
said to be distance preserving if the distance between T(v) and T(w) is the same as 
the distance between v and w for all v and w in �3; that is,

 ‖T(v) - T(w)‖ = ‖v - w‖ for all v and w in �3. (∗)

Clearly reflections and rotations are distance preserving, and both carry 0 to 0, so 
the following theorem shows that they are both linear. 

S E C T I O N  4 . 4

Definition 4.9
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Theorem 1

If T : �3 → �3 is distance preserving, and if T(0) = 0, then T is linear.

PROOF

Since T(0) = 0, taking w = 0 in (∗) shows that ‖T(v)‖ = ‖v‖ for all v in �3, 
that is T preserves length. Also, ‖T(v) - T(w)‖2 = ‖v - w‖

2 by (∗). Since 
‖v - w‖

2 = ‖v‖
2 - 2v · w + ‖w‖

2 always holds, it follows that 
T(v) · T(w) = v · w for all v and w. Hence (by Theorem 2 Section 4.2) the 
angle between T(v) and T(w) is the same as the angle between v and w for 
all (nonzero) vectors v and w in �3.

With this we can show that T is linear. Given nonzero vectors v and w in �3, 
the vector v + w is the diagonal of the parallelogram determined by v and w. By 
the preceding paragraph, the effect of T is to carry this entire parallelogram to the 
parallelogram determined by T(v) and T(w), with diagonal T(v + w). But this 
diagonal is T(v) + T(w) by the parallelogram law (see Figure 1). 

In other words, T(v + w) = T(v) + T(w). A similar argument shows that 
T(av) = aT(v) for all scalars a, proving that T is indeed linear.

Distance-preserving linear operators are called isometries, and we return to them 
in Section 10.4.

Reflections and Projections
In Section 2.6 we studied the reflection Qm: �2 → �2 in the line y = mx and 
projection Pm: �2 → �2 on the same line. We found (in Theorems 5 and 6, 
Section 2.6) that they are both linear and 

Qm has matrix   1 _______ 
1 + m2

     S   1 - m2
             

2m
     

2m
             

m2 − 1
   T  and Pm has matrix   1 _______ 

1 + m2
     S   1  m 

             
m m2

   T . 
We now look at the analogues in �3. 

Let L denote a line through the origin in �3. Given a vector v in �3, the 
reflection QL(v) of v in L and the projection PL(v) of v on L are defined in Figure 2. 
In the same figure, we see that 

 PL(v) = v +   1 _ 2  [QL(v) - v] =   1 _ 2  [QL(v) + v] (∗∗)

so the fact that QL is linear (by Theorem 1) shows that PL is also linear.12 However, 

Theorem 4 Section 4.2 gives us the matrix of PL directly. In fact, if d =   S  
a
 

 
 b   

c
   T  ≠ 0 is a 

direction vector for L, and we write v =   S  
x
 

 
 y   

z
   T  , then 

PL(v) =   v · d _____ 
‖d‖

2
   d =   

ax + by + cz
  ___________  

a2 + b2 + c2
    S  

a
 

 
 b   

c
   T  =   

1 ___________ 
a2 + b2 + c2

   

a22

2

2

ab ac

ab b bc

ac bc c

   S  
x
 

 
 y   

z
   T 

as the reader can verify. Note that this shows directly that PL is a matrix 
transformation and so gives another proof that it is linear. 

12 Note that Theorem 1 does not apply to PL since it does not preserve distance.

x

z

y

w

v

T(v)

T(w)

T ( ) v w+

v + w

� FIGURE 1

L

0

v

Q (v)L

P (v)L

� FIGURE 2
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Theorem 2

Let L denote the line through the origin in �3 with direction vector d =   S  
a
 

 
 b   

c
   T  ≠ 0. Then 

PL and QL are both linear and

PL has matrix   1 ___________ 
a2 + b2 + c2

   
a ab ac

ab b bc

ac bc c

2

2

2

,

QL has matrix   1 ___________ 
a2 + b2 + c2

   
a b c

ab b a c

ac bc c

2ab 2ac

2bc2

2 2

2 2 2

2 2 2

− −

− −
2 2 2− −a b

.

PROOF

It remains to find the matrix of QL. But (∗∗) implies that QL(v) = 2PL(v) - v for 

each v in �3, so if v =   S  
x
 

 
 y   

z
   T  we obtain (with some matrix arithmetic):

QL(v) = μ   2 ___________ 
a2 + b2 + c2

   

a ab ac

ab b bc

ac bc c

−
1 0 0
0 1 0
0 0 1

2

2

2

∂   S  
x
 

 
 y   

z
   T 

=
1 ___________ 

a2 + b2 + c2
   

− −
−

a b c ab ac

ab b a

2 2

2

2 2 2

2 2 −−
− −

c bc

ac bc c a b

2

2 2 2

2

2 2

   S  
x
 

 
 y   

z
   T 

as required.

In �3 we can reflect in planes as well as lines. Let M denote a plane through 
the origin in �3. Given a vector v in �3, the reflection QM(v) of v in M and the 
projection PM(v) of v on M are defined in Figure 3. As above, we have

PM(v) = v +   1 _ 2  [QM(v) - v] =   1 _ 2  [QM(v) + v]

so the fact that QM is linear (again by Theorem 1) shows that PM is also linear. 
Again we can obtain the matrix directly. If n is a normal for the plane M, then 
Figure 3 shows that 

PM(v) = v - projn(v) = v -   v · n _____ 
‖n‖

2
   n for all vectors v.

If n =   S  
a
 

 
 b   

c
   T  ≠ 0 and v =   S  

x
 

 
 y   

z
   T  , a computation like the above gives

PM(v) = • 
1 0 0
0 1 0
0 0 1

   S  
x
 

 
 y   

z
   T  -   

ax + by + cz
  ___________  

a2 + b2 + c2
    S  

a
 

 
 b   

c
   T ¶ =   1 ___________ 

a2 + b2 + c2
   

+ − −

− + −
− − +

2 2

2 2

2

b c ab ac

ab a c bc

ac bc b c22

   S  
x
 

 
 y   

z
   T .

M

v

O 

QM (v)

PM (v)

� FIGURE 3
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This proves the first part of 

Theorem 3

Let M denote the plane through the origin in �3 with normal n =   S  
a
 

 
 b   

c
   T  ≠ 0. Then PM 

and QM are both linear and

PM has matrix   1 ___________ 
a2 + b2 + c2

   
b c ab ac

ab a c bc

ac bc a b

2 2

2 2

2 2

+ − −

− + −
− − +

,

QM has matrix   1 ___________ 
a2 + b2 + c2

   
2

2
a

ab

− −2ab −2ac
−2bc

−2bc−2ac

−

2 2b c+
−2 22a bc+

−2 22a cb+

.

PROOF

It remains to compute the matrix of QM. Since QM(v) = 2PM(v) - v for each 
v in �3, the computation is similar to the above and is left as an exercise for 
the reader.

Rotations
In Section 2.6 we studied the rotation Rθ : �

2 → �2 counterclockwise about the 
origin through the angle θ. Moreover, we showed in Theorem 4 Section 2.6 that 

Rθ is linear and has matrix   S   cos θ -sin θ
                       

sin θ  cos θ
   T . One extension of this is given in the 

following example.

EXAMPLE 1

Let Rz,θ : �
3 → �3 denote rotation of �3 about the z axis through an angle θ 

from the positive x axis toward the positive y axis. Show that Rz,θ is linear and 
find its matrix. 

Solution ► First R is distance preserving and so is linear by Theorem 1. 
Hence we apply Theorem 2 Section 2.6 to obtain the matrix of Rz,θ. 

Let i =   S  1 
 

 0   
0

  T  , j =   S  0 
 

 1   
0

  T  , and k =   S  0 
 

 0   
1

  T  denote the standard basis of �3; we must find 

Rz,θ(i), Rz,θ(j), and Rz,θ(k). Clearly Rz,θ(k) = k. The effect of Rz,θ on the x-y plane 
is to rotate it counterclockwise through the angle θ. Hence Figure 4 gives 

Rz,θ(i) =   S  cos θ
 

  
 sin θ    

0
   T  , Rz,θ(j) =   S  -sin θ

 
  

 cos θ    
0

   T x

y

z

θ

θ ji

Rz(i)

Rz(j)
k

� FIGURE 4
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so, by Theorem 2 Section 2.6, Rz,θ has matrix

[Rz,θ(i) Rz,θ(j) Rz,θ(k)] = 
−

sin θ
sin θ
cos θ

cos θ

0 0

0
0
1

.

Example 1 begs to be generalized. Given a line L through the origin in �3, every 
rotation about L through a fixed angle is clearly distance preserving, and so is a 
linear operator by Theorem 1. However, giving a precise description of the matrix 
of this rotation is not easy and will have to wait until more techniques are available. 

Transformations of Areas and Volumes 
Let v be a nonzero vector in �3. Each vector in the same direction as v whose 
length is a fraction s of the length of v has the form sv (see Figure 5). With this, 
scrutiny of Figure 6 shows that a vector u is in the parallelogram determined by v 
and w if and only if it has the form u = sv + tw where 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1. But 
then, if T : �3 → �3 is a linear transformation, we have 

T(sv + tw) = T(sv) + T(tw) = sT(v) + tT(w).

Hence T(sv + tw) is in the parallelogram determined by T(v) and T(w). Conversely, 
every vector in this parallelogram has the form T(sv + tw) where sv + tw is in the 
parallelogram determined by v and w. For this reason, the parallelogram determined 
by T(v) and T(w) is called the image of the parallelogram determined by v and w. 
We record this discussion as: 

Theorem 4

If T : �3 → �3 (or �2 → �2) is a linear operator, the image of the parallelogram 
determined by vectors v and w is the parallelogram determined by T(v) and T(w).

This result is illustrated in Figure 7, and was used in Examples 15 and 16 Section 
2.2 to reveal the effect of expansion and shear transformations. 

Now we are interested in the effect of a linear transformation T : �3 → �3 on 
the parallelepiped determined by three vectors u, v, and w in �3 (see the discussion 
preceding Theorem 5 Section 4.3). If T has matrix A, Theorem 4 shows that this 
parallelepiped is carried to the parallelepiped determined by T(u) = Au, T(v) = Av, 
and T(w) = Aw. In particular, we want to discover how the volume changes, and it 
turns out to be closely related to the determinant of the matrix A.

Theorem 5

Let vol(u, v, w) denote the volume of the parallelepiped determined by three vectors u, v, 
and w in �3, and let area(p, q) denote the area of the parallelogram determined by two 
vectors p and q in �2. Then: 

1. If A is a 3 × 3 matrix, then vol(Au, Av, Aw) = |det(A)| · vol(u, v, w).

2. If A is a 2 × 2 matrix, then area(Ap, Aq) = |det(A)| · area(p, q).

Origin 

v

sv

� FIGURE 5

O 

v
sv

tw w

sv+tw

� FIGURE 6

O

O 

w

v

u

T(u)

T(w)

T(v)

� FIGURE 7
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PROOF

 1. Let [u v w] denote the 3 × 3 matrix with columns u, v, and w. Then 

vol(Au, Av, Aw) = |Au · (Av × Aw)|

  by Theorem 5 Section 4.3. Now apply Theorem 1 Section 4.3 twice to get

Au · (Av × Aw) = det[Au Av Aw]  = det{A [u v w]}
= det(A) det[u v w]
= det(A) (u · (v × w))

  where we used Definition 2.9 and the product theorem for determinants. 
Finally (1) follows from Theorem 5 Section 4.3 by taking absolute values. 

 2. Given p =   S  x   
y
  T  in �2, write p1 =   S   

x
 

 
 y   

0
  T  in �3. By the diagram, 

area(p, q) = vol(p1, q1, k) where k is the (length 1) coordinate vector 

along the z axis. If A is a 2 × 2 matrix, write A1 =   S   A 0         
0 1

   T  in block form, 

and observe that (Av)1 = (A1v1) for all v in �2 and A1k = k. Hence 
part (1) if this theorem shows

area(Ap, Aq)  = vol(A1p1, A1q1, A1k)
= |det(A1)| vol(p1, q1, k)
= |det(A)| area(p, q)

  as required.

Define the unit square and unit cube to be the square and cube corresponding 
to the coordinate vectors in �2 and �3, respectively. Then Theorem 5 gives a 
geometrical meaning to the determinant of a matrix A:

• If A is a 2 × 2 matrix, then |det(A)| is the area of the image of the unit square 
under multiplication by A;

• If A is a 3 × 3 matrix, then |det(A)| is the volume of the image of the unit cube 
under multiplication by A.

These results, together with the importance of areas and volumes in geometry, were 
among the reasons for the initial development of determinants.

E X E R C I S E S  4 . 4

 1. In each case show that that T is either projection 
on a line, reflection in a line, or rotation through 
an angle, and find the line or angle.

 (a) T   S  x   
y
  T  =   1 _ 5    S   x + 2y

              
2x + 4y

   T  �(b) T   S  x   
y
  T  =   1 _ 2    S   

x - y
           

y - x   T 

 (c) T   S  x   
y
  T  =   1 __ 

 √ 

__

 2  
    S   -x - y

             
x - y   T  �(d) T   S  x   

y
  T  =   1 _ 5    S   -3x + 4y

                 
4x + 3y

   T 

 (e) T   S   x     
y
   T  =   S   -y       

-x
   T  �(f ) T   S  x   

y
  T  =   1 _ 2    S   x -  √ 

__

 3  y
               

 √ 

__

 3  x + y
   T 

 2. Determine the effect of the following 
transformations.

 (a) Rotation through   π __ 2  , followed by projection 
on the y axis, followed by reflection in the 
line y = x.

 �(b) Projection on the line y = x followed by 
projection on the line y = -x.

 (c) Projection on the x axis followed by 
reflection in the line y = x.

q1 

p1 

k
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 3. In each case solve the problem by finding the 
matrix of the operator.

 (a) Find the projection of v =   S     1
 

 
 -2   

  3
   T  on the plane 

with equation 3x - 5y + 2z = 0.

 �(b) Find the projection of v =   S     0
 

 
   1   

-3
  T  on the plane 

with equation 2x - y + 4z = 0.

 (c) Find the reflection of v =   S     1
 

 
 -2   

  3
   T  in the plane 

with equation x - y + 3z = 0.

 �(d) Find the reflection of v =   S     0
 

 
   1   

-3
  T  in the plane 

with equation 2x + y - 5z = 0.

 (e) Find the reflection of v =   S     2
 

 
   5   

-1
  T  in the line 

with equation   S  
x
 

 
 y   

z
   T  = t   S     1

 
 

   1   
-2

  T .
 �(f ) Find the projection of v =   S     1

 
 

 -1   
  7

   T  on the line 

with equation   S  
x
 

 
 y   

z
   T  = t   S  3 

 
 0   

4
  T .

 (g) Find the projection of v =   S     1
 

 
   1   

-3
  T  on the line 

with equation   S  
x
 

 
 y   

z
   T  = t   S     2

 
 

   0   
-3

  T .
 �(h) Find the reflection of v =   S     2

 
 

 -5   
  0

   T  in the line 

with equation   S  
x
 

 
 y   

z
   T  = t   S     1

 
 

   1   
-3

  T .
 4. (a) Find the rotation of v =   S     2

 
 

   3   
-1

  T  about the 

z axis through θ =   π __ 4  .

 �(b) Find the rotation of v =   S  1 
 

 0   
3

  T  about the z axis 

through θ =   π __ 6  .

 5. Find the matrix of the rotation in �3 about the x 
axis through the angle θ (from the positive y axis 
to the positive z axis).

 �6. Find the matrix of the rotation about the y axis 
through the angle θ (from the positive x axis to 
the positive z axis).

 7. If A is 3 × 3, show that the image of the line in 
�

3 through p0 with direction vector d is the line 
through Ap0 with direction vector Ad, assuming 
that Ad ≠ 0. What happens if Ad = 0?

 8. If A is 3 × 3 and invertible, show that the image 
of the plane through the origin with normal 
n is the plane through the origin with normal 
n1 = Bn where B = (A-1)T. [Hint: Use the fact 
that v · w = vTw to show that n1 · (Ap) = n · p 
for each p in �3.]

 9. Let L be the line through the origin in �2 with 

direction vector d =   S  a   
b
  T  ≠ 0. 

 �(a) If PL denotes projection on L, show that PL 

has matrix   1 _______ 
a2 + b2

     S   a2 ab
           

ab b2
   T .

 (b) If QL denotes reflection in L, show that QL 

has matrix   1 _______ 
a2 + b2

     S   a2 - b2  2ab 
                          

 2ab  b2 - a2
   T .

 10. Let n be a nonzero vector in �3, let L be the 
line through the origin with direction vector n, 
and let M be the plane through the origin with 
normal n. Show that PL(v) = QL(v) + PM(v) for 
all v in �3. [In this case, we say that 
PL = QL + PM.]

 11. If M is the plane through the origin in �3 with 

normal n =   S  
a
 

 
 b   

c
   T  , show that QM has matrix 

  1 ___________ 
a2 + b2 + c2

   
2

2
a

ab
− −2ab −2ac

−2bc
−2bc−2ac

−

2 2b c+
−2 22a bc+

−2 22a cb+
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An Application to Computer Graphics
Computer graphics deals with images displayed on a computer screen, and so 
arises in a variety of applications, ranging from word processors, to Star Wars 
animations, to video games, to wire-frame images of an airplane. These images 
consist of a number of points on the screen, together with instructions on how to 
fill in areas bounded by lines and curves. Often curves are approximated by a set of 
short straight-line segments, so that the curve is specified by a series of points on 
the screen at the end of these segments. Matrix transformations are important here 
because matrix images of straight line segments are again line segments.13 Note that 
a colour image requires that three images are sent, one to each of the red, green, 
and blue phosphorus dots on the screen, in varying intensities.

Consider displaying the letter A. In reality, it is depicted on the screen, as in 
Figure 1, by specifying the coordinates of the 11 corners and filling in the interior. 
For simplicity, we will disregard the thickness of the letter, so we require only five 
coordinates as in Figure 2. This simplified letter can then be stored as a data matrix

Vertex

D

1 2 3 4 5
0 6 5 1 3
0 0 3 3 9

=

where the columns are the coordinates of the vertices in order. Then if we want to 
transform the letter by a 2 × 2 matrix A, we left-multiply this data matrix by A (the 
effect is to multiply each column by A and so transform each vertex).

For example, we can slant the letter to the right by multiplying by an x-shear 

matrix A =   S  1 0.2    
0 1   

  T   —see Section 2.2. The result is the letter with data matrix

AD =   S  1 0.2    
0 1   

  T    S  0 6 5 1 3      
0 0 3 3 9

  T  =   S  0 6 5.6 1.6 4.8         
0 0 3    3    9   

  T 
which is shown in Figure 3. If we want to make this slanted matrix narrower, we can 

now apply an x-scale matrix B =   S  0.8 0    
0    1

  T  that shrinks the x-coordinate by 0.8. The 

result is the composite transformation

BAD =   S  0.8 0    
0    1

  T    S  1 0.2    
0 1   

  T    S  0 6 5 1 3      
0 0 3 3 9

  T  =   S  0 4.8 4.48 1.28 3.84           
0 0    3     3     9    

  T 
which is drawn in Figure 4.

On the other hand, we can rotate the letter about the origin through   π __ 6   (or 30°) 

by multiplying by the matrix  R   π __ 2  
  =   S  cos(  π __ 6  ) -sin(  π __ 6  )         

sin(  π __ 6  )   cos(  π __ 6  )
  T  =   S  0.866 -0.5            

0.5     0.866
  T .

This gives

 R   π __ 2  
 D =   S  0.866 -0.5            

0.5     0.866
  T    S  0 6 5 1 3      

0 0 3 3 9
  T  =   S  0 5.196 2.83  -0.634 -1.902                

0 3     5.098   3.098   9.294
  T 

and is plotted in Figure 5.
This poses a problem: How do we rotate at a point other than the origin? It 

turns out that we can do this when we have solved another more basic problem. It 
is clearly important to be able to translate a screen image by a fixed vector w, that is 
apply the transformation Tw : �2 → �2 given by Tw(v) = v + w for all v in �2. The 
problem is that these translations are not matrix transformations �2 → �2 because 
they do not carry 0 to 0 (unless w = 0). However, there is a clever way around this.

13 If v0 and v1 are vectors, the vector from v0 to v1 is d = v1 - v0. So a vector v lies on the line segment between v0 and v1 if and only 
if v = v0 + td for some number t in the range 0 ≤ t ≤ 1. Thus the image of this segment is the set of vectors Av = Av0 + tAd with 
0 ≤ t ≤ 1, that is the image is the segment between Av0 and Av1.

S E C T I O N  4 . 5

� FIGURE 1

1 2 

3 4 

5 

Origin 

� FIGURE 2

� FIGURE 3

� FIGURE 4

� FIGURE 5

226 Chapter 4 Vector Geometry



The idea is to represent a point v =   S  x   
y
  T  as a 3 × 1 column   S   

x
 

 
 y   

1
  T  , called the 

homogeneous coordinates of v. Then translation by w =   S   p   
q
  T  can be achieved 

by multiplying by a 3 × 3 matrix:

1 0
0 1
0 0 1 1

p
q

x
y  = 

1

x p
y q

+
+  =   S  Tw(v)

    
1 

  T 

Thus, by using homogeneous coordinates we can implement the translation Tw in 
the top two coordinates. On the other hand, the matrix transformation induced by 

A =   S  a b
   

c d
  T  is also given by a 3 × 3 matrix:

a b
c d

x
y

0
0

0 0 1 1

 = 
ax by
cx dy

1

+
+  =   S  Av   

1  
  T 

So everything can be accomplished at the expense of using 3 × 3 matrices and 
homogeneous coordinates.

EXAMPLE 1

Rotate the letter A in Figure 2 through   π __ 6   about the point   S  4   
5

  T .
Solution ► Using homogenous coordinates for the vertices of the letter results in 
a data matrix with three rows:

Kd = 
0 6 5 1 3
0 0 3 3 9
1 1 1 1 1

If we write w =   S  4   
5

  T  , the idea is to use a composite of transformations: First 

translate the letter by -w so that the point w moves to the origin, then rotate 
this translated letter, and then translate it by w back to its original position. 
The matrix arithmetic is as follows (remember the order of composition!):

1 0 4
0 1 5
0 0 1

0 866 0 5 0
0 5 0 866 0
0 0 1

1 0 4
0 1 5
0 0 1

− −
−

. .
. .

0 6 5 1 3
0 0 3 3 9
1 1 1 1 1

 

= 
3 036 8 232 5 866 2 402 1 134. . . . .

−1 33 1 67 3 768 1 768 7 964
1 1 1 1 1
. . . . .

This is plotted in Figure 6.

This discussion merely touches the surface of computer graphics, and the 
reader is referred to specialized books on the subject. Realistic graphic rendering 
requires an enormous number of matrix calculations. In fact, matrix multiplication 
algorithms are now embedded in microchip circuits, and can perform over 100 
million matrix multiplications per second. This is particularly important in the 
field of three-dimensional graphics where the homogeneous coordinates have four 
components and 4 × 4 matrices are required.

Origin 

� FIGURE 6
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E X E R C I S E S  4 . 5

 1. Consider the letter A described in Figure 2. 
Find the data matrix for the letter obtained by:

 (a) Rotating the letter through   π __ 4   about the 
origin.

 �(b) Rotating the letter through   π __ 4   about the 

point   S   1     
2

   T .
 2. Find the matrix for turning the letter A in 

Figure 2 upside-down in place.

 3. Find the 3 × 3 matrix for reflecting in the line 

y = mx + b. Use   S   1      
m

   T  as direction vector for the 
line.

 4. Find the 3 × 3 matrix for rotating through the 
angle θ about the point P(a, b).

 5. Find the reflection of the point P in the line 
y = 1 + 2x in �2 if:

 (a) P = P(1, 1)

 �(b) P = P(1, 4)

 (c) What about P = P(1, 3)? Explain. 
[Hint: Example 1 and Section 4.4.]

S U P P L E M E N TA R Y  E X E R C I S E S  F O R  C H A P T E R  4

 1. Suppose that u and v are nonzero vectors. If u 
and v are not parallel, and au + bv = a1u + b1v, 
show that a = a1 and b = b1.

 2. Consider a triangle with vertices A, B, and 
C. Let E and F be the midpoints of sides AB 
and AC, respectively, and let the medians 
EC and FB meet at O. Write  

	
 EO  = s  

	
 EC   

and  
	

 FO   = t  
	

 FB  , where s and t are scalars. Show 
that s = t =   1 _ 3   by expressing   

	
 AO  two ways in 

the form a  
	

 EO  + b  
	

 AC  , and applying Exercise 1. 
Conclude that the medians of a triangle meet 
at the point on each that is one-third of the 
way from the midpoint to the vertex (and so are 
concurrent).

 3. A river flows at 1 km/h and a swimmer moves 
at 2 km/h (relative to the water). At what angle 
must he swim to go straight across? What is his 
resulting speed?

 �4. A wind is blowing from the south at 75 knots, 
and an airplane flies heading east at 100 knots. 
Find the resulting velocity of the airplane.

 5. An airplane pilot flies at 300 km/h in a direction 
30° south of east. The wind is blowing from the 
south at 150 km/h.

 (a) Find the resulting direction and speed of the 
airplane.

 (b) Find the speed of the airplane if the wind is 
from the west (at 150 km/h).

 �6. A rescue boat has a top speed of 13 knots. The 
captain wants to go due east as fast as possible 
in water with a current of 5 knots due south. 
Find the velocity vector v = (x, y) that she must 
achieve, assuming the x and y axes point east and 
north, respectively, and find her resulting speed.

 7. A boat goes 12 knots heading north. The current 
is 5 knots from the west. In what direction does 
the boat actually move and at what speed?

 8. Show that the distance from a point A (with 
vector a) to the plane with vector equation 
n · p = d is   1 ___ 

‖n‖
  |n · a - d|.

 9. If two distinct points lie in a plane, show that 
the line through these points is contained in 
the plane.

 10. The line through a vertex of a triangle, 
perpendicular to the opposite side, is called 
an altitude of the triangle. Show that the 
three altitudes of any triangle are concurrent. 
(The intersection of the altitudes is called the 
orthocentre of the triangle.) [Hint: If P is the 
intersection of two of the altitudes, show that 
the line through P and the remaining vertex is 
perpendicular to the remaining side.]
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The Vector Space �n

5
Subspaces and Spanning
In Section 2.2 we introduced the set �n of all n-tuples (called vectors), and began our 
investigation of the matrix transformations �n → �m given by matrix multiplication 
by an m × n matrix. Particular attention was paid to the euclidean plane �2 where 
certain simple geometric transformations were seen to be matrix transformations. 
Then in Section 2.6 we introduced linear transformations, showed that they are all 
matrix transformations, and found the matrices of rotations and reflections in �2. 
We returned to this in Section 4.4 where we showed that projections, reflections, 
and rotations of �2 and �3 were all linear, and where we related areas and volumes 
to determinants. 

In this chapter we investigate �n in full generality, and introduce some of the 
most important concepts and methods in linear algebra. The n-tuples in �n will 
continue to be denoted x, y, and so on, and will be written as rows or columns 
depending on the context.

Subspaces of �n

A set1 U of vectors in �n is called a subspace of �n if it satisfies the following properties:
S1. The zero vector 0 is in U. 
S2. If x and y are in U, then x + y is also in U. 
S3. If x is in U, then ax is in U for every real number a.

1

We say that the subset U is closed under addition if S2 holds, and that U is closed 
under scalar multiplication if S3 holds.

Clearly �n is a subspace of itself. The set U = {0}, consisting of only the zero 
vector, is also a subspace because 0 + 0 = 0 and a0 = 0 for each a in �; it is called 
the zero subspace. Any subspace of �n other than {0} or �n is called a proper 
subspace.

1 We use the language of sets. Informally, a set X is a collection of objects, called the elements of the set. The fact that x is an 
element of X is denoted x ∈ X. Two sets X and Y are called equal (written X = Y) if they have the same elements. If every element of 
X is in the set Y, we say that X is a subset of Y, and write X ⊆ Y. Hence X ⊆ Y and Y ⊆ X both hold if and only if X = Y.
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We saw in Section 4.2 that every plane M through the origin in �3 has equation 

ax + by + cz = 0 where a, b, and c are not all zero. Here n =   S  
a
 

 
 b   

c
   T  is a normal for the 

plane and

M = {v in �3 | n · v = 0} 

where v =   S  
x
 

 
 y   

z
   T  and n · v denotes the dot product introduced in Section 2.2 (see the 

diagram).2 Then M is a subspace of �3. Indeed we show that M satisfies S1, S2, and 
S3 as follows:

S1. 0 is in M because n · 0 = 0;

S2. If v and v1 are in M, then n · (v + v1) = n · v + n · v1 = 0 + 0 = 0, so v + v1 is 
in M;

S3. If v is in M, then n · (av) = a(n · v) = a(0) = 0, so av is in M.

This proves the first part of

EXAMPLE 1

Planes and lines through the origin in �3 are all subspaces of �3.

Solution ► We dealt with planes above. If L is a line through the origin with 
direction vector d, then L = {td | t in �} (see the diagram). We leave it as an 
exercise to verify that L satisfies S1, S2, and S3.

Example 1 shows that lines through the origin in �2 are subspaces; in fact, they are the 
only proper subspaces of �2 (Exercise 24). Indeed, we shall see in Example 14 Section 
5.2 that lines and planes through the origin in �3 are the only proper subspaces of �3. 
Thus the geometry of lines and planes through the origin is captured by the subspace 
concept. (Note that every line or plane is just a translation of one of these.) 

Subspaces can also be used to describe important features of an m × n matrix A. 
The null space of A, denoted null A, and the image space of A, denoted im A, are 
defined by

null A = {x in �n | Ax = 0} and im A = {Ax | x in �n}

In the language of Chapter 2, null A consists of all solutions x in �n of the 
homogeneous system Ax = 0, and im A is the set of all vectors y in �m such that 
Ax = y has a solution x. Note that x is in null A if it satisfies the condition Ax = 0, 
while im A consists of vectors of the form Ax for some x in �n. These two ways to 
describe subsets occur frequently.

EXAMPLE 2

If A is an m × n matrix, then: 

1. null A is a subspace of �n.

2. im A is a subspace of �m.

2 We are using set notation here. In general {q | p } means the set of all objects q with property p.

y

z

x M 

n

y

z

x

L 

d
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Solution ► 

1. The zero vector 0 in �n lies in null A because A0 = 0.3 If x and x1 
are in null A, then x + x1 and ax are in null A because they satisfy the 
required condition: 

A(x + x1) = Ax + Ax1 = 0 + 0 = 0 and A(ax) = a(Ax) = a0 = 0

 Hence null A satisfies S1, S2, and S3, and so is a subspace of �n.

2. The zero vector 0 in �m lies in im A because 0 = A0. Suppose that y and 
y1 are in im A, say y = Ax and y1 = Ax1 where x and x1 are in �n. Then

y + y1 = Ax + Ax1 = A(x + x1) and ay = a(Ax) = A(ax)

 show that y + y1 and ay are both in im A (they have the required 
form). Hence im A is a subspace of �m.

3

There are other important subspaces associated with a matrix A that clarify basic 
properties of A. If A is an n × n matrix and λ is any number, let 

Eλ(A) = {x in �n | Ax = λx}.

A vector x is in Eλ(A) if and only if (λI - A)x = 0, so Example 2 gives:

EXAMPLE 3

Eλ(A) = null(λI - A) is a subspace of �n for each n × n matrix A and 
number λ.

Eλ(A) is called the eigenspace of A corresponding to λ. The reason for the name 
is that, in the terminology of Section 3.3, λ is an eigenvalue of A if Eλ(A) ≠ {0}. 
In this case the nonzero vectors in Eλ(A) are called the eigenvectors of A 
corresponding to λ.

The reader should not get the impression that every subset of �n is a subspace. 
For example:

U1 =  U   S   x     y   T  | x ≥ 0 V  satisfies S1 and S2, but not S3;

U2 =  U   S   x     y   T  | x2 = y2 V  satisfies S1 and S3, but not S2;

Hence neither U1 nor U2 is a subspace of �2. (However, see Exercise 20.)

Spanning Sets
Let v and w be two nonzero, nonparallel vectors in �3 with their tails at the 
origin. The plane M through the origin containing these vectors is described in 
Section 4.2 by saying that n = v × w is a normal for M, and that M consists of all 
vectors p such that n · p = 0.4 While this is a very useful way to look at planes, 
there is another approach that is at least as useful in �3 and, more importantly, 
works for all subspaces of �n for any n ≥ 1.

3 We are using 0 to represent the zero vector in both �m and �n. This abuse of notation is common and causes no confusion once 
everybody knows what is going on.

4 The vector n = v × w is nonzero because v and w are not parallel.
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The idea is as follows: Observe that, by the diagram, a vector p is in M if and 
only if it has the form 

p = av + bw

for certain real numbers a and b (we say that p is a linear combination of v and w). 
Hence we can describe M as 

M = {ax + bw | a, b in �}.5

and we say that {v, w} is a spanning set for M. It is this notion of a spanning set that 
provides a way to describe all subspaces of �n.

As in Section 1.3, given vectors x1, x2, …, xk in �n, a vector of the form 

t1x1 + t2x2 + 	 + tkxk where the ti are scalars

is called a linear combination of the xi, and ti is called the coefficient of xi in the 
linear combination. 

The set of all such linear combinations is called the span of the xi and is denoted

span{x1, x2, …, xk} = {t1x1 + t2x2 + 	 + tkxk | ti in �}.

If V = span{x1, x2, …, xk}, we say that V is spanned by the vectors x1, x2, …, xk, and 
that the vectors x1, x2, …, xk span the space V.

Two examples: 

span{x} = {tx | t in �},

which we write as span{x} = �x for simplicity. 

span{x, y} = {rx + sy| r, s in �}.

In particular, the above discussion shows that, if v and w are two nonzero, 
nonparallel vectors in �3, then

M = span{v, w}

is the plane in �3 containing v and w. Moreover, if d is any nonzero vector in �3 
(or �2), then

L = span{v} = {td | t in �} = �d

is the line with direction vector d (see also Lemma 1 Section 3.3). Hence lines and 
planes can both be described in terms of spanning sets.

EXAMPLE 4

Let x = (2, -1, 2, 1) and y = (3, 4, -1, 1) in �4. Determine whether 
p = (0, -11, 8, 1) or q = (2, 3, 1, 2) are in U = span{x, y}.

Solution ► The vector p is in U if and only if p = sx + ty for scalars s and t. 
Equating components gives equations 

2s + 3t = 0, -s + 4t = -11, 2s - t = 8, and s + t = 1.

This linear system has solution s = 3 and t = -2, so p is in U. On the other 
hand, asking that q = sx + ty leads to equations

2s + 3t = 2, -s + 4t = 3, 2s - t = 1, and s + t = 2

and this system has no solution. So q does not lie in U.

5 In particular, this implies that any vector p orthogonal to v × w must be a linear combination p = av + bw of v and w for some a 
and b. Can you prove this directly?

M

av

v
0 w bw

p

Definition 5.2
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Theorem 1

Let U = span{x1, x2, …, xk} in �n. Then:
1. U is a subspace of �n containing each Xi. 
2. If W is a subspace of �n and each Xi is in W, then U ⊆ W.

PROOF

Write U = span{x1, x2, …, xk} for convenience.

 1. The zero vector 0 is in U because 0 = 0x1 + 0x2 + 	 + 0xk is a linear 
combination of the xi. If x = t1x1 + t2x2 + 	 + tkxk and 
y = s1x1 + s2x2 + 	 + skxk are in U, then x + y and ax are in U because

  x + y = (t1 + s1)x1 + (t2 + s2)x2 + 	 + (tk + sk)x1, and
ax = (at1)x1 + (at2)x2 + 	 + (atk)x1.

  Hence S1, S2, and S3 are satisfied for U, proving (1). 

 2. Let x = t1x1 + t2x2 + 	 + tkxk where the ti are scalars and each xi is in W. 
Then each tixi is in W because W satisfies S3. But then x is in W because W 
satisfies S2 (verify). This proves (2).

Condition (2) in Theorem 1 can be expressed by saying that span{x1, x2, …, xk} is 
the smallest subspace of �n that contains each xi. This is useful for showing that two 
subspaces U and W are equal, since this amounts to showing that both U ⊆ W and 
W ⊆ U. Here is an example of how it is used. 

EXAMPLE 5

If x and y are in �n, show that span{x, y} = span{x + y, x - y}.

Solution ► Since both x + y and x - y are in span{x, y}, Theorem 1 gives

span{x + y, x - y} ⊆ span{x, y}.

But x =   1 _ 2  (x + y) +   1 _ 2  (x - y) and y =   1 _ 2  (x + y) -   1 _ 2  (x - y) are both in 
span{x + y, x - y}, so

span{x, y} ⊆ span{x + y, x - y}

again by Theorem 1. Thus span{x, y} = span{x + y, x - y}, as desired.

It turns out that many important subspaces are best described by giving a 
spanning set. Here are three examples, beginning with an important spanning set 
for �n itself. Column j of the n × n identity matrix In is denoted ej and called the jth 
coordinate vector in �n, and the set {e1, e2, …, en} is called the standard basis of 

�
n. If x =   S  

x1

 
 

 x2   


 
 

 
xn

  T  is any vector in �n, then x = x1e1 + x2e2 + 	 + xnen, as the reader 

can verify. This proves: 
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EXAMPLE 6

�
n = span{e1, e2, …, en} where e1, e2, …, en are the columns of In.

If A is an m × n matrix A, the next two examples show that it is a routine matter 
to find spanning sets for null A and im A. 

EXAMPLE 7

Given an m × n matrix A, let x1, x2, …, xk denote the basic solutions to the 
system Ax = 0 given by the gaussian algorithm. Then

null A = span{x1, x2, …, xk}.

Solution ► If x is in null A, then Ax = 0 so Theorem 2 Section 1.3 
shows that x is a linear combination of the basic solutions; that is, 
null A ⊆ span{x1, x2, …, xk}. On the other hand, if x is in span{x1, x2, …, xk}, 
then x = t1x1 + t2x2 + 	 + tkxk for scalars ti, so

Ax = t1Ax1 + t2Ax2 + 	 + tkAxk = t10 + t20 + 	 + tk0 = 0.

This shows that x is in null A, and hence that span{x1, x2, …, xk} ⊆ null A. 
Thus we have equality.

EXAMPLE 8

Let c1, c2, …, cn denote the columns of the m × n matrix A. Then

im A = span{c1, c2, …, cn}.

Solution ► If {e1, e2, …, en} is the standard basis of �n, observe that

[Ae1 Ae2 	 Aen] = A[e1 e2 	 en] = AIn = A = [c1 c2 	 cn].

Hence ci = Aei is in im A for each i, so span{c1, c2, …, cn} ⊆ im A.

Conversely, let y be in im A, say y = Ax for some x in �n. If x =   S  
x1

 
 

 x2   


 
 

 
xn

  T  , then 

Definition 2.5 gives

y = Ax = x1c1 + x2c2 + 	 + xncn is in span{c1, c2, …, cn}.

This shows that im A ⊆ span{c1, c2, …, cn}, and the result follows.

E X E R C I S E S  5 . 1

We often write vectors in �n as rows.

 1. In each case determine whether U is a subspace 
of �3. Support your answer.

 (a) U = {(1, s, t) | s and t in �}.

 �(b) U = {(0, s, t) | s and t in �}.

 (c) U = {(r, s, t) | r, s, and t in �, -r + 3s + 2t = 0}.

 �(d) U = {(r, 3s, r - 2) | r and s in �}.

 (e) U = {(r, 0, s) | r2 + s2 = 0, r and s in �}.

 �(f ) U = {(2r, -s2, t) | r, s, and t in �}.
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 2. In each case determine if x lies in U = span{y, z}. 
If x is in U, write it as a linear combination of 
y and z; if x is not in U, show why not.

 (a) x = (2, -1, 0, 1), y = (1, 0, 0, 1), and 
z = (0, 1, 0, 1).

 �(b) x = (1, 2, 15, 11), y = (2, -1, 0, 2), and 
z = (1, -1, -3, 1).

 (c) x = (8, 3, -13, 20), y = (2, 1, -3, 5), and 
z = (-1, 0, 2, -3).

 �(d) x = (2, 5, 8, 3), y = (2, -1, 0, 5), and 
z = (-1, 2, 2, -3).

 3. In each case determine if the given vectors 
span �4. Support your answer.

 (a) {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.

 �(b) {(1, 3, -5, 0), (-2, 1, 0, 0), (0, 2, 1, -1), 
(1, -4, 5, 0)}.

 4. Is it possible that {(1, 2, 0), (2, 0, 3)} can span the 
subspace U = {(r, s, 0) | r and s in �}? Defend 
your answer.

 5. Give a spanning set for the zero subspace {0} of �n. 

 6. Is �2 a subspace of �3? Defend your answer.

 7. If U = span{x, y, z} in �n, show that 
U = span{x + tz, y, z} for every t in �.

 8. If U = span{x, y, z} in �n, show that 
U = span{x + y, y + z, z + x}.

 9. If a ≠ 0 is a scalar, show that 
span{ax} = span{x} for every vector x in �n.

 �10. If a1, a2, …, ak are nonzero scalars, show that 
span{a1x1, a2x2, …, akxk} = span{x1, x2, …, xk} 
for any vectors xi in �n.

 11. If x ≠ 0 in �n, determine all subspaces of 
span{x}.

 �12. Suppose that U = span{x1, x2, …, xk} where each 
xi is in �n. If A is an m × n matrix and Axi = 0 
for each i, show that Ay = 0 for every vector y 
in U.

 13. If A is an m × n matrix, show that, for each 
invertible m × m matrix U, null(A) = null(UA). 

 14. If A is an m × n matrix, show that, for each 
invertible n × n matrix V, im(A) = im(AV ).

 15. Let U be a subspace of �n, and let x be a vector 
in �n.

 (a) If ax is in U where a ≠ 0 is a number, show 
that x is in U. 

 �(b) If y and x + y are in U where y is a vector in 
�

n, show that x is in U.

 16. In each case either show that the statement is 
true or give an example showing that it is false. 

 (a) If U ≠ �n is a subspace of �n and x + y is in 
U, then x and y are both in U.

 �(b) If U is a subspace of �n and rx is in U for all 
r in �, then x is in U.

 (c) If U is a subspace of �n and x is in U, then 
-x is also in U.

 �(d) If x is in U and U = span{y, z}, then 
U = span{x, y, z}. 

 (e) The empty set of vectors in �n is a subspace 
of �n.

 �(f )   S   0     
1

   T  is in span  U   S   1     
0

   T  ,   S   2     
0

   T  V  .
 17. (a) If A and B are m × n matrices, show that 

U = {x in �n | Ax = Bx} is a subspace of �n.

 (b) What if A is m × n, B is k × n, and m ≠ k?

 18. Suppose that x1, x2, …, xk are vectors in �n. If 
y = a1x1 + a2x2 + 	 + akxk where a1 ≠ 0, show 
that span{x1, x2, …, xk} = span{y1, x2, …, xk}.

 19. If U ≠ {0} is a subspace of �, show that U = �.

 �20. Let U be a nonempty subset of �n. Show that U 
is a subspace if and only if S2 and S3 hold.

 21. If S and T are nonempty sets of vectors in �n, 
and if S ⊆ T, show that span{S} ⊆ span{T}.

 22. Let U and W be subspaces of �n. Define their 
intersection U ∩ W and their sum U + W as 
follows:

  U ∩ W = {x in �n | x belongs to both U and W}.

  U + W = {x in �n | x is a sum of a vector in U 
and a vector in W}.

 (a) Show that U ∩ W is a subspace of �n.

 �(b) Show that U + W is a subspace of �n.

 23. Let P denote an invertible n × n matrix. If λ is 
a number, show that Eλ(PAP-1) = {Px | x is in 
Eλ(A)} for each n × n matrix A.
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 24. Show that every proper subspace U of �2 is a 
line through the origin. [Hint: If d is a nonzero 
vector in U, let L = �d = {rd | r in �} denote 

the line with direction vector d. If u is in U but 
not in L, argue geometrically that every vector v 
in �2 is a linear combination of u and d.]

Independence and Dimension 
Some spanning sets are better than others. If U = span{x1, x2, …, xk} is a subspace of 
�

n, then every vector in U can be written as a linear combination of the xi in at least 
one way. Our interest here is in spanning sets where each vector in U has a exactly 
one representation as a linear combination of these vectors. 

Linear Independence 
Given x1, x2, …, xk in �n, suppose that two linear combinations are equal:

r1x1 + r2x2 + 	 + rkxk = s1x1 + s2x2 + 	 + skxk.

We are looking for a condition on the set {x1, x2, …, xk} of vectors that guarantees 
that this representation is unique; that is, ri = si for each i. Taking all terms to the 
left side gives

(r1 - s1)x1 + (r2 - s2)x2 + 	 + (rk - sk)xk = 0.

so the required condition is that this equation forces all the coefficients ri - si to be zero. 

With this in mind, we call a set {x1, x2, …, xk} of vectors linearly independent (or 
simply independent) if it satisfies the following condition:

If t1x1 + t2x2 + 	 + tkxk = 0 then t1 = t2 = 	 = tk = 0.

We record the result of the above discussion for reference.

Theorem 1

If {x1, x2, …, xk} is an independent set of vectors in �n, then every vector in 
span{x1, x2, …, xk} has a unique representation as a linear combination of the xi.

It is useful to state the definition of independence in different language. Let us 
say that a linear combination vanishes if it equals the zero vector, and call a linear 
combination trivial if every coefficient is zero. Then the definition of independence 
can be compactly stated as follows:

A set of vectors is independent if and only if the only 
linear combination that vanishes is the trivial one.

Hence we have a procedure for checking that a set of vectors is independent:

Independence Test

To verify that a set {x1, x2, …, xk} of vectors in �n is independent, proceed as follows: 
1. Set a linear combination equal to zero: t1x1 + t2x2 + 	 + tkxk = 0.
2. Show that ti = 0 for each i (that is, the linear combination is trivial).

Of course, if some nontrivial linear combination vanishes, the vectors are not independent.

S E C T I O N  5 . 2
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EXAMPLE 1

Determine whether {(1, 0, -2, 5), (2, 1, 0, -1), (1, 1, 2, 1)} is independent 
in �4.

Solution ► Suppose a linear combination vanishes:

r(1, 0, -2, 5) + s(2, 1, 0, -1) + t(1, 1, 2, 1) = (0, 0, 0, 0).

Equating corresponding entries gives a system of four equations:

r + 2s + t = 0, s + t = 0, -2r + 2t = 0, and 5r - s + t = 0.

The only solution is the trivial one r = s = t = 0 (verify), so these vectors are 
independent by the independence test.

EXAMPLE 2

Show that the standard basis {e1, e2, …, ek} of �n is independent.

Solution ► The components of t1e1 + t2e2 + 	 + tnen are t1, t2, …, tn (see the 
discussion preceding Example 6 Section 5.1) So the linear combination vanishes 
if and only if each ti = 0. Hence the independence test applies.

EXAMPLE 3

If {x, y} is independent, show that {2x + 3y, x - 5y} is also independent.

Solution ► If s(2x + 3y) + t(x - 5y) = 0, collect terms to get 
(2s + t)x + (3s - 5t)y = 0. Since {x, y} is independent this combination 
must be trivial; that is, 2s + t = 0 and 3s - 5t = 0. These equations have 
only the trivial solution s = t = 0, as required.

EXAMPLE 4

Show that the zero vector in �n does not belong to any independent set.

Solution ► No set {0, x1, x2, …, xk} of vectors is independent because we have a 
vanishing, nontrivial linear combination 1 · 0 + 0x1 + 0x2 + 	 + 0xk = 0.

EXAMPLE 5

Given x in �n, show that {x} is independent if and only if x ≠ 0. 

Solution ► A vanishing linear combination from {x} takes the form tx = 0, 
t in �. This implies that t = 0 because x ≠ 0.
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The next example will be needed later.

EXAMPLE 6

Show that the nonzero rows of a row-echelon matrix R are independent. 

Solution ► We illustrate the case with 3 leading 1s; the general case is 

analogous. Suppose R has the form R = 

0
0
0
0

1
0
0
0

∗

0
0
0

∗

1
0
0

∗

∗

1
0

∗

∗

∗

0

 where ∗ indicates 

a nonspecified number. Let R1, R2, and R3 denote the nonzero rows of R. If 
t1R1 + t2R2 + t3R3 = 0 we show that t1 = 0, then t2 = 0, and finally t3 = 0. 
The condition t1R1 + t2R2 + t3R3 = 0 becomes

(0, t1, ∗, ∗, ∗, ∗) + (0, 0, 0, t2, ∗, ∗) + (0, 0, 0, 0, t3, ∗) = (0, 0, 0, 0, 0, 0).

Equating second entries show that t1 = 0, so the condition becomes 
t2R2 + t3R3 = 0. Now the same argument shows that t2 = 0. Finally, 
this gives t3R3 = 0 and we obtain t3 = 0.

A set of vectors in �n is called linearly dependent (or simply dependent) if it is 
not linearly independent, equivalently if some nontrivial linear combination vanishes. 

EXAMPLE 7

If v and w are nonzero vectors in �3, show that {v, w} is dependent if and only 
if v and w are parallel.

Solution ► If v and w are parallel, then one is a scalar multiple of the other 
(Theorem 4 Section 4.1), say v = aw for some scalar a. Then the nontrivial 
linear combination v - aw = 0 vanishes, so {v, w} is dependent.

Conversely, if {v, w} is dependent, let sv + tw = 0 be nontrivial, say s ≠ 0. 
Then v = -  t _ s  w, so v and w are parallel (by Theorem 4 Section 4.1). A similar 
argument works if t ≠ 0.

With this we can give a geometric description of what it means for a set {u, v, w} 
in �3 to be independent. Note that this requirement means that {v, w} is also 
independent (av + bw = 0 means that 0u + av + bw = 0), so M = span{v, w} is the 
plane containing v, w, and 0 (see the discussion preceding Example 4 Section 5.1). 
So we assume that {v, w} is independent in the following example. 

EXAMPLE 8

Let u, v, and w be nonzero vectors in �3 where {v, w} independent. Show that 
{u, v, w} is independent if and only if u is not in the plane M = span{v, w}. 
This is illustrated in the diagrams.

M

M

u

v

w

u
v

w

{ }u v w, , independent

{ }u v w, , not independent
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Solution ► If {u, v, w} is independent, suppose u is in the plane M = span{v, w}, 
say u = av + bw, where a and b are in �. Then 1u - av - bw = 0, 
contradicting the independence of {u, v, w}.
On the other hand, suppose that u is not in M; we must show that {u, v, w} is 
independent. If ru + sv + tw = 0 where r, s, and t are in �3, then r = 0 since 
otherwise u =   −s

 __ r  v +   −t
 __ r  w is in M. But then sv + tw = 0, so s = t = 0 by our 

assumption. This shows that {u, v, w} is independent, as required.

By Theorem 5 Section 2.4, the following conditions are equivalent for an n × n 
matrix A:

1. A is invertible.
2. If Ax = 0 where x is in �n, then x = 0. 
3. Ax = b has a solution x for every vector b in �n.

While condition 1 makes no sense if A is not square, conditions 2 and 3 are 
meaningful for any matrix A and, in fact, are related to independence and spanning. 

Indeed, if c1, c2, …, cn are the columns of A, and if we write x =   S  
x1

 
 

 x2   


 
 

 
xn

  T  , then 

Ax = x1c1 + x2c2 + 	 + xncn 

by Definition 2.5. Hence the definitions of independence and spanning show, 
respectively, that condition 2 is equivalent to the independence of {c1, c2, …, cn} 
and condition 3 is equivalent to the requirement that span{c1, c2, …, cn} = �m. 
This discussion is summarized in the following theorem:

Theorem 2

If A is an m × n matrix, let {c1, c2, …, cn} denote the columns of A.
1. {c1, c2, …, cn} is independent in �m if and only if Ax = 0, x in �n, implies x = 0.
2. �

m = span{c1, c2, …, cn} if and only if Ax = b has a solution x for every vector 
b in �m.

For a square matrix A, Theorem 2 characterizes the invertibility of A in terms 
of the spanning and independence of its columns (see the discussion preceding 
Theorem 2). It is important to be able to discuss these notions for rows. If 
x1, x2, …, xk are 1 × n rows, we define span{x1, x2, …, xk} to be the set of all linear 
combinations of the xi (as matrices), and we say that {x1, x2, …, xk} is linearly 
independent if the only vanishing linear combination is the trivial one (that is, if 
{ x  1  

T ,  x  2  
T , …,  x  k  

T } is independent in �n, as the reader can verify).6

Theorem 3

The following are equivalent for an n × n matrix A:
1. A is invertible.

6 It is best to view columns and rows as just two different notations for ordered n-tuples. This discussion will become redundant in 
Chapter 6 where we define the general notion of a vector space.
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2. The columns of A are linearly independent.
3. The columns of A span �n.
4. The rows of A are linearly independent. 
5. The rows of A span the set of all 1 × n rows.

PROOF

Let c1, c2, …, cn denote the columns of A.

(1) ⇔ (2). By Theorem 5 Section 2.4, A is invertible if and only if Ax = 0 
implies x = 0; this holds if and only if {c1, c2, …, cn} is independent by 
Theorem 2.

(1) ⇔ (3). Again by Theorem 5 Section 2.4, A is invertible if and only if 
Ax = b has a solution for every column B in �n; this holds if and only if 
span{c1, c2, …, cn} = �n by Theorem 2. 

(1) ⇔ (4). The matrix A is invertible if and only if AT is invertible (by the 
Corollary to Theorem 4 Section 2.4); this in turn holds if and only if AT has 
independent columns (by (1) ⇔ (2)); finally, this last statement holds if and 
only if A has independent rows (because the rows of A are the transposes of 
the columns of AT).

(1) ⇔ (5). The proof is similar to (1) ⇔ (4).

EXAMPLE 9

Show that S = {(2, -2, 5), (-3, 1, 1), (2, 7, -4)} is independent in �3. 

Solution ► Consider the matrix A = 
2

-3
2

-2
1
7

5
1

-4
 with the vectors in S as its 

rows. A routine computation shows that det A = -117 ≠ 0, so A is invertible. 
Hence S is independent by Theorem 3. Note that Theorem 3 also shows that 
�

3 = span S.

Dimension
It is common geometrical language to say that �3 is 3-dimensional, that planes are 
2-dimensional and that lines are 1-dimensional. The next theorem is a basic tool 
for clarifying this idea of “dimension”. Its importance is difficult to exaggerate.

Theorem 4

Fundamental Theorem
Let U be a subspace of �n. If U is spanned by m vectors, and if U contains k linearly 
independent vectors, then k ≤ m.

This proof is given in Theorem 2 Section 6.3 in much greater generality.

240 Chapter 5 The Vector Space �n



If U is a subspace of �n, a set {x1, x2, …, xm} of vectors in U is called a basis of U if it 
satisfies the following two conditions:

1. {x1, x2, …, xm} is linearly independent. 
2. U = span{x1, x2, …, xm}.

The most remarkable result about bases7 is:

Theorem 5

Invariance Theorem
If {x1, x2, …, xm} and {y1, y2, …, yk} are bases of a subspace U of �n, then m = k.

PROOF

We have k ≤ m by the fundamental theorem because {x1, x2, …, xm} spans U, 
and {y1, y2, …, yk} is independent. Similarly, by interchanging xs and ys we get 
m ≤ k. Hence m = k.

The invariance theorem guarantees that there is no ambiguity in the following 
definition:

If U is a subspace of �n and {x1, x2, …, xm} is any basis of U, the number, m, of vectors 
in the basis is called the dimension of U, denoted

dim U = m.

The importance of the invariance theorem is that the dimension of U can be 
determined by counting the number of vectors in any basis.8

Let {e1, e2, …, en} denote the standard basis of �n, that is the set of columns of 
the identity matrix. Then �n = span{e1, e2, …, en} by Example 6 Section 5.1, and 
{e1, e2, …, en} is independent by Example 2. Hence it is indeed a basis of �n in the 
present terminology, and we have 

EXAMPLE 10

dim(�n) = n and {e1, e2, …, en} is a basis.

This agrees with our geometric sense that �2 is two-dimensional and �3 is 
three-dimensional. It also says that �1 = � is one-dimensional, and {1} is a basis. 
Returning to subspaces of �n, we define

dim {0} = 0.

This amounts to saying {0} has a basis containing no vectors. This makes sense 
because 0 cannot belong to any independent set (Example 4).

7 The plural of “basis” is “bases”.

8 We will show in Theorem 6 that every subspace of �n does indeed have a basis.

Definition 5.4

Definition 5.5
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EXAMPLE 11

Let U =  U   S  r 
 
 s   

r
  T  | r, s in � V . Show that U is a subspace of �3, find a basis, and 

calculate dim U.

Solution ► Clearly,   S  r 
 
 s   

r
  T  = ru + sv where u =   S  1 

 
 0   

1
  T  and v =   S  0 

 
 1   

0
  T . It follows that 

U = span{u, v}, and hence that U is a subspace of �3. Moreover, if 

ru + sv = 0, then   S  r 
 
 s   

r
  T  =   S  0 

 
 0   

0
  T  so r = s = 0. Hence {u, v} is independent, and so a 

basis of U. This means dim U = 2.

EXAMPLE 12

Let B = {x1, x2, …, xn} be a basis of �n. If A is an invertible n × n matrix, then 
D = {Ax1, Ax2, …, Axn} is also a basis of �n.

Solution ► Let x be a vector in �n. Then A-1x is in �n so, since B is a basis, 
we have A-1x = t1x1 + t2x2 + 	 + tnxn for ti in �. Left multiplication by A 
gives x = t1(Ax1) + t2(Ax2) + 	 + tn(Axn), and it follows that D spans �n. To 
show independence, let s1(Ax1) + s2(Ax2) + 	 + sn(Axn) = 0, where the si are 
in �. Then A(s1x1 + s2x2 + 	 + snxn) = 0 so left multiplication by A-1 gives 
s1x1 + s2x2 + 	 + snxn = 0. Now the independence of B shows that each si = 0, 
and so proves the independence of D. Hence D is a basis of �n.

While we have found bases in many subspaces of �n, we have not yet shown that 
every subspace has a basis. This is part of the next theorem, the proof of which is 
deferred to Section 6.4 where it will be proved in more generality.

Theorem 6

Let U ≠ {0} be a subspace of �n. Then:
1. U has a basis and dim U ≤ n. 
2. Any independent set in U can be enlarged (by adding vectors from the standard 

basis) to a basis of U.
3. Any spanning set for U can be cut down (by deleting vectors) to a basis of U.

EXAMPLE 13

Find a basis of �4 containing S = {u, v} where u = (0, 1, 2, 3) and v = (2, -1, 0, 1). 

Solution ► By Theorem 6 we can find such a basis by adding vectors from the 
standard basis of �4 to S. If we try e1 = (1, 0, 0, 0), we find easily that {e1, u, v} 
is independent. Now add another vector from the standard basis, say e2.
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Again we find that B = {e1, e2, u, v} is independent. Since B has 4 = dim �4 
vectors, then B must span �4 by Theorem 7 below (or simply verify it directly). 
Hence B is a basis of �4.

Theorem 6 has a number of useful consequences. Here is the first. 

Theorem 7

Let U be a subspace of �n where dim U = m and let B = {x1, x2, …, xm} be a set of m 
vectors in U. Then B is independent if and only if B spans U.

PROOF

Suppose B is independent. If B does not span U then, by Theorem 6, B can be 
enlarged to a basis of U containing more than m vectors. This contradicts the 
invariance theorem because dim U = m, so B spans U. Conversely, if B spans U 
but is not independent, then B can be cut down to a basis of U containing fewer 
than m vectors, again a contradiction. So B is independent, as required.

As we saw in Example 13, Theorem 7 is a “labour-saving” result. It asserts 
that, given a subspace U of dimension m and a set B of exactly m vectors in U, to 
prove that B is a basis of U it suffices to show either that B spans U or that B is 
independent. It is not necessary to verify both properties.

Theorem 8

Let U ⊆ W be subspaces of �n. Then:
1. dim U ≤ dim W. 
2. If dim U = dim W, then U = W.

PROOF

Write dim W = k, and let B be a basis of U. 

 1. If dim U > k, then B is an independent set in W containing more than k 
vectors, contradicting the fundamental theorem. So dim U ≤ k = dim W. 

 2. If dim U = k, then B is an independent set in W containing k = dim W 
vectors, so B spans W by Theorem 7. Hence W = span B = U, proving (2).

It follows from Theorem 8 that if U is a subspace of �n, then dim U is one of the 
integers 0, 1, 2, …, n, and that:

 dim U = 0 if and only if U = {0},
 dim U = n if and only if U = �n

The other subspaces are called proper. The following example uses Theorem 8 
to show that the proper subspaces of �2 are the lines through the origin, while the 
proper subspaces of �3 are the lines and planes through the origin.
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EXAMPLE 14

1. If U is a subspace of �2 or �3, then dim U = 1 if and only if U is a line 
through the origin. 

2. If U is a subspace of �3, then dim U = 2 if and only if U is a plane 
through the origin.

PROOF

 1. Since dim U = 1, let {u} be a basis of U. Then U = span{u} = {tu | t in �}, so 
U is the line through the origin with direction vector u. Conversely each line 
L with direction vector d ≠ 0 has the form L = {td | t in �}. Hence {d} is a 
basis of U, so U has dimension 1.

 2. If U ⊆ �3 has dimension 2, let {v, w} be a basis of U. Then v and w are not 
parallel (by Example 7) so n = v × w ≠ 0. Let P = {x in �3 | n · x = 0} 
denote the plane through the origin with normal n. Then P is a subspace of 
�

3 (Example 1 Section 5.1) and both v and w lie in P (they are orthogonal to 
n), so U = span{v, w} ⊆ P by Theorem 1 Section 5.1. Hence 

U ⊆ P ⊆ �3.

  Since dim U = 2 and dim(�3) = 3, it follows from Theorem 8 that dim P = 2 
or 3, whence P = U or �3. But P ≠ �3 (for example, n is not in P) and so 
U = P is a plane through the origin.
 Conversely, if U is a plane through the origin, then dim U = 0, 1, 2, or 3 
by Theorem 8. But dim U ≠ 0 or 3 because U ≠ {0} and U ≠ �3, and dim 
U ≠ 1 by (1). So dim U = 2.

Note that this proof shows that if v and w are nonzero, nonparallel vectors in 
�

3, then span{v, w} is the plane with normal n = v × w. We gave a geometrical 
verification of this fact in Section 5.1.

E X E R C I S E S  5 . 2

In Exercises 1–6 we write vectors �n as rows.

 1. Which of the following subsets are independent? 
Support your answer.

 (a) {(1, -1, 0), (3, 2, -1), (3, 5, -2)} in �3.

 �(b) {(1, 1, 1), (1, -1, 1), (0, 0, 1)} in �3.

 (c) {(1, -1, 1, -1), (2, 0, 1, 0), (0, -2, 1, -2)} in �4.

 �(d) {(1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 1, 1), 
(0, 1, 0, 1)} in �4.

 2. Let {x, y, z, w} be an independent set in �n. 
Which of the following sets is independent? 
Support your answer.

 (a) {x - y, y - z, z - x}

 �(b) {x + y, y + z, z + x}

 (c) {x - y, y - z, z - w, w - x}

 �(d) {x + y, y + z, z + w, w + x}

 3. Find a basis and calculate the dimension of the 
following subspaces of �4.

 (a) span{(1, -1, 2, 0), (2, 3, 0, 3), (1, 9, -6, 6)}.

 �(b) span{(2, 1, 0, -1), (-1, 1, 1, 1), (2, 7, 4, 1)}.

 (c) span{(-1, 2, 1, 0), (2, 0, 3, -1), (4, 4, 11, -3),
 (3, -2, 2, -1)}.

 �(d) span{(-2, 0, 3, 1), (1, 2, -1, 0), (-2, 8, 5, 3), 
(-1, 2, 2, 1)}.
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 4. Find a basis and calculate the dimension of the 
following subspaces of �4.

 (a) U =  U    S   
a

 

  
 a + b    

a - b
 

  
 

b

   T  | a and b in � V .
 �(b) U =  U    S  a + b

 
  

 a - b    
b
 

  
 

a

   T  | a and b in � V .
 (c) U =  U    S   

a

 
  

 b    c + a   
 

c

   T  | a, b, and c in � V .

 �(d) U =  U    S  a - b
 

  
 b + c    a    

b + c

   T  | a, b, and c in � V .
 (e) U =  U    S   

a

 
 
 b   c   

d

   T  | a + b - c + d = 0 in � V .
 �(f ) U =  U   S   

a

 
 
 b   c   

d

   T  | a + b = c + d in � V .
 5. Suppose that {x, y, z, w} is a basis of �4. Show 

that:

 (a) {x + aw, y, z, w} is also a basis of �4 for any 
choice of the scalar a.

 �(b) {x + w, y + w, z + w, w} is also a basis 
of �4.

 (c) {x, x + y, x + y + z, x + y + z + w} is also 
a basis of �4.

 6. Use Theorem 3 to determine if the following 
sets of vectors are a basis of the indicated space.

 (a) {(3, -1), (2, 2)} in �2.

 �(b) {(1, 1, -1), (1, -1, 1), (0, 0, 1)} in �3.

 (c) {(-1, 1, -1), (1, -1, 2), (0, 0, 1)} in �3.

 �(d) {(5, 2, -1), (1, 0, 1), (3, -1, 0)} in �3.

 (e) {(2, 1, -1, 3), (1, 1, 0, 2), (0, 1, 0, -3), 
(-1, 2, 3, 1)} in �4.

 �(f ) {(1, 0, -2, 5), (4, 4, -3, 2), (0, 1, 0, -3), 
(1, 3, 3, -10)} in �4.

 7. In each case show that the statement is true or 
give an example showing that it is false. 

 (a) If {x, y} is independent, then {x, y, x + y} is 
independent. 

 �(b) If {x, y, z} is independent, then {y, z} is 
independent. 

 (c) If {y, z} is dependent, then {x, y, z} is 
dependent for any x. 

 �(d) If all of x1, x2, …, xk are nonzero, then 
{x1, x2, …, xk} is independent. 

 (e) If one of x1, x2, …, xk is zero, then 
{x1, x2, …, xk} is dependent. 

 �(f ) If ax + by + cz = 0, then {x, y, z} is 
independent.

 (g) If {x, y, z} is independent, then 
ax + by + cz = 0 for some a, b, and c in �.

 �(h) If {x1, x2, …, xk} is dependent, then 
t1x1 + t2x2 + 	 + tkxk = 0 for some 
numbers ti in � not all zero. 

 (i) If {x1, x2, …, xk} is independent, then 
t1x1 + t2x2 + 	 + tkxk = 0 for some ti in �.

 8. If A is an n × n matrix, show that det A = 0 
if and only if some column of A is a linear 
combination of the other columns.

 9. Let {x, y, z} be a linearly independent set in �4. 
Show that {x, y, z, ek} is a basis of �4 for some ek 
in the standard basis {e1, e2, e3, e4}.

 �10. If {x1, x2, x3, x4, x5, x6} is an independent set of 
vectors, show that the subset {x2, x3, x5} is also 
independent.

 11. Let A be any m × n matrix, and let b1, b2, 
b3, …, bk be columns in �m such that the 
system Ax = bi has a solution xi for each i. If 
{b1, b2, b3, …, bk} is independent in �m, show 
that {x1, x2, x3, …, xk} is independent in �n.

 �12. If {x1, x2, x3, …, xk} is independent, show that 
{x1, x1 + x2, x1 + x2 + x3, …, x1 + x2 + 	 + xk} 
is also independent.

 13. If {y, x1, x2, x3, …, xk} is independent, show 
that {y + x1, y + x2, y + x3, …, y + xk} is also 
independent.

 14. If {x1, x2, …, xk} is independent in �n, and if y is 
not in span{x1, x2, …, xk}, show that 
{x1, x2, …, xk, y} is independent.

 15. If A and B are matrices and the columns of AB 
are independent, show that the columns of B are 
independent.
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 16. Suppose that {x, y} is a basis of �2, and let 

A =   S   a b
        

c d
   T .

 (a) If A is invertible, show that {ax + by, cx + dy} 
is a basis of �2.

 �(b) If {ax + by, cx + dy} is a basis of �2, show 
that A is invertible.

 17. Let A denote an m × n matrix.

 (a) Show that null A = null(UA) for every 
invertible m × m matrix U.

 �(b) Show that dim(null A) = dim(null(AV )) 
for every invertible n × n matrix V. [Hint: 
If {x1, x2, …, xk} is a basis of null A, show 
that {V-1x1, V

-1x2, …, V-1xk} is a basis of 
null(AV ).]

 18. Let A denote an m × n matrix.

 (a) Show that im A = im(AV ) for every 
invertible n × n matrix V.

 (b) Show that dim(im A) = dim(im(UA)) for 
every invertible m × m matrix U. [Hint: If 
{y1, y2, …, yk} is a basis of im(UA), show that 
{U -1y1, U -1y2, …, U -1yk} is a basis of im A.]

 19. Let U and W denote subspaces of �n, and 
assume that U ⊆ W. If dim U = n - 1, show 
that either W = U or W = �n.

 �20. Let U and W denote subspaces of �n, and 
assume that U ⊆ W. If dim W = 1, show that 
either U = {0} or U = W.

Orthogonality
Length and orthogonality are basic concepts in geometry and, in �2 and �3, they 
both can be defined using the dot product. In this section we extend the dot product 
to vectors in �n, and so endow �n with euclidean geometry. We then introduce the 
idea of an orthogonal basis—one of the most useful concepts in linear algebra, and 
begin exploring some of its applications.

Dot Product, Length, and Distance 
If x = (x1, x2, …, xn) and y = ( y1, y2, …, yn) are two n-tuples in �n, recall that their 
dot product was defined in Section 2.2 as follows: 

x · y = x1y1 + x2y2 + 	 + xnyn.

Observe that if x and y are written as columns then x · y = xTy is a matrix product 
(and x · y = xyT if they are written as rows). Here x · y is a 1 × 1 matrix, which we 
take to be a number. 

As in �3, the length ‖x‖ of the vector is defined by

‖x‖ =  √ 

____
 x · x   =  √ 

_________________

   x  1  
2  +  x  2  

2  +  	  +  x  n  
2   

Where  √ 
___

  Q   R    indicates the positive square root.

A vector x of length 1 is called a unit vector. If x ≠ 0, then ‖x‖ ≠ 0 and it follows 
easily that   1 ___ 

‖x‖
  x is a unit vector (see Theorem 6 below), a fact that we shall use later.

EXAMPLE 1

If x = (1, -1, -3, 1) and y = (2, 1, 1, 0) in �4, then x · y = 2 - 1 - 3 + 0 = -2 

and ‖x‖ =  √ 
____________

  1 + 1 + 9 + 1   =  √ 

___

 12   = 2 √ 

__

 3  . Hence   1 ___ 
2 √ 

__

 3  
   x is a unit vector; 

similarly   1 __ 
 √ 

__

 6  
   y is a unit vector.

S E C T I O N  5 . 3

Definition 5.6
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These definitions agree with those in �2 and �3, and many properties carry over to �n:

Theorem 1

Let x, y, and z denote vectors in �n. Then: 
1. x · y = y · x. 

2. x · (y + z) = x · y + x · z.

3. (ax) · y = a(x · y) = x · (ay) for all scalars a. 

4. ‖x‖
2 = x · x. 

5. ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.

6. ‖ax‖ = | a| ‖x‖ for all scalars a.

PROOF

(1), (2), and (3) follow from matrix arithmetic because x · y = xTy; (4) is clear 

from the definition; and (6) is a routine verification since |a| =  √ 

__

 a2  . If 
x = (x1, x2, …, xn), then ‖x‖ =  √ 

________________

   x  1  
2  +  x  2  

2  + 	 +  x  n  
2   , so ‖x‖ = 0 if and only if 

x  1  
2  +  x  2  

2  + 	 +  x  n  
2  = 0. Since each xi is a real number this happens if and only 

if xi = 0 for each i; that is, if and only if x = 0. This proves (5).

Because of Theorem 1, computations with dot products in �n are similar to those 
in �3. In particular, the dot product 

(x1 + x2 + 	 + xm) · (y1 + y2 + 	 + yk) 

equals the sum of mk terms, xi · yj, one for each choice of i and j. For example:

(3x - 4y) · (7x + 2y)  = 21(x · x) + 6(x · y) - 28(y · x) - 8(y · y)
= 21‖x‖

2 - 22(x · y) - 8‖y‖
2

holds for all vectors x and y.

EXAMPLE 2

Show that ‖x + y‖
2 = ‖x‖

2 + 2(x · y) + ‖y‖
2 for any x and y in �n.

Solution ► Using Theorem 1 several times: 

‖x + y‖
2  = (x + y) · (x + y) = x · x + x · y + y · x + y · y

= ‖x‖
2 + 2(x · y) + ‖y‖

2

EXAMPLE 3

Suppose that �n = span{f1, f2, …, fk} for some vectors fi. If x · fi = 0 for each i 
where x is in �n, show that x = 0.
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Solution ► We show x = 0 by showing that ‖x‖ = 0 and using (5) of Theorem 1. 
Since the fi span �n, write x = t1f1 + t2f2 + 	 + tkfk where the ti are in �. Then

‖x‖
2  = x · x = x · (t1f1 + t2f2 + 	 + tkfk)

= t1(x · f1) + t2(x · f2) + 	 + tk(x · fk)
= t1(0) + t2(0) + 	 + tk(0) 
= 0.

We saw in Section 4.2 that if u and v are nonzero vectors in �3, then 
u · v _______ 

‖u‖‖v‖
   = cos θ where θ is the angle between u and v. Since |cos θ| ≤ 1 for any 

angle θ, this shows that |u · v| ≤ ‖u‖‖v‖. In this form the result holds in �n.

Theorem 2

Cauchy Inequality9

If x and y are vectors in �n, then

|x · y| ≤ ‖x‖‖y‖.

Moreover |x · y| = ‖x‖‖y‖ if and only if one of x and y is a multiple of the other.
9

PROOF

The inequality holds if x = 0 or y = 0 (in fact it is equality). Otherwise, 
write ‖x‖ = a > 0 and ‖y‖ = b > 0 for convenience. A computation like 
that preceding Example 2 gives 

 ‖bx - ay‖
2 = 2ab(ab - x · y) and ‖bx - ay‖

2 = 2ab(ab + x · y). (∗)

It follows that ab - x · y ≥ 0 and ab + x · y ≥ 0, and hence that -ab ≤ x · y ≤ ab. 
Hence |x · y| ≤ ab = ‖x‖‖y‖, proving the Cauchy inequality. 

If equality holds, then |x · y| = ab, so x · y = ab or x · y = -ab. Hence (∗) 
shows that bx - ay = 0 or bx + ay = 0, so one of x and y is a multiple of the 
other (even if a = 0 or b = 0).

The Cauchy inequality is equivalent to (x · y)2 ≤ ‖x‖
2
‖y‖

2. In �5 this becomes 

(x1y1 + x2y2 + x3y3 + x4y4 + x5y5)
2 

  ≤  Q  x  1  
2  +  x  2  

2  +  x  3  
2  +  x  4  

2  +  x  5  
2  R  Q  y  1  

2  +  y  2  
2  +  y  3  

2  +  y  4  
2  +  y  5  

2  R 

for all xi and yi in �.
There is an important consequence of the Cauchy inequality. Given x and y in 

�
n, use Example 2 and the fact that x · y ≤ ‖x‖‖y‖ to compute 

‖x + y‖
2 = ‖x‖

2 + 2(x · y) + ‖y‖
2 ≤ ‖x‖

2 + 2‖x‖‖y‖ + ‖y‖
2 = (‖x + y‖)

2.

Taking positive square roots gives:

9 Augustin Louis Cauchy (1789–1857) was born in Paris and became a professor at the École Polytechnique at the age of 26. He was 
one of the great mathematicians, producing more than 700 papers, and is best remembered for his work in analysis in which he 
established new standards of rigour and founded the theory of functions of a complex variable. He was a devout Catholic with a long-
term interest in charitable work, and he was a royalist, following King Charles X into exile in Prague after he was deposed in 1830. 
Theorem 2 first appeared in his 1812 memoir on determinants.

Augustin Louis Cauchy. 
Photo © Corbis.
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Corollary 1

Triangle Inequality
If x and y are vectors in �n, then ‖x + y‖ ≤ ‖x‖ + ‖y‖.

The reason for the name comes from the observation that in �3 the inequality 
asserts that the sum of the lengths of two sides of a triangle is not less than the 
length of the third side. This is illustrated in the first diagram. 

If x and y are two vectors in �n, we define the distance d(x, y) between x and y by 

d(x, y) = ‖x - y‖

The motivation again comes from �3 as is clear in the second diagram. This 
distance function has all the intuitive properties of distance in �3, including 
another version of the triangle inequality.

Theorem 3

If x, y, and z are three vectors in �n we have: 
1. d(x, y) ≥ 0 for all x and y.
2. d(x, y) = 0 if and only if x = y.
3. d(x, y) = d(y, x).
4. d(x, z) ≤ d(x, y) + d(y, z). Triangle inequality.

PROOF

(1) and (2) restate part (5) of Theorem 1 because d(x, y) = ‖x - y‖, and (3) 
follows because ‖u‖ = ‖-u‖ for every vector u in �n. To prove (4) use the 
Corollary to Theorem 2: 

d(x, z) = ‖x - z‖  = ‖(x - y) + (y - z)‖
≤ ‖(x - y)‖ + ‖(y - z)‖ = d(x, y) + d(y, z)

Orthogonal Sets and the Expansion Theorem

We say that two vectors x and y in �n are orthogonal if x · y = 0, extending the 
terminology in �3 (See Theorem 3 Section 4.2). More generally, a set {x1, x2, …, xk} 
of vectors in �n is called an orthogonal set if 

xi · xj = 0 for all i ≠ j and xi ≠ 0 for all i.10

Note that {x} is an orthogonal set if x ≠ 0. A set {x1, x2, …, xk} of vectors in �n is called 
orthonormal if it is orthogonal and, in addition, each xi is a unit vector: 

‖xi‖ = 1 for each i.
10

10 The reason for insisting that orthogonal sets consist of nonzero vectors is that we will be primarily concerned with orthogonal bases.

v w

v w+

Definition 5.7

v

w
v w−

Definition 5.8
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EXAMPLE 4

The standard basis {e1, e2, …, en} is an orthonormal set in �n.

The routine verification is left to the reader, as is the proof of:

EXAMPLE 5

If {x1, x2, …, xk} is orthogonal, so also is {a1x1, a2x2, …, akxk} for any nonzero 
scalars ai.

If x ≠ 0, it follows from item (6) of Theorem 1 that   1 ____ 
‖x‖

  x is a unit vector, 
that is it has length 1.

Hence if {x1, x2, …, xk} is an orthogonal set, then  U   1 _____ 
‖x1‖

  x1,   1 _____ 
‖x2‖

  x2, …,   1 ____ 
‖xk‖

  xk V  is an 

orthonormal set, and we say that it is the result of normalizing the orthogonal set 
{x1, x2, …, xk}.

EXAMPLE 6

If f1 =   S     1
 

 
   1   

  1
 

 
 

-1

  T  , f2 =   S  1 
 

 0   
1

 
 

 

2

  T  , f3 =   S  -1
 

 
   0   

  1
 

 
 

  0

   T  , and f4 =   S  -1
 

 
   3   

-1
 

 
 

  1

   T  then {f1, f2, f3, f4} is an 

orthogonal set in �4 as is easily verified. After normalizing, the corresponding 
orthonormal set is  U   1 _ 2   f1,   1 __ 

 √ 

__

 6  
   f2,   1 __ 

 √ 

__

 2  
   f3,   1 ___ 

2 √ 

__

 3  
   f4 V .

The most important result about orthogonality is Pythagoras’ theorem. Given 
orthogonal vectors v and w in �3, it asserts that ‖v + w‖

2 = ‖v‖
2 + ‖w‖

2 as in the 
diagram. In this form the result holds for any orthogonal set in �n.

Theorem 4

Pythagoras’ Theorem
If {x1, x2, …, xk} is a orthogonal set in �n, then

‖x1 + x2 + 	 + xk‖
2 = ‖x1‖

2 + ‖x2‖
2 + 	 + ‖xk‖

2.

PROOF

The fact that xi · xj = 0 whenever i ≠ j gives

‖x1 + x2 + 	 + xk‖
2  = (x1 + x2 + 	 + xk) · (x1 + x2 + 	 + xk)

= (x1 · x1 + x2 · x2 + 	 + xk · xk) +  ∑ 
i≠j

   
 
  xi · xj 

= ‖x1‖
2 + ‖x2‖

2 + 	 + ‖xk‖
2 + 0.

This is what we wanted.

Definition 5.9

v w+ w

v

250 Chapter 5 The Vector Space �n



If v and w are orthogonal, nonzero vectors in �3, then they are certainly not 
parallel, and so are linearly independent by Example 7 Section 5.2. The next 
theorem gives a far-reaching extension of this observation.

Theorem 5

Every orthogonal set in �n is linearly independent.

PROOF

Let {x1, x2, …, xk} be an orthogonal set in �n and suppose a linear combination 
vanishes: t1x1 + t2x2 + 	 + tkxk = 0. Then

0 = x1 · 0  = x1 · (t1x1 + t2x2 + 	 + tkxk)
= t1(x1 · x1) + t2(x1 · x2) + 	 + tk(x1 · xk)
= t1‖x1‖

2 + t2(0) + 	 + tk(0)
= t1‖x1‖

2

Since ‖x1‖
2 ≠ 0, this implies that t1 = 0. Similarly ti = 0 for each i.

Theorem 5 suggests considering orthogonal bases for �n, that is orthogonal sets 
that span �n. These turn out to be the best bases in the sense that, when expanding 
a vector as a linear combination of the basis vectors, there are explicit formulas for 
the coefficients. 

Theorem 6

Expansion Theorem
Let {f1, f2, …, fm} be an orthogonal basis of a subspace U of �n. If x is any vector in U, 
we have

x =  Q   x · f1 _____ 
‖f1‖

2
   R  f1 +  Q   x · f2 _____ 

‖f2‖
2
   R  f2 + 	 +  Q   x · fm _____ 

‖fm‖
2
   R  fm.

PROOF

Since {f1, f2, …, fm} spans U, we have x = t1f1 + t2f2 + 	 + tmfm where the ti are 
scalars. To find t1 we take the dot product of both sides with f1: 

x · f1  = (t1f1 + t2f2 + 	 + tmfm) · f1

= t1(f1 · f1) + t2(f2 · f1) + 	 + tm(fm · f1)
= t1‖f1‖

2 + t2(0) + 	 + tm(0)
= t1‖f1‖

2

Since f1 ≠ 0, this gives t1 =   
x · f1 _____ 
‖f1‖

2
  . Similarly, ti =   

x · fi _____ 
‖fi‖

2
   for each i.

The expansion in Theorem 6 of x as a linear combination of the orthogonal 
basis {f1, f2, …, fm} is called the Fourier expansion of x, and the coefficients 

t1 =   
x · fi _____ 
‖fi‖

2
   are called the Fourier coefficients. Note that if {f1, f2, …, fm} is actually 
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orthonormal, then ti = x · fi for each i. We will have a great deal more to say about 
this in Section 10.5.

EXAMPLE 7

Expand x = (a, b, c, d) as a linear combination of the orthogonal basis 
{f1, f2, f3, f4} of �4 given in Example 6.

Solution ► We have f1 = (1, 1, 1, -1), f2 = (1, 0, 1, 2), f3 = (-1, 0, 1, 0), and 
f4 = (-1, 3, -1, 1) so the Fourier coefficients are 

t1 =   
x · f1 _____ 
‖f1‖

2
   =   1 __ 

4
  (a + b + c + d) t3 =   

x · f3 _____ 
‖f3‖

2
   =   1 __ 

2
  (-a + c)

t2 =   
x · f2 _____ 
‖f2‖

2
   =   1 __ 

6
  (a + c + 2d) t4 =   

x · f4 _____ 
‖f4‖

2
   =   1 ___ 

12
  (-a + 3b - c + d)

The reader can verify that indeed x = t1f1 + t2f2 + t3f3 + t4f4.

A natural question arises here: Does every subspace U of �n have an orthogonal 
basis? The answer is “yes”; in fact, there is a systematic procedure, called the Gram-
Schmidt algorithm, for turning any basis of U into an orthogonal one. This leads 
to a definition of the projection onto a subspace U that generalizes the projection 
along a vector used in �2 and �3. All this is discussed in Section 8.1.

E X E R C I S E S  5 . 3

We often write vectors in �n as row n-tuples.

 1. Obtain orthonormal bases of �3 by normalizing 
the following.

 (a) {(1, -1, 2), (0, 2, 1), (5, 1, -2)}

 �(b) {(1, 1, 1), (4, 1, -5), (2, -3, 1)}

 2. In each case, show that the set of vectors is 
orthogonal in �4.

 (a) {(1, -1, 2, 5), (4, 1, 1, -1), (-7, 28, 5, 5)}

 (b) {(2, -1, 4, 5), (0, -1, 1, -1), (0, 3, 2, -1)}

 3. In each case, show that B is an orthogonal basis 
of �3 and use Theorem 6 to expand x = (a, b, c) 
as a linear combination of the basis vectors.

 (a) B = {(1, -1, 3), (-2, 1, 1), (4, 7, 1)}

 �(b) B = {(1, 0, -1), (1, 4, 1), (2, -1, 2)}

 (c) B = {(1, 2, 3), (-1, -1, 1), (5, -4, 1)}

 �(d) B = {(1, 1, 1), (1, -1, 0), (1, 1, -2)}

 4. In each case, write x as a linear combination of 
the orthogonal basis of the subspace U.

 (a) x = (13, -20, 15); 
U = span{(1, -2, 3), (-1, 1, 1)}

 �(b) x = (14, 1, -8, 5); 
U = span{(2, -1, 0, 3), (2, 1, -2, -1)}

 5. In each case, find all (a, b, c, d) in �4 such that 
the given set is orthogonal.

 (a) {(1, 2, 1, 0), (1, -1, 1, 3), (2, -1, 0, -1), 
(a, b, c, d)}

 �(b) {(1, 0, -1, 1), (2, 1, 1, -1), (1, -3, 1, 0), 
(a, b, c, d)}

 6. If ‖x‖ = 3, ‖y‖ = 1, and x · y = -2, compute:

 (a) ‖3x - 5y‖ �(b) ‖2x + 7y‖

 (c) (3x - y) · (2y - x)

 �(d) (x - 2y) · (3x + 5y)

 7. In each case either show that the statement is 
true or give an example showing that it is false. 

 (a) Every independent set in �n is orthogonal.

 �(b) If {x, y} is an orthogonal set in �n, then 
{x, x + y} is also orthogonal.
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 (c) If {x, y} and {z, w} are both orthogonal in �n, 
then {x, y, z, w} is also orthogonal.

 �(d) If {x1, x2} and {y1, y2, y3} are both orthogonal 
and xi · yj = 0 for all i and j, then 
{x1, x2, y1, y2, y3} is orthogonal. 

 (e) If {x1, x2, …, xn} is orthogonal in �n, then 
�

n = span{x1, x2, …, xn}.

 �(f ) If x ≠ 0 in �n, then {x} is an orthogonal set.

 8. Let v denote a nonzero vector in �n.

 (a) Show that P = {x in �n | x · v = 0} is a 
subspace of �n.

 (b) Show that �v = {tv | t in �} is a subspace of �n.

 (c) Describe P and �v geometrically when 
n = 3.

 �9. If A is an m × n matrix with orthonormal 
columns, show that ATA = In. 
[Hint: If c1, c2, …, cn are the columns of A, 
show that column j of ATA has entries
c1 · cj, c2 · cj, …, cn · cj].

 10. Use the Cauchy inequality to show that 
 √ 

__
 xy   ≤   1 _ 2  (x + y) for all x ≥ 0 and y ≥ 0. Here 

 √ 
__

 xy   and   1 _ 2  (x + y) are called, respectively, the 
geometric mean and arithmetic mean of x and y.

  [Hint: Use x =   S    √ 

__
 x          √ 

__
 y  
   T  and y =   S    √ 

__
 y          √ 

__
 x  
   T  .]

 11. Use the Cauchy inequality to prove that: 

 (a) (r1 + r2 + 	 + rn)
2 ≤ n( r  1  

2  +  r  2  
2  + 	 +  r  n  

2 )
for all ri in � and all n ≥ 1.

 �(b) r1r2 + r1r3 + r2r3 ≤  r  1  
2  +  r  2  

2  +  r  3  
2  for all r1, 

r2, and r3 in �. [Hint: See part (a).] 

 12. (a) Show that x and y are orthogonal in �n if 
and only if ‖x + y‖ = ‖x - y‖.

 �(b) Show that x + y and x - y are orthogonal in 
�

n if and only if ‖x‖ = ‖y‖.

 13. (a) Show that ‖x + y‖
2
 = ‖x‖

2 + ‖y‖
2 if and 

only if x is orthogonal to y.

 (b) If x =   S   1     
1

   T  , y =   S   1     
0

   T  and z =   S   -2       
  3

   T  , show that 

‖x + y + z‖
2
 = ‖x‖

2 + ‖y‖
2 + ‖z‖

2 but 
x · y ≠ 0, x · z ≠ 0, and y · z ≠ 0.

 14. (a) Show that x · y =   1 _ 4  [‖x + y‖
2
 - ‖x - y‖

2
] for 

all x, y in �n.

 (b) Show that 
‖x‖

2 + ‖y‖
2 =   1 _ 2  ‖x + y‖

2
 + ‖x - y‖

2

for all x, y in �n.

 �15. If A is n × n, show that every eigenvalue of ATA 
is nonnegative. [Hint: Compute ‖Ax‖

2 where x is 
an eigenvector.]

 16. If �n = span{x1, …, xm} and x · xi = 0 for all i, 
show that x = 0. [Hint: Show ‖x‖ = 0.] 

 17. If �n = span{x1, …, xm} and x · xi = y · xi for all 
i, show that x = y. [Hint: Preceding Exercise.]

 18. Let {e1, …, en} be an orthogonal basis of �n. 
Given x and y in �n, show that 

x · y =   
(x · e1)(y · e1)  ____________ 

‖e1‖
2
   + 	 +   

(x · en)(y · en)  ____________ 
‖en‖

2
  .

Rank of a Matrix
In this section we use the concept of dimension to clarify the definition of the rank 
of a matrix given in Section 1.2, and to study its properties. This requires that we 
deal with rows and columns in the same way. While it has been our custom to 
write the n-tuples in �n as columns, in this section we will frequently write them 
as rows. Subspaces, independence, spanning, and dimension are defined for rows 
using matrix operations, just as for columns. If A is an m × n matrix, we define:

The column space, col A, of A is the subspace of �m spanned by the columns of A.
The row space, row A, of A is the subspace of �n spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:

S E C T I O N  5 . 4

Definition 5.10
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Lemma 1

Let A and B denote m × n matrices. 
1. If A → B by elementary row operations, then row A = row B.
2. If A → B by elementary column operations, then col A = col B.

PROOF

We prove (1); the proof of (2) is analogous. It is enough to do it in the case 
when A → B by a single row operation. Let R1, R2, …, Rm denote the rows of A. 
The row operation A → B either interchanges two rows, multiplies a row by a 
nonzero constant, or adds a multiple of a row to a different row. We leave the 
first two cases to the reader. In the last case, suppose that a times row p is added 
to row q where p < q. Then the rows of B are R1, …, Rp, …, Rq + aRp, …, Rm, 
and Theorem 1 Section 5.1 shows that 

span{R1, …, Rp, …, Rq, …, Rm} = span{R1, …, Rp, …, Rq + aRp, …, Rm}.

That is, row A = row B.

If A is any matrix, we can carry A → R by elementary row operations where R is 
a row-echelon matrix. Hence row A = row R by Lemma 1; so the first part of the 
following result is of interest.

Lemma 2

If R is a row-echelon matrix, then
1. The nonzero rows of R are a basis of row R.
2. The columns of R containing leading ones are a basis of col R.

PROOF

The rows of R are independent by Example 6 Section 5.2, and they span row R 
by definition. This proves 1.

Let  c j1 ,  c j2 , …,  c jr  denote the columns of R containing leading 1s. Then 
{ c j1 ,  c j2 , …,  c jr } is independent because the leading 1s are in different rows (and 
have zeros below and to the left of them). Let U denote the subspace of all 
columns in �m in which the last m - r entries are zero. Then dim U = r (it is 
just �r with extra zeros). Hence the independent set { c j1 ,  c j2 , …,  c jr } is a basis of 
U by Theorem 7 Section 5.2. Since each  c ji  is in col R, it follows that col R = U, 
proving (2).

With Lemma 2 we can fill a gap in the definition of the rank of a matrix given 
in Chapter 1. Let A be any matrix and suppose A is carried to some row-echelon 
matrix R by row operations. Note that R is not unique. In Section 1.2 we defined 
the rank of A, denoted rank A, to be the number of leading 1s in R, that is the 
number of nonzero rows of R. The fact that this number does not depend on the 
choice of R was not proved in Section 1.2. However part 1 of Lemma 2 shows that 
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rank A = dim(row A)

and hence that rank A is independent of R. 
Lemma 2 can be used to find bases of subspaces of �n (written as rows). Here is 

an example.

EXAMPLE 1

Find a basis of U = span{(1, 1, 2, 3), (2, 4, 1, 0), (1, 5, -4, -9)}.

Solution ► U is the row space of 
1 2
2 1
1

1
4
5 4

3
0
9− −

. This matrix has row-echelon 

form 
1 2
0 3
0

1 3
1

00 0

3
2− − , so {(1, 1, 2, 3), (0, 1, -  3 _ 2  , -3)} is basis of U by Lemma 2. 

Note that {(1, 1, 2, 3), (0, 2, -3, -6)} is another basis that avoids fractions.

Lemmas 1 and 2 are enough to prove the following fundamental theorem.

Theorem 1

Let A denote any m × n matrix of rank r. Then

dim(col A) = dim(row A) = r.

Moreover, if A is carried to a row-echelon matrix R by row operations, then 
1. The r nonzero rows of R are a basis of row A.
2. If the leading 1s lie in columns j1, j2, …, jr of R, then columns j1, j2, …, jr of A are 

a basis of col A.

PROOF

We have row A = row R by Lemma 1, so (1) follows from Lemma 2. Moreover, 
R = UA for some invertible matrix U by Theorem 1 Section 2.5. Now write 
A = [c1 c2 	 cn] where c1, c2, …, cn are the columns of A. Then 

R = UA = U [c1 c2 	 cn] = [Uc1 Uc2 	 Ucn].

Thus, in the notation of (2), the set B = {U c j1 , U c j2 , …, U c jr } is a basis of col R 
by Lemma 2. So, to prove (2) and the fact that dim(col A) = r, it is enough to 
show that D = { c j1 ,  c j2 , …,  c jr } is a basis of col A. First, D is linearly independent 
because U is invertible (verify), so we show that, for each j, column cj is a linear 
combination of the  c ji . But Ucj is column j of R, and so is a linear combination of 
the U c ji , say Ucj = a1U c j1  + a2U c j2  + 	 + arU c jr  where each ai is a real number. 

Since U is invertible, it follows that cj = a1 c j1  + a2 c j2  + 	 + ar c jr  and the proof 
is complete.
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EXAMPLE 2

Compute the rank of A = 
−1 2

3 5
1 1

6
22

1
0

2
 and find bases for row A and col A.

Solution ► The reduction of A to row-echelon form is as follows:

1 2 2 1
3 6 5 0
1 2 1 2

−
 → 

1 2 2 1
0 0 1 3
0 0 1 3

−
−
−

 → 
1 2 2 1
0 0 1 3
0 0

−
−

00 0
 

Hence rank A = 2, and {[1 2 2 -1], [0 0 1 -3]} is a basis of row A by 
Lemma 2. Since the leading 1s are in columns 1 and 3 of the row-echelon 
matrix, Theorem 1 shows that columns 1 and 3 of A are a basis 

U   S  1 
 

 3   
1

  T  ,   S  2 
 

 5   
1

  T  V  of col A.

Theorem 1 has several important consequences. The first, Corollary 1 below, 
follows because the rows of A are independent (respectively span row A) if and only 
if their transposes are independent (respectively span col A). 

Corollary 1

If A is any matrix, then rank A = rank(AT).

If A is an m × n matrix, we have col A ⊆ �m and row A ⊆ �n. Hence Theorem 8 
Section 5.2 shows that dim(col A) ≤ dim(�m) = m and dim(row A) ≤ dim(�n) = n. 
Thus Theorem 1 gives: 

Corollary 2

If A is an m × n matrix, then rank A ≤ m and rank A ≤ n.

Corollary 3

Rank A = rank(UA) = rank(AV ) whenever U and V are invertible.

PROOF

Lemma 1 gives rank A = rank(UA). Using this and Corollary 1 we get 

rank(AV ) = rank(AV )T = rank(VTAT) = rank(AT) = rank A.

The next corollary requires a preliminary lemma.
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Lemma 3

Let A, U, and V be matrices of sizes m × n, p × m, and n × q respectively. 
(1) col(AV ) ⊆ col A, with equality if V is (square and) invertible. 
(2) row(UA) ⊆ row A, with equality if U is (square and) invertible.

PROOF

For (1), write V = [v1, v2, …, vq] where vj is column j of V. Then we 
have AV = [Av1, Av2, …, Avq], and each Avj is in col A by Definition 1 
Section 2.2. It follows that col(AV ) ⊆ col A. If V is invertible, we obtain 
col A = col[(AV )V-1] ⊆ col(AV ) in the same way. This proves (1). 

As to (2), we have col[(UA)T] = col(ATUT) ⊆ col(AT) by (1), from which 
row(UA) ⊆ row A. If U is invertible, this is equality as in the proof of (1).

Corollary 4

If A is m × n and B is n × m, then rank AB ≤ rank A and rank AB ≤ rank B.

PROOF

By Lemma 3, col(AB) ⊆ col A and row(BA) ⊆ row A, so Theorem 1 applies.

In Section 5.1 we discussed two other subspaces associated with an m × n 
matrix A: the null space null(A) and the image space im(A)

null(A) = {x in �n | Ax = 0} and im(A) = {Ax | x in �n}.

Using rank, there are simple ways to find bases of these spaces. If A has rank r, we 
have im(A) = col(A) by Example 8 Section 5.1, so dim[im(A)] = dim[col(A)] = r. 
Hence Theorem 1 provides a method of finding a basis of im(A). This is recorded 
as part (2) of the following theorem.

Theorem 2

Let A denote an m × n matrix of rank r. Then
(1) The n - r basic solutions to the system Ax = 0 provided by the gaussian 

algorithm are a basis of null(A), so dim[null(A)] = n - r. 
(2) Theorem 1 provides a basis of im(A) = col(A), and dim[im(A)] = r.

PROOF

It remains to prove (1). We already know (Theorem 1 Section 2.2) that null(A) is 
spanned by the n - r basic solutions of Ax = 0. Hence using Theorem 7 Section 
5.2, it suffices to show that dim[null(A)] = n - r. So let {x1, …, xk} be a basis 
of null(A), and extend it to a basis {x1, …, xk, xk+1, …, xn} of �n (by Theorem 6 
Section 5.2). It is enough to show that {Axk+1, …, Axn} is a basis of im(A); then 
n - k = r by the above and so k = n - r as required.
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Spanning. Choose Ax in im(A), x in �n, and write 
x = a1x1 + 	 + akxk + ak+1xk+1 + 	 + anxn where the ai are in �. 
Then Ax = ak+1Axk+1 + 	 + anAxn because {x1, …, xk} ⊆ null(A). 

Independence. Let tk+1Axk+1 + 	 + tnAxn = 0, ti in �. Then tk+1xk+1 + 	 + tnxn 
is in null A, so tk+1xk+1 + 	 + tnxn = t1x1 + 	 + tkxk for some t1, …, tk in �. 
But then the independence of the xi shows that ti = 0 for every i.

EXAMPLE 3

If A = 
−

−
−

1 1
1 0
2 1

2 1
2 1
4 0

, find bases of null(A) and im(A), and so find their dimensions.

Solution ► If x is in null(A), then Ax = 0, so x is given by solving the system 
Ax = 0. The reduction of the augmented matrix to reduced form is

1 2 1 1
1 2 0 1
2 4 1 0

0
0
0

−
−

−
 → 

1 2 0 1
0 0 1 2
0 0 0 0

0
0
0

− −

Hence r = rank(A) = 2. Here, im(A) = col(A) has basis  U   S     1
 

 
 −1   

  2
   T  ,   S  1 

 
 0   

1
  T  V  by 

Theorem 1 because the leading 1s are in columns 1 and 3. In particular, 
dim[im(A)] = 2 = r as in Theorem 2. 

Turning to null(A), we use gaussian elimination. The leading variables are 
x1 and x3, so the nonleading variables become parameters: x2 = s and x4 = t. 
It follows from the reduced matrix that x1 = 2s + t and x3 = -2t, so the 
general solution is

x =   S  
x1

 
 

 x2   x3
 

 
 

x4

  T  =   S  2s + t
 

  
 s    

−2t
 

  
 

t

   T  = sx1 + tx2 where x1 =   S  2 
 

 1   
0

 
 

 

0

  T  , and x2 =   S     1
 

 
   0   

-2
 

 
 

  1

   T .
Hence null(A). But x1 and x2 are solutions (basic), so 

null(A) = span{x1, x2}

However Theorem 2 asserts that {x1, x2} is a basis of null(A). (In fact it is 
easy to verify directly that {x1, x2} is independent in this case.) In particular, 
dim[null(A)] = 2 = n - r, as Theorem 2 asserts.

Let A be an m × n matrix. Corollary 2 of the Theorem 1 asserts that 
rank A ≤ m and rank A ≤ n, and it is natural to ask when these extreme cases 
arise. If c1, c2, …, cn are the columns of A, Theorem 2 Section 5.2 shows that 
{c1, c2, …, cn} spans �m if and only if the system Ax = b is consistent for every 
b in �m, and that {c1, c2, …, cn} is independent if and only if Ax = 0, x in �n, 
implies x = 0. The next two useful theorems improve on both these results, and 
relate them to when the rank of A is n or m.
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Theorem 3

The following are equivalent for an m × n matrix A:
1. rank A = n.
2. The rows of A span �n.
3. The columns of A are linearly independent in �m.
4. The n × n matrix ATA is invertible.
5. CA = In for some n × m matrix C. 
6. If Ax = 0, x in �n, then x = 0.

PROOF

(1) ⇒ (2). We have row A ⊆ �n, and dim(row A) = n by (1), so row A = �n by 
Theorem 8 Section 5.2. This is (2). 

(2) ⇒ (3). By (2), row A = �n, so rank A = n. This means dim(col A) = n. Since 
the n columns of A span col A, they are independent by Theorem 7 Section 5.2.

(3) ⇒ (4). If (ATA)x = 0, x in �n, we show that x = 0 (Theorem 5 Section 2.4). 
We have

‖Ax‖
2 = (Ax)TAx = xTATAx = xT0 = 0.

Hence Ax = 0, so x = 0 by (3) and Theorem 2 Section 5.2.

(4) ⇒ (5). Given (4), take C = (ATA)-1 AT. 

(5) ⇒ (6). If Ax = 0, then left multiplication by C (from (5)) gives x = 0.

(6) ⇒ (1). Given (6), the columns of A are independent by Theorem 2 Section 
5.2. Hence dim(col A) = n, and (1) follows.

Theorem 4

The following are equivalent for an m × n matrix A: 
1. rank A = m. 
2. The columns of A span �m.
3. The rows of A are linearly independent in �n. 
4. The m × m matrix AAT is invertible. 
5. AC = Im for some n × m matrix C. 
6. The system Ax = b is consistent for every b in �m.

PROOF

(1) ⇒ (2). By (1), dim(col A) = m, so col A = �m by Theorem 8 Section 5.2. 

(2) ⇒ (3). By (2), col A = �m, so rank A = m. This means dim(row A) = m. Since 
the m rows of A span row A, they are independent by Theorem 7 Section 5.2.
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(3) ⇒ (4). We have rank A = m by (3), so the n × m matrix AT has rank m. 
Hence applying Theorem 3 to AT in place of A shows that (AT)TAT is invertible, 
proving (4).

(4) ⇒ (5). Given (4), take C = AT(AAT)-1 in (5).

(5) ⇒ (6). Comparing columns in AC = Im gives Acj = ej for each j, where cj and 
ej denote column j of C and Im respectively. Given b in �m, write b =  ∑

j=1  
m

  rjej , 
rj in �. Then Ax = b holds with x =  ∑

j=1  
m

  rjcj , as the reader can verify. 

(6) ⇒ (1). Given (6), the columns of A span �m by Theorem 2 Section 5.2. Thus 
col A = �m and (1) follows.

EXAMPLE 4

Show that 
3

2 2 2

x y z

x y z x y z

+ +

+ + + +  is invertible if x, y, and z are not all equal.

Solution ► The given matrix has the form ATA where a =   S  1 x

 
  

 1 y    
1 z

   T  has independent 

columns because x, y, and z are not all equal (verify). Hence Theorem 3 applies.

Theorems 4 and 5 relate several important properties of an m × n matrix A to 
the invertibility of the square, symmetric matrices ATA and AAT. In fact, even if 
the columns of A are not independent or do not span �m, the matrices ATA and 
AAT are both symmetric and, as such, have real eigenvalues as we shall see. We 
return to this in Chapter 7.

E X E R C I S E S  5 . 4

 1. In each case find bases for the row and column 
spaces of A and determine the rank of A.

 (a) A = 

−
−
−
−

2 6
2 3
4 9
0

4 8
1
5
1 1 2

2
10

 �(b) A = 

−
−

−
−

2 1
2 1

1
1

4 32
6 033

 (c) A = 

−
−

−
−

−

−
−

−

1 5 2
2

2
2 2
0 0 12 9

5

7
3

1 7 11

1
1

 �(d) A = −
−− −

1 1 3
33 26

2

 2. In each case find a basis of the subspace U.

 (a) U = span{(1, -1, 0, 3), (2, 1, 5, 1), (4, -2, 5, 7)}

 �(b) U = span{(1, -1, 2, 5, 1), (3, 1, 4, 2, 7), 
(1, 1, 0, 0, 0), (5, 1, 6, 7, 8)}

 (c) U = span  U   S  1 
 

 1   
0

 
 

 

0

  T  ,   S  
0

 
 

 0   
1

 
 

 

1

  T  ,   S  1 
 

 0   
1

 
 

 

0

  T  ,   S  0 
 

 1   
0

 
 

 

1

  T   V 
 �(d) U = span  U   S     1

 
 

   5   
-6

  T  ,   S     2
 

 
   6   

-8
  T  ,   S      3

 
  

    7    
-10

  T  ,   S    4
 

 
  8   

12
  T   V 

 3. (a) Can a 3 × 4 matrix have independent 
columns? Independent rows? Explain.

 �(b) If A is 4 × 3 and rank A = 2, can A have 
independent columns? Independent rows? 
Explain.
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 (c) If A is an m × n matrix and rank A = m, 
show that m ≤ n.

 �(d) Can a nonsquare matrix have its rows 
independent and its columns independent? 
Explain.

 (e) Can the null space of a 3 × 6 matrix have 
dimension 2? Explain.

 �(f ) Suppose that A is 5 × 4 and null(A) = �x for 
some column x ≠ 0. Can dim(im A) = 2?

 �4. If A is m × n show that col(A) = {Ax | x in �n}.

 5. If A is m × n and B is n × m, show that AB = 0 
if and only if col B ⊆ null A.

 6. Show that the rank does not change when 
an elementary row or column operation is 
performed on a matrix.

 7. In each case find a basis of the null space of 
A. Then compute rank A and verify (1) of 
Theorem 2.

 (a) A = 

3 1
2 1
4

1
0
2 1

1 11−

 �(b) A = 

−

3 5 0
1 2 1
1 1 2
2

5
0

2
2
21
40 4 2

−
−

−
−−−

 8. Let A = cR where c ≠ 0 is a column in �m and 
r ≠ 0 is a row in �n.

 (a) Show that col A = span{c} and 
row A = span{r}.

 �(b) Find dim(null A).

 (c) Show that null A = null r.

 9. Let A be m × n with columns c1, c2, …, cn.

 (a) If {c1, …, cn} is independent, show 
null A = {0}.

 �(b) If null A = {0}, show that {c1, …, cn} is 
independent.

 10. Let A be an n × n matrix.

 (a) Show that A2 = 0 if and only if 
col A ⊆ null A.

 �(b) Conclude that if A2 = 0, then rank A ≤   n _ 2  .

 (c) Find a matrix A for which col A = null A.

 11. Let B be m × n and let AB be k × n. If 
rank B = rank(AB), show that null B = null(AB). 
[Hint: Theorem 1.]

 �12. Give a careful argument why rank(AT) = rank A. 

 13. Let A be an m × n matrix with columns 
c1, c2, …, cn. If rank A = n, show that 
{ATc1, A

Tc2, …, ATcn} is a basis of �n.

 14. If A is m × n and b is m × 1, show that b 
lies in the column space of A if and only if 
rank[A b] = rank A.

 15. (a) Show that Ax = b has a solution if and only 
if rank A = rank[A b]. [Hint: Exercises 12 
and 14.]

 �(b) If Ax = b has no solution, show that 
rank[A b] = 1 + rank A.

 16. Let X be a k × m matrix. If I is the m × m 
identity matrix, show that I + XTX is invertible.

[Hint: I + XTX = ATA where A =   S   I   
X

  T  in block 
form.]

 17. If A is m × n of rank r, show that A can be 
factored as A = PQ where P is m × r with r 
independent columns, and Q is r × n with r 

independent rows. [Hint: Let UAV =   S   Ir 0
         

0  0
   T  by 

Theorem 3, Section 2.5, and write 

U -1 =   S   U1 U2             
U3 U4

   T  and V-1 =   S   V1 V2            
V3 V4

   T  in block 

form, where U1 and V1 are r × r.]

 18. (a) Show that if A and B have independent 
columns, so does AB.

 (b) Show that if A and B have independent rows, 
so does AB.

 19. A matrix obtained from A by deleting rows and 
columns is called a submatrix of A. If A has an 
invertible k × k submatrix, show that rank A ≥ k. 
[Hint: Show that row and column operations 

carry A →   S   Ik P
         

0  Q
   T  in block form.] Remark: It can 

be shown that rank A is the largest integer r such 
that A has an invertible r × r submatrix.
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Similarity and Diagonalization
In Section 3.3 we studied diagonalization of a square matrix A, and found important 
applications (for example to linear dynamical systems). We can now utilize the 
concepts of subspace, basis, and dimension to clarify the diagonalization process, 
reveal some new results, and prove some theorems which could not be demonstrated 
in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of 
diagonalization, and is used throughout the book.

Similar Matrices

If A and B are n × n matrices, we say that A and B are similar, and write A ∼ B, if 
B = P-1AP for some invertible matrix P.

Note that A ∼ B if and only if B = QAQ–1 where Q is invertible (write P–1 = Q). 
The language of similarity is used throughout linear algebra. For example, a matrix 
A is diagonalizable if and only if it is similar to a diagonal matrix.

If A ∼ B, then necessarily B ∼ A. To see why, suppose that B = P-1AP. Then 
A = PBP-1 = Q-1BQ where Q = P-1 is invertible. This proves the second of the 
following properties of similarity (the others are left as an exercise):

1. A ∼ A for all square matrices A.

2. If A ∼ B, then B ∼ A. (∗)

3. If A ∼ B and B ∼ C, then A ∼ C.

These properties are often expressed by saying that the similarity relation ∼ is an 
equivalence relation on the set of n × n matrices. Here is an example showing how 
these properties are used.

EXAMPLE 1

If A is similar to B and either A or B is diagonalizable, show that the other is 
also diagonalizable.

Solution ► We have A ∼ B. Suppose that A is diagonalizable, say A ∼ D where 
D is diagonal. Since B ∼ A by (2) of (∗), we have B ∼ A and A ∼ D. Hence 
B ∼ D by (3) of (∗), so B is diagonalizable too. An analogous argument works if 
we assume instead that B is diagonalizable.

Similarity is compatible with inverses, transposes, and powers: 

If A ∼ B then A-1 ∼ B-1, AT ∼ BT, and Ak ∼ Bk for all integers k ≥ 1.

The proofs are routine matrix computations using Theorem 1 Section 3.3. Thus, 
for example, if A is diagonalizable, so also are AT, A-1 (if it exists), and Ak (for 
each k ≥ 1). Indeed, if A ∼ D where D is a diagonal matrix, we obtain AT ∼ DT, 
A-1 ∼ D-1, and Ak ∼ Dk, and each of the matrices DT, D-1, and Dk is diagonal.

We pause to introduce a simple matrix function that will be referred to later.

S E C T I O N  5 . 5

Definition 5.11

262 Chapter 5 The Vector Space �n



The trace tr A of an n × n matrix A is defined to be the sum of the main diagonal 
elements of A.

In other words:

If A = [aij], then tr A = a11 + a22 + 	 + ann.

It is evident that tr(A + B) = tr A + tr B and that tr(cA) = c tr A holds for all n × n 
matrices A and B and all scalars c. The following fact is more surprising.

Lemma 1

Let A and B be n × n matrices. Then tr(AB) = tr(BA).

PROOF

Write A = [aij] and B = [bij]. For each i, the (i, i)-entry di of the matrix AB is 
di = ai1b1i + ai2b2i + 	 + ainbni = ∑ j aijbji. Hence

tr(AB) = d1 + d2 + 	 + dn = ∑ i di = ∑ i (∑ j aijbji).

Similarly we have tr(BA) = ∑ i (∑ j bijaji). Since these two double sums are the 
same, Lemma 1 is proved.

As the name indicates, similar matrices share many properties, some of which are 
collected in the next theorem for reference.

Theorem 1

If A and B are similar n × n matrices, then A and B have the same determinant, rank, 
trace, characteristic polynomial, and eigenvalues.

PROOF

Let B = P-1AP for some invertible matrix P. Then we have 

det B = det(P-1) det A det P = det A because det(P-1) = 1/det P.

Similarly, rank B = rank(P-1AP) = rank A by Corollary 3 of Theorem 1 
Section 5.4. Next Lemma 1 gives

tr(P-1AP) = tr[P-1(AP)] = tr[(AP)P-1] = tr A.

As to the characteristic polynomial,

cB(x) = det(xI - B)  = det{x(P-1IP) - P-1AP}
= det{P-1(xI - A)P}
= det(xI - A)
= cA(x).

Finally, this shows that A and B have the same eigenvalues because the 
eigenvalues of a matrix are the roots of its characteristic polynomial.

Definition 5.12
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EXAMPLE 2

Sharing the five properties in Theorem 1 does not guarantee that two matrices 

are similar. The matrices A =   S   1 1        
0 1

   T  and I =   S   1 0        
0 1

   T  have the same determinant, 

rank, trace, characteristic polynomial, and eigenvalues, but they are not similar 
because P-1IP = I for any invertible matrix P.

Diagonalization Revisited 
Recall that a square matrix A is diagonalizable if there exists an invertible matrix 
P such that P-1AP = D is a diagonal matrix, that is if A is similar to a diagonal 

matrix D. Unfortunately, not all matrices are diagonalizable, for example   S   1 1        
0 1

   T  
(see Example 10 Section 3.3). Determining whether A is diagonalizable is closely 
related to the eigenvalues and eigenvectors of A. Recall that a number λ is called 
an eigenvalue of A if Ax = λx for some nonzero column x in �n, and any such 
nonzero vector x is called an eigenvector of A corresponding to λ (or simply a 
λ-eigenvector of A). The eigenvalues and eigenvectors of A are closely related to 
the characteristic polynomial cA(x) of A, defined by 

cA(x) = det(xI - A).

If A is n × n this is a polynomial of degree n, and its relationship to the eigenvalues 
is given in the following theorem (a repeat of Theorem 2 Section 3.3).

Theorem 2

Let A be an n × n matrix. 
1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.
2. The λ-eigenvectors x are the nonzero solutions to the homogeneous system

(λI - A)x = 0

 of linear equations with λI - A as coefficient matrix.

EXAMPLE 3

Show that the eigenvalues of a triangular matrix are the main diagonal entries.

Solution ► Assume that A is triangular. Then the matrix xI - A is also triangular 
and has diagonal entries (x - a11), (x - a22), …, (x - ann) where A = [aij]. 
Hence Theorem 4 Section 3.1 gives 

cA(x) = (x - a11)(x - a22)	(x - ann) 

and the result follows because the eigenvalues are the roots of cA(x).

Theorem 4 Section 3.3 asserts (in part) that an n × n matrix A is diagonalizable if 
and only if it has n eigenvectors x1, …, xn such that the matrix P = [x1 	 xn] with 
the xi as columns is invertible. This is equivalent to requiring that {x1, …, xn} is a 
basis of �n consisting of eigenvectors of A. Hence we can restate Theorem 4 Section 
3.3 as follows:
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Theorem 3

Let A be an n × n matrix.
1. A is diagonalizable if and only if �n has a basis {x1, x2, …, xn} consisting of 

eigenvectors of A.
2. When this is the case, the matrix P = [x1 x2 	 xn] is invertible and 

P-1AP = diag(λ1, λ2, …, λn) where, for each i, λi is the eigenvalue of A 
corresponding to xi.

The next result is a basic tool for determining when a matrix is diagonalizable. 
It reveals an important connection between eigenvalues and linear independence: 
Eigenvectors corresponding to distinct eigenvalues are necessarily linearly 
independent.

Theorem 4

Let x1, x2, …, xk be eigenvectors corresponding to distinct eigenvalues λ1, λ2, …, λk of 
an n × n matrix A. Then {x1, x2, …, xk} is a linearly independent set.

PROOF

We use induction on k. If k = 1, then {x1} is independent because x1 ≠ 0. 
In general, suppose the theorem is true for some k ≥ 1. Given eigenvectors 
{x1, x2, …, xk+1}, suppose a linear combination vanishes: 

 t1x1 + t2x2 + 	 + tk+1xk+1 = 0. (∗)

We must show that each ti = 0. Left multiply (∗) by A and use the fact that 
Axi = λixi to get 

 t1λ1x1 + t2λ2x2 + 	 + tk+1λk+1xk+1 = 0. (∗∗)

If we multiply (∗) by λ1 and subtract the result from (∗∗), the first terms cancel 
and we obtain

t2(λ2 - λ1)x2 + t3(λ3 - λ1)x3 + 	 + tk+1(λk+1 - λ1)xk+1 = 0.

Since x2, x3, …, xk+1 correspond to distinct eigenvalues λ2, λ3, …, λk+1, the set 
{x2, x3, …, xk+1} is independent by the induction hypothesis. Hence,

t2(λ2 - λ1) = 0, t3(λ3 - λ1) = 0, …, tk+1(λk+1 - λ1) = 0,

and so t2 = t3 = 	 = tk+1 = 0 because the λi are distinct. Hence (∗) becomes 
t1x1 = 0, which implies that t1 = 0 because x1 ≠ 0. This is what we wanted.

Theorem 4 will be applied several times; we begin by using it to give a useful 
condition for when a matrix is diagonalizable.

Theorem 5

If A is an n × n matrix with n distinct eigenvalues, then A is diagonalizable.
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PROOF

Choose one eigenvector for each of the n distinct eigenvalues. Then these 
eigenvectors are independent by Theorem 4, and so are a basis of �n by 
Theorem 7 Section 5.2. Now use Theorem 3.

EXAMPLE 4

Show that A = 
−

1 00
1 3
1

2
1 0

 is diagonalizable.

Solution ► A routine computation shows that cA(x) = (x - 1)(x - 3)(x + 1) and 
so has distinct eigenvalues 1, 3, and -1. Hence Theorem 5 applies.

However, a matrix can have multiple eigenvalues as we saw in Section 3.3. To 
deal with this situation, we prove an important lemma which formalizes a technique 
that is basic to diagonalization, and which will be used three times below.

Lemma 2

Let {x1, x2, …, xk} be a linearly independent set of eigenvectors of an n × n matrix A, 
extend it to a basis {x1, x2, …, xk, …, xn} of �n, and let

P = [x1 x2 	 xn]

be the (invertible) n × n matrix with the xi as its columns. If λ1, λ2, …, λk are the (not 
necessarily distinct) eigenvalues of A corresponding to x1, x2, …, xk respectively, then 
P-1AP has block form 

P-1AP =   S  diag(λ1, λ2, …, λk)  B 
           

0    A1
  T  

where B has size k × (n - k) and A1 has size (n - k) × (n - k).

PROOF

If {e1, e2, …, en} is the standard basis of �n, then

[e1 e2 … en] = In = P-1P  = P-1[x1 x2 	 xn]
= [P-1x1 P-1x2 	 P-1xn]

Comparing columns, we have P-1xi = ei for each 1 ≤ i ≤ n. On the other hand, 
observe that 

P-1AP = P-1A[x1 x2 	 xn] = [(P-1A)x1 (P-1A)x2 	 (P-1A)xn].

Hence, if 1 ≤ i ≤ k, column i of P-1AP is

(P-1A)xi = P-1(λixi) = λi(P
-1x1) = λiei.

This describes the first k columns of P-1AP, and Lemma 2 follows.

Note that Lemma 2 (with k = n) shows that an n × n matrix A is diagonalizable if 
�

n has a basis of eigenvectors of A, as in (1) of Theorem 3.
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If λ is an eigenvalue of an n × n matrix A, define the eigenspace of A corresponding to 
λ by 

Eλ(A) = {x in �n | Ax = λx}.

This is a subspace of �n and the eigenvectors corresponding to λ are just the 
nonzero vectors in Eλ(A). In fact Eλ(A) is the null space of the matrix (λI - A):

Eλ(A) = {x | (λI - A)x = 0} = null(λI - A).

Hence, by Theorem 2 Section 5.4, the basic solutions of the homogeneous system 
(λI - A)x = 0 given by the gaussian algorithm form a basis for Eλ(A). In particular

 dim Eλ(A) is the number of basic solutions x of (λI - A)x = 0. (∗∗∗)

Now recall (Definition 3.7) that the multiplicity11 of an eigenvalue λ of A is the 
number of times λ occurs as a root of the characteristic polynomial cA(x) of A. In 
other words, the multiplicity of λ is the largest integer m ≥ 1 such that

cA(x) = (x - λ)mg(x)

for some polynomial g(x). Because of (∗∗∗), the assertion (without proof ) in 
Theorem 5 Section 3.3 can be stated as follows: A square matrix is diagonalizable if 
and only if the multiplicity of each eigenvalue λ equals dim[Eλ(A)]. We are going to 
prove this, and the proof requires the following result which is valid for any square 
matrix, diagonalizable or not.

Lemma 3

Let λ be an eigenvalue of multiplicity m of a square matrix A. Then dim[Eλ(A)] ≤ m.

PROOF

Write dim[Eλ(A)] = d. It suffices to show that cA(x) = (x - λ)dg(x) for some 
polynomial g(x), because m is the highest power of (x - λ) that divides cA(x). 
To this end, let {x1, x2, …, xd} be a basis of Eλ(A). Then Lemma 2 shows that an 
invertible n × n matrix P exists such that 

P-1AP =   S  λId  B 
    

0   A1
  T 

in block form, where Id denotes the d × d identity matrix. Now write A′ = P-1AP 
and observe that cA′(x) = cA(x) by Theorem 1. But Theorem 5 Section 3.1 gives 

cA(x) = cA′(x) = det(xIn - A′ )  = det   S  (x - λ)Id   -B  
           

0   xIn-d - A1
  T 

= det[(x - λ)Id] det[(xIn-d - A1)]
= (x - λ)dg(x).

where g(x) =  c A1
 (x). This is what we wanted.

It is impossible to ignore the question when equality holds in Lemma 3 for 
each eigenvalue λ. It turns out that this characterizes the diagonalizable n × n 
matrices A for which cA(x) factors completely over �. By this we mean that 
cA(x) = (x - λ1)(x - λ2)	(x - λn), where the λi are real numbers (not necessarily 

11 This is often called the algebraic multiplicity of λ.

Definition 5.13
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distinct); in other words, every eigenvalue of A is real. This need not happen 

(consider A =   S   0 -1           
1   0

   T ), and we investigate the general case below. 

Theorem 6

The following are equivalent for a square matrix A for which cA(x) factors completely.
1. A is diagonalizable.
2. dim[Eλ(A)] equals the multiplicity of λ for every eigenvalue λ of the matrix A.

PROOF

Let A be n × n and let λ1, λ2, …, λk be the distinct eigenvalues of A. For each i, 
let mi denote the multiplicity of λi and write di = dim[ E λi

 (A)]. Then 

cA(x) =  (x - λ1) 
m1  (x - λ2) 

m2 	 (x - λn) 
mk 

so m1 + 	 + mk = n because cA(x) has degree n. Moreover, di ≤ mi for each i by 
Lemma 3.

(1) ⇒ (2). By (1), �n has a basis of n eigenvectors of A, so let ti of them lie in 
 E λi

 (A) for each i. Since the subspace spanned by these ti eigenvectors has 
dimension ti, we have ti ≤ di for each i by Theorem 4 Section 5.2. Hence

n = t1 + 	 + tk ≤ d1 + 	 + dk ≤ m1 + 	 + mk = n.

It follows that d1 + 	 + dk = m1 + 	 + mk so, since di ≤ mi for each i, we must 
have di = mi. This is (2).

(2) ⇒ (1). Let Bi denote a basis of  E λi
 (A) for each i, and let B = B1 ∪ 	 ∪ Bk. 

Since each Bi contains mi vectors by (2), and since the Bi are pairwise disjoint (the 
λi are distinct), it follows that B contains n vectors. So it suffices to show that B 
is linearly independent (then B is a basis of �n). Suppose a linear combination 
of the vectors in B vanishes, and let yi denote the sum of all terms that come 
from Bi. Then yi lies in  E λi

 (A) for each i, so the nonzero yi are independent by 
Theorem 4 (as the λi are distinct). Since the sum of the yi is zero, it follows that 
yi = 0 for each i. Hence all coefficients of terms in yi are zero (because Bi is 
independent). Since this holds for each i, it shows that B is independent.

EXAMPLE 5

If A = 
− − −

5 16
4

4
1 8
8

4 11

 and B = −
−−

2 11
12 2

1 0 2
, show that A is diagonalizable but 

B is not.

Solution ► We have cA(x) = (x + 3)2(x - 1) so the eigenvalues are λ1 = -3 
and λ2 = 1. The corresponding eigenspaces are  E λ1

 (A) = span{x1, x2} and 
 E λ2

 (A) = span{x3} where

x1 =   S  -1
 

 
   1   

  0
   T  , x2 =   S  -2

 
 

   0   
  1

   T  , x3 =   S     2
 

 
   1   

-1
  T 
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as the reader can verify. Since {x1, x2} is independent, we have 
dim(Eλ1

(A)) = 2 which is the multiplicity of λ1. Similarly, dim(Eλ2
(A)) = 1 

equals the multiplicity of λ2. Hence A is diagonalizable by Theorem 6, and 
a diagonalizing matrix is P = [x1 x2 x3].

Turning to B, cB(x) = (x + 1)2(x - 3) so the eigenvalues are λ1 = -1 
and λ2 = 3. The corresponding eigenspaces are Eλ1(B) = span{y1} and 
Eλ2(B) = span{y2} where

y1 =   S  -1
 

 
   2   

  1
   T  , y2 =   S     5

 
 

   6   
-1

  T .
Here dim(Eλ1

(B)) = 1 is smaller than the multiplicity of λ1, so the matrix B is 
not diagonalizable, again by Theorem 6. The fact that dim(Eλ1

(B)) = 1 means 
that there is no possibility of finding three linearly independent eigenvectors.

Complex Eigenvalues
All the matrices we have considered have had real eigenvalues. But this need not be 

the case: The matrix A =   S   0 -1           
1   0

   T  has characteristic polynomial cA(x) = x2 + 1 which 

has no real roots. Nonetheless, this matrix is diagonalizable; the only difference is 
that we must use a larger set of scalars, the complex numbers. The basic properties 
of these numbers are outlined in Appendix A.

Indeed, nearly everything we have done for real matrices can be done for 
complex matrices. The methods are the same; the only difference is that the 
arithmetic is carried out with complex numbers rather than real ones. For example, 
the gaussian algorithm works in exactly the same way to solve systems of linear 
equations with complex coefficients, matrix multiplication is defined the same way, 
and the matrix inversion algorithm works in the same way.

But the complex numbers are better than the real numbers in one respect: While 
there are polynomials like x2 + 1 with real coefficients that have no real root, this 
problem does not arise with the complex numbers: Every nonconstant polynomial 
with complex coefficients has a complex root, and hence factors completely as a 
product of linear factors. This fact is known as the fundamental theorem of algebra.12

EXAMPLE 6

Diagonalize the matrix A =   S   0 -1           
1   0

   T . 
Solution ► The characteristic polynomial of A is 

cA(x) = det(xI - A) = x2 + 1 = (x - i)(x + i)

where i2 = -1. Hence the eigenvalues are λ1 = i and λ2 = -i, with 

corresponding eigenvectors x1 =   S   1   
-i

  T  and x2 =   S  1   
i
  T . Hence A is diagonalizable 

by the complex version of Theorem 5, and the complex version of Theorem 3 

shows that P = [x1 x2] =   S   1 1    
-i i 

  T  is invertible and P-1AP =   S   λ1 0
          

0 λ2
   T  =   S   i  0     

0 -i
  T . Of 

course, this can be checked directly.

We shall return to complex linear algebra in Section 8.6.

12 This was a famous open problem in 1799 when Gauss solved it at the age of 22 in his Ph.D. dissertation.
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Symmetric Matrices13

On the other hand, many of the applications of linear algebra involve a real matrix A 
and, while A will have complex eigenvalues by the fundamental theorem of algebra, 
it is always of interest to know when the eigenvalues are, in fact, real. While this 
can happen in a variety of ways, it turns out to hold whenever A is symmetric. This 
important theorem will be used extensively later. Surprisingly, the theory of complex 
eigenvalues can be used to prove this useful result about real eigenvalues.

Let  
__

 z   denote the conjugate of a complex number z. If A is a complex matrix, the 
conjugate matrix  

__
 A   is defined to be the matrix obtained from A by conjugating 

every entry. Thus, if A = [zij], then  
__

 A   = [ 
__

 z  ij]. For example,

If A =   S  -i + 2  5         
i  3 + 4i

  T  then  
__

 A   =   S  i + 2  5        
-i  3 - 4i

  T 
Recall that  

______
 z + w   =  

__
 z   +  

__
 w   and  

___
 zw   =  

__
 z    
__

 w   hold for all complex numbers z and w. It 
follows that if A and B are two complex matrices, then

 
______

 A + B   =  
__

 A   +  
__

 B  ,  
___

 AB   =  
__

 A    
__

 B   and  
___

 λA   =  
__

 λ    
__

 B  

hold for all complex scalars λ. These facts are used in the proof of the following 
theorem.

Theorem 7

Let A be a symmetric real matrix. If λ is any complex eigenvalue of A, then λ is real.14

14

PROOF

Observe that  
__

 A   = A because A is real. If λ is an eigenvalue of A, we show that 
λ is real by showing that  

__
 λ   = λ. Let x be a (possibly complex) eigenvector 

corresponding to λ, so that x ≠ 0 and Ax = λx. Define c = xT 
__

 x  .

If we write x = (z1, z2, …, zn) where the zi are complex numbers, we have

c = xT 
__

 x   = z1 
__

 z1   + z2 
__

 z2   + 	 + zn 
__

 zn   = | 
__

 z1  |
2 + | 

__
 z2  |
2 + 	 + | 

__
 zn  |
2.

Thus c is a real number, and c > 0 because at least one of the zi ≠ 0 (as x ≠ 0). 
We show that  

__
 λ   = λ by verifying that λc =  

__
 λ  c. We have 

λc = λ(xT 
__

 x  ) = (λx)T 
__

 x   = (Ax)T 
__

 x   = xTAT 
__

 x  .

At this point we use the hypothesis that A is symmetric and real. This means 
AT = A =  

__
 A  , so we continue the calculation:

λc = xTAT 
__

 x   = xT(  
__

 A    
__

 x  ) = xT( 
___

 Ax  )  = xT( 
___

 λx  )
 = xT( 

__
 λ    
__

 x  )
=  

__
 λ  xT 

__
 x  

=  
__

 λ  c

as required.

The technique in the proof of Theorem 7 will be used again when we return to 
complex linear algebra in Section 8.6.

13 This discussion uses complex conjugation and absolute value. These topics are discussed in Appendix A.

14 This theorem was first proved in 1829 by the great French mathematician Augustin Louis Cauchy (1789–1857).
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EXAMPLE 7

Verify Theorem 7 for every real, symmetric 2 × 2 matrix A.

Solution ► If A =   S   a b
        

b c
   T  we have cA(x) = x2 - (a + c)x + (ac - b2), so the 

eigenvalues are given by λ =   1 _ 2     S (a + c) ±  √ 
__________________

  (a + c)2 - 4(ac - b2)   T . But here

(a + c)2 - 4(ac - b2) = (a - c)2 + 4b2 ≥ 0

for any choice of a, b, and c. Hence, the eigenvalues are real numbers.

E X E R C I S E S  5 . 5

 1. By computing the trace, determinant, and rank, 
show that A and B are not similar in each case.

 (a) A =   S   1 2        
2 1

   T  , B =   S   1 1    
-1 1

  T 

 �(b) A =   S   3   1    
2 -1

  T  , B =   S   1 1        
2 1

   T 

 (c) A =   S   2   1    
1 -1

  T  , B =   S   3   0    
1 -1

  T 

 �(d) A =   S   3 1    
-1 2

  T  , B =   S  2 -1    
3   2

  T 

 (e) A = 
2 1

1

1
1 1
1 0

0 , B = 
11 1
2 2
3

2
4
6 3

−

−
−−

−

 �(f ) A = 
1 3
1 2
0

2
1
3 5

−
−

−
, B = 

2 3
6 −−−

−
3

0

1
9

0 0

 2. Show that 

1 1
2 1
1 0
4

0

0

1
1

2
0
1
3 0

−

−
 and 

1 0
01 1

0 4
4

−
−

−−
− 111

1

1
1 3

5 1−
  are not similar.

 3. If A ∼ B, show that:

 (a) AT ∼ BT �(b) A-1 ∼ B-1

 (c) rA ∼ rB for r in � (d) An ∼ Bn for n ≥ 1

 4. In each case, decide whether the matrix A is 
diagonalizable. If so, find P such that P-1AP 
is diagonal. 

 (a) 
1
1 1

10

00

0
2  �(b) 

3 6
0 0

0
3
0

5 2
−

 (c) 
3 6
2 0
1 30

1
1

− −
 �(d) 

3

4 00
0 22
2 1

 5. If A is invertible, show that AB is similar to BA 
for all B. 

 6. Show that the only matrix similar to a scalar 
matrix A = rI, r in �, is A itself. 

 7. Let λ be an eigenvalue of A with corresponding 
eigenvector x. If B = P-1AP is similar to A, show 
that P-1x is an eigenvector of B corresponding 
to λ.

 8. If A ∼ B and A has any of the following 
properties, show that B has the same property. 

 (a) Idempotent, that is A2 = A. 

 �(b) Nilpotent, that is Ak = 0 for some k ≥ 1.

 (c) Invertible.

 9. Let A denote an n × n upper triangular matrix. 

 (a) If all the main diagonal entries of A are 
distinct, show that A is diagonalizable. 

 �(b) If all the main diagonal entries of A are 
equal, show that A is diagonalizable only if it 
is already diagonal. 

 (c) Show that 
1 1

10
0 0

0
0

2
 is diagonalizable but that 

1
0
0

1
1

0
0

0 2
 is not diagonalizable.
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 10. Let A be a diagonalizable n × n matrix 
with eigenvalues λ1, λ2, …, λn (including 
multiplicities). Show that: 

 (a) det A = λ1λ2	λn

 �(b) tr A = λ1 + λ2 + 	 + λn

 11. Given a polynomial p(x) = r0 + r1x + 	 + rnx
n 

and a square matrix A, the matrix 
p(A) = r0I + r1A + 	 + rnA

n is called the 
evaluation of p(x) at A. Let B = P-1AP. Show 
that p(B) = P-1p(A)P for all polynomials p(x). 

 12. Let P be an invertible n × n matrix. If A is any 
n × n matrix, write TP(A) = P-1AP. Verify that:

 (a) TP(I) = I

 �(b) TP(AB) = TP(A)TP(B)

 (c) TP(A + B) = TP(A) + TP(B)

 (d) TP(rA) = rTP(A)

 (e) TP(Ak) = [TP(A)]k for k ≥ 1

 (f ) If A is invertible, TP(A-1) = [TP(A)]-1.

 (g) If Q is invertible, TQ[TP(A)] = TPQ(A). 

 13. (a) Show that two diagonalizable matrices are 
similar if and only if they have the same 
eigenvalues with the same multiplicities. 

 �(b) If A is diagonalizable, show that A ∼ AT. 

 (c) Show that A ∼ AT if A =   S   1 1        
0 1

   T .
 14. If A is 2 × 2 and diagonalizable, show that 

C(A) = {X | XA = AX} has dimension 2 or 4. 
[Hint: If P-1AP = D, show that X is in C(A) if 
and only if P-1XP is in C(D).] 

 15. If A is diagonalizable and p(x) is a polynomial 
such that p(λ) = 0 for all eigenvalues λ of A, 
show that p(A) = 0 (see Example 9 Section 3.3). 
In particular, show cA(A) = 0. [Remark: cA(A) = 0 
for all square matrices A—this is the Cayley-
Hamilton theorem (see Theorem 2 Section 9.4).]

 16. Let A be n × n with n distinct real eigenvalues. If 
AC = CA, show that C is diagonalizable. 

 17. Let A = 
a

a
b

b

c
c

0
0

0
 and B = 

c b
ba c
cb a

a
. 

 (a) Show that x3 - (a2 + b2 + c2)x - 2abc has 
real roots by considering A. 

 �(b) Show that a2 + b2 + c2 ≥ ab + ac + bc by 
considering B. 

 18. Assume the 2 × 2 matrix A is similar to an upper 
triangular matrix. If tr A = 0 = tr A2, show that 
A2 = 0. 

 19. Show that A is similar to AT for all 2 × 2 

matrices A. [Hint: Let A =   S   a b
        

c d
   T . If c = 0, treat 

the cases b = 0 and b ≠ 0 separately. If c ≠ 0, 
reduce to the case c = 1 using Exercise 12(d).]

 20. Refer to Section 3.4 on linear recurrences. 
Assume that the sequence x0, x1, x2, … satisfies 

xn+k = r0xn + r1xn+1 + 	 + rk-1xn+k-1

  for all n ≥ 0. Define 

A = 

r rr r k −

0 0
0

0
01

1

10 0

0

0

0 11 2

, Vn = 

x
x

x

n

n+1

nn k+ −1

.

  Then show that:

 (a) Vn = AnV0 for all n. 

 (b) cA(x) = xk - rk-1x
k-1 - 	 - r1x - r0.

 (c) If λ is an eigenvalue of A, the eigenspace Eλ 
has dimension 1, and x = (1, λ, λ2, …, λk-1)T 
is an eigenvector. [Hint: Use cA(λ) = 0 to 
show that Eλ = �x.]

 (d) A is diagonalizable if and only if the 
eigenvalues of A are distinct. [Hint: See part 
(c) and Theorem 4.]

 (e) If λ1, λ2, …, λk are distinct real eigenvalues, 
there exist constants t1, t2, …, tk such that 
xn = t1 λ  1  

n  + 	 + tk λ  
k
  n  holds for all n. 

[Hint: If D is diagonal with λ1, λ2, …, λk 
as the main diagonal entries, show that 
An = PDnP-1 has entries that are linear 
combinations of  λ  1  

n ,  λ  2  
n , …,  λ  k  

n .
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Best Approximation and Least Squares
Often an exact solution to a problem in applied mathematics is difficult to obtain. 
However, it is usually just as useful to find arbitrarily close approximations to a 
solution. In particular, finding “linear approximations” is a potent technique in applied 
mathematics. One basic case is the situation where a system of linear equations has no 
solution, and it is desirable to find a “best approximation” to a solution to the system. 
In this section best approximations are defined and a method for finding them is 
described. The result is then applied to “least squares” approximation of data. 

Suppose A is an m × n matrix and b is a column in �m, and consider the system

Ax = b

of m linear equations in n variables. This need not have a solution. However, given 
any column z in �n, the distance ‖b - Az‖ is a measure of how far Az is from b. 
Hence it is natural to ask whether there is a column z in �n that is as close as 
possible to a solution in the sense that

‖b - Az‖

is the minimum value of ‖b - Ax‖ as x ranges over all columns in �n.
The answer is “yes”, and to describe it define 

U = {Ax | x lies in �n}.

This is a subspace of �n (verify) and we want a vector Az in U as close as possible 
to b. That there is such a vector is clear geometrically if n = 3 by the diagram. In 
general such a vector Az exists by a general result called the projection theorem that 
will be proved in Chapter 8 (Theorem 3 Section 8.1). Moreover, the projection 
theorem gives a simple way to compute z because it also shows that the vector 
b - Az is orthogonal to every vector Ax in U. Thus, for all x in �n,

0 = (Ax) · (b - Az) = (Ax)T(b - Az)  = xTAT(b - Az)
= x · [AT(b - Az)]

In other words, the vector AT(b - Az) in �n is orthogonal to every vector in �n and 
so must be zero (being orthogonal to itself ). Hence z satisfies 

(ATA)z = ATb.

This is a system of linear equations called the normal equations for z.

Note that this system can have more than one solution (see Exercise 5). However, 
the n × n matrix ATA is invertible if (and only if ) the columns of A are linearly 
independent (Theorem 3 Section 5.4); so, in this case, z is uniquely determined and 
is given explicitly by z = (ATA)-1ATb. However, the most efficient way to find z is 
to apply gaussian elimination to the normal equations. 

This discussion is summarized in the following theorem.

Theorem 1

Best Approximation Theorem
Let A be an m × n matrix, let b be any column in �m, and consider the system

Ax = b

of m equations in n variables.

S E C T I O N  5 . 6

Az U 

b − Az
b

0

Definition 5.14
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(1) Any solution z to the normal equations
(ATA)z = ATb

 is a best approximation to a solution to Ax = b in the sense that ‖b - Az‖ is the 
minimum value of ‖b - Ax‖ as x ranges over all columns in �n.

(2) If the columns of A are linearly independent, then ATA is invertible and z is given 
uniquely by z = (ATA)-1ATb.

We note in passing that if A is n × n and invertible, then

z = (ATA)-1ATb = A-1b

is the solution to the system of equations, and ‖b - Az‖ = 0. Hence if A has 
independent columns, then (ATA)-1AT is playing the role of the inverse of the 
nonsquare matrix A. The matrix AT(AAT)-1 plays a similar role when the rows of A 
are linearly independent. These are both special cases of the generalized inverse 
of a matrix A (see Exercise 14). However, we shall not pursue this topic here. 

EXAMPLE 1

The system of linear equations

3x -  y = 4
 x + 2y = 0
2x +  y = 1

has no solution. Find the vector z =   S  x0   
y0

  T  that best approximates a solution. 

Solution ► In this case,

A =   S  3 -1
 

  
 1   2    

2   1
   T  , so ATA =   S   3 1 2     

-1 2 1
  T    S  3 -1

 
  

 1   2    
2   1

   T  =   S  14 1    
1 6

  T 

is invertible. The normal equations (ATA)z = ATb are

  S  14 1    
1 6

  T z =   S   14       
-3

   T  , so z =   1 __ 83     S   87    
-56

  T .
Thus x0 =   87 __ 83   and y0 =   -56 ___ 83  . With these values of x and y, the left sides of the 
equations are, approximately,

3x0 -  y0 =    317 ___ 83   =   3.82
 x0 + 2y0 =   -25 ___ 83   = -0.30

2x0 +  y0 =    118 ___ 83   =   1.42

This is as close as possible to a solution.

EXAMPLE 2

The average number g of goals per game scored by a hockey player seems to 
be related linearly to two factors: the number x1 of years of experience and the 
number x2 of goals in the preceding 10 games. The data on the following page 
were collected on four players. Find the linear function g = a0 + a1x1 + a2x2 
that best fits these data.
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Solution ► If the relationship is given by g = r0 + r1x1 + r2x2, then the data can 
be described as follows:

1 5 3
1 3 4
1 1 5
1 2 1

   S  
r0

 
 

 r1   
r2

  T  =   S  
0.8

 
 

 0.8   
0.6

 
 

 

0.4

  T 
Using the notation in Theorem 1, we get

z  = (ATA)-1ATb

=   1 __ 42   
− −

−
−

119 17 19
17 5 1
19 1 5

1 1 1 1
5 3 1 2
3 4 5 1

   S  
0.8

 
 

 0.8   
0.6

 
 

 

0.4

  T  =   S  0.14
 

  
 0.09    

0.08
  T 

Hence the best-fitting function is g = 0.14 + 0.09x1 + 0.08x2. The amount 
of computation would have been reduced if the normal equations had been 
constructed and then solved by gaussian elimination.

Least Squares Approximation
In many scientific investigations, data are collected that relate two variables. For 
example, if x is the number of dollars spent on advertising by a manufacturer and y 
is the value of sales in the region in question, the manufacturer could generate data 
by spending x1, x2, …, xn dollars at different times and measuring the corresponding 
sales values y1, y2, …, yn.

Suppose it is known that a linear relationship exists between the variables x and y—
in other words, that y = a + bx for some constants a and b. If the data are plotted, the 
points (x1, y1), (x2, y2), …, (xn, yn) may appear to lie on a straight line and estimating a 
and b requires finding the “best-fitting” line through these data points. For example, 
if five data points occur as shown in the diagram, line 1 is clearly a better fit than line 
2. In general, the problem is to find the values of the constants a and b such that the 
line y = a + bx best approximates the data in question. Note that an exact fit would 
be obtained if a and b were such that yi = a + bxi were true for each data point (xi, yi). 
But this is too much to expect. Experimental errors in measurement are bound to 
occur, so the choice of a and b should be made in such a way that the errors between 
the observed values yi and the corresponding fitted values a + bxi are in some sense 
minimized. Least squares approximation is a way to do this.

The first thing we must do is explain exactly what we mean by the best fit of a 
line y = a + bx to an observed set of data points (x1, y1), (x2, y2), …, (xn, yn). For 
convenience, write the linear function r0 + r1x as

f (x) = r0 + r1x 

so that the fitted points (on the line) have coordinates (x1, f (x1)), …, (xn, f (xn)). The 
second diagram is a sketch of what the line y = f (x) might look like. For each i the 
observed data point (xi, yi) and the fitted point (xi, f (xi)) need not be the same, and 
the distance di between them measures how far the line misses the observed point. 
For this reason di is often called the error at xi, and a natural measure of how close 
the line y = f (x) is to the observed data points is the sum d1 + d2 + 	 + dn of all 
these errors. However, it turns out to be better to use the sum of squares

S =  d  1  
2  +  d  2  

2  + 	 +  d  n  
2 

g x1 x2

0.8 5 3
0.8 3 4
0.6 1 5
0.4 2 1

y

x0

(x5, y5) 
(x4, y4) 

(x3, y3) 

(x2, y2) 
(x1, y1) 

Line 2 
Line 1 

y

x0 x 1 

y = f (x)
d i 

d 1 

d n 

x i x n 

(xn, f(xn)) 
(xn, yn) 

(xi, yi) 

(xi, f(xi)) 

(x1, y1) 
(x1, f(x1)) 
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as the measure of error, and the line y = f (x) is to be chosen so as to make this sum 
as small as possible. This line is said to be the least squares approximating line for 
the data points (x1, y1), (x2, y2), …, (xn, yn).

The square of the error di is given by  d  i  
2  = [yi - f (xi)]

2 for each i, so the quantity 
S to be minimized is the sum:

S = [y1 - f (x1)]
2 + [y2 - f (x2)]

2 + 	 + [yn - f (xn)]
2.

Note that all the numbers xi and yi are given here; what is required is that the 
function f be chosen in such a way as to minimize S. Because f (x) = r0 + r1x, this 
amounts to choosing r0 and r1 to minimize S. This problem can be solved using 
Theorem 1. The following notation is convenient.

x =   S  
x1

 
 

 x2   


 
 

 
xn

  T  y =   S  
y1

 
 

 
y2   


 
 

 
yn

  T  and f (x) =   S   
f (x1)

 
  

 
f (x2)    



 

  
 

f (xn)

  T  =   S  
r0 + r1x1

 
   

 r0 + r1x2     


 

   
 

r0 + r1xn

  T 
Then the problem takes the following form: Choose r0 and r1 such that

S = [y1 - f (x1)]
2 + [y2 - f (x2)]

2 + 	 + [yn - f (xn)]
2 = ‖y - f (x)‖2

is as small as possible. Now write

M =   S   
1 x1

 
  

 1 x2    

  
 

 
  

 

1 xn

   T  and r =   S  r0   
r1

  T .

Then Mr = f (x), so we are looking for a column r =   S  r0   
r1

  T  such that ‖y - Mr‖
2 is as 

small as possible. In other words, we are looking for a best approximation z to the 
system Mr = y. Hence Theorem 1 applies directly, and we have

Theorem 2

Suppose that n data points (x1, y1), (x2, y2), …, (xn, yn) are given, where at least two of 
x1, x2, …, xn are distinct. Put

y =   S   
y1

 
 

 
y2   


 
 

 
yn

  T  M =   S   
1 x1

 
  

 1 x2    

  
 

 
  

 

1 xn

   T 
Then the least squares approximating line for these data points has equation 

y = z0 + z1x

where z =   S  z0   z1
  T  is found by gaussian elimination from the normal equations

(MTM)z = MTy.

The condition that at least two of x1, x2, …, xn are distinct ensures that MTM is an 
invertible matrix, so z is unique:

z = (MTM)-1MTy.
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EXAMPLE 3

Let data points (x1, y1), (x2, y2), …, (x5, y5) be given as in the accompanying 
table. Find the least squares approximating line for these data.

Solution ► In this case we have

 MTM = 
x x x
1 1 1

1 2 5
   S   
1 x1

 
  

 1 x2    

  
 

 
  

 

1 x5

   T 
 = x x

x

+ +

+ +
5 1 5

1 xx x x5 1
2

5
2+ +

 =   S   5  21     
21 111

  T  ,

 and MTy = 
x x x
1 1 1

1 2 5
   S   

y1

 
 

 
y2   


 
 

 
y5

  T 
 = y y y

x y x
+ + +

+
1 2 5

1 1 2 yy x y2 5 5+ +
 =   S  15   

78
  T  ,

so the normal equations (MTM)z = MTy for z =   S  z0   
z1

  T  become

  S   5  21     
21 111

  T  =   S  z0   
z1

  T  =   S  15   
78

  T 

The solution (using gaussian elimination) is z =   S  z0   
z1

  T  =   S  0.24    
0.66

  T  to two 

decimal places, so the least squares approximating line for these data is 
y = 0.24 + 0.66x. Note that MTM is indeed invertible here (the 
determinant is 114), and the exact solution is

z = (MTM)-1MTy =   1 ___ 114      S   111 -21     
-21    5

  T    S   15      
78

   T  =   1 ___ 114     S   27      
75

   T  =   1 __ 38     S   9   
25

  T .

Least Squares Approximating Polynomials
Suppose now that, rather than a straight line, we want to find a polynomial

y = f (x) = r0 + r1x + r2x
2 + 	 + rmxm

of degree m that best approximates the data pairs (x1, y1), (x2, y2), …, (xn, yn). 
As before, write 

x =   S  
x1

 
 

 x2   


 
 

 
xn

  T  y =   S  
y1

 
 

 
y2   


 
 

 
yn

  T  and f (x) =   S   
f (x1)

 
  

 
f (x2)    



 

  
 

f (xn)

  T  
For each xi we have two values of the variable y, the observed value yi, and the 
computed value f (xi). The problem is to choose f (x)—that is, choose r0, r1, …, rm

—such that the f (xi) are as close as possible to the yi. Again we define “as close as 
possible” by the least squares condition: We choose the ri such that 

‖y - f (x)‖2 = [y1 - f (x1)]
2 + [y2 - f (x2)]

2 + 	 + [yn - f (xn)]
2

is as small as possible. 

x y

1 1
3 2
4 3
6 4
7 5
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A polynomial f (x) satisfying this condition is called a least squares approximating 
polynomial of degree m for the given data pairs.

If we write 

M = 

x x x

x x x

x x x

m

m

n n n
m

1

1

1

1 1
2

1

2 2
2

2

2

 and r =   S   
r0

 
 

 r1   


 
 

 
rm

  T 
we see that f (x) = Mr. Hence we want to find R such that ‖y - Mr‖

2 is as small as 
possible; that is, we want a best approximation z to the system Mr = y. Theorem 1 
gives the first part of Theorem 3. 

Theorem 3

Let n data pairs (x1, y1), (x2, y2), …, (xn, yn) be given, and write

y =   S  
 y1

 
 

 
y2   


 
 

 
yn

   T  M = 

x x x

x x x

x x x

m

m

n n n
m

1 1
2

1

2 2
2

2

2

1

1

1

 z =   S   
 z0

 
 

 z1   


 
 

 
zm

  T 
1. If z is any solution to the normal equations

(MTM)z = MTy

 then the polynomial
z0 + z1x + z2x

2 + 	 + zmxm

is a least squares approximating polynomial of degree m for the given data pairs. 
2. If at least m + 1 of the numbers x1, x2, …, xn are distinct (so n ≥ m + 1), the 

matrix MTM is invertible and z is uniquely determined by

z = (MTM)-1MTy

PROOF

It remains to prove (2), and for that we show that the columns of M are linearly 
independent (Theorem 3 Section 5.4). Suppose a linear combination of the 
columns vanishes:

r0   S  
1

 
 

 1   


 

 
 

1

  T  + r1  S  
x1

 
 

 x2   


 
 

 

xn

  T  + 	 + rm  S  
  x  1  

m 

 

 
  x  2  

m    


 
 

 

 x  n  
m 

   T  =   S  
0

 
 

 0   


 

 
 

0

  T 
If we write q(x) = r0 + r1x + 	 + rmxm, equating coefficients shows that 
q(x1) = q(x2) = 	 = q(xn) = 0. Hence q(x) is a polynomial of degree m with at 
least m + 1 distinct roots, so q(x) must be the zero polynomial (see Appendix D 
or Theorem 4 Section 6.5). Thus r0 = r1 = 	 = rm = 0 as required.

Definition 5.15
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EXAMPLE 4

Find the least squares approximating quadratic y = z0 + z1x + z2x
2 for the 

following data points.

(-3, 3), (-1, 1), (0, 1), (1, 2), (3, 4)

Solution ► This is an instance of Theorem 3 with m = 2. Here

y = 

3
1
1
2
4

 M = 

−
−

1 3 9
1 1 1
1 0 0
1 1 1
1 3 9

Hence,

MTM = −−

−
−1 1 1 1 1

3 1 0 1 3
9 1 0 1 9

1 3 9
1 1 1
1 0 0
1 1 1
1 3 9

 = 20
5 0 20

20 0
00

164

MTy = − −
1 1 1 1 1
3 1 0 1 3
9 1 0 1 9

3
1
1
2
4

 =   S  11
 

 
  4   

66
  T 

The normal equations for z are

5 20
0 0

0

020
20
0 164

 z =   S  11
 

 
  4   

66
  T  whence z =   S  1.15

 
  

 0.20    
0.26

  T 
This means that the least squares approximating quadratic for these data is 
y = 1.15 + 0.20x + 0.26x2.

Other Functions
There is an extension of Theorem 3 that should be mentioned. Given data pairs 
(x1, y1), (x2, y2), …, (xn, yn), that theorem shows how to find a polynomial 

f (x) = r0 + r1x + 	 + rmxm

such that ‖y - f (x)‖2 is as small as possible, where x and f (x) are as before. 
Choosing the appropriate polynomial f (x) amounts to choosing the coefficients 
r0, r1, …, rm, and Theorem 3 gives a formula for the optimal choices. Here f (x) is a 
linear combination of the functions 1, x, x2, …, xm where the ri are the coefficients, 
and this suggests applying the method to other functions. If f0(x), f1(x), …, fm(x) are 
given functions, write 

f (x) = r0 f0(x) + r1 f1(x) + 	 + rm fm(x) 

279SECTION 5.6 Best Approximation and Least Squares



where the ri are real numbers. Then the more general question is whether 
r0, r1, …, rm can be found such that ‖y - f (x)‖2 is as small as possible where 

f (x) =   S    
f (x1)

 
  

 
f (x2)    



 

  
 

f (xm)

  T 
Such a function f (x) is called a least squares best approximation for these data 
pairs of the form r0 f0(x) + r1 f1(x) + 	 + rm fm(x), ri in �. The proof of Theorem 3 
goes through to prove

Theorem 4

Let n data pairs (x1, y1), (x2, y2), …, (xn, yn) be given, and suppose that m + 1 functions 
f0(x), f1(x), …, fm(x) are specified. Write 

y =   S  
y1

 
 

 
y2   


 
 

 
yn

  T  M = 

f x f x f x
f x f

m0 1 1 1 1

0 2

( ) ( ) ( )
( ) 1 2 2

0 1

( ) ( )

( ) ( ) ( )

x f x

f x f x f x

m

n n m n

 z =   S   
z1

 
 

 z2   


 
 

 
zm

  T 
(1) If z is any solution to the normal equations

(MTM)z = MTy,

 then the function 

z0 f0(x) + z1 f1(x) + 	 + zm fm(x)

 is the best approximation for these data among all functions of the form 
r0 f0(x) + r1 f1(x) + 	 + rm fm(x) where the ri are in �.

(2) If MTM is invertible (that is, if rank(M) = m + 1), then z is uniquely 
determined; in fact, z = (MTM)-1(MTy).

Clearly Theorem 4 contains Theorem 3 as a special case, but there is no simple test 
in general for whether MTM is invertible. Conditions for this to hold depend on the 
choice of the functions f0(x), f1(x), …, fm(x).

EXAMPLE 5

Given the data pairs (-1, 0), (0, 1), and (1, 4), find the least squares 
approximating function of the form r0x + r12

x.

Solution ► The functions are f0(x) = x and f1(x) = 2x, so the matrix M is

M = 
f x f x
f x f x
f x f x

0 1 1 1

0 2 1 2

0 3 1 3

( ) ( )
( ) ( )
( ) ( )

 = 
− −1

0

1

1 2

0 2

1 2

 =   1 _ 2   
−2 1

0 2
2 4

In this case MTM =   1 _ 4     S   8  6    
6 21

  T  is invertible, so the normal equations
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  1 _ 4     S   8  6    
6 21

  T z =   S   4     
9

   T  have a unique solution z =   1 __ 11    S   10      
16

   T 
Hence the best-fitting function of the form r0x + r12

x is  
__

 f   (x) =   10 __ 11  x +   16 __ 11  2
x.

Note that  
__

 f   (x) = s  
 
__

 f   (–1)

 
  

  
__

 f   (0)   
 

 
__

 f   (1)

   t = s  
  -2 __ 11  

 
 

   16 __ 11    
 

  42 __ 11  

   t , compared with y =   S  0 
 

 1   
4

  T .

E X E R C I S E S  5 . 6

 1. Find the best approximation to a solution of each 
of the following systems of equations.

 (a)   x +  y -  z = 5
 2x -  y + 6z = 1
 3x + 2y -  z = 6
-x + 4y +  z = 0

 �(b) 3x +  y +  z = 6
2x + 3y -  z = 1
2x -  y +  z = 0
3x - 3y + 3z = 8

 2. Find the least squares approximating line 
y = z0 + z1x for each of the following sets of 
data points.

 (a) (1, 1), (3, 2), (4, 3), (6, 4)

 �(b) (2, 4), (4, 3), (7, 2), (8, 1)

 (c) (-1, -1), (0, 1), (1, 2), (2, 4), (3, 6)

 �(d) (-2, 3), (-1, 1), (0, 0), (1, -2), (2, -4)

 3. Find the least squares approximating quadratic 
y = z0 + z1x + z2x

2 for each of the following sets 
of data points.

 (a) (0, 1), (2, 2), (3, 3), (4, 5)

 �(b) (-2, 1), (0, 0), (3, 2), (4, 3)

 4. Find a least squares approximating function 
of the form r0x + r1x

2 + r22
x for each of the 

following sets of data pairs.

 (a) (-1, 1), (0, 3), (1, 1), (2, 0)

 �(b) (0, 1), (1, 1), (2, 5), (3, 10)

 5. Find the least squares approximating function 
of the form r0 + r1x

2 + r2sin   πx
 __ 2   for each of the 

following sets of data pairs.

 (a) (0, 3), (1, 0), (1, -1), (-1, 2)

 �(b) (-1,   1 _ 2  ), (0, 1), (2, 5), (3, 9)

 6. If M is a square invertible matrix, show that 
z = M-1y (in the notation of Theorem 3).

 �7. Newton’s laws of motion imply that an object 
dropped from rest at a height of 100 metres will 
be at a height s = 100 -   1 _ 2  gt2 metres t seconds 
later, where g is a constant called the acceleration 
due to gravity. The values of s and t given in the 
table are observed. Write x = t2, find the least 
squares approximating line s = a + bx for these 
data, and use b to estimate g.

  Then find the least squares approximating 
quadratic s = a0 + a1t + a2t

2 and use the value of 
a2 to estimate g.

t 1 2 3
s 95 80 56

 8. A naturalist measured the heights yi (in metres) 
of several spruce trees with trunk diameters xi (in 
centimetres). The data are as given in the table. 
Find the least squares approximating line for 
these data and use it to estimate the height of a 
spruce tree with a trunk of diameter 10 cm.

xi 5 7 8 12 13 16
yi 2 3.3 4 7.3 7.9 10.1

 �9. The yield y of wheat in bushels per acre 
appears to be a linear function of the number 
of days x1 of sunshine, the number of inches 
x2 of rain, and the number of pounds x3 of 
fertilizer applied per acre. Find the best fit to 
the data in the table by an equation of the form 
y = r0 + r1x1 + r2x2 + r3x3. [Hint: If a calculator 
for inverting ATA is not available, the inverse is 
given in the answer.]
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y x1 x2 x3

28 50 18 10
30 40 20 16
21 35 14 10
23 40 12 12
23 30 16 14

 10. (a) Use m = 0 in Theorem 3 to show that the 
best-fitting horizontal line y = a0 through 
the data points (x1, y1), …, (xn, yn) is 
y =   1 _ n  ( y1 + y2 + 	 + yn), the average of 
the y coordinates.

 �(b) Deduce the conclusion in (a) without using 
Theorem 3.

 11. Assume n = m + 1 in Theorem 3 (so M is 
square). If the xi are distinct, use Theorem 
6 Section 3.2 to show that M is invertible. 
Deduce that z = M-1y and that the least squares 
polynomial is the interpolating polynomial 
(Theorem 6 Section 3.2) and actually passes 
through all the data points.

 12. Let A be any m × n matrix and write 
K = {x | ATAx = 0}. Let B be an m-column. 
Show that, if z is an n-column such that 
‖b - Az‖ is minimal, then all such vectors 
have the form z + x for some x in K. 
[Hint: ‖b - Ay‖ is minimal if and only if 
ATAy = ATb.]

 13. Given the situation in Theorem 4, write

f (x) = r0 p0(x) + r1p1(x) + 	 + rmpm(x)

  Suppose that f (x) has at most k roots for any 
choice of the coefficients r0, r1, …, rm, not all 
zero.

 (a) Show that MTM is invertible if at least k + 1 
of the xi are distinct.

 �(b) If at least two of the xi are distinct, show that 
there is always a best approximation of the 
form r0 + r1e

x.

 (c) If at least three of the xi are distinct, show 
that there is always a best approximation 
of the form r0 + r1x + r2e

x. [Calculus is 
needed.]

 14. If A is an m × n matrix, it can be proved that 
there exists a unique n × m matrix A# satisfying 
the following four conditions: AA#A = A; 
A#AA# = A#; AA# and A#A are symmetric. The 
matrix A# is called the generalized inverse of A, 
or the Moore-Penrose inverse.

 (a) If A is square and invertible, show that 
A# = A-1.

 (b) If rank A = m, show that A# = AT(AAT)-1.

 (c) If rank A = n, show that A# = (ATA)-1AT.

An Application to Correlation and Variance
Suppose the heights h1, h2, …, hn of n men are measured. Such a data set is called 
a sample of the heights of all the men in the population under study, and various 
questions are often asked about such a sample: What is the average height in the 
sample? How much variation is there in the sample heights, and how can it be 
measured? What can be inferred from the sample about the heights of all men in 
the population? How do these heights compare to heights of men in neighbouring 
countries? Does the prevalence of smoking affect the height of a man? 

The analysis of samples, and of inferences that can be drawn from them, is a 
subject called mathematical statistics, and an extensive body of information has been 
developed to answer many such questions. In this section we will describe a few 
ways that linear algebra can be used. 

It is convenient to represent a sample {x1, x2, …, xn} as a sample vector15 
x = [x1 x2 	 xn] in �n. This being done, the dot product in �n provides a 
convenient tool to study the sample and describe some of the statistical concepts 

15 We write vectors in �n as row matrices, for convenience.
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related to it. The most widely known statistic for describing a data set is the sample 
mean  

__
 x   defined by16

 
__

 x   =   1 _ n  (x1 + x2 + 	 + xn) =   1 _ n    ∑ 
i=1

   
n

  xi .

The mean  
__

 x   is “typical” of the sample values xi, but may not itself be one of them. 
The number xi -  

__
 x   is called the deviation of xi from the mean  

__
 x  . The deviation is 

positive if xi >  
__

 x   and it is negative if xi <  
__

 x  . Moreover, the sum of these deviations 
is zero:

  ∑ 
i=1

   
n

  (xi -  
__

 x  )  =  Q  ∑ 
i=1

   
n

  xi  R  - n 
__

 x   = n 
__

 x   - n 
__

 x   = 0. (∗)

This is described by saying that the sample mean  
__

 x   is central to the sample values xi.
If the mean  

__
 x   is subtracted from each data value xi, the resulting data xi -  

__
 x   are 

said to be centred. The corresponding data vector is 

xc = [x1 -  
__

 x   x2 -  
__

 x   	 xn -  
__

 x  ] 

and (∗) shows that the mean  
__

 x  c = 0. For example, the sample x = [-1 0 1 4 6] 
is plotted in the first diagram. The mean is  

__
 x   = 2, and the centred sample 

xc = [-3 -2 -1 2 4] is also plotted. Thus, the effect of centring is to shift the 
data by an amount  

__
 x   (to the left if  

__
 x   is positive) so that the mean moves to 0.

Another question that arises about samples is how much variability there is in the 
sample x = [x1 x2 	 xn]; that is, how widely are the data “spread out” around the 
sample mean  

__
 x  . A natural measure of variability would be the sum of the deviations 

of the xi about the mean, but this sum is zero by (∗); these deviations cancel out. 
To avoid this cancellation, statisticians use the squares (xi -  

__
 x  )2 of the deviations as 

a measure of variability. More precisely, they compute a statistic called the sample 
variance  s  x  

2 , defined17 as follows: 

 s  x  
2  =   1 ___ 

n-1  [(x1 -  
__

 x  )2 + (x2 -  
__

 x  )2 + 	 + (xn -  
__

 x  )2] =   1 ___ 
n-1    ∑ 

i=1
   

n

  (xi -  
__

 x  ) 2.

The sample variance will be large if there are many xi at a large distance from the 
mean  

__
 x  , and it will be small if all the xi are tightly clustered about the mean. The 

variance is clearly nonnegative (hence the notation  s  x  
2 ), and the square root sx of the 

variance is called the sample standard deviation. 
The sample mean and variance can be conveniently described using the dot 

product. Let 

1 = [1 1 	 1]

denote the row with every entry equal to 1. If x = [x1 x2 	 xn], then 
x · 1 = x1 + x2 + 	 + xn, so the sample mean is given by the formula

 
__

 x   =   1 _ n  (x · 1).

Moreover, remembering that  
__

 x   is a scalar, we have  
__

 x  1 = [ 
__

 x    
__

 x   	  
__

 x  ], so the centred 
sample vector xc is given by 

xc = x -  
__

 x  1 = [x1 -  
__

 x   x2 -  
__

 x   	 xn -  
__

 x  ].

Thus we obtain a formula for the sample variance:

 s  x  
2  =   1 ___ 

n-1  ‖xc‖
2 =   1

 ___ 
n-1  ‖x -  

__
 x  1‖

2.

Linear algebra is also useful for comparing two different samples. To illustrate 
how, consider two examples.

16 The mean is often called the “average” of the sample values xi, but statisticians use the term “mean”.

17 Since there are n sample values, it seems more natural to divide by n here, rather than by n - 1. The reason for using n - 1 is that 
then the sample variance s2

x provides a better estimate of the variance of the entire population from which the sample was drawn.

−1 0 1 

Sample x

Centred Sample xc

2 4 6 

4 2 0 −1 −2 −3 

xc

x
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The following table represents the number of sick days at work per year and the 
yearly number of visits to a physician for 10 individuals. 

Individual 1 2 3 4 5 6 7 8 9 10
Doctor visits 2 6 8 1 5 10 3 9 7 4
Sick days 2 4 8 3 5 9 4 7 7 2

The data are plotted in the scatter diagram where it is evident that, roughly 
speaking, the more visits to the doctor the more sick days. This is an example 
of a positive correlation between sick days and doctor visits.

Now consider the following table representing the daily doses of vitamin C 
and the number of sick days.

Individual 1 2 3 4 5 6 7 8 9 10
Vitamin C 1 5 7 0 4 9 2 8 6 3
Sick days 5 2 2 6 2 1 4 3 2 5

The scatter diagram is plotted as shown and it appears that the more vitamin C 
taken, the fewer sick days. In this case there is a negative correlation between daily 
vitamin C and sick days.

In both these situations, we have paired samples, that is observations of two 
variables are made for ten individuals: doctor visits and sick days in the first case; 
daily vitamin C and sick days in the second case. The scatter diagrams point to 
a relationship between these variables, and there is a way to use the sample to 
compute a number, called the correlation coefficient, that measures the degree to 
which the variables are associated. 

To motivate the definition of the correlation coefficient, suppose two paired 
samples x = [x1 x2 	 xn], and y = [y1 y2 	 yn] are given and consider the 
centred samples

xc = [x1 -  
__

 x   x2 -  
__

 x   	 xn -  
__

 x  ] and yc = [y1 -  
__
 y   y2 -  

__
 y   	 yn -  

__
 y  ]

If xk is large among the xi’s, then the deviation xk -  
__

 x   will be positive; and xk -  
__

 x   
will be negative if xk is small among the xi’s. The situation is similar for y, and the 
following table displays the sign of the quantity (xi -  

__
 x  )( yk -  

__
 y  ) in all four cases:

Sign of (xi -  
__

 x  )( yk -  
__
 y  ):

xi large xi small
yi large positive negative
yi small negative positive

Intuitively, if x and y are positively correlated, then two things happen: 

1. Large values of the xi tend to be associated with large values of the yi , and 

2. Small values of the xi tend to be associated with small values of the yi . 

It follows from the table that, if x and y are positively correlated, then the dot 
product

xc · yc =  ∑ 
i=1

   
n

  (xi -  
__

 x  ) ( yi -  
__
 y  )

is positive. Similarly xc · yc is negative if x and y are negatively correlated. With this 
in mind, the sample correlation coefficient18 r is defined by

18 The idea of using a single number to measure the degree of relationship between different variables was pioneered by Francis Galton 
(1822–1911). He was studying the degree to which characteristics of an offspring relate to those of its parents. The idea was refined 
by Karl Pearson (1857–1936) and r is often referred to as the Pearson correlation coefficient.

Sick 
Days 

Doctor Visits 

Sick 
Days 

Vitamin C Doses 
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r = r(x, y) =   
xc · yc

 ________ 
‖xc‖ ‖yc‖

  .

Bearing the situation in �3 in mind, r is the cosine of the “angle” between the 
vectors xc and yc, and so we would expect it to lie between -1 and 1. Moreover, 
we would expect r to be near 1 (or -1) if these vectors were pointing in the same 
(opposite) direction, that is the “angle” is near zero (or π).

This is confirmed by Theorem 1 below, and it is also borne out in the examples 
above. If we compute the correlation between sick days and visits to the physician 
(in the first scatter diagram above) the result is r = 0.90 as expected. On the other 
hand, the correlation between daily vitamin C doses and sick days (second scatter 
diagram) is r = -0.84.

However, a word of caution is in order here. We cannot conclude from the 
second example that taking more vitamin C will reduce the number of sick days 
at work. The (negative) correlation may arise because of some third factor that is 
related to both variables. For example, case it may be that less healthy people are 
inclined to take more vitamin C. Correlation does not imply causation. Similarly, 
the correlation between sick days and visits to the doctor does not mean that having 
many sick days causes more visits to the doctor. A correlation between two variables 
may point to the existence of other underlying factors, but it does not necessarily 
mean that there is a causality relationship between the variables. 

Our discussion of the dot product in �n provides the basic properties of the 
correlation coefficient:

Theorem 1

Let x = [x1 x2 	 xn] and y = [y1 y2 	 yn] be (nonzero) paired samples, and let 
r = r(x, y) denote the correlation coefficient. Then:

1. -1 ≤ r ≤ 1.
2. r = 1 if and only if there exist a and b > 0 such that yi = a + bxi for each i.
3. r = -1 if and only if there exist a and b < 0 such that yi = a + bxi for each i.

PROOF

The Cauchy inequality (Theorem 2 Section 5.3) proves (1), and also shows that 
r = ±1 if and only if one of xc and yc is a scalar multiple of the other. This in 
turn holds if and only if yc = bxc for some b ≠ 0, and it is easy to verify that r = 1 
when b > 0 and r = -1 when b < 0.

Finally, yc = bxc means y1 -  
__
 y   = b(x1 -  

__
 x  ) for each i; that is, yi = a + bxi 

where a =  
__
 y   - b 

__
 x  . Conversely, if yi = a + bxi, then  

__
 y   = a + b 

__
 x   (verify), so 

y1 -  
__
 y   = (a + bxi) - (a + b 

__
 x  ) = b(x1 -  

__
 x  ) for each i. In other words, yc = bxc. 

This completes the proof.

Properties (2) and (3) in Theorem 1 show that r(x, y) = 1 means that there is 
a linear relation with positive slope between the paired data (so large x values are 
paired with large y values). Similarly, r(x, y) = -1 means that there is a linear 
relation with negative slope between the paired data (so small x values are paired 
with small y values). This is borne out in the two scatter diagrams above.

285SECTION 5.7 An Application to Correlation and Variance



We conclude by using the dot product to derive some useful formulas for 
computing variances and correlation coefficients. Given samples x = [x1 x2 	 xn], 
and y = [y1 y2 	 yn], the key observation is the following formula:

xc · yc = x · y - n  
__

 x    
__
 y  . (∗∗)

Indeed, remembering that  
__

 x   and  
__
 y   are scalars:

 xc · yc = (x -  
__

 x  1) · (y -  
__
 y  1)

 = x · y - x · ( 
__
 y  1) - ( 

__
 x  1) · y + ( 

__
 x  1) · ( 

__
 y  1)

 = x · y -  
__

 y  (x · 1) -  
__

 x  (1 · y) +  
__

 x   
__
 y  (1 · 1)

 = x · y -  
__

 y  (n 
__

 x  ) -  
__

 x  (n 
__
 y  ) +  

__
 x   
__
 y  (n)

 = x · y - n 
__

 x   
__
 y  .

Taking y = x in (∗∗) gives a formula for the variance
 
 s  x  

2  =   1 ___ 
n-1  ‖xc‖

2 of x.

Variance Formula

If x is a sample vector, then  s  x  2  =   1
 ___ 

n-1  (‖xc‖
2 - n 

__
 x  2).

We also get a convenient formula for the correlation coefficient, 

r = r(x, y) =   
xc · yc

 ________ 
‖xc‖ ‖yc‖

  . Moreover, (∗∗) and the fact that  s  x  
2  =   1 ___ 

n-1  ‖xc‖
2 give:

Correlation Formula

If x and y are sample vectors, then 

r = r(x, y) =   
x · y - n  

__
 x    
__
 y  
  ___________ 

(n - 1)sxsy

  .

Finally, we give a method that simplifies the computations of variances and 
correlations.

Data Scaling

Let x = [x1 x2 	 xn] and y = [y1 y2 	 yn] be sample vectors. Given constants a, b, c, 
and d, consider new samples z = [z1 z2 	 zn] and w = [w1 w2 	 wn] where 
zi = a + bxi , for each i and wi = c + dyi for each i. Then: 

(a)  __
 z   = a + b 

__
 x  .

(b)  s  z  2  = b2 s  x  2  , so sz = |b|sx .
(c) If b and d have the same sign, then r(x, y) = r(z, w).

The verification is left as an exercise. 
For example, if x = [101 98 103 99 100 97], subtracting 100 yields 

z = [1 -2 3 -1 0 -3]. A routine calculation shows that  
__

 z   = -  1 _ 3   and  s  z  
2  =   14 __ 3  , 

so  
__

 x   = 100 -   1 _ 3   = 99.67, and  s  z  
2  =   14 __ 3   = 4.67.
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E X E R C I S E S  5 . 7

 1. The following table gives IQ scores for 10 
fathers and their eldest sons. Calculate the 
means, the variances, and the correlation 
coefficient r. (The data scaling formula is useful.)

1 2 3 4 5 6 7 8 9 10

Father’s IQ 140 131 120 115 110 106 100 95 91 86

Son’s IQ 130 138 110 99 109 120 105 99 100 94

 �2. The following table gives the number of years of 
education and the annual income (in thousands) 
of 10 individuals. Find the means, the variances, 
and the correlation coefficient. (Again the data 
scaling formula is useful.)

Individual 1 2 3 4 5 6 7 8 9 10

Years of education 12 16 13 18 19 12 18 19 12 14

Yearly income 
(1000’s)

31 48 35 28 55 40 39 60 32 35

 3. If x is a sample vector, and xc is the centred 
sample, show that  

__
 x  c = 0 and the standard 

deviation of xc is sx.

 4. Prove the data scaling formulas found on page 
292: (a), �(b), and (c).

S U P P L E M E N TA R Y  E X E R C I S E S  F O R  C H A P T E R  5

 1. In each case either show that the statement is 
true or give an example showing that it is false. 
Throughout, x, y, z, x1, x2, …, xn denote vectors 
in �n. 

 (a) If U is a subspace of �n and x + y is in U, 
then x and y are both in U.

 �(b) If U is a subspace of �n and rx is in U, then x 
is in U.

 (c) If U is a nonempty set and sx + ty is in U for 
any s and t whenever x and y are in U, then 
U is a subspace.

 �(d) If U is a subspace of �n and x is in U, then 
-x is in U.

 (e) If {x, y} is independent, then {x, y, x + y} is 
independent.

 �(f ) If {x, y, z} is independent, then {x, y} is 
independent.

 (g) If {x, y} is not independent, then {x, y, z} is 
not independent.

 �(h) If all of x1, x2, …, xn are nonzero, then 
{x1, x2, …, xn} is independent.

 (i) If one of x1, x2, …, xn is zero, then 
{x1, x2, …, xn} is not independent.

 �(j) If ax + by + cz = 0 where a, b, and c are in 
�, then {x, y, z} is independent.

 (k) If {x, y, z} is independent, then 
ax + by + cz = 0 for some a, b, and c in �. 

 �(l) If {x1, x2, …, xn} is not independent, then 
t1x1 + t2x2 + 	 + tnxn = 0 for ti in � not all 
zero.

 (m) If {x1, x2, …, xn} is independent, then 
t1x1 + t2x2 + 	 + tnxn = 0 for some ti in �. 

 �(n) Every set of four non-zero vectors in �4 is a 
basis.

 (o) No basis of �3 can contain a vector with a 
component 0.

 �(p) �
3 has a basis of the form {x, x + y, y} where 

x and y are vectors.

 (q) Every basis of �5 contains one column of I5.

 �(r) Every nonempty subset of a basis of �3 is 
again a basis of �3.

 (s) If {x1, x2, x3, x4} and {y1, y2, y3, y4} are bases 
of �4, then {x1 + y1, x2 + y2, x3 + y3, x4 + y4} 
is also a basis of �4.
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