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The concepts of linear span, linear Independence, Jineyr dependence, and basis, are defin

for ¥,(C) exactly as in the reg] case. Theoremg 12.7 through 12.10 and their proofs are:
valid without change for V,(C).

12.17 Exercises

Lo Let 4 =(1,)), B =(, ~i), and C =

. fth
(24, 1) be three vectors in ¥y(C). Compute each 0
following dot products:

(@) 4-B; (b) B- 4; (©) (i4) - B; (d) 4-iB); (€) ("A)'(iB)

) B-c; ® 4-c (h) B+0C). 4, () (4 ~0)-B;

GO (4 ~iB)-(4 + ip), th -
2.1f4 =@, 1, =)and p = (s =1, 24, find 4 flonzero vector C in yy(C) orthogonal to bo

and B,

3. Prove that for any two vectors 4 and B jp V(C), we have the idcntity

4+ Bj2 < A1 + g2 +tA4B+ 4B,

4. Prove that for any two vectors 4 and B ip V,,(C), we have the idcntity

I+ B2~y _ BIP=204.p 4 Ay,

5. Prove that for any two vectors 4 and B in Vu(C), we have the idcntily

4+ Biz 4y BiF =2 492 +20B)2.

6. (a) Prove that for any two vectors 4 and Bip p

) —— . a l'
(C), th { B4+ A-Bisrea
(b) If 4and B are nonzero vectors in V,,(C), pronvc 3lme sum ¢ + 4

A B4R

~2 S
liET s 2.

- We define the angle ¢ between t . . ion
7. We I WO nonzerg vectors Lt ang Bin ¥, (C) by the equati

0 = arecog CRLE )
] 18]

. T . rVﬂ]
The Inequality in Exercise shows that there g

. od inte
o ) ) always a unique angle 0 in the closed
0 < 0 < = satisfying this fquation. Proye ¢ YS @ unique ang

at we haye
=B = e g e I 1) cos 0
8. Usc the definition in Exercise 7 to compute |,
H(C) A =(1,0,00,0), and B = (j, ;, 0, 0,0).
9 (a; Prove that the following three veetors form 4,
C=(1, L. ‘g ,
(b) Express the vector (5,2 =4, 2i) as a lingyy COmbination of A, B, C. 7(C)
10. Prove that the basis of unit coordinate vectors £ v Evin 1 is also a basis for Va

in
tors !
, . , \,'C(,to
angle between (he following two

; 0),
= (0,
asis for VaC): 4 =(1,0,0), B (

n
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APPLICATIONS OF VECTOR ALGEBRA
TO ANALYTIC GEOMETRY

3.1 Introduction
This chapter discusses applications of vector algebra to the study of lines, planes, and
conic sections, In Chapter 14 vector algebra is combined with the methods of calculus, and
further applications are given to the study of curves and to some problems in mechanics.
The study of geometry as a deductive system, as conceived by Euclid around 300 s.c.,
begins with a set of axioms or postulates which describe properties of points and lines.
» and “line” are taken as primitive notions and remain undefined.
Other concepts are defined in terms of points and lines, and theorems are systematically
educed from the axjoms. Euclid listed ten axioms from which he attempted to deduce all
his theorems. It has since been shown that these axioms are not adequate for the theory.
For ¢xample, in the proof of his very first theorem Euclid made a tacit assumption concern-
'8 the intersection of two circles that is not covered by his axioms. Since then other lists
of axioms have been formulated that do give all of Euclid’s theorems. The most famous
of these s 5 list given by the German mathematician David Hilbert (1862-1943) in his now
classic Grundlagen der Geometrie, published in 1899. (An English translation exists:
he I"oun(/ari(m(s of Geomelry, Open Court Publishing Co., 1947.) This work, which went
thm“gh seven German cditions in Hilbert's lifetime, is said to have inaugurated the abstract

he concepts *“point

n; > : ~ M 29
Nathemy e of the twenticth century. ' . .
Hilber starts his treatment of plane geometry with five undefined concepts: point, line,

%1 (@ relation holding between a point and a line), benwveen (a relation between a point and a
Pair of points), and congruence (@ relation between pairs of points). He then gives ﬁftee'n
UXiomg from which he ldcvclops all of plane Euclidean geometry. His treatment of solid
gcomc”y is based on twenty-onc axioms involving six undefined concepts.

The approach in analytic geometry is somewhat different. We define cqnccpts such as
Poing, line, on, between, ctc., but we do so in terms of rcal numbers, which are lcf.t un-
dc“llcd. The ‘rcs‘ulling mathematical structure is called an analytic model of Euclidean
chmclry. In 1his model, propcrlics of real numbers are used to deduce Hilbert’s .ilXif)ms‘

¢ shall noy attempt (0 describe all of Hilbert's axioms. Instead, we sl?zlll merely indicate
!‘(’W the primitive concepts may be defined in terms of numbers and give a few proofs to
l““Willc the methods of analytic geometry.
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472 Applications of vector algebra to analytic geometry

13.2  Lines in n-space

In this section we use rea] numbers to define the coneepts of point, line, and on. The
definitions are formulated to fit our intuitjye ideas about three-dimensional Euclidean
geometry, but they are meaningful in n-space for any n > 1,

A point is simply a vector in V., thatis, an ordered p-ty
the words “point” and “vector” interchangeably.
model of n-dimensional Euclidean Space or sim
employ the algebraic operations of additjon

ple of real numbers; we shall use
The vector space 1, is called an zlnzl’l’)’“c
Ply Euclidean n-space. To define “line,” We
and multiplication by scalars in V, .

DEFINITION.  Let P be g given point ang Aa given nonzero vector.y The set of all points

of the form P 4 14, where ! runs through qlf real numbeys, ;g called a line through P /)(1/‘(1//"1

LP; A) = {P + 14 I treal}y  or, more briefiy, L(P;A) = {P + 14}

A point Q is said to be on the line L(P; A)if Qe L(p: A)

In the symbol L(p; A, .the point P which s written first js o the line since it corresponds
tor=0. The .SEECOHd pomnt, 4, is called 5 direction pecsyy for the line. The line L(O; A)
through the origin O is the linear span of 4-

| i . he
' . ' » It consists of all scalar multiples of A. T
line through p parallel to 4 s obtained by adding p ¢ each vector in the lincar span of 4.
Figure 13.1 shows the geometric interpret

ot . . . A

1o sh ' clation of thig definition in 17, . Each point P+ 1
can be visualized as the tip of a geometric vector drawn from the origin. As 7 varies 0V€r
all the real numbers, the corresponding point P 4 ;4 traces out a line through P pgralle

to the vector 4. Figure 13 shows points correspondi h lines
nding to a few values of 7 on both
L(P; 4) and L(0; 4). ponding to a few values of 7 o

L(P;A)

L(0; A)

P-4
P -24

-24

p FiGure 3.1 The line L(P; A) through p paralie] ¢, .

. I and its geometric relation to
the line L(0; 4) through o para &

liel 1o A,
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13.3 Some simple properties of straight lines

First we show that the direction vector 4 which occurs in the definition of L(P; A) can
be replaced by any vector parallel to 4. (We recall that two vectors 4 and B are called
Parallel if 4 = ¢B for some nonzero scalar c.)

THEOREM 13.1.  Two lines L(P; A) and L(P; B) through the same point P are equal if
and only if the direction vectors A and B are parallel,

Proof.  Assume first that L(P; A) = L(P; B). Take a point on L(P; A) other than P,
for cxample, P 4 A. This point is also on L(P; B)so P4+ A = P + ¢Bfor some scalar c,
chce, we have 4 = ¢B and ¢ % 0 since A # O. Therefore, A and B are parallel.

Now we prove the converse. Assume A and B are parallel, say A = ¢B for some ¢ 3 0.
1.0 is on £(P: 4), then we have Q =P+ 14 =P+ 1(cB) = P+ (c1)B, s0 Q is on
L(P; B). Therefore L(P; A) € L(P; B). Similarly, L(P; B) S L(P; 4),50 L(P; A) = L(P; B).

Next we show that the point P which occurs in the definition of L(P; A) can be replaced
b)’ any other point Q on the same line.

THEOREM 13.2.  Tiwo lines L(P; A) and L(Q; A) with the same direction vector A are
“qual if and only if Qis on L(P; A).

Proof.  Assume L(P; A) = L(Q; A). Since @ is on L(Q: A), Q is also on L(P; A).
To prove the converse, assume that Q is on L(P; A), say Q@ = P + cA. We wish to prove
hat L(p; )y = L@y ). 11 X € L(P; A), then X = P + 14 for some 1. ButP = 0 — c4,
SO ¥V = O —cd 4 1d=0+(— ¢)A, and hence X is also on L(Q: A). Therefore
L(p; A) < L(Q: A). Similarly, we find L(Q; A) € L(P; A), so the two lines arc equal.

One of Euclid's famous postulates is the parallel postulate which is logically equivalent
Lo the statement that “through a given point there exists one and only one line parallel to a
8Iven line.™ We shall deduce this property as an ecasy consequence of Theorem 13.1.

'SUwe need to define parallelism of lines.

DENINDION, 7o fines 1(P A) and L(Q; B) are called parallel if their direction vectors

Aand p are parallel.

CTHEOREM 13,3, Giren a line Loand a point Q- not on L, then there is one and only one
e 1! containing () and parallel to L.
N /"m(gf, Suppose the given line has direction vector A, Consider the linc.L' = L(Q; A).
ll.ns line contains © and is parallel to L. Theorem 13.1 tells us that this is the only line
With thege 1y propertics.

Note:  por a long time mathematicians suspected that the parallel postulate could

be deduced from the other Euclidean postulates, but all attempts 1o prove this resulted
M failure, “Then in the carly 19th century the mathematicians Karl F. Gauss (1777-1855),
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J. Bolyai (1802-1860), and N. I. Lobatchevski (1793-1856) became convinced that the
parallel postulate could not be derived from the others and procceded to develop non-
Euclidean geometries, that is to say, geometrics in which the parallel postulate does not
hold. The work of these men inspired other mathematicians and scientists to enlarge
their points of view about “accepted truths” and to challenge other axioms that had been
considered sacred for centuries.

It is also easy to deduce the following property of lines which Euclid stated as an axiom:

THEOREM 13.4.  Two distinct points determine line. That is if P Q, there is on¢
and only one line containing both P any Q. It can be described as the set {(P+1Q —P)

Proof. Let L be the linc through p parallel to Q — p, that i let
L=L(P;Q-P)={P+1(Q_p)}.

This line contains both P and @ (take 1 = 0 to get Pand 1 = | (o get 0). Now let L' be

any lin:c containing ‘both Pand Q. We shall prove that L’ = /. Since 1’ contains P, We
have L' = L(P; 4) 10: some 4 % O, Byt 1’ also contains Q50 P 4 cd = Q for some ¢
Hence we have Q — P = cd, where ¢ # Osince Q % p, Therefore Q — P is parallel to A

so, by Theorem 3.2, we have L' — L(P; 4) = L(p: 0-pP) =1

EXAMPLE. Theorem 13.4 gives us gy Casy way to test if a point Q is on a given line
L(P; A). Ittells us that Q is on L(P; A)if and onlyif 9 — p }g p.lr. llel ml A. For example,
consider the line L(P; A), where P = (1,2, 3and 4 = @) \ }; 5‘1) QT tc:st if the point
Q = (1, 1, 4) is on this line, we examine Q — p — 0, —1 ,’) _S',n 0 i p\ig not a scalar
multiple of A, the point (1, 1, 4) is not on this line. bn tixc ;>thlxrclf.md ir Q‘ = (50, 13)
we find that Q — P = (4, —2, 10) =24, g0 this Q is on the linct and,

Linear dependence of two vectors iny e . .
p 1} » €an be cxpressed in geometric language.

THEOREM 13.5. Two vectors A gng Bi . . . Jje
mV, are linegrly if and only if they 1t
. .. nende nd only 1
on the same line through the origin, " ) dependent if and onl) iy

Proof. If either A.or B is zerf), the resylt holds trivially, If both are nonzero, then A
and B are d.cpcndcnt if and on'ly. if B =14 for some scalar 1. But B = 14 if and only il
lies on the line through the origin parallel (o 4 ‘

13.4 Lines and vector-valued functiong

The concept of a line can be related to th, function coneept. The correspondence which
associates to each real 1 the vector P 4 4 on the line L(P; A)is an example of a function

whose domain is the set of real numbers ang whoge range is the line L(P: A). If we denot
the function by the symbol X, then the functjoy, value Y(r)at 1 is given by the equation

(13.1) Xy=ry iy

We call this a vector-valued function of g reqj Variable
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The function point of view is important because, as we shall see in Chapter 14, it provides
@ natural method for describing more general space curves as well.

The scalar ¢ in Equation (13.1) is often called a parameter, and Equation (13.1) is called a
vector parametric equation or, simply a vector equation of the line. Occasionally it is con-
venient to think of the line as the track of a moving particle, in which case the parameter ¢
is referred to as sime and the vector X (¢) is called the position vector.

Note that two points X(a) and X(b) ona given line L(P; A4) are equal if and only if we have
Ptag=p + bA, or (a — b)4 = O. Since 4 # O, this last relation holds if and only if
@=b. Thus, distinct valucs of the parameter ¢ lead to distinct points on the line.

Now consider three distinct points on a given line, say X(a), X(b), and X(c), where a > b.
We say that X(c) is between X(a) and X(b) if ¢ is between a and b, that is, if a < ¢ < b.

Congruence can be defined in terms of norms. A pair of points P, Q is called congruent
t(? another pair p’, Q'if |P—0| = [P — Q'll. The norm [P — Q| is also called the
distance between P and Q.
~ This completes the definitions of the concepts of point, line, on, between, and congruence
N our analytic model of Euclidean n-space. We conclude this section with some further
femarks concerning parametric equations for lines in 3-space. o

If a line passes through two distinct points P and Q, W.C can use Q — P for the direction
vector 4 p Equation (13.1); the vector equation of the line then becomes

X)=P+1Q—P) or X(t)y=1Q+ (1 —0)P.

Vector equations can also be expressed in terms of components. For ex.ample, if we

Write p — (p,q,r), A = (a, b, c), and X(1) = (x, », 2), Equation (13.1) is equivalent to the

three scalar cquations
(132 coptta, y=gE, T=rr
These are called scalar parametric equations or simply parametric equations for the line;

they qre uscful in computations involving components. The vector equation is simpler

and more natural for studying general propcrtfcs of lines. . ) .
all the vectors are in 2-space, only the first two parametric equations in (13.2) are

fcedeq In this case. we can climinate / from the two parametric equations to obtain the
‘ A d5C, <

re](lliOn
(13.3) bx —p) —a(y —q) =0,

Which ig called a4 Cartesian equation for the line. If a 5 0, this can be written in the point-
sl()l)()ﬁ)r'”

b
)'_‘l—;(-\ - D).

The po; inc; the number bfa is the slope of the line
POInt (p, ¢) is on the line; the number bla is the slope of the linc. ‘
The Curtcsi;/m equation (13.3) can also be written in terms of dot products. 1f we let
M= (b, ~a), X = (x, ), and P = (p, ¢), Equation (13.3) becomes

(Y=P))N=0 or X-N=PN
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The vector NV is perpendicular to the direction veetor A since N+ A = pu — ab = 0; the
vector N is called a normal vector to the line. The line consists of all points X satisfying
the relation (X — P)- ¥ = 0.

The geometric meaning of this relation is s
on the line and the normal vector N js orthog
all points X on the line, the smallest length |
N. We now give an algebraic proof of this

fown in Figure 3.2, The points P and X ar
onalto X — P, The figure suggests that among

| X[l occurs when X is the projection of P along
fact,

y
4

\ N Normal vector

Direction
vector

FIGURE 13.2 A lin¢ in the xy-pl

anc through p
on the line satisfics (

with normal vector N. Each point X
X-P)-N:O_

THEOREM 13.6.  Let L be the Jipe inv, consisting of qf points X satisfving

XN=[)N

)

where P is on the line and N IS 4 nonzerg vector normal 1o the line. Let

d = M
IN|
Then every X on L has length | x| 2 d. Morcoper, | X =d if and only if X is the e
Jection of P along N: /
X = ,/Vy \\)h(;,.(, f = [\)'ﬂ .
N-N

b ’ » have V. — P, . : s have
Bl Proof. 1T XY€L, wehave X- N = p. p By the Cauchy-Schwarz inequality, We

l/"Nl=lz\'-N]S |

XTIy,

(R which implies |X]| > [P+ N|/|N| = 4 The equ
I for some scalar 1, in which case P+ N = y. N
o pletes the proof.

v = IN
ality sign holds if and only f[, I-“ com-
SINN,sot=p-N/N-N. This
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In the same way we can prove that if @ is a given point in ¥, not on the line L, then for
all X on L the smallest value of |.X — Q| is |(P — Q) N|/IN|, and this occurs when
X~ Qs the projection of P — @ along the normal vector N. The number

(P — Q) N|
IV

is called the distance Srom the point Q 1o the line L. The reader should illustrate these con-
€Cpts on a figure similar to that in Figure 13.2.

13.5  Exercises

I Aline L in ¥, contains the two points = (=3, ) and @ = (I, 1). Determinc which of the
following poillts arcon L. (@) (0,0); (b) (0, 1); (© (1,2); (d) (2, 1); (¢) (=2, 1).

2. Solve Exercise 1 if P = @2, -Dand @ =(~4,2). ,

3 A line £ in /4 contains the point P = (=3, 1, 1) and is parallel to the vector (1, -2, 3.
Determine which of the following pointsare on L. (2)(0,0,0); (b) (2, —=1,4); () (=2, —1,4);
@) (=4,3, —2); (0) (2, =9, 16). . .

4 Aline L contains the two points £ = (=3, [,1)and @ =(1,2,7). Determine which of the
following pointsarcon L. (a)(=7,0,5); (0 (=7,0, =3 (=1L 1L 115 (@) (=11, =1, 11);
© (=184, (=543 @C-LE=9.

5. In cach case, determine if all three points P, @, R lie on a line.

@ P =@ 1,1),0=@1-DR=06 -1
)P =(2,2,3),0 =(-231, R =(=641.
© P=@1,1),0=(-231R=6-5LD . . "

6. Among the following cight points, the three points 4, B, and C lie on a line. Determine all
Subsets of three or more points which lic on a line: A =@ LD B=(6-L1), C=
(=65, 1), Do (23 Do = (11, ) F = (—4, 4, 1), G = (=135, . 11 = (14, =6, 1),

7. A line through the point P = (I, 1, 1) is parallel to the vector A = (1,2, 3). Another line
llerUgh Q=(,10)]is pamllcl to the vector B = (3, 8, 13). Prove that the two lines intersect

and determine the point of intersection. _ . . .
8. (a) Prove th'll lll/tollincs L(P: A) and L(Q; B) in V, intersect ift and only if P — @ is in the

linear Span of A and B. ) lines in 1. intersect-
Determine whether or not the following two lincs in 17y intersect:

[ — _ M
1‘=l(|vl) _])+I(—2,ly3)}’ L -‘l(3’ 4!l)+,( 1,5"')_1'

> L X(ty = P 4 44 be an arbitrary point on the line L(P; ), where P = (1,2,3) and A =
l, . ] ')) ’ p ,; l)
-2, and let Q = (3,3 1. _ . ’
() Cor,npulc "Q _(\’(;)‘;'-’ the square of the distance between Q and X(1). .
b) Prove that there is exactly one point X(1,) for which the distance "Q — X (¢)) is a minimum,

N compute (his minimum distance.
(©) Proye that Q — (1) is orthogonal to A,

Let i he line L2 A)in b,
¢ i point not on the " o . )
@) Let /'(l)l'—(- l‘Q — Xy, A owhere X(0) = P - 14, Prove that f(r) is a quadratic polynomial

: . i akes 1S ni Ve st exactly one f, sa (ll.’=’()-
s ang that this polymnm.ll takes onats minimum value at exietly Yy

(b) Proy “(¢.) is orthogonal to /.
ethat Q = V()18 £ . . _ .
. Given 1y p'lr'ﬁlcl lines L(PuA) and L(Q; ) in 17, . Prove that cither L(P;A) = L(Q; A)

OF the intergection L(P: A) N QT AV is empty. . ]
.. section L7 . , re e
12, Givep two lines £(P; A) and L(Q: B)in ¥, which are not parallel. Prove that the intersection

IS Cither empty or consists of exactly one point.

10,
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13.6 Planes in Euclidean n-space

A line in n-space was defined 1o be a st of the form {P + 14} obtained by adding tod
given point P all vectors in the lincar span of a nonzero vector /Ji. A planc is defined in
similar fashion except that we add to P all vectors in the linear span of two linearly inde-
pendent vectors A and B. To make certain that 7, contains two lincarly indcpcndent
vectors, we assume at the outset that n > 2. Most oyi‘ our anplicati ill be concernt
with the case n = 3. applieations Wi

7 ~
AN ’,%P+M+llf

Figure 13.3  The plane through p spanned b
to the plane through 0 sp

y A and B, and its geometric relation

anned by A and B.

SETNT > ; .7 A [ '
~ DEFINITION. A set M of points in 'V is called ¢ plane if there is a point P and 1o finear)
independent vectors A and B such that l

M={pr 44 4 tB|s, treal .

it of M
The

the
/
3

o i W'c shall denote the set more t.)rleﬂ)’ by writing Af = (P + sA + 1B}, Eachpo
Yol is said to be on the plane. In particular, taking s = 7 = 0. we see that P ,'\- e tane.
set {P + sA + 1B} is also called the plane througl, [)* , we see that P i he P
origin. the planc is simply the linear span of 4 anc in
through the origin spunned by Aand Band qlso annet
oy by the same two vectors.
: Now we shall deduce some properties of planes anglo 0us to the propertic

i ‘  in Theorems 13.1 through 13.4. The first of these s.ll()\lz's l.h':l) lI:L' [\'cc}lors Aand B in B
N definition of the plane {F = $4 4+ 1B} can be rcPI;\ccd ‘hy jm ' (L»lhcr Pillir which has ¢
same lincar span. any

spanned by A and B.
and B. Figure 13.3 shows d pl

e
a plane through a nonzero point Psp

,/,,m/g/’

rneoris 13.7. Two planes M =P 4 5,4 4 1By and M' =P+ sC+ 1D} Jined
ine

‘ the same point Iar equal if and only if the lineqy span of A and B is equal to the
o span of C and D.
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—

e

Proof. If the lincar span of A and B is equal to that of C and D, then it is clear that
M = M'. Conversely, assume that A = M'. Plane M contains both P + A and P + B.
Since both these points are also on A, cach of A and B must be in the linear span of C
and D. Similarly, cach of C and D is in the lincar span of A and B. Therefore the linear

span of 4 and B is equal to that of C and D.

The next theorem shows that the point P which occurs in the definition of the plane
{P 4+ 54 + tB} can be replaced by any other point Q on the same planc.

THEOREM 13,8, Thvo planes M = (P + sA + 1B} and M' = {Q + sA + 1B} spanned by
the same vectors A and B are equal ffﬂ”d only if Q is on M.

Proof. 1If M = M’, then Qis certainly on A To prove the converse, assume Qison
M, say Q = P + ad + bB. Take any point X in M. Then X = P + sA + 1B for some
scalars s and 7, But P = Q —ad — bB, so X =0 + (s —a)A + (t — D)B. Therefore
Xisin M’ so M < M. Similarly, we find that M' & M, so the two planes are equal.

(Theorem 13.3) has an analog for planes. Before we state this

Euclid’s parallel postulate e
The definition is suggested by the

theorem we need to define parallelism of two plancs.
geometric representation in Figure 13.3.

DEFINITION.  Thwo planes M = (P+sd4+ (B} and M'=1{Q + sC + tD} are said to
be paraliel if the linear span of A and B is equal 10 the linear span of C and D. We also say
that a vector X is parallel to the plane M if Xisin the linear span of A and B.

THEOREM 13.9. Given d plane M and a point Q not on M, there is one and only one plane

M’ which contains Q and is parallel 10 M.

Proof. et M = {P + 54+ (B} and consider the plane M’ = {Q + sA 4 tB). This
plane contains Q and is Spunncd by the same vectors A and B which span A, Therefore
M'is parallel (o Ar. 1 M" is another plane through Q parallel to M, then

7 = {Q 4 sC + 1D

Where the Jinear span of € and D is equal to that of A and B. By Theorem 13.7, we must
have pp7 = M’ Therefore M1 the only plane through Q which is parallel to M.

Theoren 13.4 tells us that two distinet points determine a line. The next theorem shows

" points ar¢ not collincar.

Athree distinet points determine & plane, provided that the three

THeorem 13,10, 1f Py @ and R are three points not on the same lin¢, then there 1s on¢

(III([ .. rep . . » . y OO0
only one plane M containing these three points. 1t can be described as the set

(13.4) M= P+ S0 — P+ 1(R= D)}
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Proof. We assume first that one of the points, say P, is the origin. Then Q and R arc
not on the same line through the origin so they are linearly independent. Therefore, they
span a plane through the origin, say the plane

M'={sQ + (R}.

This plane contains all three points O, Q, and R.

Now we prove that M’ is the only plane which contains all three points 0, @ and R |
Any other plane through the origin has the form

A’In—.:{sA _*_[B},
where A and B are linearly independent. If A" contains Q and R, we have
(13.5) Q=ad + bB, R= A+ dB

for some .sculars a, b, ¢, d He/ncc, every lincar combination of @ and R is also @ linear
combination of 4 and B, so M’ < A1”,
- . " ra . . . .
To prove that M" < M, 1t suffices to prove that cach of A and B is a linear Combmullon

of 0 and R. Mfllliplying the first equation in (13.5) by o and the second by p and sub-
tracting, we climinate B and get ’ “

(ad — be)d = dQ — bR,

I:'o'\zli a(t{) N [;C Cu[n'n'ot > tlcm, Olhchisc, Q and R would be dependent. Therefore We can
tvide by ad-—= ¢ and CXpIEsS {1 as a linear combination of Q and R. Simitarly, W€ can
express B as a linear combination of Q and R, so we have A" < M. This proves the
theorem when one of the three points P, Q, R is the miL" B ‘
. URATEANE igin.

To prove the theorem in the general case, let M be the set in (13.4), and let C = 0- P,

— I T . , . { 3.4), ¢ v
D = R — P. First we show t.h‘}t Cand D are lincarly independent. 1f not we would have
D = tC for some scalar ¢, giving us R — p — (O = P), or R=P+ 0o — P) contrd”
d'Cfl“g th)C\fz’lCt that P, Q,‘ R are not on the same line. 'Thcrct‘orc the set M s @ p]anc
thr.ough P spanned by the hinearly independent pair Cand D. This plane contains all three
points £, Q. i.m(.i Rtake s = 1. 1= 010 get OQ.ands =01 =1 io set R). Now we must
prove that this is the only plane containing P, O, and R T g .

Let A’ be any plane containing P, Q. and R, Since A’ is o plane containing P, we b

M ={P 4+ 54 + 1B

for some lincarly independent pair A and B, 1¢( A1’ = (o 4+ 113 be the plane throllgh th.c

origin spanncd by the same poir A and B Clc“rl)’“ M’lclont'linsj'l vector Vil and only ]
’ PRI r_p - “/I‘ I Al . AN ‘ ,‘n(

M| contains X P. Since M7 contains Q and R (he plane A cont I

. ains C =
D= R— P Butwe have just shown that there ‘

st \ 0?
: - : . IS one > plane containihe =
C, and D since C and D are lincarly independeng, 'lvl:cr:-‘lll‘t:rz:n:)[/’o._llt{l\‘C D), 50 M F
P+ sC+ 1D} = M. This completes the proof, My = v

if
N . I YUY h; e L . e, )ﬂl }
In Theorem 13.5 we pmud that two vectors i i, are linearly dcpcndcm if and ¢ y




Planes and vector-valued functions 481

-

they lic on a line through the origin. The next thcorem is the corresponding result for three
vectors.

THEOREM 13.11. Three vectors A, B, C in V, are lincarly dependent if and only if they
lie on the same plane through the origin.

Proof. Assume A, B, C arc dependent. Then we can express onc of the vectors as a
lincar combination of the other two, Sy C = sA + tB. 1f Aand Bare independent, they
span a plane through the origin and C is on this plane. If A and B are dependent, then
A, B, and C lic on a linc through the origin, and hence they lie on any planc through the

origin which contains all three points A, B, and C.

To prove the converse, assume that A, B, C lic on the same plane through the origin, say
the plane Af. If A and B arc dependent, then A, B, and C arc dependent, and there is
nothing more to prove. 1f A and B are independent, they span a plane M"through the
origin. By Theorem 13.10, there is one and only onc plane through O containing 4 and B.
Therefore M’ = M. Since C is on this planc, we must have C = sA + B, s0 A, B, and

C are dependent.

13.7 Planes and vector-valued functions

The correspondence which associates to cach pair of real numbers s and t the vector
P+ 54 4+ (B on the planc M={P+s4t (B} is another example ‘of a vector-valued
function. In this case, the domain of the function is the set of all pairs of rcal_ numbers
(s, 1) and its range is ﬂ’m planc M. If we denote the function by X and the function values

by X(s, ), then for cach pair (5 1) we have

(13.6) X(s, 1) =P +sA4+1B.

We call X 4 vector-valued function of two real vuriublc_:s. The scalars s _zmd ¢ are called
Parameters, and the cquation (13.6) is called n‘parumctnc or vector equation of the planc.
This s analogous to the rcprcscntution of a l‘mc by a .vcctor-vulucfl function of one real
Vi}riublc. The presence of two purmncl.crs in liquulmn (l3_§) gives thg.‘ planc a two‘-
dimensiong] quality. When each veetor is 1 1y and is expressed in terms of its components,

Sily

P = (I)I ’ I)a ’ l)-)) A = (Ul ’ ”2 . (’3) ’ B = (hl ’ b‘.! ’ h:}) ’ llnd ’\’(S‘ f) = (’\" .}” :) ’

the veetor cquation (13 () can be replaced by three scalar equations,
[y .

X = py o+ sy 4 thy, VT Pe -+ osay + th, 2= py + 50 + thy.

always be climinated from {hesc three equations {o give one
4+ by 4 ez =d, calied a Cartesian cquation of the plane.

T ,

,hc parameters s and f €40

ine; . .
lc“.r cquation of the form ax
¢ tllustrate with an example.
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EXAMPLE. Let M = {P + sA + (B}, where P=(1,2,3), 4=(l,21), and B=
(1, —4, —1). The corresponding vector equation is

X(s, 1) =(1,2,3) + 5(1,2, 1) + 1(1, —4, —1).
From this we obtain the thrcc‘ scalar parametric equations
x=1+s+4+1t, y=2425—4r, z=34+s5—1.

To obtain a Cartesian equation, we rewrite the first and third cquations in the form x — 1=
s+1,z—3=s—1 Adding and then subtracting these equations, we find that 25 =
x + z— 4,2t = x — z + 2. Substituting in the equation for y, we zlrlz’ led to the Cartesian
equation x +y - 3z = —6. We shall return to a further stuciy of lincar Cartesian equd”
tions in Scction 13.16.

13.8 Exercises
1. Let M = {P + sA + 1B}, where P = (1,2, — _ rminé
which of the following points are on M., A =321, and B = (1,04, P
(@ (1,2,0); ®) (1,2,1); () (6,4,6); (d)
(0 (1,2, 1); 14,6, (d) (6,6,6); () (6,6, —5).

2. The thrf:c points P=(,1-1),0=(3,32),and R = G, —] —7))i-tcrminc a planc M.
Determine which of the following points are on M e
@ 22,05 () 4,0, =1 (© (3,1, =3); (&) 3,1,3); (¢) (0,0,0)

3. Determine scalar parametric equations for cach of the f(’)lk;wi; 7 plan ; o
(a) The plane through (1, 2, 1) spanned by the vectors (0, 1, 0 8 Pd cs. )
(b) The plane through (1,2, 1), (0, 1, 0), and (1, 1, 4) »1,0)and (1, 1, 4).

4. A plane M has scalar parametric equations B

=145 -2, y =245+ 4, z=2+1.

(a) Determine which of the followi :
(b) Find vectors P, 4, and B such It?i?j)\;nti ?;? in ‘//:1: (0,0,0), (1,2,0), 2, =3 -3).

5. Let M be the planc determined by three points P sA + 1B} .
(@) If p, q, r arc three scalars such that P+ +’ Q_’_ R not on the same line.
(b) Prove that every point on M has the formq,p r =1, prove that pP> + qQ -

6. Determine a linear Cartesian equation of the fo/rm +.(IQ + rR, wherep +9q +r r
planes. ax + by + ¢z = dfor cach of the
(a) The plane through (2, 3, 1) spann
(b) The glanc through (2,3, 1), E’_z,ci }iy-(z»)zt‘:])lm;d (-1, =2, =3).

(c) The plane through (2,3, 1) parallel to the [;{ d@,3, -1n.
and (1, 1, 1).

7. A plane M has t:c Earftclsian cquation 3x — Sy4z=9 9
(a) Determine which of the following points gre -4 _5).
(b) Find vectors P, 4, and B such thba[t’ /\;“id{r;, (jr“ YA’:: (0, .—2, —1), (=1, =2.2) 3. b

8. Consider the two planes M = {P + 54 + 1B} apg l\llf' _+ ”;I' ] here P = (1, 1),
A=, -1,3), B=(-1,0,2), 0 =2,3,1) c = (T {7( + 5C + ![)‘}, w : ) ind (WO
distinct points on the intersection M N A", ' 2,3, and D =G, 0

9. Given a plane M = {P + sA + 1B}, where P = (o 2

another plane M’ with Cartesian equation x — I(}T‘j',”_’_" =(1,2,3),and B = 3,2

(a) Determine whether M and M’ are parallel, T

4+ rRison M.

following

2)

anc through the origin spanncd by (2, 0"

1), and
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I

(b) Find two points on the intersection M” N M” if M” has the Cartesian equation

x+2y+z=0.

arallel to the vector @, —1,3), and let M be the plane

10. Let L be the line through (I, 1, D'P
through (1,1, -2) sp;mncd by the vectors (2,1, 3) and (0, 1, 1). Prove that there is one and

only one point on the intersection L N M and determine this point.
11. A line with direction vector X is said t0 be parallel to a planc M if X is parallel to M. Let

' L be the line through (1, 1, 1) parallel to the vector (2, —1,3). Determine whether L is parallel

to each of the following planes.
(2) The planc through (1, 1, —2) spanncd by 2, 1, Hand G, L D.
(b) The plane through (1, {, =2), 3,52 and (2,4, =D

(¢) The plance with Cartesian cquation x +2p+3= -3
2. Two distinct points P and Qlicona planc M. Prove that every point on the line through P

and Q also lies on M. i i
13. Given the line L through (1, 2,3) parallcl to the vector (1,1, 1), and given a point (2,3,5)

which is not on L. Finda Cartesian cquation for the plane M through (2, 3, 5) which contains

every point on L.
14. Given a line L and a point pnoton L. P

P which contains cvery point on L.

rove that there is onc and only onc planc through

13.9 The cross product
tor algebra 10 problems in geometry and mechanics it is

d for constructing & vector perpendicular to each of two
accomplished by means of the cross product 4 x B (read

In many applications of vec
h?‘pful to have an casy mectho
%lvcn vectors A4 and B. This is

A cross B”) which is defined as follows:

DEFINITION.  Let A = (s 2 ap) and B = (by, by, by) be w0 pectors in V. Their cross

Product A x B (in that order) is d('ﬁnvd to be the vector

Ax B= (ashs — ashy s tshy — aby, aby — ashy) .

The following, propcrlicS are casily deduced from this definition.

THEOREM 13,12, For all vectors A B, Cin Vo and for all real ¢ we have:

@) Ax = —(BxA (skew symmetry)s
(b) A x (B + C)= (A X B) + (A4 X C)  (distributive law),
(©) (4 x B) = (cA) X B

) A (4 x B)=0
(@) B-(ax B=0 (orthogonality 10 ),

() 14 x B2 = i 12 Bl = (A By (Lagrange’s jdentity),
B Ax B=0 ij‘am! only if A and B are linearly dependent.

(nr!lmg(ma/il_\‘ to A),

Proof.  parts (a). (0): and (c) follow quickly from the definition and are left as EXCrCISCs

for the reader, To prove (d), we note that

(ashy — ayh,) -+ ll:(“:yl’\ — by + ”3((11[’2 — ah) = 0.

A (A x B)=
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Part (¢) follows in the same way, or it can be deduced from (a) and (d). To prove (), W
write

4 X BlI* = (awby — azby)? + (ayh, ~ a,by)? + (a;h, — aby)?
and

[AN2)BI> — (A - B)? = (a® + a} + a;)(b? + b3 + b2 — (ayb, + azby + aghs)*

and then verify by brute force that the two right-hand members are identical.
Proper.ty (f) shpws that A X B = O if and only if (4 - B)* = ||A|2| B|%. By the Cauchy-
Schwarz inequality (Theorem 12.3), this happens if and only if one of the vectors is @ scalar

multiple of the other. In other words, 4 x B = 0 if and only if 4 and B arc linearly
dependent, which proves (g).

EXAMPLES. Both (a) and (g) show that 4 x 4 = 0.

From the definition of cross
we find that

product
iXj=k, Jix k=i, kxi=j.

The cross product is not associative. For example, we have
> <

IXEXj=ixk==j but (ixixj=0xj=0.

The next theorem describes two more fundamenta propertics of the cross product:

THEOREM 13,13, Let A and B be linearly indepe
Sfollowing:

(@) The vectors A, B, A x B are linearly inde

(b) Every vector NinV b

e the
ndent vectors in Vy. Then we hare !

pendent,
s orthogonal 1o both A and B is g scalar multiple of A X B.

Proof. Let C= A4 x B. Then C % ¢ since A and B are lincarly independent. C.iv'cn
b scalars a, b, ¢ such that ad + bB + ¢C = 0, we take the dot product of cach member with
oo C and usc the relations A-C=B-C = o 0 find ¢ = o 'l‘l(" o« t‘ B = 0. 50
' a=b = 0since A and B are independent. = 0. This gives a4

This proves (a).
Co Let N be any vector orthogonal to both 4 ;g B.and let ¢ = A x B. We shall pr

jhfj that

ove

V- = (V- vy 0.

Then from the Cauchy-Schwarz incquulity ( 4 gealaf
multiple of C.
Since A. B, and C are lincarly indcpcndcnt, W
span Vs . In purlicular, they span N, so we ¢

Theorem 12.3) it follows that N is

¢ know, by Theorem 12.10(c). that they

an write
N=at+bp 4 ¢

for some scalars a, b, ¢. This gives us

N-N=N-(ad + bB + C)Y=¢N-C
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since N*A=N-B=0. Also,sinceC'A=C'B=0,wehavc
C-N=C-(aA+bB+cC)=cC-C.

Therefore, (N - N)(C - C) = (N CNC-C)=(N-O)cC- )= (N - €)%, which completes
the proof.

Theorem 13.12 helps us visualize the cross product geometrically. From properties (d)
and (), we know that 4 X B is perpcndicular to both A and B. When the vector 4 X B is

represented geometrically by an arrow, the direction of the arrow depends on the relative

k AxB

AxB

(a) A right-handed coordinate system (b) A left-handed coordinate system

Figure 13.4 [lustrating the relative positions of A, B,and A x B.

dinate vectors. If i, j, and k are arranged as shown in Figure

134(), tlicy arc said to form & right-ham/ed coordinate systen. 1n this case, the direction of
{1 X B is determined by the “right-hand rule.” T.hut is to say, when A is rotated into B
10 such a way that the fingers of the right hzmd'pomt in the direction of rotation, then the
thumb indijcates the direction of A X B (assuming, for the sake of the discussion, that the
Fhumb is perpendicular to the other fingers). Ina left-handed coordinate system, as shown
In Figure 13.4(b), the dircction of A X B is reversed and may be determined by a corre-
sponding left-hand rule. )

interesting geometric interpretation. If A and B arc nonzcro

The length of A X B hasant :
vectors making an angle 0 with cach other, where 0 < 0 < m, we may write A B =

14N 1B cos 0 in property (f) of Theorem 13.12 to obtain

positions of the three unit cOof

(A x BI*= AIIBIE = cos® 0) = | A2 B]? sin® 0,

from which we find
A x Bl = Al | B] sin 0.

Since || B| sin 0 is the altitude of the parallelogram determined by 4 and B (sc Figure 13.5),

We sce that the fength of 4 % B is equal 1o the area of this parallelogran.




~———Area = || A x B||

\\\HBH sin-0

\
\

FIGURE 13.5 The length of 4 x Bis the area of the parallelogram determined by - and B.

13.10  The cross product expressed as a determinant

. . he

The formula which defines the cross product can be put in a more compact form with te
aid of determinants. 1f a, b, ¢, d are four numbers, the difference ad — be is often dend
by the symbol

a b
)

and is called a determinant (of order two). The nu;
and they are said to be arranged in two horizont
colunms, a, c and b, d. Note that uninterchangco

‘s elements

mbers a, b, ¢, d are called its eler rtica
. e

al rows, a, b and ¢, d, and in tWO \; nges
¥
ftwo rows or of two columns only ¢t

n the sign of the determinant. For example, since ad — pe = —(be — ad), we have
a b b a
i = —
e ¢ d d ¢

0,
If we express each of the components of the ¢f t

. er
. oss product as a determinant of ord
the formula defining A X B becomes

@ a3l |lay a
AXB= 80 ay
’ ’
by b, by by b, b,

This can also be expressed in terms of the unit coordinate vectors i, j, k as follows:

(13.7) AXB= T k.
by b, by b, st by by

. . rn s . may
Determinants of order three are written with thre they

. . e rows and three cojumns ill\d
Rt be defined in terms of second-order determip

ants by the formula

ay ay dy
b b. b u by b by b, by b,
) ) a2 = — R <
(13.8) e ‘ Ca €y h ¢ o
2 : ' C. ( (:
€ Cy Oy oty 1

¢
: “ P . at th
This is said to be an “expansion™ of the determip hi

U o L
ant along its first row. Not¢
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determinant on the right that multiplies a; may be obtained from that on the left by deleting

the row and column in which a; appears. The other two determinants on the right are

obtained similarly.

. I?etcrminants of order greater than three are discussed in Volume I1. Our only purpose

in introducing determinants of order two and three at this stage is to have a useful device

for writing certain formulas in a compact form that makes them easier to remember.
Determinants are meaningful if the elements in the first row are vectors. For example,

if we write the determinant

i j k
by by by

and “expand™ this according to the rule prescribed in (13.8), we find that the result is equal
to the right member of (13.7). In other words, we may write the definition of the cross

product 4 x B in the following compact form:
i j Kk
AXx B=|a & ds|-

b, b, bs

For example, to compute the cross product of A = 2i — 8 + 3k and B = 4j + 3k, we

Write
ik g s 203 |2 7P o
AxB=1|2 —8 3|= 43i—-031+0 4k=—361——6_1+8k
0 4 3
1311 Exercises

LLet A = —j+2k B=2 +j—k C= i+ 2j+ 2k Compute cach of the following

vectors in terms of i, j, k*
@) A x B (d) A x(CX A (@ A@xO) X B;
b)) B x ¢, (¢) (4 xB)X e () (A4 + B x - )
() Cx A () AxBX o) () (A xB)x (A x Q).

< I cach case find a veetor of length 1 in V4 orthogonal to both A and B:
(u)/1=i+j+k, lf=2i+3j—k;
O) A =2i—3j +4k B= —i+ 5+ Tk;
(©) A =i —2j+ 3k p=-3+2-k

+ I cach case use the €ross product 10 compute the arca of the triangle Wi
(@) At = (0,2,2), 52,0, -0, C=0,40)
) o = (ca gy, B0 =R O (1,2, 1);
© 4 —@oon  B=@LD o C=10D

[

th vertices A, B, C:

k, express the cross product

4V 4 =2 4 5j 43k B=201 7j + 4k, and C =3 +3j +6
(A = ) x (B — A)interms of i, J, k.
3. Prove that {4 x Bl = 1A] 181 if and only if A and Barc orthogonal.

Let C=(B X A) - B.

6. Given two lincarly indcpcndcnt vectors A and Bin V.
(@) Prove that A is orthogonal to B + C.
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{(b) Prove that the angle 0 between B and C satisfies = < 0 < 7.

(c) If |B =1and |B x A =2, compute the length of C.

. Let A and B be two orthogonal vectors in Vg, each having length 1.

(a) Prove that A4, B, A x B is an orthonormal basis for V,.

(b) Let C = (4 x B) x A. Prove that [C]| = 1. )
(c) Draw a figure showing the geometric relation between A, B, and A x B, and us¢ this
figure to obtain the relations

(AXxB)yxA=8B, (A XB)xB=—4,

(d) Prove the relations in part (c) algebraically,
8. (@) If 4 x B=0 and A+ B =0, then at least onc of A or B is zero. Prove this statement
and give its gcometric interpretation.
(b) Given 4 # 0. fAxB=AxCandA-B=4. C, prove that B = C.
9. LetA =2i —j+2kand C =3i +4j — k.
@) F1:nd a vector Bsuch that A X B = C. Is there more than one solution ? -
(b') Find a vector Bsuch that A x B = Cand 4 B = |, I there more than onc solution:
10. Given a nonzero vector A and a vector Corthogonal to A, both vectors in V5. Prove that there
Wi is exactly one vector Bsuchthat 4 x B = Cand 4. p = §
‘ 11. Three vertices of a paralielogram are at the points A - (0,1, B=(-1L1 N C=
2, —1,2). el
(a) Find all possible points D which can be the fourth vertex of the parallclogram.
(b) Compute the area of triangle ABC.
12. Given two nonparallel vectors A and B in ¥, with 4. p = 2 Al =1, B =4 Let C=
2({1 X B) - 3B. Cpmputc A (B + C), IC}l, and the cosine of the angle 0 between pand
i : 13. Given two lincarly independent vectors A and Bin 1, Determine whether each of the follow
nl ing statements is truc or false.
(@ 4 + B, A — B, A x Barelincarly independent,
(b) A + B, A + (4 X B), B+ (A x B)arc lincarly independent.
; () 4, B, (A + B) x (4 — B)are lincarly independent.
Y 14. (a) Prove that three vectors A, B, Cin Vylic on a line if and only if (B — ) x (C
(b) If A4 # B, prove that the line through A and B ¢ o < of the set of all vecto
that (P — A) x (P — B) = O. g consists of the set of all ve
15. Given two orthogonal vectors A, B in V
cquation P x B = A — P. Provec

~n=9
rs P SllCh

eving the
3, cach of length 1. Let P be a vector satisfymg

ach of the following statements.
(a) P is orthogonal to B and has length 117,

(b) P, B, P x Bform a basis for v,

(c) (P x By x B=-P.

(d) P =34 - LA x B).

The dot and cross products can be combined to form the scalar triple product A o
which can only mean A - (B x C). Since this is 4 dot product of two vectors, its value ¥

scalar. We can compute this scalur by meang of determinants, Write A = (@2 @2
l:(,rmmb

: 13.12 The scalar triple product
B )( C!
!

(s b

B = (by, by, by, C = (C1, ¢y, (';,).zmd CXpress B x Caccording to Equation ( 13.7).
the dot product with A, we obtain

by by by b a, dx s
A-Bx C=a, + a, l\+au b, /):\= by b by
€ O
¢

€y Oy

30

s (3
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Thus, 4 - B x Cis equal to the determinant whose rows arc the components of the factors
A, B, and C.

‘ In Theorem 13.12 we found that two vectors A and B are lincarly dependent if and only
lf‘thcir cross product A4 X B is the zero vector. The next theorem gives a corresponding
criterion for linear dependence of three vectors.

THEOREM 13.14.  Three vectors A, B, CinVyare linearly dependent if and only if
A-Bx C=0.

Proof.  Assume first that A, B, and C arc dependent. If B and C are dependent, then
B- X C = 0, and hence A* B X C = 0. Suppose, then, that B and C are independent.
Since all three are dependent, there exist scalars @, b, ¢, not all zero, such that aA + bB +
¢C = 0. We must have a # 0 in this relation, otherwisc B and C would be dependent.

Therefore, we can divide by @ and express 4 as & lincar combination of B and C, say A =

1B + sC. Taking the dot product of each member with B x C, we find
A-(BX C)=1tB-BX C+sC-BxC=0,
thogonal to B x C. Thercfore dependence of A, B, and C

since cach of B and C is or

implies 4+ B x C = 0.
To prove the converse, assume that A- B x C=0. If B and C are dependent, then so

are A, B, and C, and therc is nothing more to prove. Assume then, that B and C are lincarly
independent. Then, by Theorem 13.13, the three vectors B, C, and B x C are lincarly

i . ) .
ndependent. Hence, they span A so we can write

4 = aB + bC+ B xC)

g the dot product of each member with B x C and using the

for some scalars a, b, . Takin )
c=0,50d= aB + bC. This proves that 4, B, and C

fact that 1 - (B x C)=0,we find
are lmcarly dependent.

EXAMPLE. To determine whether the three vectors (2, 3, —1), (3, =7, 35) and (1, =5,2)
are dependent, we form their scalar triple product, expressing it as the determinant

2 3 -l
3 =7 5 s2(—14+25)—3(6—5)—1(—15+7>=27.
| -5 2

Since the sealar triple product is nonzero, the vectors are lincarly independent.

an interesting geometric intcrprctutinn. Figure 13.0 shows
C not in the sam¢ planc. Its
[n this figure, cos ¢
ch forms the base is
rallel to the base. Integrating

find that the volume of the parallelepiped

. The sealar triple product has
¢ purzlllclcpipcd dc[crminCd by three geometric veetors A, B,

ltitude i IC| cos ¢, where ¢ is the angle between A X B and C.

'S positive because 0 < ¢ < Lz, The arca of the pnrullclogmm whi
X B, and this is also the ared of cach cross section pa
the Cross-sectional arca from 0 to |Cll cos ¢, we
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I

is |4 x Bl (IC|l cos ¢), the arca of the base times the altitude. But we have
A4 x Bl (IClcos¢) = (4 x B)-C.

In other words, the scalar triple product A4 X B- C is cqual to the volume of the parauelc'
piped determined by A, B, C. When lnm < ¢ < 7, cos ¢ is negative and the produCt
A x B- Cis the negative of the volume. If 4, B, C are on a plane through the origin, they
are linearly dependent and their scalar triple product is zero. In this case, the parallclcpipe
degenerates and has zero volume.

AxB

Altitude = HC" COS ¢ —— Volume = Ax B+ C

Area of base = || A x Bl|

A

FIGURE 13.6 Geometric interpretation of the scalar triple product as the volume of
a parullclcpipcd.

This geometric interpretation of the scalar triple product suggests certain algebrai®

propertics of this product. For example, a cyclic permutation of the vectors 4, 5
leaves the scalar triple product unchanged. By this we mean that

An a.lgcbralc proof of this property is outlined in Exercise 7 of Section 13.14. This prOPcrty
implics that the dot and cross arc interchangeable in a scalar triple product. In fact, 1
commutativity of the dot product implies (B x C)-( 1‘_‘ ;1 . BP pc) and when this 15
combined with the first cquation in (13.9), we find th'uf =A(BX {

?. N The scalar triple product A+ B x C is often denoted by the symbol [ABC] without ind-
A cating the dot or cross. Because of Equuti(m(l}.l()) 1},”{. - ;')Irxxl)i ity in this Sotation™
the product depends only on the order of the fucl(;r‘ 1 1‘ - ‘.l i : t );n the P"Silions °
the dot and cross. s A, B, C and not ¢

3 ’ : 1 CVQ
13.13 Cramer’s rule for solving a system of three linear equations

The scalar triple product may be used to solve 4 system of three simultancoy
cquations In three unknowns x, y, z. Suppose the system is written in the form

S [incal

a X+ by 4 6z =d,,

2

(13.11) X+ by + ez = g

X + by + ez =
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e T

Let A be the vector with components @y, @z d3 and define B, C, and D similarly. Then the
three equations in (13.1 ) arc equivalent to the single vector equation

(13.12) xA 4 yB+z2C= D.

If we dot multiply both sides of this equation with B x C, writing [4BC] for 4- B x C,

we find that
x[ABC] + y[BBC] 4 z[CBC] = [DBC].

Since [BBC] = [CBC] =0, the coeflicients of y and z drop out and we obtain

_[DBCY e aBC) £ 0.
(13.13) .\_[ABC] if [ABC]#

A similar argument yiclds analogous formulas for y and z. Thus we have

ABD] .
13. _[ADCl g _ [ABDI e raBC] #£ 0.

The condition [4BC] # 0 means that the three 'vcctors A, .B, C are linearly independent.
In this case, (13.12) shows that every vector D in 3-spacc is spanned by A, B, C and the
multipliers x, y, z are uniquely determined by the formulas In (}3.13) and (13.1‘4). When
the scalar triple products that occur in these formulas are written as determinants, the

result is known as Cramer’s rule for solving the system (13.11):

d, by @ a, i a, by d,
dy, by € ay dy €2 a, b, d
dy by € y= a; dy 3 - _ﬁ__ﬁ;_;’d}_
X = s bl ¢ ? a, 1)1 Cy a, bl ¢
a, by €2 a, by ¢ a, by s
dy 1’3 3 [4 b:, Cs as ba Cy

If [ABC) = 0, then A, B, C licona pl:mc. through thc_o%"igin and the system has no
Solution unless D lies in (he same plane. In ‘lhlS Jatter case, 1t 1s casy to slTow that there are
Infinitely many solutions of the system. In fact, the vectors A, B, C are linearly dependent
80 there exist scalars u, 0, W 10 all zero such that A + vB + wC = 0. If the triple (x, y, 2)
Satisfies (13.12), then so does the triple (x 4 1,y + o, z + tw) for all real ¢, since we have

(X4 A 4 (y + 1008 4 (z 4+ mC
= vA 4 )'B + -C + 1(1(,] + vl - H'C) = xA 4 .}'B 4 :C.
B4 Exercises

L Compute the scalar triple product A+ B x Cin cach casc.
@) A = (3,0,0), B =(0,40) C =(0,0,8).

b A=@3 -1) B =@3,-195, C=(,=52)
© A= 1.3), B =(-3,00, C=@&s5 -1
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. Find all real ¢ for which the three vectors (1, 1, 1), (1, 1, 0), (0, 1, 7) are lincarly dependent.
. Compute the volume of the parallelepiped determined by the vectors i + j, j + K, k+1.
. Provethat A X B=A-(B x )i+ A-(B xj)j+ A-(B x k)k.

. Provethati X (A X i) +j X (A X)) +k x (4 x k) =24,

. (a) Find all vectors ai + bj + ck which satisfy the relation

(@i + bj + ck) -k x (6i + 3j + 4k) = 3 .

(b) Find that vector ai -+ bj + ck of shortest length which satisfics the relation in ().

. Use algcbra{c propertics of the dot and cross products to derive the following prOPCrliCS of
the scalar triple product.

(@ (A+B)(4+B)xC=0.

(l')) A- B'x C=-B-4xC Tllis shows that switching the first two vectors reverses the
sign. [Hint: Use part (a) and distributive laws. ]

(€ A-B xC=—A-CxB. This shows that switchin
reverses the sign. [Hint: Use skew-symmetry.]

. S
g the second and third vector

(d) A-B x C = —C-B x A. This shows that switchine i ird vectors reverses
the sign. [Hint: Use (b) and (c).] ching the first and third vecto?
Equating the right members of (b), (c), and (d), we find that

A-BxC=B-C><A=C-A x B,

Wh}Ch ShO\fVS that a cyclic permutation of A, B, C leaves their scalar triple product unchaHng'
. This exercise outlines a proof of the vector identity s

(13.15) AXBXC)=(C-MB - B H)C,

sometimes referred to as the “cab minus bac” ¥ ‘ T (e 0@

o ons tha ormula, Let B = (b, by, by), C = (15
iX(BxC)=eB-pc,

This proves (13.15) in the special case 4 = ¢ and

. Prove corre ing as for A =J
A = k, and then combine them to obtain (13.15) ¢ corresponding formulas

. Usc the “cab minus bac” formula of Exercise ¢ ‘ : iti
¢ s¢ 9 rive the e VeC sntitics.
(@) (4 X B) X (C x D) = (A4 x B D)C — (4 ' ;j;t.rl(t;,l)ht following vector ident!
(b) A X (BXC)+Bx(CxA)+C x4 X B) =0 ’
(©) A X (BxC) = xB)x Cifandonlyif  x (¢ x 1) 0
(@) (A4 % B)* (€ X D) = (B-DYXA-C) = (- Oy - pyy v
. Four vectors A, B, C, D in Vysatisfy the relations A x (.-. B=5AxD - B=3C +D=
. . . v s D =D, ¢ —
i+2j+k C=D=i I‘: Compute (4 x ) x (C x Dyin terms of i, j, k.
. Prove that (A X B) - (B X C) X (C x A) = (4. o) B
. Prove or disprove the formula A4 x [4 x (4 « B C - e B X C
. (a) Prove that the volume of the tetrahedrop whose vcrt_icc: 1;1} IAB. C ><I) i.s
» h It >/ y . ) :
1
B =) (C Lty (p = Al
(b) Compute this volume when A =(1,1,1), p = © . = (4,0, 0)
. e A b B =(0,0,2), ¢ = (0, 3,0), and D=
. (a) 1If B # C, prove that the perpendicular distypee from A to ”(w line through B and CP
WA = B) X (C ~ Byyyyp — ¢

(b) Compute this distance when A = (1, =2, -5y p (—1,1,1), and C =@, 5, 1)
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16. Heron's formula for computing the area S of a triangle whose sides have lengths a, b, c states

ula lor LoV o

that § = /s(s — a)(s = B — o), where s=(a+b+ ¢)/2. This exercise outlines a

vectorial proof of this formula. ’
Assume the triangle has vertices at 0, 4, an

(a) Combinc the two identities

d B, with |41l =a, Bl =b, |B — Al =c.

1A x B|2 = |AIFIBIF = (A" pe, —24-B=l4- Bl — Al — |BI*

to obtain the formula

4% = @2 — (2 — @t b = }(2ab — ¢* + @ + b)Qab + & —a® — b%).

(b) Rewrite the formula in part (a) to obtain

= Ma+b+ oa +b— e —a+bleta— b,

and thereby deduce Heron’s formula.

of cquations in cach of Excrcises 17, 18, and 19.
-y t+z= 3.

2x + 5y +3z2 =13

7 . Use Cramer's rule to solve the system
18"“+2}'+32=5, 2y —y +4z =10
]9"\_+.V+2Z=4, Ix—y—Z=S
,'“\+}'=5, x+z=2 ) z=3

001f p= (,1,1) and A4 = a1, —1), prove that cach point (x, ), ) on the line (P + 14}

satisfies the system of lincar cquations X = ytrz= Ly +y+3=3 3x +y + 72 =1L

13,

IS Normal vectors to plancs

1 13.6 as asct of the form
Now we show that plancs in
cept of a normal vector.

. A 'plun'c was defined in Sectiol (P + sA + 1B}, whcrlc A a'nd B
are lmcarly independent veetors. V, can be described in an

enty . .
tirely difTerent way, using the con

the plane through P spanned by A and B. A

LEFINITION, Lot M = (P54 1B} be
[ B. If.in

ector N jn V, is said to be /;w-/wmlu'ular to M if Nis perpendicular (o both A anc
additi e
ddition, N iy nonzero, then Nis called a normal vector to the plane.
- +

=0, then N (sA 4 tB) =0, so a veetor pcrpcndicular 10
an of A and B. Also, if

 Note: 1N A = N B
;\j)?h Aand Bis pcrpcndicul
Is normal to a plane, 80 is

ar to every veetor in the lincar sp

(N for every real + # 0,

o M= AP+ sd A+ (BY through P .\'/)unm'(/ hy A and B.

Mtorin 13,15, Gicen d Pl
the following:

Let
('\N = A x B. Thenwehat
8 N is q normal vector 10 M.

dY M is the ser of all X in 1y satisfying the equation

(l3l()) (1\"—'1))'/\’.—_—()_
lent, SO Ax B#0. This

Py .. . .
pm'““f- Since Af is a plane, A and B arc lincarly indepent
Ves ¢ 3 s orthogonal to both A and B.

a) since A x 1
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To prove (b), let M’ be the set of all A in 7 satisfying Equation (13.16). If X' € M, thet
X — Pis in the linear span of A4 and B, so X — P is orthogonal to N. Thercforc xeh
which proves that A < A, Conversely, suppose X € M’. Then .\ satisfics (13.10)- Sinfe
A, B, N are linearly independent (Theorem 13.13), they span every vector in Vy 50,10
particular, we have

N—=P=sA41B+ uN

for some scalars s, #, u. Taking the dot product of cach member with N, we find 1= 0,
s0 X — P =sA4 + tB. This shows that X ¢ M. Hence, A’ < M, which completes the
proof of (b). -

The geometric meaning of Theorem 13.15 is shown in Figure 13.7. The points 7 and ¥
are on the planc and the normal vector N is orthogonal to X' — l" ‘T'hiq figure suggests the
following thcorem. ' \

Tllli(;REM 13.16.  Given a plane M through a point P and given a nonzero vector N ”o””al
to M, let ‘

(13.17) J= PN
N
Then every X on M has length | X|| > d. Moreo . 0\ is the
: é 2 d. Moreover, we harve | X || = nly 1f <
projection of P along N: o, we have || d if and ot /
X =N, where t = L N
N . /\V
Proof. The proof follows from the Cuuchy-Sch\vurz inequality in exactly the samé

wiy as we proved Theorem [3.6, the corresponding result for lines in Vs -

4
pointS A
along

10 the

By tl;c sum{c“arg;lmcnl wc, find that if Q is » point not on A, then among all
on M the smallest Tength |.X — Q1 occurs when X = Qi the projection of P — 0

N. This minimum length is (P — ). NIJENT and is called the distance from 0

plane. The number d in (13.17) is the distance from (he origin to the planc.

13.16 Linecar Cartesian equations for plancs

The results of Theorems 13.15 and 13.16 can also be expressed in terms of Componcms.
. —_ N ) _— . v BA N
It we write N = (a,0,¢), P'=(x1,py,2)), and ¥ = (X, 1, ), Equation (13.10) becomes

(13.18) A= XD+ by~ ) 4oz = z) = 0
This is called a Cartesian equation for the plane
points (x, ¥, 2) which lic on the plane, The ’
we multiply cach of @, b, ¢ by a nonzero scal
of normal vector in (13.16).

We may transposc the terms not involving y, y,

and it is satisfied by those and
setof points satistying (13.18) 1 not

arfo This simply amounts to @ diflerent

. . form
and z, and write (13.18) 10 the fort

(13.19) ax + by + ¢z =

1



where d, = ax, + by, + ¢4 An equation of this type is said to be linear in x, y, and z.
We have just shown that every point (x,p,z)ona plane satisfies a linear Cartesian equation
(13.19) in which not all three of a, b, ¢ arc zero. Conversely, every linear equation with this
property represents a plane. (The reader may verify this as an cxercise.)

The number d, in Equation (13.19) bears & simple relation 1o the distance d of the plane
from the origin. Since dy = P N, we have |dy| = |P~

N| = d|N]. In particular [d)] = d
if the normal N has length 1. The plane passes throug

h the origin if and only if d; = 0.

AI
/ :
] 4
]
Z_X/
/()
X

FiGure 13.7 A plane through P and FIGURE 13.8 A}pllan; with intercepts

X with normal vector N

tion 2x + 6y + 3. = 6 represents a plane with normal

EXAMPLE, TI , ., a
MpLE. The Cartesian ¢qué : prese
‘ } rite the Cartesian cquation 1n the form

vector N = 24 + 6j + k. We rew

’

t—

= 1

+

ol

+

=
—1

anc intersects the coordinate axes at the points (3, 0, 0),
0, 1, 0), and 0, 0, 2). The pumbers 3, 1, 2 arc called, respectively, the x-, y- and z-
interceprs of the '1-\;1c 'A knowledge of the intereepts makes it possible to sketch the.p}dn'c

¢ P nown in Figure 13.8. 1ts distance d from the origin 18

from which it is apparent that the pl

q[l"ckl)’- A portion of the planc is $
C=0/|N| = 6/1.

¢ a common normal A IfN = (a, b, ©), the Cartestan cqua-

_ Two parallel plancs will hav !
written as follows:

tions of 3 .
ons of two Pﬂril”Cl P]nncs can be
ay + byt &= dy, ax+by+ <= dy,

The number dy — [N is called
finition suggested by Theorem 13.16.

the only difference being in the right-hand members.
the Perpendicular distance petween the two planes, & de
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Two planes are called perpendicular if a normal of one is perpendicular to a normal of the
other. More generally, if the normals of two planes make an angle 0 with each othef, then
we say that 0 is an angle between the two planes.

13.17 Exercises

1. Given vectors A = 2i + 3j —4kand B =j + k.
(a) Find a nonzero vector N perpendicular to both A and B,
(b) Give a Cartesian cquation for the plane through the origin spanncd by A and B.

(c) Give a Cartesian cquation for the plane through (1, 2, 3) spanned by A and B.
2. A planc has Cartesian equation x + 2y — 2z + 7 =

(a) a normal vector of unit length;
(b) the intercepts of the plane;
(c) the distance of the planc from the origin;
(d) the point Q on the planc nearest the origin.
3. Finda Cartcsian equation of the planc which passes through (1,2, —3) and is parallcl to the
plane given by 3x — y + 2z = 4. Whatis the distance bct\\ccn, t‘i{c two planes?
. Four planes have Cartesian equations x + 2y — 2- = 5.3x — 6y +3z=2,2x +) +2F
~lLandx =2y +z =17, ) * - - ’ !
(a) Show that two of them are paralle] 3 . .
E;)lz Fihnd s .dista(ncc bt tEc [l\‘yl:;lp't:]rili(l:|cp(]);|:]z; two are perpendicular.
. The three points (I, 1, —1), (3, 3,2). : _ : . - ctof
normal 1o I:hc planc; (b) l (Carlcsi)’ nd (3, —1, —2) determine a plane. Find (a) @ v;):]ane
from the origin.

. Find a .Car(esian equation for the plane determined by (1, 2, 3), (2, 3,4), and (-1
. Det‘crmme an angle between the planes with Cartesian )cc u’qt—ig);1 Y '1 . =’ i and v 257
. A linc parallel to a nonzero veetor N is said to be pc‘r °l1lii;l 1 St Y ';qnc i N s normal
to M. Find a Cartesian equation for the planc throu le: (2.3 l d; Oyfl P t(h'lt the line throug
(1, 21, 3) and (2, 4, 12) is perpendicular (o this plane BRES S = ghen T
. Find a vector parametric equation + line whi : :
perpendicalar tg the plane g?vcn oy 4f.(€r—th;y ll+ng~ “_1“5Ch contains the point
. A point moves in space in such a way that ; ne rit
(I =i+ Q2 =30j+Q2r — DL,
(a) Prove that the point moves along a line (C
(b) Find a vector N parallel to [, o
(¢) At what time does the point strike (he pl
(d) Find a Cartesian equation for th
the point X(3).
(¢) Find a Cartesian equation for that p!
. Find a Cartesian equation for the plap
Lo, Lo, Yo, with 7, j, &, rcspcctivcly.

Find the following:

an cquation for the planc; (¢) the distance of the

7, =2
9

2,1 -3) and s

atat time ¢ its position is given by the vector v

allit L)
ane given by 2v + 3y + 22+ 1 = 0?
at plane parallel to the one in part (<) which ¢

nt NG
s angles

ontains

ane perpendicular to £, which contains the po!

. ¢ through (1, 1, 1) if a normal vector N make
377 4

. Compute the volume of the tetrahedron whose vertices are s origin and
where the coordinate axes intersect the plane given b “LS ar: ‘dl [ht Srl(;:n R

. Find a vector A of,lcngtlh I perpendicular 1o . Z:\ + .:\ + 3z = ).‘l 1

Cartesian equation v = v + 52 = | 2j = 3k and parallel to

. Find a Cartesian cquation of the plane whicy, is n

intersects the x-axis at (2,0, 0). I

. Find all points which lic on the intersection of the

vty + 5= T,x —y+3z=3,

. Prove that three planes whose normals are line

one point.

at the I’Oints

th
he plane witl

g kand
arallel to both vectors i 4 J and j ¥
=5
three planes given by A4yt
nly

, . ) R - 'md 0
arly tndependent intersect in one ¢



The conic sections 497

17. A line with dircction vector 4 is said to be parallel to a planc M if A is parallel to M. A line
containing (1,2,3) is parallel to cach of the planes given by x + 2y +3z =4,2x +3y +
4z = 5. Find a vector paramctric cquation for this line.

18. Given a line L not parallcl to a plane M, prove that the intersection L N M contains cxactly
onc point.

19, (a) Prove that the distance from the point (xps Yos
ax + by + cz +d=01is

z,) to the plane with Cartesian cquation

lax, + byy + 2 + d|
@ + b +
ane givcn by Sx — 14y + 27 + 9 = 0 which is nearest to the

(b) Find the point P on the pl

point Q = (=2, 15, =7 _
20. Find a Cartesian cquation for the planc parallel to the plane given by 2x — ) + 2z +4=0

if the point (3, 2, ~1)is cquidistant from both planes. ' ‘ -
21. (a) If three points 4, B, C determine a plane, prove that the distance from a point Q to this

. — — A) x (C — Al

planc is [(Q — A) - (B — A X (c — B

T G i distance it © = (50,0 4 = b [ B =L —1, 1, and € = (2,3,4).
22. Prove that if two plancs M and M’ are not parallel, their intersection M N M"is a line.

23. Find a Cartesian cquation for the planc which is parallel to j and which passes through the

intersection of the planes described by the cquations x + 2y + .32 = 4, anq ?.; +y + z =2
24. Find a Cartesian cquation for the planc parallcl to the vector 3i —Jj + 2k if it contains cvery
point on the line of intersection of the plancs with cquations X + ) = 3and 2y + 32 =4

13.18 The conic sections

A moving line G which intersects & fixed linc A ata g.ivcn point P, muking a constant
angle 0 with A, where 0 < g < Lm, generates @ surfu'cc m.3-spucc) _callcd z\-rlght circular
cone. The line G is called a generator of the conc, A s its axis, and P 1ts rerl.e.\.‘ Each of the
cones shown in Figure 13.9 hhas a vertical axis. The upper and lower portions oij t.h.c cone
meeting at the vertex arc called nappes of the cone. The cur'vcs ()btulﬂtd b'y slicing t.hc
cone with a planc not pnssing through the vertex are called conic sections, o1 snmply CONICS.
If the cutting plane is purullcl {o a linc of the conc through the vertex, the comic is called a

Ellipse Hyperbola

/

I’urubolu

Figure 13,9 The conic sections.
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parabola. Otherwise the intersection is called an ellipse or a hyperbola, according as the
plane cuts just one or both nappes. (See Figure 13.9.) The hyperbola consists of two
“branches,” one on each nappe.

Many important discoveries in both pure and applied mathematics have been related
to the conic sections. Appolonius’ treatment of conics as early as the 3rd century B.C. was
one of the most profound achievements of classical Greek geometry. Nearly 2000 years
later, Galileo discovered that a projectile fired horizontally from the top of a tower falls
to carth along a parabolic path (if air resistance is neglected and if the motion takes P]ﬂ?e
above a part of the carth that can be regarded as a flat plane). One of the turning pointS n
the history of astronomy occurred around 1600 when Kepler suggested that all plancts
move in elliptical orbits. Some 80 years later, Newton was able to demonstrate that an
elliptical planctary path implies an inverse-square law of gravitational attraction. This le
Newton to formulate his famous theory of universal gravitation which has often been
referred to as the greatest scientific discovery ever made. Conic sections appear not only 43
orbits of planets and satellites but also as trajectorics of elementary atomic particles. They
arc used in the design of lenses and mirrors, and in architecture. These examples and many

others show that the importance of the conic sections can hardly be overestimated.

There are other equivalent definitions of the conic sections, One of these refers to Speciﬂl
points known as foci (singular: focus). An cllipse may be defined as the set of all points 'm‘a
planc the sum of whose distances d, and d, from two fixed points F, and F, (the foci) 1S

y Directrix
|
: d,
d: d |
1
;:I F, F i -
1
l
dy + d, = constant ld\ - dy| = cons !
: 2| = constant !
(eltipse) (hyperbola) :
dl = ([g
(parabola)

RE . “0C Y . .
FIGURE 13.10  Focal definitions of the conic sections.
constant. (See Figure 13.10.) If the foci coincide, the
bola is the sct of all points for which the difference |
‘ N - - is
set of all pom.ts in a planc.for \\{hl(.h the distance (o a fixed point F° (called the focus)
cqual to the distance to a given line (called the directrix)
L . M . 23 . I3 . ! 'll]
There is a very simple ‘"d Cl%}“f"‘ argument which shows that the focal property of ‘,ly
ellipse is a consequence of its definition as a section of 4 cone. This proof, which we¢ 1}1‘1
. , . I , . . y aticidf
refer to as the “ice-cream-cone proof,” was discovered iy, 1822 by a Belgian mathematic! lw;
. . al . . av
G. P. Dandelin (1794-1847), and makes usc of the gy, spheres S, and S, which are drll .
5o as to be tangent to the cutting plane and the cone, as illustrated in Figure 13.11. Tl'nts
spheres touch the cone along two parallel circles €, and ¢, We shall prove that the po!
F, and F,, where the spheres contact the plane, can serve us foci of the cllipse.

‘ : cr-

ellipse reduces to a circle. A h'ypthc
. ar als

dy — dy| is constant. A paraboll 15
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Figure 13.11 The ice-cream-cone proof.

—_ —
~ Let P be an arbitrary point of the cllipse. The problem is to prove that |PF | + 1PF
IS constant. that is indcpcndcnt of the choice of P. For this purposc, draw that linc on the
cone from the vc;tcx o tof and IEE A, and A, be its intersections with the Clr_gles C,
and C, , respectively. Then 1’/’1“‘,““ A, are two tangents to S from P, and hence [|PFyll =

124, . Similarly |PFal = |PA,], and therefore we have

[P+ VPRl = IPA + IPA]

allel circles Cy and

—_ _ —P . . .
But 1A, | 4 lll’;i-:H = |4l which is the distance between the par e orve as foci of

2 Measured along the surface of the cone. This proves that F, and Fy ¢

] .

¢ ellipse, as asserted.

Modifications of this proof work also for the hyperbola and the p
of the hyperbola, the proof cmploys one sphere in ecach portion of the conc. For the

arabola. In the case
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parabola one sphere tangent to the cutting plane at the focus Fis used. This sphere touches
the cone along a circle which lies in a plane whose intersection with the cutting plane is the
directrix of the parabola. With these hints the reader should be able to show that the focal

properties of the hyperbola and parabola may be deduced from their definitions as sections
of a cone.

13.19 Eccentricity of conic sections

Another characteristic property of conic sections involves
A conic section can be defined as a curve traced out by a point moving in a planc in suc.h
a way that the ratio of its distances from a fixed point and a fixed line is constant. This
constant ratio is called the eccentricity of the curve and is denoted by e. (This should not b.e
confused with the Euler number ¢.) The curve s an ellipse if 0 < e < 1, a para[m/a if
e =1, and a hyperbola if ¢ > 1. The fixed point is called a focus and the fixed linc @
directrix. _

We shall adopt this definition as the basis for our study of the conic sections since 1t
permits a simultancous treatment of all three types of conics and lends itself to the use 0

vector methods. In this discussion it is understood that all points and lines are in the same
plane.

a concept called eccentricity-

DEFINITION.  Given a line L, g point F not o
denote the distance from a point X 1o L. The

x, D

1L, and a positive number e. Let d(
set of all X satisfving the relation

(13.20) 1Y = Fl = cax, 1)
is called a conic section with cccentricity

. abold
e. The conic is calle Slinse if ¢ < 1, (I[?m(lb(’
if e =1, and a hyperbola if ¢ > 1, <1 called an ellipse if ¢ <

If N is a vector normal to L and if p

‘e . any
. . I any point on L the distance d(X, L) from
point X to L is given by the formuly /P the dis (

dx, Ly <X =Pr)-N|
[N

When N has length 1, this simplifics (o dX, L) =
(13.20) for the conic sections becomes

G eguation
(X — Py- N|, and the basic cqud

(13.21) [X - F| = elX = p). M.
The line L separates the plane into two Parts which we shall arbitrarily label as "positi\’c
and “‘negative” according to the choice of N, | ¥ — I;) /\"> 0 ‘wc sy that A is in lh‘c
positive half-plane, and il (X — P)- N < ¢, we s o palf-planc:
On the line L itself we have (X — P)- N = . Jormd
vector N dictates that points to the right of J to the
left are in the negative half=plane.

Now we place the focus /7in the negative
choose P to be that point on L nearest (o [,

ay that X is in the negative
In Figure 13.12 the choice of the !
-Arein the positive half-plane and thos¢

2, ;md

Fil s

Wlf-plane, as indicated in Figure l%'l
Phen p — 1 = g, where Jd| = I’ —
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Directrix L

———— N unit normal to L

P=F+dN

Figure 13.12 A conic section with cccentricity ¢ is the set of all X satisfying
|X — Fil = e|(X —F)'N - di.

the distance from the focus to the directrix. Since Fis in the ncga.tive half-plane, we have
(F-P):N=—d<0,50 d is positive. Replacing P by F 4+ dN in (13.21), we obtain the

following theorem, which is illustrated in Figure 13.12.

a conic section with eccentricity e, focus F, and directrix L
it normal to L and if Fis in the negative half-plane deter-

points X satisfying the equation

ThHEOREM 13.17. Let C be
at a distance d from F. IfNisau
mined by N, then C consists of all

(13.22) (= Fl =elx =P N—dl.

13.20  Polar equations for conic sections

orem 13.17 can be simplified if we place the focus in a special

The on i .
equation in The w ) ‘
1 at the origin the equation becomes

position. For example, if the focus is
(13.23) 1x| =elX - N—dl.

This form is especially useful if we wish to express X in terms of polar coordinates. Take
the dircctri;( 1‘ F"O pe vertical, a8 shown in Figure 13.13, and jet N =i If Xhas polar co-
Ordinates r 'm‘d 0. we have [ X1 =1 X+ N = rcos 0, and Equation (13.23) becomes

(13.24) r=clrcos0 —d|.

N . . . e - — —_FCOS 0
IT X fiey to the left of the directrix, we have rcos 0 < d, so r cos 0 — d| d —rcos

and (13.24) becomes 1 = e(d — 1 cos 0), or, solving for r, we obtain

ed

eccosl 4+ 1 '

(13.25) o=
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If X lies to the right of the directrix, we have r cos 0 > d, so (13.24) becomes

r=-e(rcos0 — ),
giving us

(13.26) g
ecosl — |

Since r > 0, this last equation implies ¢ > 1. In other words, there are points to the right

of the directrix only for the hyperbola. Thus, we have proved the following theorem which
is illustrated in Figure 13.13.

Directrix Directrix Y
%
1
' |
i |
r I 4 !
0 ! :
]
Fe ' F 0\ —
le —— rcos 0—‘—1 rcosO—-"’—'\
i —_— ]
( d ——]

(a) reos 0 < don the ellipse, parabola, . - anc
and left branch of the hyperbola © :I::);y(:)?ré{)(l)? the right ranch o

FiGure 13.13  Conic sections with pol

’ > ar cquation r = ¢ |y cos ¢ — d]. The focus r
is at the origin

and lies to the left of the directrix.

THEOREM 13.18. Let C be a conic section iy, e
and with a vertical directrix L at a distance to the
an ellipse or a parabola; every point on ¢ lie

) r rl'”»
ceentricity e, with a focus F at the {)rlj& p
> right of F, 110 < e < 1, the conic o
s 10 the left of L and satisfies the polar cqid

(13.27) r= ¢

\
ccosf 41
Ife > 1, the curve is a hyperbola with o branch on each sid
A ¢

. ](‘h
. . of L. Points on the left bre
satisfy (13.27) and points on the right branch, satisfy

(13.28) r=—xd
ecosf) — "

Polar cquations corresponding to other POsitions of the in the

directrix arc discussed
next set of exercises.




Excrcises 503

e

13.21 Exercises

1. Prove that Equation (13.22) in Theorem 13.17 must be replaced by

(X — Fl =e|(X = F) N +d|

if Fisin the positivc half-planc determined by N. N
2. Let C be a conic section with eccentricity e, with a focus at the origin, and with a vertical

directrix L at a distance ¢ to the left of £, ’ . '
(@) Prove that if C is an ellipse 0f parabola, every point of C lies to the right of L and satisfies

the polar equation
ed
=1 —ccos0’

(b) Prove that if Cisa hypcrbolfi, points on the right branch satisfy the equation iq part (a)
and points on the left pranch satisfy r = —ed|(1 + ¢cos 0). Note that 1 + ¢ cos 0 is always
negative in this case. ) . .
3. If a conic section has a horizontal directrix at'a distance d a‘bo‘vc a focus at the origin, pr(?vc
that its points satisfy the polar cquations'obtamcd from .thosg in Thc?orcm. 1.3.18 b}/ replacing
cos 0 by sin 0. What ar¢ the corresponding polar equations if the directrix is horizontal and

lies below the focus?
Each of Exercises 4 through 9 gives & pol.ar cquation for a conic section \.vith a focus F at the
origin and a vertical directrix lying to the rlgl.\t of I In each case, QClcrmmc th.c eccentricity e
and the distance o from the focus to the directrix. Make a sketch showing the relation of the curve

to its focus and directrix.

1
2 R
hr=s—>T" T —1 4 cost
I 4+ cos0 -
3 8 4
S.r = _ T T ¥ 2c0s 0
I+ )costO’
4
6 9. r = —— .
6. r " T 1 ¥ cos 0

34+ cosl’
In cach of Exercises 10 through 12, a conic section of cccentricity ¢ has a focus at the origin and
¢ IXCICISeS . . - N
A directrix with the given Cartesian equation. In cach case, compute the distance J from the focus
1o the directrix ,mdb determine & polar equation for the conic section. For a hyperbola, give a
AT . . . ~
Polar cquation for cach pranch. Make @ sketch showing the relation of the curve to its focus
< %

and directrix.

C =1
l(l). e =1L dirccrix: vt 4y = ;g
12 e=1; directrix: v+ Jyp =0
Zoe =2 directrix: xEY T ‘ R
13. A comet moves in @ P““‘l’”l'c orbit with the sun at the focus. When the comet 1s 10* miles

from the sun, a vector from the focus to the comet makes an angle of /3 with a unit vector
b vt M . ~ T fgr ~ . . . . . N
N from the focus [’CFPC”‘“C“]“' to the directrix, the focus being in the negative half-plane

determined by N _ . .
@) Find a polar equation for the orbit, taking the origin at the focus, and compute the

smallest distance from the comet to the sun,
(b) Solve part (@) if the focus is in the positive hall-plane determined by N.
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13.22 Conic sections symmetric about the origin

A set of points is said to be symmetric about the origin if — X is in the set whenever Xis
in the set. We show next that the focus of an ellipse or hyperbola can always be placed s0
the conic section will be symmetric about the origin. To do this we rewrite the basic
equation (13.22) as follows:

(13.29) X —Fl=el(X—=F):N—d|= el X N—F-N— d]=leX N — al,
where a = ed + eF+ N. Squaring both members, we obtain
(13.30) IXU2 = 2F X + |Fl2 = XX - N — 2caX - N + a®.

!f we are to have symmetry about the origin, this equation must also be satisfied when X
is replaced by — X, giving us

(13.31) IXU? 4+ 2F X + | F|% = XX+ N + 2¢aX - N + a®.

Subtracting (13.31) from (13.30), we have symmetry if and only if

Frd=cX-N or (F- caN)+ X =0.
This equation can be satisfied for all X on the ; . ated by

¢ CU R it ¢ rc]dte
the equation irve if and only if F and N are

(13.32) F = eaN, where ¢ = ¢f eF- N,

The relation F = eaN implies F+ N = ¢q, giving us a = ed 4 eta. If ¢ =1, this last

equation cannot be satisfied since Fetae ) .. ero.
qui > the distance from the focus to the directrix, is nO"%

This means there is no symmetry about the orip alway$
A origin for a parabol: » £ ], wecand
satisfy the relations in (13.32) by taking & + parabola. 1f e # 1,

(13.33) o= _ e

[ — et

Note that a > 0 il e <land a <0ife> | Putting /" = can in (13.30) we obtain the
following.

throrem 13.19. Let C be a conic section wiy, cccentricity ¢ s 1 and with a Jocus rt
a distance d from a directrix Lo 1f N is a unit yoypn to L and if 1= caN, where @
edl(1 — ¢, then C is the set of all points X satisfying (he "‘l';‘”i"”

I\’

(13.34) IVIE + et = e3(X - Ny 4 e,
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This equation displays the symmetry about the origin since it is unchanged when X is
replaced by — X. Because of this symmetry, the ellipse and the hyperbola each have two
foci, symmetrically located about the center, and two directrices, also symmetrically located
about the center. _

Equation (13.34) is satisficd when X = #aN. These two points are c.all_ed vertices of the
conic. The segment joining them is called the major axis if the conic is an ellipse, the
transverse axis if the conic is a hyperbola.

Let N’ be a unit vector orthogonal to N. If X = bN',then X'+ N = 0, so Equation (13.34)
Is satisfied by X = bN’ if and only if b* + 2q® = a®. This requires ¢ < 1, b* = a*(1 — ¢%).
The segment joining the points X = +bN', where b = aV'1 — ¢t is called the minor axis
of the ellipse.

Note: If wepute = 0 in (13.34), it becomes l.X| = a,thecquation ofa circle of radius
a and center at the origin. In view of (13.33), we can consider such a circle as a limiting
casc of an cllipse in which ¢ = 0 and d — o in such a way that ed - a.

1323 Cartesian cquations for the conic sections

~ To obtain Cartesian equations for the ellipse and hypcrl.)ola,'wc simply writc; (13..34)
In terms of the rectangular coordinates of X. Ch?ose ﬁV = i (which means the directrices
are vertical) and let X = (% y). Then | X2 = X243 X; N =Y, a.nd (13.34) becomes
Xy g 22 = ety? o @ OF Bl =)+ )= a*(1 — ¢%), which gives us

+___)f————=l,

a‘ {12(1 - L’Z)

\ XKO

(13.35)

[5)

sents both the ellipse (¢ < 1) and the hyperbola (¢ > 1) and
18 said to be in standard form- The foci are at the points (ae, 0) and (—ae, 0); the directrices

are the vertical lines x = afe and ¥ = —ale. . o
Ife < 4 lot / (,\/'1/—7‘3 and write the cquation of the ellipse in the standard form
, We let 0 = - ¢

Thi . .
This Cartesian equation repre

a b

o 2 e NET ,
1ts foci are located at (¢, 0) and (=6 0), where ¢ = ae =\ @ — b2 An example is shown
: are located at (¢, V)¢

" Figure 13,14¢a).

e >0, wetet b = aly

/7 — 1 and write the equation of the hyperbola in the standard
form

(13.37) A

(¢, 0) and (—c¢, 0), where ¢ = laj e = Va4 bt An example is

Its fo;
" foci are ag the points
OWn in Figure 13.14(0).
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Note: Solving for y in terms of x in (13.37), we obtain two solutions

b

lal

(13.38) -

For largc positive x, the num'bcr Vi = atis nearly equal to x, so the right member of
(13.38) is nearly +bx/lal. 1t is casy to prove that the difference between v, = bx/|a] and
Py = bV xt — a?/|a| approaches 0 as x — + . This difference is '

=y =—(x - V= a?) = i X —(x = @Y _ la| b < l_‘il_)
l(ll |a\ x + »\/.\-2 — X+ \/-\—2—17 - »

S0 y; — yo =0 as x — 4. Therefore, the line y = paflal i . of the
ine v . ’ ¥ = bxflal is an asymptotc ©

hyperbola. Tk.lc line y = —_b.\'/la| is another asymptote. The hyperbola is said to ap-

proach these lines asymptotically. The asymptotes are shown in Figure 13.14(b).

(=¢,0)

a) Ellipse
() Elipse {(b) Hyperbola

x* »? 1: b2 2 5

=1 PP=a® - 2 2 ; :

a’+b"' ‘ x—,—-"-:l;h":t"’—a’
at b

The

= la| e. The triangles relate a, b, ¢ gcomc(ric;llly.

FiGURE 13.14  Conic scctions of eeeentricity ¢

i #1,s ric ¢ 1w origin.
(oci are at (£¢, 0), where ¢ , symmetric about ! |4

The Cartesian equation for the cllipse and hyperbola will take a different form if th,c
dircctrices arc not vertical.  For example, if e directrices are taken to be horizontu,'“1
may take N =j in Equation (13.34). Since y. N = \," = we obtain CurlCS“‘_'g

: " o at v ‘ =aaJ=h ¢ : 1S
cquation like (13.35), except that x and Jare interchanged The standard form 10 th
case is :

y? x®
(13.39) ==
a® a(l - L"") .
.. . ante!l
If the conic is translated by adding a vector Y, = (X, 1) to cach of its points, the cent
0o . * .
: 1S ln“y

will be at (x,, 1) instead of at the origin. The corresponding Cartesian equatior
obtained from (13.35) or (13.39) by replacing x by v — x, and y by y — Jo-
. gt . . .
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- s
wi;I;]O obtain a Cartesian equation for the parabola, we return to the basic equation (13.20)
If ¥ ¢ = 1. Take the dircctrix to be the vertical line x = —c and place the focus at (c. 0)
N +~2(-\‘, )'),‘ we have X — F = (x — ¢ ), and Equation (13.20) gives us (x — ¢+ y,z =
X + c|% This simplifies to the standard form

(13.40) §# = dex.

and directrix (the origin in Figure 13.15) is called the
ng through the vertex and focus is the axis of the
axis. 1f ¢ > 0, the parabola lies to the right
he left of the y-axis.

'll;firct:(}lonr;t midway between the f(.)cm )
Parai)o(l), the parabola, and the line passing °
parab 11 .Thc p.arab.olu 1S symmcmc about its

y-axis, as in Figure 13.15. Whene < 0, the curve lies to t

Iy
/

jx + ¢

Directrix
N= —¢

-

<

Fiouns
IGURE 13,15 The parabola y* = 4ex. Figune 13,16 The parabola x* = 4cy.
at the point (0, ¢) and if the horizontal

If il

1C axes ¢ . .
i 1xes are chosen so the focus is on the y-iixis
artesian cquation becomes

lnc - .
) —cis taken as directrix, the standard form of the C

Nt = dey.

thn .
¢ > 0 the parabola opens upward us shown in Figure 13.16. When ¢ < 0, it opens

OWnward,

it

1¢ par: - ,

Correg der“h(’lu in Figure 13.15 is transk
Ponding equation becomes

ited so that its vertex is at the point (X0, o) the

,] ("' —_ _"())2 = 4('(.\' - .\'()) .
he T

ocus j . . - . yo—c The
axis oruq 1 now at the point (X 4 ¢, Vo) and the directrix 1 the line x = Yo ¢

O the parabola is the line y = Yo

Sln 1
\Ilur . . . . ati
ly, a translation of the pnrubol:\ in Figure 13. uation

16 leads to the ¢q

(x — X0 = be(y — )'o) ,
yo — € isits directrix, the line x = No IS QXIS
. arabola does not have any asymptotcs.

With f

ocug -« ] '

he rcls At (X, vy + ©). Theline )=
ader may find it amusing to prove that & p
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13.24 Exercises

Each of the equations in Exercises 1 through 6 represents an ellipse. Find the coordinates of
the center, the foci, and the vertices, and sketch cach curve. Also determine the eccentricity:

x2 yz
1. m +3_6 = 1. 4. 9x2 +25},2 =25,
y2 x2 a
2700 Y36~ 1 5.4y 4342 = 1,
—_ 2 b 2 9 9
3'(x 2)+()+3)=1. 6(x+1)'+()'+2)'_l
16 9 TS 55 =

In each of Exercises 7 through 12, find a Cartesian cquation (in the appropriate standard form)
for the ellipsc that satisfies the conditions given. Sketch each curve
7. Center at (0, 0), one focus at (3, 0), one vertex at (1, 0). .
8. Center at (3, 4), semiaxes of lengths 4 and 3, major axis parallel to the X-aXis.
9. Same as Exercise 8, except with major axis parallel to the y-axis ;
10. Vertices at (—1,2), (=7, 2), minor axis of length 2.
11. Vertices at (3, —2), (13, —=2), foci at (4, =2), (12, =2).
12. Srelgt(czr’t;t).(z, 1), major axis parallel to the x-axis, the curve passing through the points (6,1
Each of the equations in Excrcises 13 through 18 represents
of the center, the foci, and the vertices. Sketch cach cury l
Also, compute the eccentricity.

)

- inatcs
a hyperbola. IFind the coordind

.. e tes.
¢ and show the positions of the asympto

B X
100 64 16. 94 — 1642 = 144,
2 x2
42— -2 =1, o
100 ~ 6 17, 432 — 52 4 20 = 0.
(x +3)° ) ) . .
i —(y=3F=1 18.(.\ DU

4 9

orm)

In cach of Exercises 19 through 23, find andard f
‘ jtions

for the hyperbola which satisfies the cond
of the asymptotes.
19. Center at (0, 0),_0ne focus at (4, 0), one vertex at (2, 0)

a Cartesian equation (in the appropriate st t
i ; . + oS
itions given. Sketch cach curve and show the PO

20. Foci at (0, & V'2), vertices at (0, 1),
21, Vertices at (£2, 0), asymptotes y = 42y,
22. Center at (=1, 4), one focus at (=1, 2), one vertex at (—1,3) .
23, Center at (2, —3), transverse axis paralle] . T -+ pyassing
=2 ¢ 0 one of the ¢ ate axes, the curve p
through (3. —1) and (=1, 0). the coordinate axe |
pold

24. For what value (or values) of C will the fjpe 3
K=t =1? ’
25. The ;1sy111pl()(cs of a hyperbola are the lines 2y — v
equation for the curve if it passes through the POini (
Each of the equations in Exercises 26 through 31 ¢,
of the vertex, an equation for the directrix, and an equ
26. }'2 = —8x.
27. -y'“’ = 3x.
28. (y — 1)* = 12x — 6.

ner
N = 2.‘, = ( hC tnngcn[ to lI]C h)I’L
: ., -siﬂn
=0and 2v 4 y = 0. Finda carte
3, = 5).

presents a parabola. Find the ¢ ct
ation for the axis. Sketch cach of the
29, 3% = Oy,

30. x2 4 8y =0,

31, (x + 2)p = 4}’ + 9.

oordi”““S
"’VCS'
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In : . _—
for thcach of Exercises 32 through 37, find a Cartesian cquation (in appropriate standard form)
e parabola that satisfies the conditions given and sketch the curve.

. FOCU 1. . N -
33 sat (0, —}); equation of dircctrix, ) = 1

34,
3s,
36.
37.
38,

Vertex at (0, 0); equation of directrix, x = ~2.

Vertex at (—4, 3); focus at (—4, 1).

iz‘;‘@ at (3, —1); equation of directrix, x = k.

Axi: 1‘: par'allcl to the yaxis; passes through (0, 1), (1,0), and (2, 0).

PrOCCCdpamll.cl to the x-axis; vertex {ll .(!, 3); passcs thro.ugh (—l’. -1).

focue ng dlr?c}l)f from the focal definition, find a Cartesian equation for the parabola whose
cus is the origin and whose directrix is the line 2x + ) = 10.

13,25 i
Miscellancous exercises on conic sections

1.

. Find i
all positive numbers A and B, > B, such that the area of the

- A par :
abolic are .
parabolic arch has a basc of length b and altitude /. Determine

Sh . 01 9 o 1 : :
ow that the arca of the region bounded by the cllipse x*fa’ + y3fpt =1 is ab times the

arca of a circle of radius 1.

Note: This statement can be proved from general properties of the integral, without

performing any integrations.

- (a . . .
) Show that the volume of the solid of revolution generated by rotating the ellipse

-2
'\/a2+)‘2/b2=1'[ . i _ o unit spl
about its major axis is ab? times the volume of a unit sphere.

Note: This statement can be proved from general propcrtics of the integral, without
performing any integrations. .

(b) What i . ‘
1at is the result if the ellipse is rotated about its minor axis?
region enclosed by the

elli S 2 . .
Pse Ax? + By2 = 3 is cqual to the area of the region enclosed by the cllipse

(A + B)x® 4 (1 — By* =3
the area of the region

bounde
ded by the arch and the base.

5. The rea:
Filr:’drtﬁio\l,lo:)mu\)dcd by th.‘ pur‘ubolu v = 8y and the line v = 2 is rotated about the x-axis.
6. Two pllrab()]l.lm](’ 0(" the solid ol.rcvolulion SO gcncmlcd. .
a) Compln:ilu‘l?'mgth? cquut.lons'r'-’ = 2y — Dand* =4y — 2) enclose a plane region R.
(b Find the v \]L arca of R by }ntcgramon. ‘ .
9) Same s [0 ume of the solid of revolution gcncr;ncd by revolving, R about the N-axis.
7. fing o C'x‘r: ‘(‘.\’). but rcx"olvg R about lhc eaxis, ) .
. rom tlye ‘1‘0?15:‘“:) C‘(,]u.:mon _!or lhg conic f‘.cclion consisting of all points (x, v whose distance
. Find 4 o \\"’( L2 !mll }hc distance from the line v = 8. e
is the lin: tesian equation for the parabola whose focus is at the origin and whose directrix
9. Find g o =0,
" are th‘c “;“Zl:sll:m (:‘,(lllilli()l\ for a hyperbola passing through the origin, given (hat its asymptotes
@) For ey yoe=2x o Land y o= —2.\: + 3. . .
in 1Crm;:;h p >0, the cquation PAE A (p 4 22 e pt g 2p represents an ellipse. Find
(0) Fing ) é’) ?hclccccnlrfcl‘ty and the coordinates of the foci. .
Part (g ‘ ‘“‘.CS“”‘ equation l."or the hyperbola which has the same foci as the ciipse of
11, ) and which has cecentricity v 3.

In Seet:

Section 1w o At a coni - ;

X 13.22 we proved that a conic symmetric about the origin satistics the equation
Y-t

ances from any

A= = eV N Mere =

LX 4 l: ‘\_‘A "I‘_“!K“ @ = ed + ¢l - N, Use this relation to prove that ;

Point On",k "“,” the conte 1S an ellipse. In other words, the sum of the dist
an ellipse to 1ts foct is constant,
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12. Refer to Exercise 11. Prove that on each branch of g hyperbola the difference X - Fll -
X + F\ is constant.

13. (a) Prove that a similarity transformation (replacing x by rx and y by fy) carries an cllipse
with center at the origin into another cllipse with the same ccce'ntricit.y. In other words:
similar ellipses have the same eccentricity.

(b) Prove also the converse. That is, if two concentric cllipses have the same cecentricity
and major axes on the same line, then they are related by a similarity transtormation.
(c) Prove results corresponding to (a) and (b) for hyperbolas.

14. Use.the Cartesian cquation which represents all conics of cceentricity e and center at the

origin to prove that these conics arc integral curves of the differential equation )’ = (¢* — )]y

Note:  Since thisis a homogencous differential equation (Scction 8.25), the sct of all

su.ch conics of eceentricity e is invariant under a similarity transformation. (Compare
with Exercise 13.)

15. ’(ral) br.ovc t!m.tlth'c collcctfion of all parabolas is invariant under a similarity (ransformation.
hat 1s, a simuarity trans ormation carries a par i i
X 4 parabola into a par:
(b) Find all the parabolas similar to y = y2, P parabola.
16. The line x — y 4+ 4 = 0 is tangent to the parabol
17. (‘l’) Gn}/\cn “l * 0 l“h.e Fwo parabola§ P =dp(x —a)and a? = 4qy are tangent to ac
SQO‘;’_} ;t the ti-'cpordmatc of the point of contact is determined by a alone.
(b) Find a condition on a4, p, and g which expresses the fact that the two parabolas are
to cach other. !
18. Cﬁ)on;snsicr thcllocus of the pointsll’ in the plane for which the distance of P from the P
(2, 3) is equal to the sum of the distances of p from the two coordinate axes
() Show that the part of this locus which ljeg in the first quadrant is part of
Locate the asymptotes and make a skeich juadrant | bt
(b) Sketch the graph of the locus in the other

. Two parabolas have the same point -
19 parabolas have the same pomt as focus and the same line as axis, but thei

on opposite sides of the focus. Prove th; i
X : . hat the parabolas intersec aally (1.6
tangent lines are perpendicular at the points of il\grszt??].ns intersect orthogonally (1:€+
20. (a) Prove that the Cartesian ¢quation ction).

ay* = 16x. Find the point of contact:
h others

tangent
oint

a hypcrbola'

quadrants. :
- vertices 1€
thell

represents all conics symmetric about the orj
(b) Keep cfixed and let S denote the set of
numbers #c2 Prove that CVCry curve in

gin with foci at (¢, 0) and (—¢, 0).
all such conics obtained as a® varies oV
S satisfies the differential equation

cr all positi®®

9

¥ .(([)v’) . d‘.
} dx T~ Y= T —xy =0,
dx .

(c) Prove that S is sclf-orthogonal; that is, the

. aryes in
. . set of all ortharonal traicctorics of curye:
Sis Sitself. [Hint: Replace y" by —1/y €t oftall orthogonal trajectoric

I the differential equation in (b).]
21. Show that the locus of the centers of g family of circles. all of which pass through & given
oint and are tangent to a given line, is a parabol, ¢s, all of which pass
22. Show that the locus of the centers of a fumily of Circlcq
to a given circle and also to a given straight line, i ‘
to be a special case.)

. Myter are (r“] \M A .
» all of which are tang gered

. . v be cons
a parabola. (Exercise 21 can be con
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23, (a) A chord of length 8 |c| is drawn pcrpcndicular to the axis of the parabola y2 = dex. Let
P and Q be the points where the chord mects the parabola. Show that the vector from O to P
is perpendicular to that from O to Q.
(b) The chord of a parabola drawn through the focus and parallel to the directrix is called
the latus rectunt. Show first that the length of the latus rectum is twice the distance from the
focus to the directrix, and then show that the tangents to the parabola at both ends of the
latus rectum intersect the axis of the parabola on the directrix.

. Two points P and Q arc said to be symmctric with respect to @ circle if P and Q are collinear
with the center, if the center is not between them, and if the product of their distances from the
center is equal to the squarc of the radius. Given that Q describes the straight line
Y +2y—5=0, find the locus of the point P symmetric to Q with respect to the circle

.\'2 +".‘.’. =4,




