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Mathematical modeling often requires technology in order to use the techniques discussed
in the text, the modules, and ILAPs. We provide extensive examples of technology using
spreadsheets (Excel), computer algebra systems (Maple

❝R, Mathematica
❝R, and Matlab

❝R), and
the graphing calculator (TI). Application areas include:
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Examples and exercises designed for student use in a laboratory environment are included,
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Preface

To facilitate an early initiation of the modeling experience, the first edition of this text
was designed to be taught concurrently or immediately after an introductory business or
engineering calculus course. In the second edition, we added chapters treating discrete dy-
namical systems, linear programming and numerical search methods, and an introduction
to probabilistic modeling. Additionally, we expanded our introduction of simulation. In the
third edition we included solution methods for some simple dynamical systems to reveal
their long-term behavior. We also added basic numerical solution methods to the chapters
covering modeling with differential equations. In the fourth edition, we added a new chap-
ter to address modeling using graph theory, an area of burgeoning interest for modeling
contemporary scenarios. Our chapter introduces graph theory from a modeling perspective
to encourage students to pursue the subject in greater detail. We also added two new sec-
tions to the chapter on modeling with a differential equation: discussions of separation of
variables and linear equations. Many of our readers had expressed a desire that analytic
solutions to first-order differential equations be included as part of their modeling course.
In the fifth edition, we have added two new chapters, Chapter 9, Modeling with Decision
Theory and Chapter 10, Game Theory. Decision theory, also called decision analysis, is a
collection of mathematical models to assist people in choosing among alternative courses
of action in complex situations involving chance and risk. Game Theory then expands de-
cision theory to include decisions where the payoff for the decision maker depends upon
one or more additional decision makers. We present both total and partial conflict games.

The text is organized into two parts: Part One, Discrete Modeling (Chapters 1–10 and
Chapter 14), and Part Two, Continuous Modeling (Chapters 11–13 and Chapter 15). This
organizational structure allows for teaching an entire modeling course that is based on Part
One and does not require the calculus. Part Two then addresses continuousmodels including
models requiring optimization andmodels using differential equations that can be presented
concurrently with freshman calculus. The text gives students an opportunity to cover all
phases of the mathematical modeling process. The CD-ROM accompanying the text con-
tains software, additional modeling scenarios and projects, and a link to past problems from
the Mathematical Contest in Modeling. We thank Sol Garfunkel and the COMAP staff for
their support of modeling activities that we refer to under Resource Materials below.

Goals and Orientation
The course continues to be a bridge between the study of mathematics and the applications
of mathematics to various fields. The course affords the student an early opportunity to

xv
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xvi Preface

see how the pieces of an applied problem fit together. The student investigates meaningful
and practical problems chosen from common experiences encompassing many academic
disciplines, including the mathematical sciences, operations research, engineering, and the
management and life sciences.

This text provides an introduction to the entire modeling process. Students will have
opportunities to practice the following facets of modeling and enhance their problem-solving
capabilities:

1. Creative and Empirical Model Construction: Given a real-world scenario, the student
learns to identify a problem, make assumptions and collect data, propose a model, test
the assumptions, refine the model as necessary, fit the model to data if appropriate,
and analyze the underlying mathematical structure of the model to appraise the sen-
sitivity of the conclusions when the assumptions are not precisely met.

2. Model Analysis: Given a model, the student learns to work backward to uncover the
implicit underlying assumptions, assess critically how well those assumptions fit the
scenario at hand, and estimate the sensitivity of the conclusions when the assumptions
are not precisely met.

3. Model Research: The student investigates a specific area to gain a deeper understanding
of some behavior and learns to use what has already been created or discovered.

Student Background and Course Content
Because our desire is to initiate the modeling experience as early as possible in the student’s
program, the only prerequisite for Chapters 11, 12 and 13 is a basic understanding of single-
variable differential and integral calculus. Although some unfamiliar mathematical ideas
are taught as part of the modeling process, the emphasis is on using mathematics that the
students already know after completing high school. This is especially true in Part One.
The modeling course will then motivate students to study the more advanced courses such
as linear algebra, differential equations, optimization and linear programming, numerical
analysis, probability, and statistics. The power and utility of these subjects are intimated
throughout the text.

Further, the scenarios and problems in the text are not designed for the application
of a particular mathematical technique. Instead, they demand thoughtful ingenuity in us-
ing fundamental concepts to find reasonable solutions to ‘‘open-ended’’ problems. Certain
mathematical techniques (such as Monte Carlo simulation, curve fitting, and dimensional
analysis) are presented because often they are not formally covered at the undergraduate
level. Instructors should find great flexibility in adapting the text to meet the particular
needs of students through the problem assignments and student projects. We have used this
material to teach courses to both undergraduate and graduate students—and even as a basis
for faculty seminars.

Organization of the Text
The organization of the text is best understood with the aid of Figure 1. The first ten chap-
ters (and Chapter 14) constitute Part One and, require only precalculus mathematics as a
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prerequisite.We beginwith the idea ofmodeling change using simple finite difference equa-
tions. This approach is quite intuitive to the student and provides us with several concrete
models to support our discussion of the modeling process in Chapter 2. There we classify
models, analyze the modeling process, and construct several proportionality models or sub-
models that are then revisited in the next two chapters. In Chapter 3 the student is presented
with three criteria for fitting a specific type of curve to a collected data set, with emphasis
on the least-squares criterion. Chapter 4 addresses the problem of capturing the trend of a
collected set of data. In this empirical construction process, we begin with fitting simple
one-term models approximating collected data sets and then progress to more sophisticated
interpolating models, including polynomial smoothing models and cubic splines. Simula-
tion models are discussed in Chapter 5. An empirical model is fit to some collected data,
and then Monte Carlo simulation is used to duplicate the behavior being investigated. The
presentation motivates the eventual study of probability and statistics.

Chapter 6 provides an introduction to probabilistic modeling. The topics of Markov
processes, reliability, and linear regression are introduced, building on scenarios and anal-
ysis presented previously. Chapter 7 addresses the issue of finding the best-fitting model
using the other two criteria presented in Chapter 3. Linear programming is the method used
for finding the best model for one of the criteria, and numerical search techniques can be
used for the other. The chapter concludes with an introduction to numerical search methods,
including the Dichotomous and Golden Section methods. Chapters 9 and 10 treat decision
making under risk and uncertainty, with either one decision maker (Chapter 9) or two or
more decision makers (Chapter 10). Part One then skips to Chapter 14, which is devoted to
dimensional analysis, a topic of great importance in the physical sciences and engineering.

Part Two is dedicated to the study of continuous models. In Chapters 11 and 12 we
model dynamic (time varying) scenarios. These chapters build on the discrete analysis
presented in Chapter 1 by now considering situations where time is varying continuously.
Chapter 13 is devoted to the study of continuous optimization. Chapter 15 treats the
construction of continuous graphical models and explores the sensitivity of the models con-
structed to the assumptions underlying them. Students get the opportunity to solve contin-
uous optimization problems requiring only the application of elementary calculus and are
introduced to constrained optimization problems as well.

Student Projects
Student projects are an essential part of any modeling course. This text includes projects
in creative and empirical model construction, model analysis, and model research. Thus
we recommend a course consisting of a mixture of projects in all three facets of modeling.
These projects are most instructive if they address scenarios that have no unique solution.
Some projects should include real data that students are either given or can readily collect.
A combination of individual and group projects can also be valuable. Individual projects
are appropriate in those parts of the course in which the instructor wishes to emphasize
the development of individual modeling skills. However, the inclusion of a group project
early in the course gives students the exhilaration of a ‘‘brainstorming’’ session. A variety
of projects is suggested in the text, such as constructing models for various scenarios,
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completing UMAP1 modules, or researching a model presented as an example in the text
or class. It is valuable for each student to receive a mixture of projects requiring either
model construction, model analysis, or model research for variety and confidence building
throughout the course. Students might also choose to develop a model in a scenario of
particular interest, or analyze a model presented in another course. We recommend five
to eight short projects in a typical modeling course. Detailed suggestions on how student
projects can be assigned and used are included in the Instructor’s Manual that accompany
this text.

In terms of the number of scenarios covered throughout the course, as well as the
number of homework problems and projects assigned, we have found it better to pursue a
few that are developed carefully and completely. We have provided many more problems
and projects than can reasonably be assigned to allow for a wide selection covering many
different application areas.

Resource Materials
We have found material provided by the Consortium for Mathematics and Its Applica-
tion (COMAP) to be outstanding and particularly well suited to the course we propose.
Individual modules for the undergraduate classroom, UMAP Modules, may be used in
a variety of ways. First, they may be used as instructional material to support several
lessons. In this mode a student completes the self-study module by working through its
exercises (the detailed solutions provided with the module can be conveniently removed
before it is issued). Another option is to put together a block of instruction using one or
more UMAP modules suggested in the projects sections of the text. The modules also
provide excellent sources for ‘‘model research,’’ because they cover a wide variety of ap-
plications of mathematics in many fields. In this mode, a student is given an appropri-
ate module to research and is asked to complete and report on the module. Finally, the
modules are excellent resources for scenarios for which students can practice model con-
struction. In this mode the instructor writes a scenario for a student project based on an
application addressed in a particular module and uses the module as background material,
perhaps having the student complete the module at a later date. The CD accompanying
the text contains most of the UMAPs referenced throughout. Information on the avail-
ability of newly developed interdisciplinary projects can be obtained by writing COMAP
at the address given previously, calling COMAP at 1-800-772-6627, or electronically:
order@comap.com.

A great source of student-group projects are the Mathematical Contest in Modeling
(MCM) and the Interdisciplinary Contest in Modeling (ICM). These projects can be taken
from the link provided on the CD and tailored by the instructor to meet specific goals
for their class. These are also good resources to prepare teams to compete in the MCM
and ICM contests. The contest is sponsored by COMAP with funding support from the
National Security Agency, the Society of Industrial and Applied Mathematics, the Institute

1UMAP modules are developed and distributed through COMAP, Inc., 57 Bedford Street, Suite 210, Lexington,
MA 02173.
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for Operations Research and the Management Sciences, and the Mathematical Association
of America. Additional information concerning the contest can be obtained by contacting
COMAP, or visiting their website at www.comap.com.

The Role of Technology
Technology is an integral part of doing mathematical modeling with this textbook. Tech-
nology can be used to support the modeling of solutions in all of the chapters. Rather than
incorporating lots of varied technologies into the explanations of the models directly in
the text, we decided to include the use of various technology on the enclosed CD. There
the student will find templates in Microsoft

❝R Excel ❝R, Maple
❝R, Mathematica

❝R, and Texas
Instruments graphing calculators, including the TI-83 and 84 series.

We have chosen to illustrate the use ofMaple in our discussion of the following topics
that are well supported by Maple commands and programming procedures: difference
equations, proportionality, model fitting (least squares), empirical models, simulation, linear
programming, dimensional analysis, modeling with differential equations, modeling with
systems of differential equations, and optimization of continuousmodels.Maple worksheets
for the illustrative examples appearing in the referenced chapters are provided on the CD.

Mathematica was chosen to illustrate difference equations, proportionality, model fit-
ting (least squares), empiricalmodels, simulation, linear programming, graph theory, dimen-
sional analysis, modeling with differential equations, modeling with systems of differential
equations, and optimization of continuous models. Mathematica worksheets for illustrative
examples in the referenced chapters are provided on the CD.

Excel is a spreadsheet that can be used to obtain numerical solutions and conveniently
obtain graphs. Consequently, Excel was chosen to illustrate the iteration process and graph-
ical solutions to difference equations. It was also selected to calculate and graph functions
in proportionality, model fitting, empirical modeling (additionally used for divided differ-
ence tables and the construction and graphing of cubic splines), Monte Carlo simulation,
linear programming (Excel’s Solver is illustrated), modeling with differential equations
(numerical approximations with both the Euler and the Runge-Kutta methods), modeling
with systems of differential equations (numerical solutions), and Optimization of Discrete
and Continuous Models (search techniques in single-variable optimization such as the di-
chotomous and Golden Section searches). Excel worksheets can be found on the website.

The TI calculator is a powerful tool for technology as well. Much of this textbook
can be covered using the TI calculator. We illustrate the use of TI calculators with differ-
ence equations, proportionality, modeling fitting, empirical models (Ladder of Powers and
other transformations), simulation, and differential equations (Euler’s method to construct
numerical solutions).
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11 Modeling Change

Introduction

To help us better understand our world, we often describe a particular phenomenon math-
ematically (by means of a function or an equation, for instance). Such a mathematical
model is an idealization of the real-world phenomenon and never a completely accurate
representation. Although any model has its limitations, a good one can provide valuable
results and conclusions. In this chapter we direct our attention to modeling change.

Mathematical Models
In modeling our world, we are often interested in predicting the value of a variable at
some time in the future. Perhaps it is a population, a real estate value, or the number of
people with a communicative disease. Often a mathematical model can help us understand
a behavior better or aid us in planning for the future. Let’s think of a mathematical model
as a mathematical construct designed to study a particular real-world system or behavior
of interest. The model allows us to reach mathematical conclusions about the behavior, as
illustrated in Figure 1.1. These conclusions can be interpreted to help a decision maker plan
for the future.

Simplification
Most models simplify reality. Generally, models can only approximate real-world behavior.
One very powerful simplifying relationship is proportionality.

J Figure 1.1
A flow of the modeling
process beginning with
an examination of
real-world data
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2 Chapter 1 Modeling Change

Definition

Two variables y and x are proportional (to each other) if one is always a constant
multiple of the other—that is, if

y D kx

for some nonzero constant k. We write y / x.

The definition means that the graph of y versus x lies along a straight line through
the origin. This graphical observation is useful in testing whether a given data collection
reasonably assumes a proportionality relationship. If a proportionality is reasonable, a plot
of one variable against the other should approximate a straight line through the origin. Here
is an example.

EXAMPLE 1 Testing for Proportionality

Consider a spring–mass system, such as the one shown in Figure 1.2. We conduct an
experiment to measure the stretch of the spring as a function of the mass (measured as
weight) placed on the spring. Consider the data collected for this experiment, displayed in
Table 1.1. A scatterplot graph of the stretch or elongation of the spring versus the mass
or weight placed on it reveals a straight line passing approximately through the origin
(Figure 1.3).

Table 1.1
Spring–mass
system

Mass Elong.

50 1.000
100 1.875
150 2.750
200 3.250
250 4.375
300 4.875
350 5.675
400 6.500
450 7.250
500 8.000
550 8.750

© Cengage Learning

The data appear to follow the proportionality rule that elongation e is proportional to the
mass m, or, symbolically, e / m. The straight line appears to pass through the origin. This
geometric understanding allows us to look at the data to determine whether proportionality
is a reasonable simplifying assumption and, if so, to estimate the slope k. In this case, the
assumption appears valid, so we estimate the constant of proportionality by picking the two
points .200; 3:25/ and .300; 4:875/ as lying along the straight line. We calculate the slope
of the line joining these points as

slope D 4:875 � 3:25

300 � 200
D 0:01625

J Figure 1.2
Spring–mass system
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J Figure 1.3
Data from spring–mass
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Thus the constant of proportionality is approximately 0.0163, the slope of the line through
the origin. We estimate our model as

e D 0:0163m

We then examine how close our model fits the data by plotting the line it represents
superimposed on the scatterplot (Figure 1.4). The graph reveals that the simplifying pro-
portionality model is reasonable, because most of the points fall on or very near the line
e D 0:0163m. J J J

J Figure 1.4
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Modeling Change
A powerful paradigm to use in modeling change is

future value D present valueC change

Often, we wish to predict the future on the basis of what we know now, in the present, and
add the change that has been carefully observed. In such cases, we begin by studying the
change itself according to the formula

change D future value � present value

By collecting data over a period of time and plotting those data, we often can discern
patterns to model that capture the trend of the change. If the behavior is taking place over
discrete time periods, the preceding construct leads to a difference equation, which we
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study in this chapter. If the behavior is taking place continuously with respect to time, then
the construct leads to a differential equation studied in Chapter 11. Both are powerful
methodologies for studying change to explain and predict behavior.

1.11.1 Modeling Change with Difference Equations

In this section we build mathematical models to describe change in an observed behavior.
When we observe change, we are often interested in understanding why the change occurs
in the way it does, perhaps to analyze the effects of different conditions on the behavior
or to predict what will happen in the future. A mathematical model helps us better under-
stand a behavior, while allowing us to experiment mathematically with different conditions
affecting it.

Definition

For a sequence of numbers A D fa0; a1; a2; a3; : : :g the first differences are

�a0 D a1 � a0

�a1 D a2 � a1

�a2 D a3 � a2

�a3 D a4 � a3

For each positive integer n, the nth first difference is

�an D anC1 � an

Note from Figure 1.5 that the first difference represents the rise or fall between con-
secutive values of the sequence—that is, the vertical change in the graph of the sequence
during one time period.

J Figure 1.5
The first difference of
a sequence is the rise in
the graph during one
time period.
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EXAMPLE 1 A Savings Certificate

Consider the value of a savings certificate initially worth $1000 that accumulates interest
paid each month at 1% per month. The following sequence of numbers represents the value
of the certificate month by month.

A D .1000; 1010; 1020:10; 1030:30; : : :/

The first differences are as follows:

�a0 D a1 � a0 D 1010 � 1000 D 10

�a1 D a2 � a1 D 1020:10 � 1010 D 10:10

�a2 D a3 � a2 D 1030:30 � 1020:10 D 10:20

Note that the first differences represent the change in the sequence during one time
period, or the interest earned in the case of the savings certificate example.

The first difference is useful for modeling change taking place in discrete intervals. In
this example, the change in the value of the certificate from one month to the next is merely
the interest paid during that month. If n is the number of months and an the value of the
certificate after n months, then the change or interest growth in each month is represented
by the nth difference

�an D anC1 � an D 0:01an

This expression can be rewritten as the difference equation

anC1 D an C 0:01an

We also know the initial deposit of $1000 (initial value) that then gives the dynamical
system model

anC1 D 1:01an; n D 0; 1; 2; 3; : : : (1.1)
a0 D 1000

where an represents the amount accrued after n months. Because n represents the nonnega-
tive integers f0; 1; 2; 3; : : :g, Equation (1.1) represents an infinite set of algebraic equations,
called a dynamical system. Dynamical systems allow us to describe the change from one
period to the next. The difference equation formula computes the next term, given the im-
mediately previous term in the sequence, but it does not compute the value of a specific
term directly (e.g., the savings after 100 periods). We would iterate the sequence to a100 to
obtain that value.

Because it is change we often observe, we can construct a difference equation by
representing or approximating the change from one period to the next. To modify our
example, if we were to withdraw $50 from the account each month, the change during a
period would be the interest earned during that period minus the monthly withdrawal, or

�an D anC1 � an D 0:01an � 50 J J J
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6 Chapter 1 Modeling Change

In most examples, mathematically describing the change is not going to be as precise
a procedure as illustrated here. Often it is necessary to plot the change, observe a pattern,
and then describe the change in mathematical terms. That is, we will be trying to find

change D �an D some function f

The change may be a function of previous terms in the sequence (as was the case with
no monthly withdrawals), or it may also involve some external terms (such as the amount
of money withdrawn in the current example or an expression involving the period n). Thus,
in constructing models representing change in this chapter, we will be modeling change in
discrete intervals, where

change D �an D anC1 � an D f (terms in the sequence, external terms)

Modeling change in this way becomes the art of determining or approximating a function
f that represents the change.

Consider a second example in which a difference equation exactly models a behavior
in the real world.

EXAMPLE 2 Mortgaging a Home

Six years ago your parents purchased a home by financing $80,000 for 20 years, paying
monthly payments of $880.87 with a monthly interest of 1%. They have made 72 payments
and wish to know how much they owe on the mortgage, which they are considering paying
off with an inheritance they received. Or they could be considering refinancing themortgage
with several interest rate options, depending on the length of the payback period. The change
in the amount owed each period increases by the amount of interest and decreases by the
amount of the payment:

�bn D bnC1 � bn D 0:01bn � 880:87

Solving for bnC1 and incorporating the initial condition gives the dynamical system model

bnC1 D bn C 0:01bn � 880:87

b0 D 80000

where bn represents the amount owed after n months. Thus,

b1 D 80000 C 0:01.80000/ � 880:87 D 79919:13

b2 D 79919:13 C 0:01.79919:13/ � 880:87 D 79837:45

yielding the sequence

B D .80000; 79919:13; 79837:45; : : :/

Calculating b3 from b2, b4 from b3, and so forth in turn, we obtain b72 D $71;523:11:
The sequence is graphed in Figure 1.6. J J J
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J Figure 1.6
The sequence and graph for Example 2

Let’s summarize the important ideas introduced in Examples 1 and 2.

Definition

A sequence is a function whose domain is the set of all nonnegative integers and
whose range is a subset of the real numbers. A dynamical system is a relationship
among terms in a sequence. A numerical solution is a table of values satisfying
the dynamical system.

In the problems for this section we discuss other behaviors in the world that can be
modeled exactly by difference equations. In the next section, we use difference equations to
approximate observed change.After collecting data for the change anddiscerning patterns of
the behavior,wewill use the concept of proportionality to test andfitmodels thatwe propose.

1.11.1 PROBLEMS

SEQUENCES
1. Write out the first five terms a0–a4 of the following sequences:

a. anC1 D 3an, a0 D 1

b. anC1 D 2an C 6, a0 D 0

c. anC1 D 2an.an C 3/, a0 D 4

d. anC1 D a2
n, a0 D 1

2. Find a formula for the nth term of the sequence.
a. f3; 3; 3; 3; 3; : : :g
b. f1; 4; 16; 64; 256; : : :g
c. f 1

2
; 1

4
; 1

8
; 1

16
; 1

32
: : :g

d. f1; 3; 7; 15; 31; : : :g
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DIFFERENCE EQUATIONS
3. By examining the following sequences, write a difference equation to represent the

change during the nth interval as a function of the previous term in the sequence.
a. f2; 4; 6; 8; 10; : : :g
b. f2; 4; 16; 256; : : :g
c. f1; 2; 5; 11; 23; : : :g
d. f1; 8; 29; 92; : : :g

4. Write out the first five terms of the sequence satisfying the following difference
equations:
a. �an D 1

2
an, a0 D 1

b. �bn D 0:015bn; b0 D 1000

c. �pn D 0:001.500 � pn/; p0 D 10

d. �tn D 1:5.100 � tn/; t0 D 200

DYNAMICAL SYSTEMS
5. By substituting n D 0; 1; 2; 3, write out the first four algebraic equations represented

by the following dynamical systems:
a. anC1 D 3an, a0 D 1

b. anC1 D 2an C 6, a0 D 0

c. anC1 D 2an.an C 3/, a0 D 4

d. anC1 D a2
n, a0 D 1

6. Name several behaviors you think can be modeled by dynamical systems.

MODELING CHANGE EXACTLY
For Problems 7–10, formulate a dynamical system that models change exactly for the
described situation.

7. You currently have $5000 in a savings account that pays 0.5% interest each month. You
add another $200 each month.

8. You owe $500 on a credit card that charges 1.5% interest each month. You pay $50
each month and you make no new charges.

9. Your parents are considering a 30-year, $200,000 mortgage that charges 0.5% interest
each month. Formulate a model in terms of a monthly payment p that allows the
mortgage (loan) to be paid off after 360 payments. Hint: If an represents the amount
owed after n months, what are a0 and a360?

10. Your grandparents have an annuity. The value of the annuity increases each month by
an automatic deposit of 1% interest on the previousmonth’s balance. Your grandparents
withdraw $1000 at the beginning of each month for living expenses. Currently, they
have $50,000 in the annuity. Model the annuity with a dynamical system. Will the
annuity run out of money? When? Hint: What value will an have when the annuity is
depleted?
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11. Repeat Problem 10 with an interest rate of 0.5%.

12. Your current credit card balance is $12,000 with a current rate of 19.9% per year.
Interest is charged monthly. Determine what monthly payment p will pay off the
card in
a. Two years, assuming no new charges
b. Four years, assuming no new charges

13. Again consider Problem 12 above. Now assume that each month you charge $105.
Determine what monthly payment p will pay off the card in
a. Two years
b. Four years

1.11.1 PROJECTS

1. With the price of gas continuing to rise, you wish to look at cars that get better gas
mileage. You narrow down your choices to the following 2012 models: Ford Fiesta,
Ford Focus, Chevy Volt, Chevy Cruz, Toyota Camry, Toyota Camry Hybrid, Toyota
Prius and Toyota Corolla. Each company has offered you their ‘‘best deal" as listed
in the following table. You are able to allocate approximately $500 for a car payment
each month up to 60 months, although less time would be preferable. Use dynamical
systems to determine which new car you can afford.

2012 Model Best Deal Price Cash Down Interest and Duration

Ford Fiesta $14,200 $500 4.5% APR for 60 months
Ford Focus $20,705 $750 4.38% APR for 60 months
Chevy Volt $39,312 $1,000 3.28% APR for 48 months
Chevy Cruz $16,800 $500 4.4% APR for 60 months
Toyota Camry $22,955 0 4.8% APR for 60 months
Toyota Camry Hybrid $26,500 0 3% APR for 48 months
Toyota Corolla $16,500 $900 4.25% for 60 months
Toyota Prius $19,950 $1,000 4.3% for 60 months

2. You are considering a 30-year mortgage that charges 0.4% interest each month to pay
off a $250,000 mortgage.
a. Determine the monthly payment p that allows the loan to be paid off at 360 months.
b. Now assume that you have been paying the mortgage for 8 years and now have

an opportunity to refinance the loan. You have a choice between a 20-year loan at
4% per year with interest charged monthly and a 15-year loan at 3.8% per year
with interest charged monthly. Each of the loans charges a closing cost of $2500.
Determine the monthly payment p for both the 20-year loan and the 15-year loan.
Do you think refinancing is the right thing to do? If so, do you prefer the 20-year or
the 15-year option?
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1.21.2 Approximating Change with

Difference Equations

In most examples, describing the change mathematically will not be as precise a procedure
as in the savings certificate and mortgage examples presented in the previous section.
Typically, we must plot the change, observe a pattern, and then approximate the change in
mathematical terms. In this section we approximate some observed change to complete the
expression

change D �an D some functionf

We begin by distinguishing between change that takes place continuously and that which
occurs in discrete time intervals.

Discrete Versus Continuous Change
When we construct models involving change, an important distinction is that some change
takes place in discrete time intervals (such as the depositing of interest in an account),
whereas in other cases, the change happens continuously (such as the change in the tem-
perature of a cold can of soda on a warm day). Difference equations represent change in the
case of discrete time intervals. Later we will see the relationship between discrete change
and continuous change (for which calculus was developed). For now, in the several models
that follow, we approximate a continuous change by examining data taken at discrete time
intervals. Approximating a continuous change by difference equations is an example of
model simplification.

EXAMPLE 1 Growth of a Yeast Culture

The data in Figure 1.7 were collected from an experiment measuring the growth of a yeast
culture. The graph represents the assumption that the change in population is proportional to
the current size of the population. That is,�pn D .pnC1 �pn/ D kpn, where pn represents
the size of the population biomass after n hours, and k is a positive constant. The value of
k depends on the time measurement.

Although the graph of the data does not lie precisely along a straight line passing
exactly through the origin, it can be approximated by such a straight line. Placing a ruler
over the data to approximate a straight line through the origin, we estimate the slope of the
line to be about 0.5. Using the estimate k D 0:5 for the slope of the line, we hypothesize
the proportionality model

�pn D pnC1 � pn D 0:5pn

yielding the prediction pnC1 D 1:5pn. This model predicts a population that increases
forever, which is questionable. J J J
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Growth of a yeast culture versus time in hours; data from R. Pearl, ‘‘The Growth of
Population,’’ Quart. Rev. Biol. 2(1927): 532–548

Model Refinement: Modeling Births, Deaths, and Resources
If both births and deaths during a period are proportional to the population, then the change
in population should be proportional to the population, as was illustrated in Example 1.
However, certain resources (e.g., food) can support only a maximum population level
rather than one that increases indefinitely. As thesemaximum levels are approached, growth
should slow.

EXAMPLE 2 Growth of a Yeast Culture Revisited

Finding aModel The data in Figure 1.8 show what actually happens to the yeast culture
growing in a restricted area as time increases beyond the eight observations given
in Figure 1.7.

From the third column of the data table in Figure 1.8, note that the change in pop-
ulation per hour becomes smaller as the resources become more limited or constrained.
From the graph of population versus time, the population appears to be approaching a
limiting value, or carrying capacity. Based on our graph we estimate the carrying capa-
city to be 665. (Actually, the graph does not precisely tell us the correct number is 665
and not 664 or 666, for example.) Nevertheless, as pn approaches 665, the change does
slow considerably. Because 665 � pn gets smaller as pn approaches 665, we propose the
model

�pn D pnC1 � pn D k.665 � pn/pn

which causes the change �pn to become increasingly small as pn approaches 665. Mathe-
matically, this hypothesized model states that the change �pn is proportional to the product
.665 � pn/pn. To test the model, plot (pnC1 � pn/ versus .665 � pn/pn to see if there is
a reasonable proportionality. Then estimate the proportionality constant k.

Examining Figure 1.9, we see that the plot does reasonably approximate a straight line
projected through the origin. We estimate the slope of the line approximating the data to be
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Testing the constrained growth model

We estimate the slope of the line through the origin using

slope D Ą.pnC1 � pn/
Ą.pn.665 � pn//

D .90:3 � 0/=.110225:01 � 0/ D 0:00082

about k � 0:00082, which gives the model

pnC1 � pn D 0:00082.665 � pn/pn (1.2)
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Solving the Model Numerically Solving Equation (1.2) for pnC1 gives

pnC1 D pn C 0:00082.665 � pn/pn (1.3)

The right side of this equation is a quadratic in pn. Such dynamical systems are clas-
sified as nonlinear and generally cannot be solved for analytical solutions. That is, usually
we cannot find a formula expressing pn in terms of n. However, if given that p0 D 9:6, we
can substitute in the expression to compute p1:

p1 D p0 C 0:00082.665 � p0/p0 D 9:6 C 0:00082.665 � 9:6/9:6 D 14:76

In a similar manner, we can substitutep1 D 14:76 into Equation (1.3) to computep2 D
22:63. Iterating in this way, we compute a table of values to provide a numerical solution
to the model. This numerical solution of model predictions is presented in Figure 1.10.
The predictions and observations are plotted together versus time on the same graph. Note
that the model captures fairly well the trend of the observed data. J J J
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Model predictions and observations

EXAMPLE 3 Spread of a Contagious Disease

Suppose that there are 400 students in a college dormitory and that one or more students has
a severe case of the flu. Let in represent the number of infected students after n time periods.
Assume that some interaction between those infected and those not infected is required to
pass on the disease. If all are susceptible to the disease, then .400 � in/ represents those
susceptible but not yet infected. If those infected remain contagious, we can model the
change of those infected as a proportionality to the product of those infected by those
susceptible but not yet infected, or

�in D inC1 � in D kin.400 � in/ (1.4)
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In this model the product in.400 � in/ represents the number of possible interactions between
those infected and those not infected at time n. A fraction k of these interactions would
cause additional infections, represented by �in.

Equation (1.4) has the same form as Equation (1.2), but in the absence of any data we
cannot determine a value for the proportionality constant k. Nevertheless, a graph of the
predictions determined by Equation (1.4) would have the same S shape as the graph of the
yeast population in Figure 1.10.

There are many refinements to this model. For example, we might assume that a seg-
ment of the population is not susceptible to the disease, that the infection period is limited,
or that infected students are removed from the dorm to prevent interaction with the unin-
fected. More sophisticated models might even treat the infected and susceptible populations
separately. J J J

EXAMPLE 4 Decay of Digoxin in the Bloodstream

Digoxin is used in the treatment of heart disease. Doctors must prescribe an amount of
medicine that keeps the concentration of digoxin in the bloodstream above an effective level
without exceeding a safe level (there is variation among patients). For an initial dosage of
0.5 mg in the bloodstream, Table 1.2 shows the amount of digoxin an remain-
ing in the bloodstream of a particular patient after n days, together with the change �an

each day.

Table 1.2 The change an in digoxin in a patient’s bloodstream

n 0 1 2 3 4 5 6 7 8

an 0.500 0.345 0.238 0.164 0.113 0.078 0.054 0.037 0.026
�an �0:155 �0:107 �0:074 �0:051 �0:035 �0:024 �0:017 �0:011

© Cengage Learning

A scatterplot of�an versus an fromTable 1.2 is shown in Figure 1.11. The graph shows
that the change �an during a time interval is approximately proportional to the amount of
digoxin an present in the bloodstream at the beginning of the time interval. The slope of

J Figure 1.11
A plot ofĄan versus an from
Table 1.2 suggests a straight
line through the origin.
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the proportionality line through the origin is approximately k � �0:107=0:345 � �0:310.
Since the graph in Figure 1.11 shows the change �an as a linear function of an with slope
�0:31, we have �an D �0:31an.

The Model From Figure 1.11,

�an D �0:31an

anC1 � an D �0:31an

anC1 D 0:69an

A difference equation model for the decay of digoxin in the bloodstream, given an initial
dosage of 0.5 mg, is

anC1 D an � 0:31an D 0:69an;

a0 D 0:5 J J J

EXAMPLE 5 Heating of a Cooled Object

Nowwe examine a behavior that is taking place continuously. Suppose a cold can of soda is
taken from a refrigerator and placed in a warm classroom and we measure the temperature
periodically. The temperature of the soda is initially 40 ıF and the room temperature is
72 ıF. Temperature is a measure of energy per unit volume. Because the volume of soda is
small relative to the volume of the room, we would expect the room temperature to remain
constant. Furthermore, we assume the entire can of soda is the same temperature, neglecting
variation within the can. We might expect the change in temperature per time period to be
greater when the difference in temperature between the soda and the room is large and the
change in temperature per unit time to be less when the difference in temperature is small.
Letting tn represent the temperature of the soda after n time periods, and letting k be a
positive constant of proportionality, we propose

�tn D tnC1 � tn D k.72 � tn/

t0 D 40

Many refinements are possible for this model. Although we have assumed k is constant,
it actually depends on the shape and conductivity properties of the container, the length of the
time period between the measurements, and so on. Also, the temperature of the environment
may not be constant in many instances, and it may be necessary to take into account that
the temperature is not uniform throughout the can of soda. The temperature of an object
may vary in one dimension (as in the case of a thin wire), in two dimensions (such as for
a flat plate), or in three dimensions (as in the case of a space capsule reentering the earth’s
atmosphere). J J J

Wehave presented only a glimpse of the power of difference equations tomodel change
in the world around us. In the next section, we build numerical solutions to some of these
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models and observe the patterns they exhibit. Having observed certain patterns for various
types of difference equations, we will then classify them by their mathematical structures.
This will help to determine the long-term behavior of a dynamical system under study.

1.21.2 PROBLEMS

1. The following data were obtained for the growth of a sheep population introduced into
a new environment on the island of Tasmania.1

Year 1814 1824 1834 1844 1854 1864

Population 125 275 830 1200 1750 1650

Plot the data. Is there a trend? Plot the change in population versus years elapsed after
1814. Formulate a discrete dynamical system that reasonably approximates the change
you have observed.

2. The following data represent the U.S. population from 1790 to 2010. Find a dynamical
system model that fits the data fairly well. Test your model by plotting the predictions
of the model against the data.

Year Population Year Population Year Population

1790 3,929,000 1870 38,558,000 1950 150,697,000
1800 5,308,000 1880 50,156,000 1960 179,323,000
1810 7,240,000 1890 62,948,000 1970 203,212,000
1820 9,638,000 1900 75,995,000 1980 226,505,000
1830 12,866,000 1910 91,972,000 1990 248,710,000
1840 17,069,000 1920 105,711,000 2000 281,416,000
1850 23,192,000 1930 122,755,000 2010 308,746,000
1860 31,443,000 1940 131,669,000

3. Sociologists recognize a phenomenon called social diffusion, which is the spreading of
a piece of information, a technological innovation, or a cultural fad among a population.
The members of the population can be divided into two classes: those who have the
information and those who do not. In a fixed population whose size is known, it is
reasonable to assume that the rate of diffusion is proportional to the number who
have the information times the number yet to receive it. If an denotes the number of
people who have the information in a population of N people after n days, formulate a
dynamical system to approximate the change in the number of people in the population
who have the information.

1Adapted from J. Davidson, ‘‘On the Growth of the Sheep Population in Tasmania,’’ Trans. R. Soc. S. Australia
62(1938): 342–346.
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4. Consider the spreading of a highly communicable disease on an isolated island with
population size N . A portion of the population travels abroad and returns to the island
infected with the disease. Formulate a dynamical system to approximate the change in
the number of people in the population who have the disease.

5. Assume that we are considering the survival of whales and that if the number of whales
falls below a minimum survival level m, the species will become extinct. Assume also
that the population is limited by the carrying capacity M of the environment. That is, if
the whale population is above M , it will experience a decline because the environment
cannot sustain that large a population level. In the following model, an represents the
whale population after n years. Discuss the model.

anC1 � an D k.M � an/.an � m/

6. A certain drug is effective in treating a disease if the concentration remains above
100 mg/L. The initial concentration is 640 mg/L. It is known from laboratory experi-
ments that the drug decays at the rate of 20% of the amount present each hour.
a. Formulate a model representing the concentration at each hour.
b. Build a table of values and determine when the concentration reaches 100 mg/L.

7. Use the model developed in Problem 6 to prescribe an initial dosage and a maintenance
dosage that keeps the concentration above the effective level of 500 ppm but below a
safe level of 1000 ppm. Experiment with different values until you have results you
think are satisfactory.

8. Ahumanoid skull is discovered near the remains of an ancient campfire. Archaeologists
are convinced the skull is the same age as the original campfire. It is determined from
laboratory testing that only 1% of the original amount of carbon-14 remains in the
burned wood taken from the campfire. It is known that carbon-14 decays at a rate
proportional to the amount remaining and that carbon-14 decays 50% over 5700 years.
Formulate a model for carbon-14 dating.

9. The data in the accompanying table show the speed n (in increments of 5 mph) of an
automobile and the associated distance an in feet required to stop it once the brakes
are applied. For instance, n D 6 (representing 6 � 5 D 30 mph) requires a stopping
distance of a6 D 47 ft.
a. Calculate and plot the change�an versus n. Does the graph reasonably approximate

a linear relationship?
b. Based on your conclusions in part (a), find a difference equation model for the stop-

ping distance data. Test your model by plotting the errors in the predicted values
against n. Discuss the appropriateness of the model.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 3 6 11 21 32 47 65 87 112 140 171 204 241 282 325 376
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10. Place a cold can of soda in a room. Measure the temperature of the room, and periodi-
cally measure the temperature of the soda. Formulate a model to predict the change in
the temperature of the soda. Estimate any constants of proportionality from your data.
What are some of the sources of error in your model?

11. Cipro is an antibiotic taken to combat many infections, including anthrax. Cipro is
filtered from the blood by the kidneys. Each 24-hour period, the kidneys filter out about
one third of the Cipro that was in the blood at the beginning of the 24-hour period.
a. Assume a patient was given only a single 500-mg dose. Use a difference equation to

construct a table of values listing the concentration of Cipro in this patient’s blood
at the end of each day.

b. Now assume that the patientmust take an additional 500mg per day. Use a difference
equation to construct a table of values listing the concentration of Cipro at the end
of each day.

c. Compare and interpret these two tables.

1.21.2 PROJECT

1. Complete the UMAP module ‘‘The Diffusion of Innovation in Family Planning,’’ by
Kathryn N. Harmon, UMAP 303. This module gives an interesting application of finite
difference equations to study the process through which public policies are diffused
to understand how national governments might adopt family planning policies. (See
enclosed CD for the UMAP module.)

1.2 Further Reading

Frauenthal, James C. Introduction to Population Modeling. Lexington, MA: COMAP, 1979.
Hutchinson, G. Evelyn. An Introduction to Population Ecology. New Haven, CT: Yale University

Press, 1978.
Levins, R. ‘‘The Strategy of Model Building in Population Biology.’’ American Scientist 54 (1966):

421–431.

1.31.3 Solutions to Dynamical Systems

In this section we build solutions to some dynamical systems, starting with an initial value
and iterating a sufficient number of subsequent values to determine the patterns involved.
In some cases, we see that the behavior predicted by dynamical systems is characterized
by the mathematical structure of the system. In other cases, we see wild variations in the
behavior caused by only small changes in the initial values of the dynamical system. We
also examine dynamical systems for which small changes in the proportionality constants
cause wildly different predictions.
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The Method of Conjecture
The method of conjecture is a powerful mathematical technique to hypothesize the form
of a solution to a dynamical system and then to accept or reject the hypothesis. It is based
on exploration and observation from which we attempt to discern a pattern to the solution.
Let’s begin with an example.

EXAMPLE 1 A Savings Certificate Revisited

In the savings certificate example (Example 1, Section 1.1), a savings certificate initially
worth $1000 accumulated interest paid each month at 1% of the balance. No deposits or
withdrawals occurred in the account, determining the dynamical system

anC1 D 1:01an (1.5)
a0 D 1000

Look for a Pattern We might begin by graphing the balance in the account at the end of
each month (after the interest is paid). That is, we graph an versus n. The graph is displayed
in Figure 1.12.

J Figure 1.12
Growth of the savings
certificate balance
anC1 D 1:01an, a0 D 1000
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From the graph it appears that the sequence fa0; a1; a2; a3; : : :g grows without bound.
Let’s examine the sequence algebraically to gain more insight into the growth pattern.

a1 D 1010:00 D 1:01.1000/

a2 D 1020:10 D 1:01.1010/ D 1:01.1:01.1000// D 1:012.1000/

a3 D 1030:30 D 1:01.1020:10/ D 1:01.1:012.1000// D 1:013.1000/

a4 D 1040:60 D 1:01.1030:30/ D 1:01.1:013.1000// D 1:014.1000/
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20 Chapter 1 Modeling Change

The pattern of these terms in the sequence suggests that the kth term ak is the amount
1000 multiplied by .1:01/k .

Conjecture For k D 0; 1; 2; 3; : : : ; the term ak in the dynamical system (Equation (1.5)) is

ak D .1:01/k1000 (1.6)

Test the Conjecture We test the conjecture by examining whether the formula for ak

satisfies the system of Equation (1.5) upon substitution.

anC1 D 1:01an

.1:01/nC11000 D 1:01..1:01/n1000/ D .1:01/nC11000

Since this last equation is true for every positive integer n, we accept the conjecture in
Equation (1.6).

Conclusion The solution for the term ak in the dynamical system (1.5) is

ak D .1:01/k1000

or

ak D .1:01/ka0; k D 0; 1; 2; 3; : : :

This solution allows us to compute the balance ak in the account after k months. For example,
after 120 months (or 10 years), the account is worth a120 D .1:01/120.1000/ � $3303:90.
After 30 years .k D 360/, the account is worth $35,949.64. This calculation is easier to
obtain than iterating the dynamical system 360 times, but a formula such as Equation (1.6)
can provide even more insight into the long-term behavior of a dynamical system, as we will
soon see. J J J

Let’s summarize the procedure followed in this example.

The Method of Conjecture
1. Observe a pattern.
2. Conjecture a form of the solution to the dynamical system.
3. Test the conjecture by substitution.
4. Accept or reject the conjecture depending onwhether it does or does not satisfy the system

after the substitution and algebraic manipulation. For the conjecture to be accepted, the
substitution must result in an identity.

Linear Dynamical Systems anC1 D ran , for r Constant
The dynamical system in Example 1 is of the form anC1 D ran, where r D 1:01. Let’s
follow the method of conjecture for the more general case in which r is any positive or
negative constant, assuming a given initial value a0.
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Look for a Pattern Examining the terms in the sequence anC1 D ran, we see that

a1 D ra0

a2 D ra1 D r.ra0/ D r2a0

a3 D ra2 D r.r2a0/ D r3a0

a4 D ra3 D r.r3a0/ D r4a0

From these terms, we observe a pattern leading to the following conjecture:

Conjecture For k D 1; 2; 3; : : : ; the term ak in the dynamical system anC1 D ran is

ak D rka0 (1.7)

Test the Conjecture We substitute the formula from Equation (1.7) into the dynamical
system:

anC1 D ran

rnC1a0 D r.rna0/ D rnC1a0

The result is an identity, and we accept the conjecture. Let’s summarize our result.

Theorem 1

The solution of the linear dynamical system anC1 D ran for r any nonzero con-
stant is

ak D rka0

where a0 is a given initial value.

EXAMPLE 2 Sewage Treatment

A sewage treatment plant processes raw sewage to produce usable fertilizer and clean water
by removing all other contaminants. The process is such that each hour 12% of remaining
contaminants in a processing tank are removed. What percentage of the sewage would
remain after 1 day? How long would it take to lower the amount of sewage by half? How
long until the level of sewage is down to 10% of the original level?

Solution Let the initial amount of sewage contaminants be a0 and let an denote the
amount after n hours. We then build the model

anC1 D an � 0:12an D 0:88an

which is a linear dynamical system. From Theorem 1, the solution is

ak D .0:88/ka0
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After 1 day, k D 24 hours and the level of sewage remaining is

a24 D .0:88/24a0 D 0:0465a0:

That is, the level of contaminants in the sewage has been reduced by more than 95% at the
end of the first day.

Half the original contaminants remain when ak D 0:5a0. Thus,

0:5a0 D ak D .0:88/ka0

Solving for k, we find

0:5a0 D .0:88/ka0

.0:88/k D 0:5;

k D log 0:5

log 0:88
D 5:42

It takes about 5.42 hours to lower the contaminants to half their original amount.
To reduce the level of contaminants by 90%, we require

.0:88/ka0 D 0:1a0

so

k D log 0:1

log 0:88
D 18:01

It takes 18 hours before the contaminants are reduced to 10% of their original level. J J J
Long-Term Behavior of anC1 D ran , for r Constant
For the linear dynamical system anC1 D ran, let’s consider some significant values of r . If
r D 0, then all the values of the sequence (except possibly a0/ are zero, so there is no need
for further analysis. If r D 1, then the sequence becomes anC1 D an. This is an interesting
case because no matter where the sequence starts, it stays there forever (as illustrated in
Figure 1.13, in which the sequence is enumerated and graphed for a0 D 50 and also graphed
for several other starting values). Values for which a dynamical system remains constant
at those values, once reached, are called equilibrium values of the system. We define that
term more precisely later, but for now note that in Figure 1.13, any starting value would be
an equilibrium value.

If r > 1, as in Example 1, then the sequence ak D rka0, which solves the linear
dynamical system, grows without bound. This growth was illustrated in Figure 1.12.

What happens if r is negative? If we replace 1.01 with �1:01 in Example 1, we obtain
the graph in Figure 1.14. Note the oscillation between positive and negative values. Because
the negative sign causes the next term in the sequence to be of opposite sign from the previous
term, we conclude that, in general, negative values of r cause oscillations in the linear form
anC1 D ran.

What happens if jr j < 1‹ We knowwhat happens if r D 0, if r > 1; if r < �1, and if r is
negative in general. If 0 < r < 1 so that r is a positive fraction less than 1, then rk approaches
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J Figure 1.13
Every solution of anC1 D an
is a constant solution.
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J Figure 1.14
A negative value of r causes oscillation.

0 as k becomes increasingly large. This means that the sequence ak D rka0 solving the linear
system anC1 D ran can be made as small as we please once k is large enough. We observed
this behavior in Example 2. Another illustration is provided in the digoxin example.

Suppose digoxin decays in the bloodstream such that each day, 69%of the concentration
of digoxin remains from the previous day (Example 4 in Section 1.2). If we start with 0.5 mg
and an represents the amount after n days, we can represent the behavior with the following
model (a numerical solution is shown in Figure 1.15).

anC1 D 0:69an; n D 0; 1; 2; 3; : : :

a0 D 0:5

The behavior for �1 < r < 0, where r is a negative fraction, also captures decay to the
value 0. However, in this case the sequence ak D rka0 alternates in sign as it approaches
0. This is illustrated in Figure 1.16 for the linear dynamical system

anC1 D �0:5an;

a0 D 0:6

Let’s summarize our observations (Figure 1.17):
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Long-term behavior for anC1 D ran

r D 0 Constant solution and equilibrium value at 0
r D 1 All initial values are constant solutions
r < 0 Oscillation
jr j < 1 Decay to limiting value of 0
jr j > 1 Growth without bound
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J Figure 1.15
A positive fractional value of r causes decay.
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J Figure 1.16
A negative fractional value of r causes decay with oscillation about 0.
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J Figure 1.17
Long-term behaviors for
anC1 D ran, r 6D 0, jr j > 1
and jr j < 1
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Dynamical Systems of the Form anC1 D ran C b ,
Where r and b Are Constants
Now let’s add a constant b to the dynamical system we previously studied. Again, we want
to classify the nature of the long-term behavior for all possible cases. We begin with a
definition.

Definition

A number a is called an equilibrium value or fixed point of a dynamical system
anC1 D f .an/ if ak D a for all k D 1; 2; 3; : : : when a0 D a. That is, ak D a is
a constant solution to the dynamical system.

A consequence of the definition is that a is an equilibrium value for anC1 D f .an/ if
and only if a D f .a/when a0 D a. This result is shown by simple substitution. Equilibrium
values can be helpful in understanding the long-term behavior of a dynamical system such
as anC1 D ran C b. Let’s consider three examples to gain insight into its behavior.
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EXAMPLE 3 Prescription for Digoxin

Consider again the digoxin problem. Recall that digoxin is used in the treatment of heart
patients. The objective of the problem is to consider the decay of digoxin in the bloodstream
to prescribe a dosage that keeps the concentration between acceptable levels (so that it is
both safe and effective). Suppose we prescribe a daily drug dosage of 0:1 mg and know that
half the digoxin remains in the system at the end of each dosage period. This results in the
dynamical system

anC1 D 0:5an C 0:1

Now consider three starting values, or initial doses:

AW a0 D 0:1

BW a0 D 0:2

CW a0 D 0:3

In Figure 1.18 we compute the numerical solutions for each case.
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J Figure 1.18
Three initial digoxin doses

Note that the value 0.2 is an equilibrium value, because once that value is reached, the
system remains at 0.2 forever. Furthermore, if we start below the equilibrium (as in Case A)
or above the equilibrium (as in Case C), apparently we approach the equilibrium value as
a limit. In the problems, you are asked to compute solutions for starting values even closer
to 0.2, lending evidence that 0.2 is a stable equilibrium value.

When digoxin is prescribed, the concentration level must stay above an effective level
for a period of time without exceeding a safe level. In the problems, you are asked to find
initial and subsequent doses that are both safe and effective. J J J
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EXAMPLE 4 An Investment Annuity

Return now to the savings account problem and consider an annuity. Annuities are often
planned for retirement purposes. They are basically savings accounts that pay interest on
the amount present and allow the investor to withdraw a fixed amount each month until the
account is depleted. An interesting issue (posed in the problems) is to determine the amount
one must save monthly to build an annuity allowing for withdrawals, beginning at a certain
age with a specified amount for a desired number of years, before the account’s depletion.
For now, consider 1% as the monthly interest rate and a monthly withdrawal of $1000. This
gives the dynamical system

anC1 D 1:01an � 1000

Now suppose we made the following initial investments:

AW a0 D 90;000

BW a0 D 100;000

CW a0 D 110;000

The numerical solutions for each case are graphed in Figure 1.19.
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J Figure 1.19
An annuity with three initial investments

Notice that the value 100,000 is an equilibrium value; once it is reached, the system
remains there for all subsequent values. But if we start above that equilibrium, there is
growth without bound. (Try plotting with a0 D $100;000:01.) On the other hand, if we start
below $100,000, the savings are used up at an increasing rate. (Try $99,999.99.) Note how
drastically different the long-term behaviors are even though the starting values differ by
only $0.02. In this situation, we say that the equilibrium value 100,000 is unstable: If we
start close to the value (even within a penny) we do not remain close. Look at the dramatic
differences displayed by Figures 1.18 and 1.19. Both systems show equilibrium values, but
the first is stable and the second is unstable. J J J
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In Examples 3 and 4 we considered cases in which jr j < 1 and jr j > 1. Let’s see what
happens if r D 1.

EXAMPLE 5 A Checking Account

Most students cannot keep enough cash in their checking accounts to earn any interest.
Suppose you have an account that pays no interest and that each month you pay only your
dorm rent of $300, giving the dynamical system

anC1 D an � 300

The result is probably obvious from the application, but when compared with
Figures 1.18 and 1.19 the graph is revealing. In Figure 1.20 we plot the numerical solution
for a starting value of 3000. Do you see how drastically the graph of the solution differs
from those of the previous examples? Can you find an equilibrium, as in Examples 3 and 4?J J JJ Figure 1.20

A checking account to pay
dorm costs

50
0

500

1000

1500

2000

2500

3000

10

0
1
2
3
4
5
6
7
8
9
10

3000
2700
2400
2100
1800
1500
1200
900
600
300
0

n

n

an 

an 

©
 C

en
ga

ge
 Le

ar
ni

ng

Now let’s collect our observations thus far, classifying the three examples and their
long-term behavior according to the value of the constant r .

Finding and Classifying Equilibrium Values
Determining if equilibrium values exist, and classifying them as stable or unstable, assists
us immensely in analyzing the long-term behavior of a dynamical system. Consider again
Examples 3 and 4. In Example 3, how did we know that a starting value of 0:2 would result
in a constant solution or equilibrium value? Similarly, how do we know the answer to the
same question for an investment of $100,000 in Example 4? For a dynamical system of
the form

anC1 D ran C b (1.8)

denote by a the equilibrium value, if one exists. From the definition of an equilibrium value,
if we start at a wemust remain there for all n; that is, anC1 D an D a for all n. Substituting
a for anC1 and an in Equation (1.8) yields

a D ra C b
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and solving for a we find

a D b

1 � r
; if r 6D 1

If r D 1 and b D 0, then every initial value results in a constant solution (as shown
in Figure 1.13). Hence, every initial value is an equilibrium value. The following theorem
summarizes our observations.

Theorem 2

The equilibrium value for the dynamical system

anC1 D ran C b; r 6D 1

is

a D b

1 � r

If r D 1 and b D 0, every number is an equilibrium value. If r D 1 and b 6D 0,
no equilibrium value exists.

Applying Theorem 2 to Example 3, we find the equilibrium value is

a D 0:1

1 � 0:5
D 0:2

For Example 4, we compute the equilibrium as

a D �1000

1 � 1:01
D 100;000

In Example 5, r D 1 and no equilibrium exists because b D �300. Also, the graph of the
solution is a line. These examples also provide the following insights into the nature of the
long-term behavior we observed according to the value of the constant r .

Dynamical system anC1 D ran C b, b 6D 0

Value of r Long-term behavior observed

jr j < 1 Stable equilibrium
jr j > 1 Unstable equilibrium
r D 1 Graph is a line with no equilibrium

In Example 3, we saw from Figure 1.18 that the term ak approaches the equilibrium
value 0.2 as k becomes increasingly large. Because rk D .0:5/k tends to 0 for large k, it
seems reasonable to conjecture that the solution is of the form ak D .0:5/kc C0:2 for some
constant c that depends on the initial condition.
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Let’s test the conjecture that the form

ak D rkc C b

1 � r

solves the system anC1 D ran C b, where r 6D 1.
Substituting into the system, we have

anC1 D ran C b

rnC1c C b

1 � r
D r

�
rnc C b

1 � r

�
C b

rnC1c C b

1 � r
D rnC1c C rb

1 � r
C b

b

1 � r
D rb

1 � r
C b

b D rb C b.1 � r/

Since this last equation is an identity, we accept the conjecture. Let’s summarize our
result.

Theorem 3

The solution of the dynamical system anC1 D ran C b; r 6D 1 is

ak D rkc C b

1 � r

for some constant c (which depends on the initial condition).

EXAMPLE 6 An Investment Annuity Revisited

For the annuity modeled in Example 4, how much of an initial investment do we need to
deplete the annuity in 20 years (or 240 months)?

Solution The equilibrium value of the system anC1 D 1:01an � 1000 is 100,000 and
we want a240 D 0. From Theorem 3 we have

a240 D 0 D .1:01/240c C 100;000

and solving this equation gives c D �100;000=.1:01/240 D �9180:58 (to the nearest cent).
To find the initial investment a0, we again use Theorem 3:

a0 D .1:01/0c C 100;000 D �9180:58 C 100;000 D 90;819:42

Thus, an initial investment of $90,819.42 allows us to withdraw $1000 per month from the
account for 20 years (a total withdrawal of $240,000). At the end of 20 years the account is
depleted. J J J
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Nonlinear Systems
An important advantage of discrete systems is that numerical solutions can be constructed
for any dynamical system when an initial value is given. We have seen that long-term
behavior can be sensitive to the starting value and to the values of the parameter r . Recall
the model for the yeast biomass from Section 1.2:

pnC1 D pn C 0:00082.665 � pn/pn

After some algebraic manipulation, this dynamical system can be rewritten in the simpler
form

anC1 D r.1 � an/an (1.9)

where an D 0:0005306pn, and r D 1:546. The behavior of the sequence determined by
Equation (1.9) is very sensitive to the value of the parameter r . In Figure 1.21 (see page 32)
we plot a numerical solution for various values of r , beginning with a0 D 0:1.

Note how remarkably different the behavior is in each of the six cases. In Figure 1.21a
we see that for r D 1:546 the behavior approaches a limit of about 0.35 directly from the
starting value 0.10. In Figure 1.21b, we see that for r D 2:75 the behavior approaches
a limit of about 0.65 but oscillates across it during the approach. In Figure 1.21c, where
r D 3:25, we see that the behavior now approaches two values (0.5 and 0.8), again in an
oscillatory fashion, although this is not apparent from the scatterplot. We call such behavior
periodic with a two-cycle. In Figure 1.21d for r D 3:525 we see a four-cycle, and in
Figure 1.21e for r D 3:555 ( just slightly larger than before) we observe an eight-cycle.
Finally, in Figure 1.21f for r D 3:75 sufficiently large, there is no pattern whatsoever,
and it is impossible to predict the long-term behavior of the model. Notice how radically
the behaviors change with very small changes in the parameter r . The behavior exhibited
in Figure 1.21f is called chaotic behavior. Chaotic systems demonstrate sensitivity to the
constant parameters of the system. A given chaotic system can be quite sensitive to initial
conditions.

1.31.3 PROBLEMS

1. Find the solution to the difference equations in the following problems:
a. anC1 D 3an; a0 D 1

b. anC1 D 5an; a0 D 10

c. anC1 D 3an=4; a0 D 64

d. anC1 D 2an � 1; a0 D 3

e. anC1 D �an C 2; a0 D �1

f. anC1 D 0:1an C 3:2; a0 D 1:3

2. For the following problems, find an equilibrium value if one exists. Classify the equi-
librium value as stable or unstable.
a. anC1 D 1:1an

b. anC1 D 0:9an
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Long-term behavior exhibited by numerical solutions to the equation
anC1 D r (1 � an)an for six values of the parameter r
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c. anC1 D �0:9an

d. anC1 D an

e. anC1 D �1:2an C 50

f. anC1 D 1:2an � 50

g. anC1 D 0:8an C 100

h. anC1 D 0:8an � 100

i. anC1 D �0:8an C 100

j. anC1 D an � 100

k. anC1 D an C 100

3. Build a numerical solution for the following initial value problems. Plot your data to
observe patterns in the solution. Is there an equilibrium solution? Is it stable or unstable?
a. anC1 D �1:2an C 50; a0 D 1000

b. anC1 D 0:8an � 100; a0 D 500

c. anC1 D 0:8an � 100; a0 D �500

d. anC1 D �0:8an C 100; a0 D 1000

e. anC1 D an � 100; a0 D 1000

4. For the following problems, find the solution to the difference equation and the equi-
librium value if one exists. Discuss the long-term behavior of the solution for various
initial values. Classify the equilibrium values as stable or unstable.
a. anC1 D �an C 2; a0 D 1

b. anC1 D an C 2; a0 D �1

c. anC1 D an C 3:2; a0 D 1:3

d. anC1 D �3an C 4; a0 D 5

5. You currently have $5000 in a savings account that pays 0.5% interest each month.
You add $200 each month. Build a numerical solution to determine when the account
reaches $20,000.

6. You owe $500 on a credit card that charges 1.5% interest each month. You can pay
$50 each month with no new charges. What is the equilibrium value? What does the
equilibrium value mean in terms of the credit card? Build a numerical solution. When
will the account be paid off? How much is the last payment?

7. Your parents are considering a 30-year, $100,000 mortgage that charges 0.5% interest
each month. Formulate a model in terms of a monthly payment p that allows the
mortgage (loan) to be paid off after 360 payments. Hint: If an represents the amount
owed afternmonths, what are a0 and a360? Experiment by building numerical solutions
to find a value of p that works.

8. Your parents are considering a 30-yearmortgage that charges 0.5% interest eachmonth.
Formulate a model in terms of a monthly payment p that allows the mortgage (loan) to
be paid off after 360 payments. Your parents can afford a monthly payment of $1500.
Experiment to determine the maximum amount of money they can borrow. Hint: If an

represents the amount owed after n months, what are a0 and a360?
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9. Your grandparents have an annuity. The value of the annuity increases each month as
1% interest on the previous month’s balance is deposited. Your grandparents withdraw
$1000 each month for living expenses. Currently, they have $50,000 in the annuity.
Model the annuity with a dynamical system. Find the equilibrium value. What does the
equilibrium value represent for this problem? Build a numerical solution to determine
when the annuity is depleted.

10. Continuation of Example 4, Section 1.2: Find the equilibrium value of the digoxin
model. What is the significance of the equilibrium value?

11. Continuation of Problem 6, Section 1.2: Experiment with different initial and main-
tenance doses. Find a combination that is convenient, considering the time between
doses and the amount that will be taken as measures of convenience.

12. Continuation of Problem 8, Section 1.2: Determine the age of the humanoid skull found
near the remains of an ancient campfire.

13. Consider the spreading of a rumor through a company of 1000 employees, all working in
the same building.We assume that the spreading of a rumor is similar to the spreading of
a contagious disease (see Example 3, Section 1.2) in that the number of people hearing
the rumor each day is proportional to the product of the number who have heard the
rumor previously and the number who have not heard the rumor. This is given by

rnC1 D rn C krn.1000 � n/

where k is a parameter that depends on how fast the rumor spreads and n is the number
of days. Assume k D 0:001 and further assume that four people initially have heard
the rumor. How soon will all 1000 employees have heard the rumor?

14. Consider modeling the contagious disease Ebola. (Youmay be interested in researching
on the Internet just how deadly this virus is.) An animal research laboratory is located
in Restin, Virginia, a suburb of Washington, D.C. with a population of 856,900 people.
A monkey with the Ebola virus has escaped from its captivity in the laboratory and
infected one employee. This employee reports to a Restin hospital later with Ebola
symptoms. The Infectious Disease Center (IDC) in Atlanta gets a call and begins to
model the spread of the disease. Build a model for the IDC with the following growth
rates to determine the number of people who will be infected in Restin after 2 weeks.
a. k D 0:25

b. k D 0:025

c. k D 0:0025

d. k D 0:00025

15. Again consider the spreading of a rumor (see Problem 13 in this section), but now
assume a company with 2000 employees. The rumor concerns the number of manda-
tory terminations that this company must absorb. Based on the model presented in
Problem 13, build a model for the company with the following rumor growth rates to
determine the number who have heard the rumor after 1 week.
a. k D 0:25

b. k D 0:025
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c. k D 0:0025

d. k D 0:00025

e. List some ways of controlling the growth rate.

1.31.3 PROJECTS

1. You plan to invest part of your paycheck to finance your children’s education. You
want to have enough in the account to draw $1000 a month every month for 8 years
beginning 20 years from now. The account pays 0.5% interest each month.
a. How much money will you need 20 years from now to accomplish the financial

objective? Assume you stop investing when your first child begins college—a safe
assumption.

b. How much must you deposit each month during the next 20 years?
2. Assumewe are considering the survival of whales and that if the number of whales falls

below a minimum survival level m, the species will become extinct. Assume also that
the population is limited by the carrying capacity M of the environment. That is, if the
whale population is aboveM , then it will experience a decline because the environment
cannot sustain that large a population level. In the following model, an represents the
whale population after n years. Build a numerical solution for M D 5000, m D 100,
k D 0:0001, and a0 D 4000.

anC1 � an D k.M � an/.an � m/

Now experiment with different values for M , m, and k. Try several starting values for
a0. What does your model predict?

3. AKiller Virus—You have volunteered for the PeaceCorps and have been sent to Rwanda
to help in humanitarian aid. You meet with the World Health Organization (WHO) and
find out about a new killer virus, Hanta. If just one copy of the virus enters the human
body, it can start reproducing very rapidly. In fact, the virus doubles its numbers in
1 hour. The human immune system can be quite effective, but this virus hides in normal
cells. As a result, the human immune response does not begin until the virus has
1 million copies floating within the body. One of the first actions of the immune system
is to raise the body temperature, which in turn lowers the virus replication rate to 150%
per hour. The fever and then flu-like symptoms are usually the first indication of the
illness. Some people with the virus assume that they have only a flu or a bad cold. This
assumption leads to deadly consequences because the immune response alone is not
enough to combat this deadly virus. At maximum reaction, the immune systems alone
can kill only 200,000 copies of the virus per hour. Model this initial phase of the illness
(before antibiotics) for a volunteer infected with 1 copy of the virus.
a. How long will it take for the immune response to begin?
b. If the number of copies of the virus reaches 1 billion, the virus cannot be stopped.

Determine when this happens.
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c. When the number of copies of the virus reaches 1 trillion, the person will die.
Determine when this occurs.

To combat this virus fully, the infected person needs to receive an injection and hourly
doses of an antibiotic. The antibiotic does not affect the replication rate of the virus
(the fever keeps it at 150%), but the immune system and the antibiotics together kill
500,000,000 copies of the virus per hour.
d. Model the second phase of the virus (after the antibiotics are taken). Determine the

latest time at which you can start administering the antibiotic in order to save the
person. Analyze yourmodel and discuss its strengths andweaknesses. (See enclosed
CD for the UMAP module.)

4. Mercury in Fish—Public officials are worried about the elevated levels of toxic mercury
pollution in the reservoirs that provide the drinking water to your city. They have asked
for your assistance in analyzing the severity of the problem. Scientists have known about
the adverse affects of mercury on the health of humans for more than a century. The
term mad as a hatter stems from the nineteenth-century use of mercuric nitrate in the
making of felt hats. Human activities are responsible for most mercury emitted into the
environment. For example, mercury, a by-product of coal, comes from the smokestack
emissions of old, coal-fired power plants in the Midwest and South and is disseminated
by acid rain. Its particles rise on the smokestack plumes and hitch a ride on prevailing
winds, which often blow northeast. After colliding with mountains, the particles drop
to earth. Once in the ecosystem, microorganisms in the soil and reservoir sediment
break down the mercury and produce a very toxic chemical known as methyl mercury.

Mercury undergoes a process known as bioaccumulation. This occurs when organ-
isms take in contaminantsmore rapidly than their bodies can eliminate them. Therefore,
the amount of mercury in their bodies accumulates over time. Humans can eliminate
mercury from their system at a rate proportional to the amount remaining. Methyl mer-
cury decays 50% every 65 to 75 days (known as the half-life of mercury) if no further
mercury is ingested during that time.

Officials in your city have collected and tested 2425 samples of largemouth bass
from the reservoirs and provided the following data. All fish were contaminated. The
mean value of the methyl mercury in the fish samples was 0.43 �g (microgram) per
gram. The average weight of the fish was 0.817 kg.
a. Assume the average adult person (70 kg) eats one fish (0.817 kg) per day. Con-

struct a difference equation to model the accumulation of methyl mercury in the
average adult. Assume the half-life is approximately 70 days. Use your model to
determine the maximum amount of methyl mercury that the average adult human
will accumulate in her or his lifetime.

b. You find out that there is a lethal limit to the amount of mercury in the body; it is
50 mg/kg.What is the maximum number of fish per month that can be eaten without
exceeding this lethal limit?

5. Complete the UMAP module ‘‘Difference Equations with Applications,’’ by Donald
R. Sherbert, UMAP 322. This module presents a good introduction to solving first-
and second-order linear difference equations, including the method of undetermined
coefficients for nonhomogeneous equations. Applications to problems in population
and economic modeling are included.
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1.41.4 Systems of Difference Equations

In this section we consider systems of difference equations. For selected starting values,
we build numerical solutions to get an indication of the long-term behavior of the system.
As we saw in Section 1.3, equilibrium values are values of the dependent variable(s) for
which there is no change in the system once the equilibrium values are obtained. For the
systems considered in this section, we find the equilibrium values and then explore starting
values in their vicinity. If we start close to an equilibrium value, we want to know whether
the system will

a. Remain close
b. Approach the equilibrium value
c. Not remain close

What happens near equilibrium values provides insight concerning the long-term be-
havior of the system.Does the system demonstrate periodic behavior?Are there oscillations?
Does the long-term behavior described by the numerical solution appear to be sensitive to

a. The initial conditions?
b. Small changes in the constants of proportionality used to model the behavior under

study?

Although our approach in this section is numerical, we revisit several scenarios de-
scribed in this section in Chapter 12 when we treat systems of differential equations. Our
goal now is to model several behaviors with difference equations and explore numerically
the behavior predicted by the model.

EXAMPLE 1 A Car Rental Company

A car rental company has distributorships in Orlando and Tampa. The company specializes in
catering to travel agents who want to arrange tourist activities in both cities. Consequently,
a traveler will rent a car in one city and drop the car off in the second city. Travelers
may begin their itinerary in either city. The company wants to determine how much to
charge for this drop-off convenience. Because cars are dropped off in both cities, will
a sufficient number of cars end up in each city to satisfy the demand for cars in that
city? If not, how many cars must the company transport from Orlando to Tampa or from
Tampa to Orlando? The answers to these questions will help the company figure out its
expected costs.

The historical records reveal that 60% of the cars rented in Orlando are returned to
Orlando, whereas 40% end up in Tampa. Of the cars rented from the Tampa office, 70% are
returned to Tampa, whereas 30% end up in Orlando. Figure 1.22 is helpful in summarizing
the situation.
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J Figure 1.22
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Dynamical Systems Model Let’s develop a model of the system. Let n represent the
number of business days. Now define

On D the number of cars in Orlando at the end of day n

Tn D the number of cars in Tampa at the end of day n

Thus the historical records reveal the system
OnC1 D 0:6On C 0:3Tn

TnC1 D 0:4On C 0:7Tn

Equilibrium Values The equilibrium values for the system are those values of On and
Tn for which no change in the system takes place. Let’s call the equilibrium values, if they
exist, O and T , respectively. Then O D OnC1 D On and T D TnC1 D Tn simultaneously.
Substitution in our model yields the following requirements for the equilibrium values:

O D 0:6O C 0:3T

T D 0:4O C 0:7T

�
�:4 :3

:4 �:3

� �
O
T

�
D

�
0
0

�

This system is satisfied whenever O D 3

4
T . For example, if the company owns 7000

cars and starts with 3000 in Orlando and 4000 in Tampa, then our model predicts that

O1 D 0:6.3000/ C 0:3.4000/ D 3000

T1 D 0:4.3000/ C 0:7.4000/ D 4000

Thus this system remains at .O; T / D .3000; 4000/ if we start there.
Next let’s explore what happens if we start at values other than the equilibrium values.

Let’s iterate the system for the following four initial conditions:

Four starting values for the car
rental problem

Orlando Tampa

Case 1 7000 0
Case 2 5000 2000
Case 3 2000 5000
Case 4 0 7000

A numerical solution, or table of values, for each of the starting values is graphed in
Figure 1.23.
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J Figure 1.23
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Sensitivity to Initial Conditions and Long-Term Behavior In each of the four cases,
within a week the system is very close to the equilibrium value .3000; 4000/ even in the
absence of any cars at one of the two sites. Our results suggest that the equilibrium value is
stable and insensitive to the starting values. Based on these explorations, we are inclined to
predict that the system approaches the equilibrium where 3

7
of the fleet ends up in Orlando

and the remaining 4

7
in Tampa. This information is helpful to the company. Knowing the

demand patterns in each city, the company can estimate how many cars it needs to ship. In
the problem set, we ask you to explore the system to determine whether it is sensitive to the
coefficients in the equations for OnC1 and TnC1. J J J

EXAMPLE 2 The Battle of Trafalgar

In the battle of Trafalgar in 1805, a combined French and Spanish naval force under
Napoleon fought a British naval force under Admiral Nelson. Initially, the French–Spanish
force had 33 ships, and the British had 27 ships. During an encounter, each side suffers
a loss equal to 10% of the number of ships of the opposing force. Fractional values are
meaningful and indicate that one or more ships are not at full capacity.

Dynamical Systems Model Let n denote the encounter stage during the course of the
battle and define

Bn D the number of British ships at stage n

Fn D the number of French–Spanish ships at stage n

Then, after an encounter at stage n, the number of ships remaining on each side is

BnC1 D Bn � 0:1Fn

FnC1 D Fn � 0:1Bn

Figure 1.24 shows the numerical solution of the battle for the starting values B0 D 27
and F0 D 33. For full-force engagements we see that the British force would be roundly
defeated after 11 encounters, with only 3 ships remaining and with at least 1 of these badly
damaged. At the end of the battle, after 11 encounter stages, the French–Spanish fleet would
still have approximately 18 ships.

Lord Nelson’s Divide-and-Conquer Strategy Napoleon’s force of 33 ships was ar-
ranged essentially along a line separated into three groups as shown in Figure 1.25. Lord
Nelson’s strategy was to engage force A with 13 British ships (holding 14 in reserve). He
then planned to combine those ships that survived the skirmish against force A with the 14
ships in reserve to engage force B. Finally, after the battle with force B, he planned to use
all remaining ships to engage force C.

Assuming each side loses 5% of the number of ships of the opposing force for each
of the three battles (to enhance the graphs), Figure 1.26 (see pages 42 and 43) shows the
numerical solution of each battle. In battle A, we see that the British defeat the French, with
only 1 British ship damaged; the French have (approximately) 1 of their 3 ships remaining.
Joining forces, battle B begins with a force of better than 26 ships for the British and 18 ships

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_01_ch01_p001-057 January 23, 2013 19:39 41

1.4 Systems of Difference Equations 41

Stage

Stage

B
ri

tt
is

h
 f

o
rc

e
F

re
n
ch

 f
o
rc

e

1
2
3
4
5
6
7
8
9

10
11

33.0000
30.3000
27.9300
25.8630
24.0753
22.5462
21.2579
20.1951
19.3448
18.6965
18.2416

27.0000
23.7000
20.6700
17.8770
15.2907
12.8832
10.6285
8.5028
6.4832
4.5488
2.6791

Stage French forceBrittish force

0 5 10
0

10

20

30

0 5 10
0

10

20

30

©
 C

en
ga

ge
 Le

ar
ni

ng

J Figure 1.24
Numerical solution of the battle between British and French–Spanish
ships in 1805 under full-force engagements
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J Figure 1.25
Configuration of Napoleon’s fleet

for the French (1 ship from battle A joining the French force B). The second battle results
in the French losing all but 1 of their force B ships and 1 heavily damaged ship; the British
have 19 ships intact plus a heavily damaged ship.

Entering battle C with the French again, and combining Britain’s force C with its re-
maining ships from battle B, we see that Nelson wins the day. At the end of the final battle,
the French have but 1 ship remaining intact, whereas the British have 12 intact ships. Each
side has a damaged ship as well.

The results predicted by our model using the divide-and-conquer strategy are similar
to what actually happened historically. The British fleet under Lord Nelson did win the
battle of Trafalgar, although the French disengaged during the third battle and returned to
France with approximately 13 ships. Unfortunately, Lord Nelson was killed during the bat-
tle, but his strategy was brilliant. Without it, the British would have lost their fleet. J J J
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Lord Nelson’s divide-and-conquer strategy against the French–Spanish force
surprised them, giving an advantage to the British.
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Continued

EXAMPLE 3 Competitive Hunter Model—Spotted Owls and Hawks

Suppose a species of spotted owls competes for survival in a habitat that also supports
hawks. Suppose also that in the absence of the other species, each individual species exhibits
unconstrained growth in which the change in the population during an interval of time
(such as 1 day) is proportional to the population size at the beginning of the interval. If On

represents the size of the spotted owl population at the end of day n and Hn represents the
competing hawk population, then

�On D k1On and �Hn D k2Hn

Here, k1 and k2 are the constant positive growth rates. The effect of the presence of
the second species is to diminish the growth rate of the other species, and vice versa.
Although there are many ways to model the mutually detrimental interaction of the two
species, we will assume that this decrease is approximately proportional to the number of
possible interactions between the two species. Therefore, one submodel is to assume that
the decrease is proportional to the product ofOn andHn. These considerations are modeled
by the equations

�On D k1On � k3OnHn

�Hn D k2Hn � k4OnHn
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Solving each equation for the n C 1st term gives

OnC1 D .1 C k1/On � k3OnHn

HnC1 D .1 C k2/Hn � k4OnHn

where k1–k4 are positive constants. Now, let’s choose specific values for the constants of
proportionality and consider the system:

OnC1 D 1:2On � 0:001OnHn (1.10)
HnC1 D 1:3Hn � 0:002OnHn

Equilibrium Values If we call the equilibrium values .O; H/, then we must have O D
OnC1 D On and H D HnC1 D Hn simultaneously. Substituting into the system yields

O D 1:2O � 0:001OH

H D 1:3H � 0:002OH

or

0 D 0:2O � 0:001OH D O.0:2 � 0:001H/

0 D 0:3H � 0:002OH D H.0:3 � 0:002O/

The first equation indicates that there is no change in the owl population ifO D 0 orH D
0:2=0:001 D 200. The second equation indicates there is no change in the hawk population
if H D 0 or O D 0:3=0:002 D 150, as depicted in Figure 1.27. Note that equilibrium
values exist at .O; H/ D .0; 0/ and .O; H/ D .150; 200/ because neither population will
change at those points. (Substitute the equilibrium values into Equation (1.10) to check that
the system indeed remains at .0; 0/ and .150; 200/ if either of those points represents the
starting values.)

J Figure 1.27
If the owl population
begins at 150 and the
hawk population begins
at 200, the two populations
remain at their starting
values.
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Now let’s analyzewhat happens in the vicinity of the equilibrium values we have found.
Let’s build numerical solutions for the three starting populations given here. Note that the
first two values are close to the equilibrium value .150; 200/, whereas the third is near the
origin.

Owls Hawks

Case 1 151 199
Case 2 149 201
Case 3 10 10
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Iterating Equation (1.10), beginning with the starting values given, results in the nu-
merical solutions shown in Figure 1.28. Note that in each case, one of the two species
eventually drives the other to extinction.

Sensitivity to Initial Conditions and Long-Term Behavior Suppose 350 owls and
hawks are to be placed in a habitat modeled by Equation (1.10). If 150 of the birds are
owls, our model predicts the owls will remain at 150 forever. If 1 owl is removed from
the habitat (leaving 149), then the model predicts that the owl population will die out. If
151 owls are placed in the habitat, however, the model predicts that the owls will grow
without bound and the hawks will disappear. This model is extremely sensitive to the initial
conditions. The equilibrium values are unstable in the sense that if we start close to either
equilibrium value, we do not remain close. Note how the model predicts that coexistence
of the two species in a single habitat is highly unlikely because one of the two species
will eventually dominate the habitat. In the problem set, you are asked to explore this
system further by examining other starting points and by changing the coefficients of the
model. J J J
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Either owls or hawks dominate the competition. (Continues )
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Continued
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EXAMPLE 4 Travelers’ Tendencies at a Regional Airport

Consider a regional airport that is supported by three major airlines: American Airlines,
United Airlines, and US Airways, each flying out to respective hubs. We survey the weekly
local business travelers and find 75% of those who traveled on US Airways traveled again
on US Airways, 5% switched to fly United, and 20% switched to fly American. Of those
who traveled on United, 60% traveled again on United, but 20% switched to US Airways,
and 20% switched to American. Of those who traveled on American, only 40% remained
with American, 40% switched to US Airways, and 20% switched to United. We assume
these tendencies continue week to week and that no additional local business travelers enter
or leave the system. These tendencies are depicted in Figure 1.29.

J Figure 1.29
Travelers’ tendencies at a
regional airport.

75% 40%

5%

20%

US
Airways

20%

20%

60%

40%

20%

United
Airlines

American
Airlines

©
 C

en
ga

ge
 Le

ar
ni

ng
 2

01
3

To formulate a system of difference equations, let n represent the nth week of traveling
and define

Sn D the number of US Airways travelers in week n

Un D the number of United Airlines travelers in week n

An D the number of American Airlines travelers in week n

Formulating the system of difference equations, we have the following dynamical
system:

SnC1 D 0:75Sn C 0:20Un C 0:40An

UnC1 D 0:05Sn C 0:60Un C 0:20An

AnC1 D 0:20Sn C 0:20Un C 0:40An

Equilibrium Values If we call the equilibrium values .S; U; A/, then we must have
S D SnC1 D Sn, U D UnC1 D Un, A D AnC1 D An simultaneously. Substituting into
the dynamical system yields

�0:25S C 0:20U C 0:40A D 0

0:05S � 0:40U C 0:20A D 0

0:20S C 0:20U � 0:60A D 0
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There are an infinite number of solutions to this system of equations. Letting A D 1,
we find the system is satisfied when S D 2:2221 and U D 0:7777694 (approximately).
Suppose the system has 4000 weekly travelers. Then, S D 2222, U D 778, and A D 1000
travelers should approximate the equilibrium values. Let’s use a spreadsheet to check the
equilibrium values and several other values. The total number of travelers in the system is
4,000 with initial travelers as follows:

US Airways United Airlines American Airlines

Case 1 2222 778 1000
Case 2 2720 380 900
Case 3 1000 1000 2000
Case 4 0 0 4000

The numerical solutions for the starting values are graphed in Figure 1.30.

Sensitivity to Initial Conditions and Long-Term Behavior Suppose initially there are
4000 travelers in the system, and all remain in the system. At least for the starting val-
ues that we investigated, the system approaches the same result, even if initially there are
no travelers traveling US Airways or United Airlines in the system. The equilibrium in-
vestigated appears to be stable. Starting values in the vicinity of the equilibrium appear to
approach the equilibrium. What about the origin? Is it stable? In the problem set, you are
asked to explore this system further by examining other starting values and changing the
coefficients of the model. Additionally, you are asked to investigate systems in which the
travelers enter and leave the system. J J J
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J Figure 1.30
Regional airport travel tendencies
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b. Case 2
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c. Case 3

11 13 15 17 2119
0

500

1000

1500

2000

2500

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1000
1050
957.5

882.625
836.64375

810.3940625
795.7647344
787.6802039
783.2260321
780.7747017
779.4261627
778.6844049
778.2764257
778.0520348
777.9286192
777.8607406
777.8234073
777.802874

777.7915807
777.7853694
777.7819532

1000
1750

2002.5
2109.375

2161.75625
2189.285938
2204.171266
2212.306996
2216.771408
2219.224786
2220.573735
2221.315575
2221.72357

2221.947964
2222.071381
2222.139259
2222.176593
2222.197126
2222.208419
2222.214631
2222.218047

n United Airlines

2000
1200
1040
1008

1001.6
1000.32

1000.064
1000.013
1000.003
1000.001

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

American AirlinesUS Airways

1 3 5 7 9

US Airways
United Airlines
American Airlines 

©
 C

en
ga

ge
 Le

ar
ni

ng
 2

01
3

J Figure 1.30
Continued
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J Figure 1.30
Continued

EXAMPLE 5 Discrete Epidemic Models

Consider a disease that is spreading throughout the United States, such as the new flu. The
Centers for Disease Control and Prevention is interested in knowing and experimentingwith
a model for this new disease before it actually becomes a real epidemic. Let us consider the
population divided into three categories: susceptible, infected, and removed. We make the
following assumptions for our model:

� No one enters or leaves the community, and there is no contact outside the community.
� Each person is susceptible S (able to catch this new flu); infected I (currently has the flu
and can spread the flu); or removed R (already had the flu and will not get it again, which
includes death).

� Initially, every person is either S or I:

� Once someone gets the flu this year, they cannot get the flu again.
� The average length of the disease is 5/3 weeks (1 and 2/3 weeks), over which time the
person is deemed infected and can spread the disease.

� Our time period for the model will be per week.

The model we will consider is called the SIR model
Let’s assume the following definitions for our variables:

S.n/ D number in the population susceptible after period n

I.n/ D number infected after period n

R.n/ D number removed after period n
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Let’s start our modeling process with R.n/. Our assumption for the length of time
someone has the flu is 5/3 weeks. Thus, 3/5 or 60% of the infected people will be removed
each week:

R.n C 1/ D R.n/ C 0:6I.n/

The value 0.6 is called the removal rate per week. It represents the proportion of the
infected persons who are removed from infection each week.

I.n/ will have terms that both increase and decrease its amount over time. It is de-
creased by the number of people removed each week: 0.6 * I.n/. It is increased by the
number of susceptible people who come into contact with infected people and catch the
disease: aS.n/I.n/. We define a as the rate at which the disease is spread, or the transmis-
sion coefficient. We realize this is a probabilistic coefficient. We will assume, initially, that
this rate is a constant value that can be found from the initial conditions.

Let’s illustrate as follows: Assume we have a population of 1000 students residing in
the dorms. Our nurse found 5 students reporting to the infirmary initially: I.0/ D 5 and
S.0/ D 995. After one week, the total number infected with the flu is 9. We compute a as
follows:

I.0/ D 5; I.1/ D I.0/ � 0:6 � I.0/ C aI.0/ � S.0/

I.1/ D 9 D 5 � 3 C a � 5 � 995

7 D a.4975/

a D 0:001407

Lets considerS.n/. This number is decreased only by the number that becomes infected.
We may use the same rate a as before to obtain the model:

S.n C 1/ D S.n/ � aS.n/I.n/

Our coupled model is

R.n C 1/ D R.n/ C 0:6I.n/
I.n C 1/ D I.n/ � 0:6I.n/ C 0:001407I.n/S.n/
S.n C 1/ D S.n/ � 0:001407S.n/I.n/
I.0/ D 5; S.0/ D 995; R.0/ D 0

(1.11)

The SIR model Equation (1.11), can be solved iteratively and viewed graphically. Lets
iterate the solution and obtain the graph to observe the behavior to obtain some insights.

Interpretation We analyze both the numerical table and Figures 1.31–1.34 to examine
what is happening during the epidemic. The peak of the flu epidemic occurs around week
9, where the graph of those infected reaches its maximum value. The maximum number is
slightly larger than 250; from the table it is 250.6044. After about 17 weeks, slightly less
than 85 people still have not gotten the flu.
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You will be asked to check for sensitivity to the coefficients and initial conditions in
the exercise set. J J J

1.41.4 PROBLEMS

1. Consider Example 1, A Car Rental Company. Experiment with different values for the
coefficients. Iterate the resulting dynamical system for the given initial values. Then
experiment with different starting values. Do your experimental results indicate that
the model is sensitive
a. to the coefficients?
b. to the starting values?

J Figure 1.31
Plot of I (n) versus time
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J Figure 1.32
Plot of R (n) over time
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J Figure 1.33
Plot of S (n) over time
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J Figure 1.34
Plot of I (n), S (n), and R (n)
overlaid together
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2. Consider Example 3, Competitive Hunter Model—Spotted Owls and Hawks. Experi-
ment with different values for the coefficients using the starting values given. Then try
different starting values. What is the long-term behavior? Do your experimental results
indicate that the model is sensitive
a. to the coefficients?
b. to the starting values?
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3. In analyzing the battle of Trafalgar in 1805, we saw that if the two forces simply
engaged head-on, the British lost the battle and approximately 24 ships, whereas the
French–Spanish force lost approximately 15 ships.We also saw that Lord Nelson could
overcome a superior force by employing a divide-and-conquer strategy. An alternative
strategy for overcoming a superior force is to increase the technology employed by the
inferior force. Suppose that the British ships were equipped with superior weaponry,
and that the French–Spanish losses equaled 15% of the number of ships of the opposing
force, whereas the British suffered casualties equal to 5% of the opposing force.
a. Formulate a system of difference equations to model the number of ships possessed

by each force. Assume the French–Spanish force starts with 33 ships and the British
start with 27 ships.

b. Build a numerical solution to determine who wins under the new assumption in a
head-on engagement.

c. Build a numerical solution for the three battles employing Nelson’s divide-and-
conquer strategy coupled with the superior weaponry of the British ships.

4. Suppose the spotted owls’ primary food source is a single prey: mice. An ecologist
wishes to predict the population levels of spotted owls and mice in a wildlife sanctu-
ary. Letting Mn represent the mouse population after n years and On the predator owl
population, the ecologist has suggested the model.

MnC1 D 1:2Mn � 0:001OnMn

OnC1 D 0:7On C 0:002OnMn

The ecologist wants to know whether the two species can coexist in the habitat and
whether the outcome is sensitive to the starting populations. Find the equilibrium values
of the dynamical system for this predator-prey model.
a. Compare the signs of the coefficients of the preceding model with the signs of

the coefficients of the owls–hawks model in Example 3. Explain the sign of each
of the four coefficients 1:2; �0:001; 0:7, and 0:002 in terms of the predator–prey
relationship being modeled.

b. Test the initial populations in the following table and predict the long-term outcome:

Owls Mice

Case A 150 200
Case B 150 300
Case C 100 200
Case D 10 20

c. Now experiment with different values for the coefficients using the starting values
given. Then try different starting values. What is the long-term behavior? Do your
experimental results indicate that the model is sensitive to the coefficients? Is it
sensitive to the starting values?

5. In Example 4, Travelers’ Tendencies at a Regional Airport, experiment with starting
values near the origin. Does the origin appear to be a stable equilibrium? Explain.
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Experiment with different values for the coefficients using the starting values given.
Then try different starting values. What is the long-term behavior? Do your experimen-
tal results indicate the model is sensitive to the coefficients? To the starting values?

Now assume that each airlines recruits new travelers. Initially assume that the total
number of travelers increases as each airlines recruits new travelers. Experiment with
different starting values for new travelers. What is the long-term behavior? Does it
seem to be sensitive to the rate of recruiting new travelers? How would you adjust
your model to reflect the total number of travelers in the region as a constant. Adjust
your model to reflect what is happening at your closest airport. What do you think will
happen at your closest airport in the long haul?

6. An economist is interested in the variation of the price of a single product. It is ob-
served that a high price for the product in the market attracts more suppliers. However,
increasing the quantity of the product supplied tends to drive the price down. Over
time, there is an interaction between price and supply. The economist has proposed
the following model, where Pn represents the price of the product at year n, and Qn

represents the quantity. Find the equilibrium values for this system.

PnC1 D Pn � 0:1.Qn � 500/

QnC1 D Qn C 0:2.Pn � 100/

a. Does the model make sense intuitively? What is the significance of the constants
100 and 500? Explain the significance of the signs of the constants �0:1 and 0.2.

b. Test the initial conditions in the following table and predict the long-term behavior.

Price Quantity

Case A 100 500
Case B 200 500
Case C 100 600
Case D 100 400

7. In 1868, the accidental introduction into the United States of the cottony-cushion insect
(Icerya purchasi) from Australia threatened to destroy the American citrus industry.
To counteract this situation, a natural Australian predator, a ladybird beetle (Novius
cardinalis), was imported. The beetles kept the insects to a relatively low level. When
DDT (an insecticide) was discovered to kill scale insects, farmers applied it in the hope
of reducing the scale insect population even further. However, DDT turned out to be
fatal to the beetle as well, and the overall effect of using the insecticide was to increase
the numbers of the scale insect. LetCn andBn represent the cottony-cushion insect and
ladybird beetle population levels, respectively, after n days. Generalizing the model in
Problem 4, we have

CnC1 D Cn C k1Cn � k2BnCn

BnC1 D Bn � k3Bn C k4BnCn

where the ki are positive constants.
a. Discuss the meaning of each ki in the predator–prey model.
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b. What assumptions are implicitly being made about the growth of each species in
the absence of the other species?

c. Pick values for your coefficients and try several starting values. What is the long-
term behavior predicted by yourmodel? Vary the coefficients. Do your experimental
results indicate that the model is sensitive to the coefficients? To the starting values?

d. Modify the predator–prey model to reflect a predator–prey system in which farmers
apply (on a regular basis) an insecticide that destroys both the insect predator and
the insect prey at a rate proportional to the numbers present.

8. Reexamine the airlines’ tendencies at the regional airport adding the assumption that
each period, 100 new passengers enter the system. Experiment with changing the dis-
tribution of the passengers.

9. Find the equilibrium values for model (1.11).

10. In model (1.11) determine the outcome with the following parameters changed:
a. Initially 5 are sick, and 15 are sick the next week.
b. The flu lasts 1 week.
c. The flu lasts 4 weeks.
d. There are 4000 students in the dorm; 5 are initially infected, and 30more are infected

the next week.

1.41.4 PROJECTS (See enclosed CD for UMAP modules.)

1. Complete the requirements of the UMAP module ‘‘Graphical Analysis of Some Dif-
ference Equations in Biology,’’ by Martin Eisen, UMAP 553. The growth of many
biological populations can be modeled by difference equations. This module shows
how the behavior of the solutions to certain equations can be predicted by graphical
techniques.

2. Prepare a summary of the paper by May et al. listed among the Further Reading titles
for this section.

3. Complete the modules ‘‘The Growth of Partisan Support I: Model and Estimation’’
(UMAP 304) and ‘‘The Growth of Partisan Support II: Model Analytics’’ (UMAP 305),
byCarolWeitzel Kohfeld. UMAP304 presents a simplemodel of politicalmobilization,
refined to include the interaction between supporters of a particular party and recruitable
nonsupporters. UMAP 305 investigates the mathematical properties of the first-order
quadratic-difference equation model. The model is tested using data from three U.S.
counties.

1.4 Further Reading
Clark, Colin W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources.

New York: Wiley, 1976.
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May, R. M. Stability and Complexity in Model Ecosystems, Monographs in Population Biology VI.
Princeton, NJ: Princeton University Press, 2001.

May, R.M., ed. Theoretical Ecology: Principles and Applications. Philadelphia: Saunders, 1976.
May, R. M., J. R. Beddington, C. W. Clark, S. J. Holt, & R. M. Lewis, ‘‘Management of Multispecies

Fisheries.’’ Science 205 (July 1979): 267–277.
Schom, A., & M. Joseph. Trafalgar, Countdown to Battle, 1803–1805. London: Simon & Shuster,

1990.
Shubik, M., ed. Mathematics of Conflict. Amsterdam: Elsevier Science, 1983.
Tuchinsky, P. M.Man in Competition with the Spruce Budworm, UMAP Expository Monograph. The

population of tiny caterpillars periodically explodes in the evergreen forests of eastern Canada
and Maine. They devour the trees’ needles and cause great damage to forests that are central to
the economy of the region. The province of New Brunswick is using mathematical models of
the budworm/forest interaction in an effort to plan for and control the damage. The monograph
surveys the ecological situation and examines the computer simulation and models currently
in use.
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22 The Modeling Process,
Proportionality, and
Geometric Similarity

Introduction
In Chapter 1 we presented graphical models representing population size, drug concentration
in the bloodstream, various financial investments, and the distribution of cars between two
cities for a rental company. Now we examine more closely the process of mathematical
modeling. To gain an understanding of the processes involved in mathematical modeling,
consider the two worlds depicted in Figure 2.1. Suppose we want to understand some
behavior or phenomenon in the real world. We may wish to make predictions about that
behavior in the future and analyze the effects that various situations have on it.

J Figure 2.1
The real and mathematical
worlds

Real-world systems

Observed behavior
or phenomenon
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Mathematical operations
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For example, when studying the populations of two interacting species, we may wish

to know if the species can coexist within their environment or if one species will eventually
dominate and drive the other to extinction. In the case of the administration of a drug to a
person, it is important to know the correct dosage and the time between doses to maintain
a safe and effective level of the drug in the bloodstream.

How can we construct and use models in the mathematical world to help us better
understand real-world systems? Before discussing how we link the two worlds together,
let’s consider what we mean by a real-world system and why we would be interested in
constructing a mathematical model for a system in the first place.

A system is an assemblage of objects joined in some regular interaction or interde-
pendence. The modeler is interested in understanding how a particular system works, what
causes changes in the system, and how sensitive the system is to certain changes. He or she
is also interested in predicting what changes might occur and when they occur. How might
such information be obtained?

For instance, suppose the goal is to draw conclusions about an observed phenomenon
in the real world. One procedure would be to conduct some real-world behavior trials or
experiments and observe their effect on the real-world behavior. This is depicted on the left
side of Figure 2.2. Although such a procedure might minimize the loss in fidelity incurred
by a less direct approach, there are many situations in which we would not want to follow
such a course of action. For instance, there may be prohibitive financial and human costs

58
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for conducting even a single experiment, such as determining the level of concentration at
which a drug proves to be fatal or studying the radiation effects of a failure in a nuclear
power plant near a major population area. Or we may not be willing to accept even a
single experimental failure, such as when investigating different designs for a heat shield
for a spacecraft carrying astronauts. Moreover, it may not even be possible to produce a
trial, as in the case of investigating specific change in the composition of the ionosphere
and its corresponding effect on the polar ice cap. Furthermore, we may be interested in
generalizing the conclusions beyond the specific conditions set by one trial (such as a cloudy
day in New York with temperature 82 ıF, wind 15–20 miles per hour, humidity 42%, and
so on). Finally, even though we succeed in predicting the real-world behavior under some
very specific conditions, we have not necessarily explained why the particular behavior
occurred. (Although the abilities to predict and explain are often closely related, the ability
to predict a behavior does not necessarily imply an understanding of it. In Chapter 3 we
study techniques specifically designed to help us make predictions even though we cannot
explain satisfactorily all aspects of the behavior.) The preceding discussion underscores the
need to develop indirect methods for studying real-world systems.

An examination of Figure 2.2 suggests an alternativeway of reaching conclusions about
the real world. First, we make specific observations about the behavior being studied and
identify the factors that seem to be involved. Usually we cannot consider, or even identify,
all the factors involved in the behavior, so we make simplifying assumptions that eliminate
some factors. For instance, wemay choose to neglect the humidity in NewYork City, at least
initially, when studying radioactive effects from the failure of a nuclear power plant. Next,
we conjecture tentative relationships among the factors we have selected, thereby creating
a rough model of the behavior. Having constructed a model, we then apply appropriate
mathematical analysis leading to conclusions about the model. Note that these conclusions
pertain only to the model, not to the actual real-world system under investigation. Because
we made some simplifications in constructing the model, and because the observations
on which the model is based invariably contain errors and limitations, we must carefully
account for these anomalies before drawing any inferences about the real-world behavior.
In summary, we have the following rough modeling procedure:

1. Through observation, identify the primary factors involved in the real-world behav-
ior, possibly making simplifications.

2. Conjecture tentative relationships among the factors.
3. Apply mathematical analysis to the resultant model.
4. Interpret mathematical conclusions in terms of the real-world problem.
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We portrayed this flow of the modeling process in the introduction to Chapter 1 and
show it again in Figure 2.3 as a closed system. Given some real-world system, we gather
sufficient data to formulate a model. Next we analyze the model and reach mathematical
conclusions about it. Thenwe interpret themodel andmake predictions or offer explanations.
Finally, we test our conclusions about the real-world system against new observations and
data. We may then find we need to go back and refine the model to improve its predictive
or descriptive capabilities. Or perhaps we will discover that the model really does not fit
the real world accurately, so we must formulate a new model. We will study the various
components of this modeling process in detail throughout the book.

2.12.1 Mathematical Models
For our purposes we define a mathematical model as a mathematical construct designed
to study a particular real-world system or phenomenon. We include graphical, symbolic,
simulation, and experimental constructs. Mathematical models can be differentiated fur-
ther. There are existing mathematical models that can be identified with some particular
real-world phenomenon and used to study it. Then there are those mathematical models
that we construct specifically to study a special phenomenon. Figure 2.4 depicts this differ-
entiation between models. Starting from some real-world phenomenon, we can represent it
mathematically by constructing a new model or selecting an existing model. On the other
hand, we can replicate the phenomenon experimentally or with some kind of simulation.

Regarding the question of constructing a mathematical model, a variety of conditions
can cause us to abandon hope of achieving any success. The mathematics involved may
be so complex and intractable that there is little hope of analyzing or solving the model,
thereby defeating its utility.

This complexity can occur, for example, when attempting to use a model given by a
system of partial differential equations or a system of nonlinear algebraic equations. Or the
problem may be so large (in terms of the number of factors involved) that it is impossible to

J Figure 2.4
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capture all the necessary information in a single mathematical model. Predicting the global
effects of the interactions of a population, the use of resources, and pollution is an example
of such an impossible situation. In such cases we may attempt to replicate the behavior
directly by conducting various experimental trials. Then we collect data from these trials
and analyze the data in some way, possibly using statistical techniques or curve-fitting
procedures. From the analysis, we can reach certain conclusions.

In other cases, we may attempt to replicate the behavior indirectly. We might use an
analog device such as an electrical current to model a mechanical system. We might use a
scaled-down model such as a scaled model of a jet aircraft in a wind tunnel. Or we might
attempt to replicate a behavior on a digital computer—for instance, simulating the global
effects of the interactions of population, use of resources, and pollution or simulating the
operation of an elevator system during morning rush hour.

The distinction between the various model types as depicted in Figure 2.4 is made
solely for ease of discussion. For example, the distinction between experiments and simula-
tions is based on whether the observations are obtained directly (experiments) or indirectly
(simulations). In practical models this distinction is not nearly so sharp; one master model
may employ several models as submodels, including selections from existing models, sim-
ulations, and experiments. Nevertheless, it is informative to contrast these types of models
and compare their various capabilities for portraying the real world.

To that end, consider the following properties of a model.

Fidelity: The preciseness of a model’s representation of reality
Costs: The total cost of the modeling process
Flexibility:The ability to change and control conditions affecting themodel as required
data are gathered

It is useful to know the degree towhich a givenmodel possesses each of these characteristics.
However, since specificmodels vary greatly, evenwithin the classes identified in Figure 2.4,
the best we can hope for is a comparison of the relative performance between the classes of
models for each of the characteristics. The comparisons are depicted in Figure 2.5, where
the ordinate axis denotes the degree of effectiveness of each class.
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Comparisons among the model types
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Let’s summarize the results shown in Figure 2.5. First, consider the characteristic of
fidelity. We would expect observations made directly in the real world to demonstrate the
greatest fidelity, even though some testing bias and measurement error may be present. We
would expect experimental models to show the next greatest fidelity because behavior is
observed directly in a more controlled environment such as a laboratory. Because simu-
lations incorporate indirect observations, they suffer a further loss in fidelity. Whenever a
mathematical model is constructed, real-world conditions are simplified, resulting in more
loss of fidelity. Finally, any selected model is based on additional simplifications that are
not even tailored to the specific problem, and these simplifications imply still further loss
in fidelity.

Next, consider cost. Generally, we would expect any selected mathematical model to
be the least expensive. Constructedmathematical models bear an additional cost of tailoring
the simplifications to the phenomenon being studied. Experiments are usually expensive to
set up and operate. Likewise, simulations use indirect devices that are often expensive to
develop, and simulations commonly involve large amounts of computer space, time, and
maintenance.

Finally, consider flexibility. Constructed mathematical models are generally the most
flexible because different assumptions and conditions can be chosen relatively easily. Se-
lected models are less flexible because they are developed under specific assumptions; nev-
ertheless, specific conditions can often be varied over wide ranges. Simulations usually
entail the development of some other indirect device to alter assumptions and conditions
appreciably. Experiments are even less flexible because some factors are very difficult to
control beyond specific ranges. Observations of real-word behavior have little flexibility
because the observer is limited to the specific conditions that pertain at the time of the ob-
servation. Moreover, other conditions might be highly improbable, or impossible, to create.
It is important to understand that our discussion is only qualitative in nature and that there
are many exceptions to these generalizations.

Construction of Models
In the preceding discussion we viewed modeling as a process and briefly considered the
form of the model. Now let’s focus on the construction of mathematical models. We begin
by presenting an outline of a procedure that is helpful in constructing models. In the next
section, we illustrate the various steps in the procedure by discussing several real-world
examples.

STEP 1 IDENTIFY THE PROBLEM. What is the problem you would like to explore? Typically this is
a difficult step because in real-life situations no one simply hands you a mathematical
problem to solve. Usually you have to sort through large amounts of data and identify some
particular aspect of the situation to study.Moreover, it is imperative to be sufficiently precise
(ultimately) in the formulation of the problem to allow for translation of the verbal statements
describing the problem intomathematical symbols. This translation is accomplished through
the next steps. It is important to realize that the answer to the question posed might not lead
directly to a usable problem identification.

STEP 2 MAKE ASSUMPTIONS. Generally, we cannot hope to capture in a usable mathematical model
all the factors influencing the identified problem. The task is simplified by reducing the
number of factors under consideration. Then, relationships among the remaining variables
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must be determined. Again, by assuming relatively simple relationships, we can reduce the
complexity of the problem. Thus the assumptions fall into two main activities:
a. CLASSIFY THE VARIABLES.What things influence the behavior of the problem identified in

Step 1? List these things as variables. The variables the model seeks to explain are the
dependent variables, and there may be several of these. The remaining variables are the
independent variables. Each variable is classified as dependent, independent, or neither.

You may choose to neglect some of the independent variables for either of two
reasons. First, the effect of the variable may be relatively small compared to other
factors involved in the behavior. Second, a factor that affects the various alternatives
in about the same way may be neglected, even though it may have a very important
influence on the behavior under investigation. For example, consider the problem of
determining the optimal shape for a lecture hall, where readability of a chalkboard or
overhead projection is a dominant criterion. Lighting is certainly a crucial factor, but it
would affect all possible shapes in about the same way. By neglecting such a variable,
and perhaps incorporating it later in a separate, more refined model, the analysis can be
simplified considerably.

b. DETERMINE INTERRELATIONSHIPS AMONG THE VARIABLES SELECTED FOR STUDY. Before we
can hypothesize a relationship among the variables, we generally must make some addi-
tional simplifications. The problem may be so complex that we cannot see a relationship
among all the variables initially. In such cases it may be possible to study submodels.
That is, we study one or more of the independent variables separately. Eventually wewill
connect the submodels together. Studying various techniques, such as proportionality,
will aid in hypothesizing relationships among the variables.

STEP 3 SOLVE OR INTERPRET THE MODEL. Now put together all the submodels to see what the model
is telling us. In some cases the model may consist of mathematical equations or inequalities
that must be solved to find the information we are seeking. Often, a problem statement
requires a best solution, or optimal solution, to the model. Models of this type are discussed
later.

Often, we will find that we are not quite ready to complete this step, or we may end
up with a model so unwieldy we cannot solve or interpret it. In such situations we might
return to Step 2 andmake additional simplifying assumptions. Sometimeswewill evenwant
to return to Step 1 to redefine the problem. This point will be amplified in the following
discussion.

STEP 4 VERIFY THE MODEL. Before we can use the model, we must test it out. There are several
questions to ask before designing these tests and collecting data—a process that can be
expensive and time-consuming. First, does the model answer the problem identified in
Step 1, or did it stray from the key issue as we constructed the model? Second, is the model
usable in a practical sense? That is, can we really gather the data necessary to operate the
model? Third, does the model make common sense?

Once the commonsense tests are passed, we will want to test many models using actual
data obtained from empirical observations. We need to be careful to design the test in such
a way as to include observations over the same range of values of the various independent
variables we expect to encounter when actually using the model. The assumptions made in
Step 2 may be reasonable over a restricted range of the independent variables but very poor
outside of those values. For instance, a frequently used interpretation of Newton’s second
law states that the net force acting on a body is equal to the mass of the body times its
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acceleration. This law is a reasonable model until the speed of the object approaches the
speed of light.

Be careful about the conclusions you draw from any tests. Just as we cannot prove a the-
orem simply by demonstrating many cases that support the theorem, we cannot extrapolate
broad generalizations from the particular evidence we gather about our model. A model
does not become a law just because it is verified repeatedly in some specific instances.
Rather, we corroborate the reasonableness of our model through the data we collect.

STEP 5 IMPLEMENT THEMODEL. Of course, our model is of no use just sitting in a filing cabinet. We
will want to explain our model in terms that the decision makers and users can understand
if it is ever to be of use to anyone. Furthermore, unless the model is placed in a user-friendly
mode, it will quickly fall into disuse. Expensive computer programs sometimes suffer such
a demise. Often the inclusion of an additional step to facilitate the collection and input of
the data necessary to operate the model determines its success or failure.

STEP 6 MAINTAINTHEMODEL.Remember that themodel is derived from a specific problem identified
in Step 1 and from the assumptions made in Step 2. Has the original problem changed in
any way, or have some previously neglected factors become important? Does one of the
submodels need to be adjusted?

We summarize the steps for constructing mathematical models in Figure 2.6.We should
not be too enamored of ourwork. Like anymodel, our procedure is an approximation process
and therefore has its limitations. For example, the procedure seems to consist of discrete
steps leading to a usable result, but that is rarely the case in practice. Before offering an
alternative procedure that emphasizes the iterative nature of the modeling process, let’s
discuss the advantages of the methodology depicted in Figure 2.6.

The process shown in Figure 2.6 provides a methodology for progressively focusing
on those aspects of the problem we wish to study. Furthermore, it demonstrates a curious
blend of creativity with the scientific method used in the modeling process. The first two
steps are more artistic or original in nature. They involve abstracting the essential features of
the problem under study, neglecting any factors judged to be unimportant, and postulating
relationships precise enough to help answer the questions posed by the problem. However,
these relationships must be simple enough to permit the completion of the remaining steps.

J Figure 2.6
Construction of a
mathematical model

Step 1. Identify the problem.
Step 2. Make assumptions.

a. Identify and classify the variables.
b. Determine interrelationships between

the variables and submodels.
Step 3. Solve the model.
Step 4. Verify the model.

a. Does it address the problem?
b. Does it make common sense?
c. Test it with real-world data.

Step 5. Implement the model.
Step 6. Maintain the model.
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Although these steps admittedly involve a degree of craftsmanship, we will learn some
scientific techniques we can apply to appraise the importance of a particular variable and
the preciseness of an assumed relationship. Nevertheless, when generating numbers in
Steps 3 and 4, remember that the process has been largely inexact and intuitive.

EXAMPLE 1 Vehicular Stopping Distance

Scenario Consider the following rule often given in driver education classes:

Allow one car length for every 10 miles of speed under normal driving conditions, but more
distance in adverse weather or road conditions. One way to accomplish this is to use the 2-
second rule for measuring the correct following distance no matter what your speed. To obtain
that distance, watch the vehicle ahead of you pass some definite point on the highway, like a
tar strip or overpass shadow. Then count to yourself ‘‘one thousand and one, one thousand and
two;’’ that is 2 seconds. If you reach the mark before you finish saying those words, then you are
following too close behind.

The preceding rule is implemented easily enough, but how good is it?

Problem Identification Our ultimate goal is to test this rule and suggest another rule if
it fails. However, the statement of the problem—How good is the rule?—is vague. We need
to be more specific and spell out a problem, or ask a question, whose solution or answer will
help us accomplish our goal while permitting a more exact mathematical analysis. Consider
the following problem statement: Predict the vehicle’s total stopping distance as a function
of its speed.

Assumptions We begin our analysis with a rather obvious model for total stopping
distance:

total stopping distance D reaction distance C braking distance

By reaction distance, we mean the distance the vehicle travels from the instant the
driver perceives a need to stop to the instant when the brakes are actually applied. Braking
distance is the distance required for the brakes to bring the vehicle to a complete stop.

First let’s develop a submodel for reaction distance. The reaction distance is a function
of many variables, and we start by listing just two of them:

reaction distance D f (response time, speed)

We could continue developing the submodel with asmuch detail as we like. For instance,
response time is influenced by both individual driving factors and the vehicle operating sys-
tem. System time is the time from when the driver touches the brake pedal until the brakes
are mechanically applied. For modern cars we would probably neglect the influence of the
system because it is quite small in comparison to the human factors. The portion of the re-
sponse time determined by the driver depends on many things, such as reflexes, alertness,
and visibility. Because we are developing only a general rule, we could just incorporate
average values and conditions for these latter variables. Once all the variables deemed im-
portant to the submodel have been identified, we can begin to determine interrelationships
among them. We suggest a submodel for reaction distance in the next section.
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Next consider the braking distance. The weight and speed of the vehicle are certainly
important factors to be taken into account. The efficiency of the brakes, type and condition
of the tires, road surface, and weather conditions are other legitimate factors. As before, we
would most likely assume average values and conditions for these latter factors. Thus, our
initial submodels give braking distance as a function of vehicular weight and speed:

braking distance D h(weight, speed)

In the next section we also suggest and analyze a submodel for braking distance.
Finally, let’s discuss briefly the last three steps in themodeling process for this problem.

We would want to test our model against real-world data. Do the predictions afforded by
the model agree with real driving situations? If not, we would want to assess some of our
assumptions and perhaps restructure one (or both) of our submodels. If the model does
predict real driving situations accurately, then does the rule stated in the opening discussion
agree with the model? The answer gives an objective basis for answering, How good is
the rule? Whatever rule we come up with (to implement the model), it must be easy to
understand and easy to use if it is going to be effective. In this example, maintenance of the
model does not seem to be a particular issue. Nevertheless, we would want to be sensitive
to the effects on the model of such changes as power brakes or disc brakes, a fundamental
change in tire design, and so on. J J J

Let’s contrast the modeling process presented in Figure 2.6 with the scientific method.
One version of the scientific method is as follows:

STEP 1 Make some general observations of a phenomenon.
STEP 2 Formulate a hypothesis about the phenomenon.
STEP 3 Develop a method to test that hypothesis.
STEP 4 Gather data to use in the test.
STEP 5 Test the hypothesis using the data.
STEP 6 Confirm or deny the hypothesis.

By design, the mathematical modeling process and scientific method have similarities.
For instance, both processes involve making assumptions or hypotheses, gathering real-
world data, and testing or verification using that data. These similarities should not be
surprising; though recognizing that part of the modeling process is an art, we do attempt to
be scientific and objective whenever possible.

There are also subtle differences between the two processes. One difference lies in
the primary goal of the two processes. In the modeling process, assumptions are made
in selecting which variables to include or neglect and in postulating the interrelationships
among the included variables. The goal in the modeling process is to hypothesize a model,
and, as with the scientificmethod, evidence is gathered to corroborate thatmodel. Unlike the
scientific method, however, the objective is not to confirm or deny the model (we already
know it is not precisely correct because of the simplifying assumptions we have made)
but rather to test its reasonableness. We may decide that the model is quite satisfactory
and useful, and elect to accept it. Or we may decide that the model needs to be refined or
simplified. In extreme cases we may even need to redefine the problem, in a sense rejecting
the model altogether. We will see in subsequent chapters that this decision process really
constitutes the heart of mathematical modeling.
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Iterative Nature of Model Construction
Model construction is an iterative process. We begin by examining some system and iden-
tifying the particular behavior we wish to predict or explain. Next we identify the variables
and simplifying assumptions, and then we generate a model. We will generally start with
a rather simple model, progress through the modeling process, and then refine the model
as the results of our validation procedure dictate. If we cannot come up with a model or
solve the one we have, we must simplify it (Figure 2.7). This is done by treating some
variables as constants, by neglecting or aggregating some variables, by assuming simple
relationships (such as linearity) in any submodel, or by further restricting the problem under
investigation. On the other hand, if our results are not precise enough, we must refine the
model (Figure 2.7).

Refinement is generally achieved in the opposite way to simplification: We introduce
additional variables, assumemore sophisticated relationships among the variables, or expand
the scope of the problem. By simplification and refinement, we determine the generality,
realism, and precision of our model. This process cannot be overemphasized and constitutes
the art of modeling. These ideas are summarized in Table 2.1.

We complete this section by introducing several terms that are useful in describing
models. A model is said to be robust when its conclusions do not depend on the precise
satisfaction of the assumptions. A model is fragile if its conclusions do depend on the
precise satisfaction of some sort of conditions. The term sensitivity refers to the degree of
change in a model’s conclusions as some condition on which they depend is varied; the
greater the change, the more sensitive is the model to that condition.
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J Figure 2.7
The iterative nature of model construction
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Table 2.1 The art of mathematical modeling: simplifying or refining the model
as required

Model simplification Model refinement

1. Restrict problem identification.
2. Neglect variables.
3. Conglomerate effects of several variables.
4. Set some variables to be constant.
5. Assume simple (linear) relationships.
6. Incorporate more assumptions.

1. Expand the problem.
2. Consider additional variables.
3. Consider each variable in detail.
4. Allow variation in the variables.
5. Consider nonlinear relationships.
6. Reduce the number of assumptions.

© Cengage Learning

2.12.1 PROBLEMS

In Problems 1–8, the scenarios are vaguely stated. From these vague scenarios, identify a
problem you would like to study. Which variables affect the behavior you have identified in
the problem identification? Which variables are the most important? Remember, there are
really no right answers.

1. The population growth of a single species.

2. A retail store intends to construct a new parking lot. How should the lot be illuminated?

3. A farmer wants to maximize the yield of a certain crop of food grown on his land. Has
the farmer identified the correct problem? Discuss alternative objectives.

4. How would you design a lecture hall for a large class?

5. An object is to be dropped from a great height. When and how hard will it hit the
ground?

6. How should a manufacturer of some product decide how many units of that product
should be manufactured each year and how much to charge for each unit?

7. The United States Food and Drug Administration is interested in knowing if a new drug
is effective in the control of a certain disease in the population.

8. How fast can a skier ski down a mountain slope?

For the scenarios presented in Problems 9–17, identify a problem worth studying and
list the variables that affect the behavior you have identified. Which variables would be
neglected completely? Which might be considered as constants initially? Can you identify
any submodels youwouldwant to study in detail? Identify any data youwouldwant collected.

9. A botanist is interested in studying the shapes of leaves and the forces that mold them.
She clips some leaves from the bottom of a white oak tree and finds the leaves to be
rather broad and not very deeply indented. When she goes to the top of the tree, she
finds very deeply indented leaves with hardly any broad expanse of blade.

10. Animals of different sizeswork differently. Small ones have squeaky voices, their hearts
beat faster, and they breathemore often than larger ones. On the other hand, the skeleton
of a larger animal is more robustly built than that of a small animal. The ratio of the
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diameter to the length is greater in a larger animal than it is in a smaller one. Thus there
are regular distortions in the proportions of animals as the size increases from small to
large.

11. A physicist is interested in studying properties of light. He wants to understand the
path of a ray of light as it travels through the air into a smooth lake, particularly at the
interface of the two different media.

12. A company with a fleet of trucks faces increasing maintenance costs as the age and
mileage of the trucks increase.

13. People are fixated by speed. Which computer systems offer the most speed?

14. How can we improve our ability to sign up for the best classes each term?

15. How should we save a portion of our earnings?

16. Consider a new company that is just getting started in producing a single product in a
competitive market situation. Discuss some of the short-term and long-term goals the
company might have as it enters into business. How do these goals affect employee job
assignments? Would the company necessarily decide to maximize profits in the short
run?

17. Discuss the differences between using a model to predict versus using one to explain
a real-world system. Think of some situations in which you would like to explain a sys-
tem. Likewise, imagine other situations in which you would want to predict
a system.

2.12.1 PROJECTS

1. Consider the taste of brewed coffee.What are some of the variables affecting taste?Which
variables might be neglected initially? Suppose you hold all variables fixed except water
temperature. Most coffeepots use boiled water in some manner to extract the flavor from
the ground coffee. Do you think boiled water is optimal for producing the best flavor?
How would you test this submodel? What data would you collect and how would you
gather them?

2. A transportation company is considering transporting people between skyscrapers in
New York City via helicopter. You are hired as a consultant to determine the number of
helicopters needed. Identify an appropriate problem precisely. Use the model-building
process to identify the data youwould like to have to determine the relationships between
the variables you select. You may want to redefine your problem as you proceed.

3. Consider wine making. Suggest some objectives a commercial producer might have.
Consider taste as a submodel. What are some of the variables affecting taste? Which
variables might be neglected initially? How would you relate the remaining variables?
What data would be useful to determine the relationships?

4. Should a couple buy or rent a home? As the cost of a mortgage rises, intuitively, it
would seem that there is a point where it no longer pays to buy a house. What variables
determine the total cost of a mortgage?
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5. Consider the operation of a medical office. Records have to be kept on individual pa-
tients, and accounting procedures are a daily task. Should the office buy or lease a small
computer system? Suggest objectives that might be considered. What variables would
you consider? How would you relate the variables? What data would you like to have
to determine the relationships between the variables you select? Why might solutions to
this problem differ from office to office?

6. When should a person replace his or her vehicle? What factors should affect the deci-
sion? Which variables might be neglected initially? Identify the data you would like to
have to determine the relationships among the variables you select.

7. How far can a person long jump? In the 1968 Olympic Games in Mexico City, Bob
Beamon of the United States increased the record by a remarkable 10%, a record that
stood through the 1996 Olympics. List the variables that affect the length of the jump.
Do you think the low air density of Mexico City accounts for the 10% difference?

8. Is college a financially sound investment? Income is forfeited for 4 years, and the cost
of college is extremely high. What factors determine the total cost of a college educa-
tion? How would you determine the circumstances necessary for the investment to be
profitable?

2.22.2 Modeling Using Proportionality
We introduced the concept of proportionality in Chapter 1 to model change. Recall that

y / x if and only if y D kx for some constant k 6D 0 (2.1)

Of course, if y / x, then x / y because the constant k in Equation (2.1) is not equal to
zero and then x D . 1

k
/y. The following are other examples of proportionality relationships:

y / x2 if and only if y D k1x2 for k1 a constant (2.2)
y / ln x if and only if y D k2 ln x for k2 a constant (2.3)
y / ex if and only if y D k3ex for k3 a constant (2.4)

In Equation (2.2), y D kx2; k 6D 0, so we also have x / y1=2 because x D . 1p
k

/y1=2.
This leads us to consider how to link proportionalities together, a transitive rule for
proportionality:

y / x and x / z; then y / z

Thus, any variables proportional to the same variables are proportional to one another.
Now let’s explore a geometric interpretation of proportionality. In Equation (2.1),

y D kx yields k D y=x. Thus, k may be interpreted as the tangent of the angle � depicted
in Figure 2.8, and the relation y / x defines a set of points along a line in the plane with
angle of inclination � .

Comparing the general form of a proportionality relationship y D kx with the equation
for a straight line y D mxCb, we can see that the graph of a proportionality relationship is a
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line (possibly extended) passing through the origin. If we plot the proportionality variables
for Models (2.2)–(2.4), we obtain the straight-line graphs presented in Figure 2.9.

It is important to note that not just any straight line represents a proportionality rela-
tionship: The y-intercept must be zero so that the line passes through the origin. Failure to
recognize this point can lead to erroneous results when using our model. For example, sup-
pose we are interested in predicting the volume of water displaced by a boat as it is loaded
with cargo. Because a floating object displaces a volume of water equal to its weight, we
might be tempted to assume that the total volume y of displaced water is proportional to
the weight x of the added cargo. However, there is a flaw with that assumption because
the unloaded boat already displaces a volume of water equal to its weight. Although the
graph of total volume of displaced water versus weight of added cargo is given by a straight
line, it is not given by a line passing through the origin (Figure 2.10), so the proportionality
assumption is incorrect.

J Figure 2.10
A straight-line relationship
exists between displaced
volume and total weight,
but it is not a proportionality
because the line fails to
pass through the origin.
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A proportionality relationship may, however, be a reasonable simplifying assumption,
depending on the size of the y-intercept and the slope of the line. The domain of the
independent variable can also be significant since the relative error

ya � yp

ya
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J Figure 2.11
Proportionality as a simplifying assumption

is greater for small values of x. These features are depicted in Figure 2.11. If the slope
is nearly zero, proportionality may be a poor assumption because the initial displacement
dwarfs the effect of the added weight. For example, there would be virtually no effect in
placing 400 lb on an aircraft carrier already weighing many tons. On the other hand, if
the initial displacement is relatively small and the slope is large, the effect of the initial
displacement is dwarfed quickly, and proportionality is a good simplifying assumption.

EXAMPLE 1 Kepler’s Third Law

To assist in further understanding the idea of proportionality, let’s examine one of the
famous proportionalities fromTable 2.2, Kepler’s third law. In 1601, theGerman astronomer
JohannesKepler became director of the PragueObservatory. Kepler had been helping Tycho
Brahe in collecting 13 years of observations on the relative motion of the planet Mars. By
1609, Kepler had formulated his first two laws:

1. Each planet moves along an ellipse with the sun at one focus.
2. For each planet, the line from the sun to the planet sweeps out equal areas in equal

times.

Kepler spent many years verifying these laws and formulating the third law given in
Table 2.2, which relates the orbital periods and mean distances of the planets from the sun.

Table 2.2 Famous proportionalities

Hooke’s law:F DkS , whereF is the restoring force in a spring stretched or compressed a distance S .

Newton’s law: F D ma or a D 1
m F , where a is the acceleration of a mass m subjected to a net

external force F .

Ohm’s law: V D iR, where i is the current induced by a voltage V across a resistance R:

Boyle’s law: V D k
p , where under a constant temperature k, the volume V is inversely proportional

to the pressure p.

Einstein’s theory of relativity: E D c2M , where under the constant speed of light squared c2, the
energy E is proportional to the mass M of the object.

Kepler’s third law: T D cR
3
2 , where T is the period (days) and R is the mean distance to the sun.

© Cengage Learning
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Table 2.3 Orbital periods and mean distances of planets from the sun

Mean distance
Planet Period (days) (millions of miles)

Mercury 88.0 36
Venus 224.7 67.25
Earth 365.3 93
Mars 687.0 141.75
Jupiter 4331.8 483.80
Saturn 10,760.0 887.97
Uranus 30,684.0 1764.50
Neptune 60,188.3 2791.05
© Cengage Learning

The data shown in Table 2.3 are from the 1993World Almanac.
In Figure 2.12, we plot the period versus the mean distance to the 3

2
power. The plot ap-

proximates a line that projects through the origin.We can easily estimate the slope (constant
of proportionality) by picking any two points that lie on the line passing through the origin:

slope D 60188 � 88

147452 � 216
D :408:

So, we estimate the Model to be T D 0:408R.3=2/. J J J
J Figure 2.12
Kepler’s third law as a
proportionality
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Modeling Vehicular Stopping Distance
Consider again the scenario posed in Example 1 of Section 2.1. Recall the general rule that
allows one car length for every 10 mph of speed. It was also stated that this rule is the same
as allowing for 2 seconds between cars. The rules are in fact different from one another (at
least for most cars). For the rules to be the same, at 10mph both should allow one car length:

1 car length D distance D
�
speed in ft

sec

�
.2 sec/

D
�

10 miles
hr

� �
5280 ft
mi

� �
1 hr

3600 sec

�
.2 sec/ D 29:33 ft

This is an unreasonable result for an average car length of 15 ft, so the rules are not the same.
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J Figure 2.13
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Let’s interpret the one-car-length rule geometrically. If we assume a car length of 15 ft
and plot this rule, we obtain the graph shown in Figure 2.13, which shows that the distance
allowed by the rule is proportional to the speed. In fact, if we plot the speed in feet per
second, the constant of proportionality has the units seconds and represents the total time
for the equation D D kv to make sense. Moreover, in the case of a 15-ft car, we obtain a
constant of proportionality as follows:

k D 15 ft
10 mph

D 15 ft
52;800 ft=3600 sec

D 90

88
sec

In our previous discussion of this problem, we presented the model

total stopping distance D reaction distance C braking distance

Let’s consider the submodels for reaction distance and braking distance.
Recall from Example 1 of Section 2.1 that

reaction distance D f (response time, speed)

Now assume that the vehicle continues at constant speed from the time the driver determines
the need to stop until the brakes are applied. Under this assumption, reaction distance dr is
simply the product of response time tr and velocity v:

dr D trv (2.5)

To test Submodel (2.5), plot measured reaction distance versus velocity. If the resultant
graph approximated a straight line through the origin, we could estimate the slope tr and feel
fairly confident in the submodel. Alternatively, we could test a group of drivers representative
of the assumptions made in the example in Section 2.1 and estimate tr directly.

Next, consider the braking distance:

braking distance D h(weight, speed)
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Suppose that there is a panic stop and the maximum brake force F is applied throughout
the stop. The brakes are basically an energy-dissipating device; that is, the brakes do work
on the vehicle producing a change in the velocity that results in a loss of kinetic energy.
Now, the work done is the force F times the braking distance db . This work must equal the
change in kinetic energy, which, in this situation, is simply 0.5 mv2. Thus, we have

work done D Fdb D 0:5mv2 (2.6)

Next, we consider how the force F relates to the mass of the car. A reasonable design
criterion would be to build cars in such a way that the maximum deceleration is constant
when the maximum brake force is applied, regardless of the mass of the car. Otherwise, the
passengers and driver would experience an unsafe jerk during the braking to a complete
stop. This assumptionmeans that the panic deceleration of a larger car, such as a Cadillac, is
the same as that of a small car, such as a Honda, owing to the design of the braking system.
Moreover, constant deceleration occurs throughout the panic stop. From Newton’s second
law, F D ma, it follows that the force F is proportional to the mass. Combining this result
with Equation (2.6) gives the proportionality relation

db / v2

At this point we might want to design a test for the two submodels, or we could test the
submodels against the data provided by the U.S. Bureau of Public Roads given in Table 2.4.

Figure 2.14 depicts the plot of driver reaction distance against velocity using the data in
Table 2.4. The graph is a straight line of approximate slope 1.1 passing through the origin;
our results are too good! Because we always expect some deviation in experimental results,
we should be suspicious. In fact, the results of Table 2.4 are based on Submodel (2.5),
where an average response time of 3=4 sec was obtained independently. Thus we might
later decide to design another test for the submodel.

To test the submodel for braking distance, we plot the observed braking distance
recorded in Table 2.4 against v2, as shown in Figure 2.15. Proportionality seems to be

Table 2.4 Observed reaction and braking distances

Speed Driver reaction Total stopping
(mph) distance (ft) Braking distance� (ft) distance (ft)

20 22 18–22 (20) 40–44 (42)
25 28 25–31 (28) 53–59 (56)
30 33 36–45 (40.5) 69–78 (73.5)
35 39 47–58 (52.5) 86–97 (91.5)
40 44 64–80 (72) 108–124 (116)
45 50 82–103 (92.5) 132–153 (142.5)
50 55 105–131 (118) 160–186 (173)
55 61 132–165 (148.5) 193–226 (209.5)
60 66 162–202 (182) 228–268 (248)
65 72 196–245 (220.5) 268–317 (292.5)
70 77 237–295 (266) 314–372 (343)
75 83 283–353 (318) 366–436 (401)
80 88 334–418 (376) 422–506 (464)

© Cengage Learning
�Interval given includes 85% of the observations based on tests conducted by the U.S. Bureau of Public Roads.
Figures in parentheses represent average values.
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J Figure 2.14
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a reasonable assumption at the lower speeds, although it does seem to be less convincing
at the higher speeds. By graphically fitting a straight line to the data, we estimate the slope
and obtain the submodel:

db D 0:054v2 (2.7)

We will learn how to fit the model to the data analytically in Chapter 3.

J Figure 2.15
Proportionality of braking
distance and the speed
squared
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J Figure 2.16
Total stopping distance

10 20 30 40 50 60 70 80

100

200

300

400

500  Observation

 Prediction by model

Speed in mph

T
o
ta

l 
st

o
p
p
in

g
 d

is
ta

n
ce

 i
n
 f

ee
t

d

y

One car length (15 ft) per
10 mph of speed

©
 C

en
ga

ge
 Le

ar
ni

ng

Summing Submodels (2.6) and (2.7), we obtain the following model for the total
stopping distance d :

d D 1:1v C 0:054v2 (2.8)

The predictions of Model (2.8) and the actual observed stopping distance recorded in
Table 2.4 are plotted in Figure 2.16. Considering the grossness of the assumptions and the
inaccuracies of the data, the model seems to agree fairly reasonably with the observations
up to 70 mph. The rule of thumb of one 15-ft car length for every 10 mph of speed is
also plotted in Figure 2.16. We can see that the rule significantly underestimates the total
stopping distance at speeds exceeding 40 mph.

Let’s suggest an alternative rule of thumb that is easy to understand and use. Assume
the driver of the trailing vehicle must be fully stopped by the time he or she reaches the
point occupied by the lead vehicle at the exact time of the observation. Thus, the driver
must trail the lead vehicle by the total stopping distance, based either on Model (2.8) or on
the observed data in Table 2.4. The maximum stopping distance can readily be converted
to a trailing time. The results of these computations for the observed distances, in which
85% of the drivers were able to stop, are given in Table 2.5. These computations suggest
the following general rule:

Speed (mph) Guideline (sec)

0–10 1
10–40 2
40–60 3
60–75 4

This alternative rule is plotted in Figure 2.17. An alternative to using such a rule might
be to convincemanufacturers tomodify existing speedometers to compute stopping distance
and time for the car’s speed v based on Equation (2.8). We will revisit the braking distance
problem in Section 11.3 with a model based on the derivative.
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Table 2.5 Time required to allow the proper stopping distance

Trailing time required
Speed for maximum stopping

(mph) (fps) Stopping distance� (ft) distance (sec)

20 (29.3) 42 (44)� 1.5
25 (36.7) 56 (59) 1.6
30 (44.0) 73.5 (78) 1.8
35 (51.3) 91.5 (97) 1.9
40 (58.7) 116 (124) 2.1
45 (66.0) 142.5 (153) 2.3
50 (73.3) 173 (186) 2.5
55 (80.7) 209.5 (226) 2.8
60 (88.0) 248 (268) 3.0
65 (95.3) 292.5 (317) 3.3
70 (102.7) 343 (372) 3.6
75 (110.0) 401 (436) 4.0
80 (117.3) 464 (506) 4.3

© Cengage Learning
�Includes 85% of the observations based on tests conducted by the U.S. Bureau of Public Roads.
�Figures in parentheses under stopping distance representmaximumvalues and are used to calculate trailing times.

J Figure 2.17
Total stopping distance and
alternative general rule. The
plotted observations are the
maximum values from
Table 2.4.
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2.22.2 PROBLEMS

1. Show graphically the meaning of the proportionality y / u=v.

2. Explain the meaning of the following proportionality argument and illustrate it graph-
ically.

w /
�

f

u

��2
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3. If a spring is stretched 0.37 in. by a 14-lb force, what stretch will be produced by a 9-lb
force? By a 22-lb force? Assume Hooke’s law, which asserts that the distance stretched
is proportional to the force applied.

4. If an architectural drawing is scaled so that 0.75 in. represents 4 ft, what length represents
27 ft?

5. A road map has scale 1 inch D 6 miles. You measure the distance from home to the
ski resort you plan to go visit as 11.75 inches. How many miles will you be traveling?
What assumptions are you making?

6. Determinewhether the following data support a proportionality argument for y / z1=2.
If so, estimate the slope.

y 3.5 5 6 7 8

z 3 6 9 12 15

In Problems 7–12, determinewhether the data set supports the stated proportionality model.

7. Force / Stretch

Force 10 20 30 40 50 60 70 80 90

Stretch 19 57 94 134 173 216 256 297 343

8. y / x3

y 19 25 32 51 57 71 113 141 123 187 192 205 252 259 294

x 17 19 20 22 23 25 28 31 32 33 36 37 38 39 41

9. d / v2

d 22 28 33 39 44 50 55 61 66 72 77

v 20 25 30 35 40 45 50 55 60 65 70

10. y / x2

y 4 11 22 35 56 80 107 140 175 215

x 1 2 3 4 5 6 7 8 9 10

11. y / x3

y 0 1 2 6 14 24 37 58 82 114

x 1 2 3 4 5 6 7 8 9 10

12. y / ex

y 6 15 42 114 311 845 2300 6250 17000 46255

x 1 2 3 4 5 6 7 8 9 10
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13. A new planet is discovered beyond Pluto at a mean distance to the sun of 4004 million
miles. Using Kepler’s third law, determine an estimate for the time T to travel around
the sun in an orbit.

14. For the vehicular stopping distance model, design a test to determine the average re-
sponse time. Design a test to determine average reaction distance. Discuss the difference
between the two statistics. If you were going to use the results of these tests to pre-
dict the total stopping distance, would you want to use the average reaction distance?
Explain your reasoning.

15. For the submodel concerning braking distance in the vehicular stopping distancemodel,
how would you design a brake system so that the maximum deceleration is constant
for all vehicles regardless of their mass? Consider the surface area of the brake pads
and the capacity of the hydraulic system to apply a force.

2.22.2 PROJECTS

1. Consider an automobile suspension system. Build a model that relates the stretch (or
compression) of the spring to the mass it supports. If possible, obtain a car spring and
collect data by measuring the change in spring size to the mass supported by the spring.
Graphically test your proportionality argument. If it is reasonable, find the constant of
proportionality.

2. Research and prepare a 10-minute report on Hooke’s law.

2.32.3 Modeling Using Geometric Similarity
Geometric similarity is a concept related to proportionality and can be useful to simplify
the mathematical modeling process.

Definition

Two objects are said to be geometrically similar if there is a one-to-one corre-
spondence between points of the objects such that the ratio of distances between
corresponding points is constant for all possible pairs of points.

For example, consider the two boxes depicted in Figure 2.18. Let l denote the distance
between the points A and B in Figure 2.18a, and let l 0 be the distance between the corre-
sponding points A0 and B 0 in Figure 2.18b. Other corresponding points in the two figures,
and the associated distances between the points, are marked the same way. For the boxes
to be geometrically similar, it must be true that

l

l 0 D w

w0 D h

h0 D k; for some constant k > 0

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_02_ch02_p058-104 January 23, 2013 19:39 81

2.3 Modeling Using Geometric Similarity 81

J Figure 2.18
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Let’s interpret the last result geometrically. In Figure 2.18, consider the triangles ABC
and A0B 0C 0. If the two boxes are geometrically similar, these two triangles must be similar.
The same argument can be applied to any corresponding pair of triangles, such asCBD and
C 0B 0D0. Thus, corresponding angles are equal for objects that are geometrically similar.
In other words, the shape is the same for two geometrically similar objects, and one object
is simply an enlarged copy of the other. We can think of geometrically similar objects as
scaled replicas of one another, as in an architectural drawing in which all the dimensions
are simply scaled by some constant factor k.

One advantage that results when two objects are geometrically similar is a simplifica-
tion in certain computations, such as volume and surface area. For the boxes depicted in
Figure 2.18, consider the following argument for the ratio of the volumes V and V 0:

V

V 0 D lwh

l 0w0h0 D k3 (2.9)

Similarly, the ratio of their total surface areas S and S 0 is given by

S

S 0 D 2lh C 2wh C 2wl

2l 0h0 C 2w0h0 C 2w0l 0 D k2 (2.10)

Not only are these ratios immediately known once the scaling factor k has been spec-
ified, but also the surface area and volume may be expressed as a proportionality in terms
of some selected characteristic dimension. Let’s select the length l as the characteristic
dimension. Then with l= l 0 D k, we have

S

S 0 D k2 D l2

l 02

Therefore,

S

l2
D S 0

l 02 D constant

holds for any two geometrically similar objects. That is, surface area is always proportional
to the square of the characteristic dimension length:

S / l2

Likewise, volume is proportional to the length cubed:

V / l3
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Thus, if we are interested in some function depending on an object’s length, surface area,
and volume, for example,

y D f .l; S; V /

we could express all the function arguments in terms of some selected characteristic dimen-
sion, such as length, giving

y D g.l; l2; l3/

Geometric similarity is a powerful simplifying assumption.

EXAMPLE 1 Raindrops from a Motionless Cloud

Air resistance

Raindrop

Force of gravityFg

Fd

Supposewe are interested in the terminal velocity of a raindrop from amotionless cloud.
Examining the free-body diagram, we note that the only forces acting on the raindrop are
gravity and drag. Assume that the atmospheric drag on the raindrop is proportional to its
surface area S times the square of its speed v. The mass m of the raindrop is proportional
to the weight of the raindrop (assuming constant gravity in Newton’s second law):

F D Fg � Fd D ma

Under terminal velocity (assuming v equals vt/, we have a D 0, so Newton’s second law is
reduced to

Fg � Fd D 0

or

Fg D Fd

We are assuming that Fd / Sv2 and that Fg is proportional to weight w. Since m / w, we
have Fg / m.

Next we assume all the raindrops are geometrically similar. This assumption allows us
to relate area and volume so that

S / l2 and V / l3
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for any characteristic dimension l . Thus l / S1=2 / V 1=3, which implies

S / V 2=3

Because weight and mass are proportional to volume, the transitive rule for proportionality
gives

S / m2=3

From the equation Fg D Fd , we now have m / m2=3v2
t . Solving for the terminal velocity,

we have

m1=3 / v2
t or m1=6 / vt

Therefore, the terminal velocity of the raindrop is proportional to its mass raised to the
one-sixth power. J J J
Testing Geometric Similarity
The principle of geometric similarity suggests a convenient method for testing to determine
whether it holds among a collection of objects. Because the definition requires that the ratio
of distances between corresponding pairs of points be the same for all pairs of points, we
can test that requirement to see if the objects in a given collection are geometrically similar.

For example, we know that circles are geometrically similar (because all circles have
the same shape, possibly varying only in size). If c denotes the circumference of a circle, d
its diameter, and s the length of arc along the circle subtended by a given (fixed) angle � ,
then we know from geometry that

c D �d and s D
�

d

2

�
�

Thus, for any two circles,

c1

c2

D �d1

�d2

D d1

d2

and

s1

s2

D .d1=2/�

.d2=2/�
D d1

d2

That is, the ratio of distances between corresponding points (points that have the same
fixed angle) as we go around any two circles is always the ratio of their diameters. This
observation supports the reasonableness of the geometric similarity argument for the circles.

EXAMPLE 2 Modeling a Bass Fishing Derby

For conservation purposes, a sport fishing club wishes to encourage its members to release
their fish immediately after catching them. The club also wishes to grant awards based on
the total weight of fish caught: honorary membership in the 100 Pound Club, Greatest Total
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Weight Caught during a Derby Award, and so forth. How does someone fishing determine
the weight of a fish he or she has caught? You might suggest that each individual carry
a small portable scale. However, portable scales tend to be inconvenient and inaccurate,
especially for smaller fish.

Problem Identification We can identify the problem as follows: Predict the weight of a
fish in terms of some easily measurable dimensions.

Assumptions Many factors that affect the weight of a fish can easily be identified. Dif-
ferent species have different shapes and different average weights per unit volume (weight
density) based on the proportions and densities of meat, bone, and so on. Gender also plays
an important role, especially during spawning season. The various seasons probably have
a considerable effect on weight.

Since a general rule for sport fishing is sought, let’s initially restrict attention to a single
species of fish, say bass, and assume that within the species the average weight density is
constant. Later, it may be desirable to refine ourmodel if the results prove unsatisfactory or if
it is determined that considerable variability in density does exist. Furthermore, let’s neglect
gender and season. Thus, initially we will predict weight as a function of size (volume) and
constant average weight density.

Assuming that all bass are geometrically similar, the volume of any bass is proportional
to the cube of some characteristic dimension. Note that we are not assuming any particular
shape, but only that the bass are scaled models of one another. The basic shape can be quite
irregular as long as the ratio between corresponding pairs of points in two distinct bass
remains constant for all possible pairs of points. This idea is illustrated in Figure 2.19.

J Figure 2.19
Fish that are geometrically
similar are simply scaled
models of one another.

Total length Total length Total length
l l' l''
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Now choose the length l of the fish as the characteristic dimension. This choice is
depicted in Figure 2.19. Thus, the volume of a bass satisfies the proportionality

V / l3

Because weight W is volume times average weight density and we are assuming a constant
average density, it follows immediately that

W / l3

Model Verification Let’s test our model. Consider the following data collected during a
fishing derby.

Length, l (in.) 14.5 12.5 17.25 14.5 12.625 17.75 14.125 12.625

Weight, W (oz) 27 17 41 26 17 49 23 16
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J Figure 2.20
If the model is valid, the
graph ofW versus l 3
should be a straight line
passing through the origin.
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If ourmodel is correct, then the graph ofW versus l3 should be a straight line passing through
the origin. The graph showing an approximating straight line is presented in Figure 2.20.
(Note that the judgment here is qualitative. In Chapter 3 we develop analytic methods to
determine a best-fitting model for collected data.)

Let’s accept the model, at least for further testing, based on the small amount of data
presented so far. Because the data point (14:53; 26/ lies along the line we have drawn in
Figure 2.20, we can estimate the slope of the line as 26=3049 D 0:00853, yielding the
model

W D 0:00853l3 (2.11)

Of course, if we had drawn our line a little differently, wewould have obtained a slightly
different slope. In Chapter 3 you will be asked to show analytically that the coefficients that
minimize the sum of squared deviations between the model W D kl3 and the given data
points is k D 0:008437. A graph of Model (2.11) is presented in Figure 2.21, showing also
a plot of the original data points.

Model (2.11) provides a convenient general rule. For example, from Figure 2.21 we
might estimate that a 12-in. bass weighs approximately 1 lb. This means that an 18-in. bass

J Figure 2.21
Graph of the model
W D 0:00853 l3
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should weigh approximately .1:5/3 D 3:4 lb and a 24-in. bass approximately 23 D 8 lb.
For the fishing derby, a card converting the length of a caught fish to its weight in ounces
or pounds could be given to each angler, or a cloth tape or a retractable metal tape could be
marked with a conversion scale if the use of the rule becomes popular enough. A conversion
scale for Model (2.11) is as follows:

Length (in.) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Weight (oz) 15 19 23 29 35 42 50 59 68 79 91 104 118 133 150

Weight (lb) 0.9 1.2 1.5 1.8 2.2 2.6 3.1 3.7 4.3 4.9 5.7 6.5 7.4 8.3 9.4

Even though our rule seems reasonable based on the limited data we have obtained,
an angler may not like the rule because it does not reward catching a fat fish: The model
treats fat and skinny fish alike. Let’s address this dissatisfaction. Instead of assuming that
the fish are geometrically similar, assume that only their cross-sectional areas are similar.
This does not imply any particular shape for the cross section, only that the definition of
geometric similarity is satisfied. We choose the characteristic dimension to be the girth, g,
defined subsequently.

Now assume that the major portion of the weight of the fish is from the main body.
Thus, the head and tail contribute relatively little to the total weight. Constant terms can be
added later if our model proves worthy of refinement. Next assume that the main body is
of varying cross-sectional area. Then the volume can be found by multiplying the average
cross-sectional area Aavg by the effective length leff:

V � leff.Aavg/

How shall the effective length leff and the average cross-sectional areaAavg bemeasured?
Have the fishing contestants measure the length of the fish l as before, and assume the
proportionality leff / l . To estimate the average cross-sectional area, have each angler take
a cloth measuring tape and measure the circumference of the fish at its widest point. Call
this measurement the girth, g. Assume the average cross-sectional area is proportional to
the square of the girth. Combining these two proportionality assumptions gives

V / lg2

Finally, assuming constant density, W / V , as before, so

W D klg2 (2.12)

for some positive constant k.
Several assumptions have been made, so let’s get an initial test of our model. Consider

again the following data.

Length, l (in.) 14.5 12.5 17.25 14.5 12.625 17.75 14.125 12.625

Girth, g (in.) 9.75 8.375 11.0 9.75 8.5 12.5 9.0 8.5

Weight, W (oz) 27 17 41 26 17 49 23 16
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J Figure 2.22
Testing the proportionality
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Because our model suggests a proportionality between W and lg2, we consider a plot
of W versus lg2. This plot is depicted in Figure 2.22. The plotted data lie approximately
along a straight line passing through the origin, so the proportionality assumption seems
reasonable. Now the point corresponding to the 41-oz fish happens to lie along the line
shown in Figure 2.22, so the slope can be estimated as

41

.17:25/.11/2
� 0:0196

This computation leads to the model

W D 0:0196lg2 (2.13)

In Chapter 3 we show analytically that choosing the slope in such a way that the sum of the
squared deviations from the given data points is minimized leads to the model

W D 0:0187lg2

An angler would probably be happier with the new rule (2.13), because doubling the
girth leads to a fourfold increase in the weight of the fish. However, the model appears more
inconvenient to apply. Because 1=0:0196 � 50:9, we could round this coefficient to 50 and
have an angler apply one of the simple rules:

W D lg2

50
for W in ounces and l; g measured in inches

W D lg2

800
for W in pounds and l; g measured in inches

However, the application of either of the preceding rules would probably require the
contestant to record the length and the girth of each fish and then compute its weight on a
four-function calculator. Or perhaps he or she could be given a two-dimensional card show-
ing the correct weights for different values of length and girth. The competitors probably
would prefer a simple plastic disk on which girth and length measurements could be entered
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in such a way that the weight of the bass appeared in a window. You are asked to design
such a disk in the following problem section. J J J

EXAMPLE 3 Modeling the Size of the ‘‘Terror Bird’’

South America and Africa began to drift apart along the mid-oceanic ridge approximately
80 million years ago. Because of the great tectonic force, South America drifted to the
west, away from Africa. During the next 75 million years, South America’s flora and fauna
evolved in isolation and produced many different plant and animal forms. About 7 million
years ago, the Isthmus of Panama arose, connecting South America with North America.
This allowed for the interchange of formerly separated species. The interchange enabled
animals such as camels, deer, elephants, horses, cats, and dogs to travel south, and the North
American fauna received an infusion of mammals such as giant ground sloths, anteaters,
and aquatic capybaras. They were accompanied by groups of birds called terror birds.

The terror birds were giant, flightless, predatory birds. The terror bird known as Titanis
walleri was a fleet hunter that would lie in ambush and attack from the tall grasses. These
birds killed with their beaks, pinning down their prey with an inner toe claw 4 to 5 in. long
and shredding their prey. These birds had arms (not wings) that were most like those of a
bipedal dinosaur. Figure 2.23 shows an artist’s rendering of the terror bird. It is the largest
predatory bird known to have existed, and paleontologists believe these flightless predatory
birds evolved as the dominant carnivores on land.

J Figure 2.23
Artist’s rendering of
Titanis walleri
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The various terror birds ranged in size from 5 ft to 9 ft tall, Titanis being the largest.
Because very little fossil material of Titanis has been discovered, its exact size is unclear.
According to a paleontologist who uncovered a fossil of a terror bird femur in 1994 esti-
mated that the bird was between 6 and 7 feet tall. Let’s see whether we can use modeling
to learn something more about the terror bird.

Problem Identification Predict the weight of the terror bird as a function of the circum-
ference of its femur.
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Assumptions and Variables We assume that the terror birds are geometrically similar
to other large birds of today. With this assumption of geometric similarity, we have that the
volume of the bird is proportional to any characteristic dimension cubed.

V / l3

If we assume a constant weight density, then the terror bird’s volume is proportional to its
weight, V / W , and we have

V / W / l3

Let the characteristic dimension l be the circumference of the femur, which is chosen
because it supported the body weight, giving the model

W D kl3; k > 0

Testing the Model We use the data set for various bird sizes in Table 2.6 for our model.
First, we have a data set from birds of various sizes. These data are appropriate because the
terror bird was a bird.

Figure 2.24 shows a scatterplot for Table 2.6 and reveals that the trend is concave up
and increasing.

Table 2.6 Femur circumference and body
weight of birds

Femur circumference (cm) Body weight (kg)

0.7943 0.0832
0.7079 0.0912
1.000 0.1413
1.1220 0.1479
1.6982 0.2455
1.2023 0.2818
1.9953 0.7943
2.2387 2.5119
2.5119 1.4125
2.5119 0.8913
3.1623 1.9953
3.5481 4.2658
4.4668 6.3096
5.8884 11.2202
6.7608 19.95

15.136 141.25
15.85 158.4893

© Cengage Learning

Because our proposed model is W D kl3; k > 0, we plot W versus l3 and obtain ap-
proximately a straight line through the origin (see Figure 2.25). Thus our proposed model
is reasonably accurate. The slope of the line projected through the origin is approximately
0.0398, giving

W D 0:0398l3
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J Figure 2.24
Scatterplot of bird data
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We next plot this model with the original data to visually examine how close the model
comes to fitting the trend of the data (see Figure 2.26).

Predicting the terror bird’s weight using the model W D 0:0398l3 and the circumference
of the femur of the terror bird measured as 21 cm, we find that the weight was approximately
368.58 kg.

Project 7 in this section gives dinosaur data relating the size (weight) of prehistoric
animals to the circumference of their femurs. Completing that problem will enable you
to compare the model obtained in Figure 2.26 with a second model based on dinosaur
data. J J J
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J Figure 2.25
Plot of weight versus (femur circumference)3
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J Figure 2.26
The model and the data

2.32.3 PROBLEMS

1. Suppose two maps of the same country on different scales are drawn on tracing paper
and superimposed, with possibly one of the maps being turned over before being super-
imposed on the other. Show that there is just one place that is represented by the same
spot on both maps.

2. Consider a 20-lb pink flamingo that stands 3 ft in height and has legs that are 2 ft in
length. Model the height and leg length of a 100-lb flamingo. What assumptions are
necessary? Are they reasonable assumptions?

3. An object is sliding down a ramp inclined at an angle of � radians and attains a terminal
velocity before reaching the bottom. Assume that the drag force caused by the air is
proportional to Sv2, where S is the cross-sectional area perpendicular to the direction of
motion and v is the speed. Further assume that the sliding friction between the object and
the ramp is proportional to the normal weight of the object. Determine the relationship
between the terminal velocity and themass of the object. If two different boxes, weighing
600 and 800 lb, are pushed down the ramp, find the relationship between their terminal
velocities.

4. Assume that under certain conditions the heat loss of an object is proportional to the
exposed surface area. Relate the heat loss of a cubic object with side length 6 in. to
one with a side length of 12 in. Now, consider two irregularly shaped objects, such
as two submarines. Relate the heat loss of a 70-ft submarine to that of a 7-ft scale
model. Suppose you are interested in the amount of energy needed to maintain a con-
stant internal temperature in the submarine. Relate the energy needed in the actual
submarine to that required by the scaled model. Specify the assumptions you have
made.
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5. Consider the situation of two warm-blooded adult animals essentially at rest and un-
der the same conditions (as in a zoo). Assume that the animals maintain the same
body temperature and that the energy available to maintain this temperature is pro-
portional to the amount of food provided to them. Challenge this assumption. If you
are willing to assume that the animals are geometrically similar, relate the amounts
of food necessary to maintain their body temperatures to their lengths and volumes.
(Hint: See Problem 4.) List any assumptions you have made. What additional assump-
tions are necessary to relate the amount of food necessary to maintain their body
weight?

6. Design a plastic disk to perform the calculations given by Model (2.13).

7. Consider Models (2.11) and (2.13). Which do you think is better? Why? Discuss
the models qualitatively. In Chapter 3 you will be asked to compare the two models
analytically.

8. In what circumstances, if any, will Models (2.11) and (2.13) coincide? Explain fully.

9. Consider the models W / l2g and W / g3. Interpret each of these models geometri-
cally. Explain how these two models differ from Models (2.11) and (2.13), respectively.
In what circumstances, if any, would the four models coincide? Which model do you
think would do the best job of predicting W ? Why? In Chapter 3 you will be asked to
compare the four models analytically.
a. Let A.x/ denote a typical cross-sectional area of a bass, 0 � x � l , where l denotes

the length of the fish. Use the mean value theorem from calculus to show that the
volume V of the fish is given by

V D l � A

where A is the average value of A.x/.
b. Assuming that A is proportional to the square of the girth g and that weight density

for the bass is constant, establish that

W / lg2

2.32.3 PROJECTS

1. Superstars—In the TV show Superstars the top athletes from various sports compete
against one another in a variety of events. The athletes vary considerably in height and
weight. To compensate for this in the weight-lifting competition, the body weight of the
athlete is subtracted from his lift. What kind of relationship does this suggest? Use the
following table, which displays the winning lifts at the 1996 Olympic Games, to show
this relationship.
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Winning lifts from the 2000 Olympic Games

Max participant weight (kg) Lift (kg) Male (M) or female (F)

<48 185 F
48–53 225 F
58–63 242.50 F

75 245 F
>75 300 F

56 305 M
62 325 M
69 357.50 M
77 376.50 M
85 390 M
94 405 M

105 425 M
>105 472.5 M

Physiological arguments have been proposed that suggest that the strength of a
muscle is proportional to its cross-sectional area. Using this submodel for strength,
construct a model relating lifting ability and body weight. List all assumptions. Do you
have to assume that all weight lifters are geometrically similar? Test your model with
the data provided.

Now consider a refinement to the previous model. Suppose there is a certain amount
of body weight that is independent of size in adults. Suggest a model that incorporates
this refinement, and test it against the data provided.

Criticize the use of the preceding data. What data would you really like to have to
handicap the weight lifters? Who is the best weight lifter according to your models?
Suggest a rule of thumb for the Superstars show to handicap the weight lifters.

2. Heart Rate of Birds—Warm-blooded animals use large quantities of energy to maintain
body temperature because of the heat loss through the body surface. In fact, biologists
believe that the primary energy drain on a resting warm-blooded animal is maintenance
of body temperature.

Bird Body weight (g) Pulse rate (beats/min)

Canary 20 1000
Pigeon 300 185
Crow 341 378
Buzzard 658 300
Duck 1100 190
Hen 2000 312
Goose 2300 240
Turkey 8750 193
Ostrich 71000 60–70

Data from A. J. Clark, Comparative Physiology of the Heart (New
York: Macmillan, 1977), p. 99.
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a. Construct a model relating blood flow through the heart to body weight. Assume
that the amount of energy available is proportional to the blood flow through the
lungs, which is the source of oxygen. Assuming the least amount of blood needed
to circulate, the amount of available energy will equal the amount of energy used to
maintain the body temperature.

b. The data in the table relate weights of some birds to their heart rate measured in
beats per minute. Construct a model that relates heart rate to body weight. Discuss
the assumptions of your model. Use the data to check your model.

3. Heart Rate of Mammals—The following data relate the weights of some mammals to
their heart rate in beats per minute. Based on the discussion relating blood flow through
the heart to body weight, as presented in Project 2, construct a model that relates heart
rate to body weight. Discuss the assumptions of your model. Use the data to check your
model.

Mammal Body weight (g) Pulse rate (beats/min)

Vespergo pipistrellas 4 660
Mouse 25 670
Rat 200 420
Guinea pig 300 300
Rabbit 2000 205
Little dog 5000 120
Big dog 30000 85
Sheep 50000 70
Man 70000 72
Horse 450000 38
Ox 500000 40
Elephant 3000000 48

Data from A. J. Clark, Comparative Physiology of the Heart (New York:
Macmillan, 1977), p. 99.

4. Lumber Cutters—Lumber cutters wish to use readily availablemeasurements to estimate
the number of board feet of lumber in a tree. Assume they measure the diameter of the
tree in inches at waist height. Develop a model that predicts board feet as a function of
diameter in inches.

Use the following data for your test:

x 17 19 20 23 25 28 32 38 39 41

y 19 25 32 57 71 113 123 252 259 294

The variable x is the diameter of a ponderosa pine in inches, and y is the number of
board feet divided by 10.
a. Consider two separate assumptions, allowing each to lead to a model. Completely

analyze each model.
i. Assume that all trees are right-circular cylinders and are approximately the same

height.
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ii. Assume that all trees are right-circular cylinders and that the height of the tree is
proportional to the diameter.

b. Which model appears to be better? Why? Justify your conclusions.

5. Racing Shells—If you have been to a rowing regatta, you may have observed that the
more oarsmen there are in a boat, the faster the boat travels. Investigate whether there is a
mathematical relationship between the speed of a boat and the number of crewmembers.
Consider the following assumptions (partial list) in formulating a model:

a. The total force exerted by the crew is constant for a particular crew throughout the
race.

b. The drag force experienced by the boat as it moves through the water is proportional
to the square of the velocity times the wet surface area of the hull.

c. Work is defined as force times distance. Power is defined as work per unit time.

Distance Race 1 Race 2 Race 3 Race 4 Race 5 Race 6
Crew (m) (sec) (sec) (sec) (sec) (sec) (sec)

1 2500 20:53 22:21 22:49 26:52
2 2500 19:11 19:17 20:02
4 2500 16:05 16:42 16:43 16:47 16:51 17:25
8 2500 9:19 9:29 9:49 9:51 10:21 10:33

Hint: When additional oarsmen are added to a shell, it is not obvious whether the
amount of force is proportional to the number in the crew or the amount of power is
proportional to the number in the crew. Which assumption appears the most reasonable?
Which yields a more accurate model?

6. Scaling a Braking System—Suppose that after years of experience, your auto company
has designed an optimum braking system for its prestigious full-sized car. That is, the
distance required to brake the car is the best in its weight class, and the occupants feel the
system is very smooth. Your firm has decided to build cars in the lighter weight classes.
Discuss how you would scale the braking system of your current car to have the same
performance in the smaller versions. Be sure to consider the hydraulic system and the
size of the brake pads. Would a simple geometric similarity suffice? Let’s suppose that
the wheels are scaled in such a manner that the pressure (at rest) on the tires is constant
in all car models. Would the brake pads seem proportionally larger or smaller in the
scaled-down cars?

7. Data have been collected on numerous dinosaurs during the prehistoric period. Using
proportionality and geometric similarity, build amathematical model to relate the weight
of the terror bird to its femur circumference. Recall that the femur circumference of the
terror bird in Example 3 was 21 cm. Compare the weight found using this new model to
the weight found in Example 3. Which model would you prefer? Give reasons justifying
your preference.
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Dinosaur data

Name Femur circumference (mm) Weight (kg)

Hypsilophodonitdae 103 55
Ornithomimdae 136 115
Thescelosauridae 201 311
Ceratosauridae 267 640
Allosauridae 348 1230
Hadrosauridae-1 400 1818
Hadrosauridae-2 504 3300
Hadrosauridae-3 512 3500
Tyrannosauridae 534 4000

2.42.4 Automobile Gasoline Mileage
Scenario During periods of concern when oil shortages and embargoes create an energy
crisis, there is always interest in how fuel economy varies with vehicular speed. We suspect
that, when driven at low speeds and in low gears, automobiles convert power relatively
inefficiently and that, when they are driven at high speeds, drag forces on the vehicle
increase rapidly. It seems reasonable, then, to expect that automobiles have one or more
speeds that yield optimum fuel mileage (the most miles per gallon of fuel). If this is so, fuel
mileage would decrease beyond that optimal speed, but it would be beneficial to know just
how this decrease takes place.Moreover, is the decrease significant? Consider the following
excerpt from a newspaper article (written when a national 55-mph speed limit existed):

Observe the 55-mile-an-hour national highway speed limit. For every 5 miles an hour over 50,
there is a loss of 1 mile to the gallon. Insisting that drivers stay at the 55-mile-an-hour mark has
cut fuel consumption 12 percent for Ryder Truck Lines of Jacksonville, Florida—a savings of
631,000 gallons of fuel a year. The most fuel-efficient range for driving generally is considered
to be between 35 and 45 miles an hour.1

Note especially the suggestion that there is a loss of 1 mile to the gallon for every
5 miles an hour over 50 mph. How good is this general rule?

Problem Identification What is the relationship between the speed of a vehicle and its
fuel mileage? By answering this question, we can assess the accuracy of this rule.

Assumptions Let’s consider the factors influencing fuel mileage. First, there are propul-
sion forces that drive the vehicle forward. These forces depend on the power available from
the type of fuel being burned, the engine’s efficiency in converting that potential power, gear
ratios, air temperature, and many other factors, including vehicular velocity. Next, there are
drag forces that tend to retard the vehicle’s forwardmotion. The drag forces include frictional

1‘‘Boost Fuel Economy,’’ Monterey Peninsula Herald, May 16, 1982.
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effects that depend on the vehicle’s weight, the type and condition of the tires, and the con-
dition of the road surface. Air resistance is another drag force and depends on the vehicular
speed, vehicular surface area and shape, the wind, and air density. Another factor influenc-
ing fuel mileage is related to the driving habits of the driver. Does he or she drive at constant
speeds or constantly accelerate? Does he or she drive on level or mountainous terrain? Thus,
fuel mileage is a function of several factors, summarized in the following equation:

fuel mileage D f (propulsion forces, drag forces, driving habits, and so on)

It is clear that the answer to the original problem will be quite detailed considering all
the possible combinations of car types, drivers, and road conditions. Because such a study
is far too ambitious to be undertaken here, we restrict the problemwe are willing to address.

Restricted Problem Identification For a particular driver, driving his or her car on a
given day on a level highway at constant highway speeds near the optimal speed for fuel
economy, provide a qualitative explanation of how fuel economy varies with small increases
in speed.

Under this restricted problem, environmental conditions (such as air temperature, air
density, and road conditions) can be considered as constant. Because we have specified that
the driver is driving his or her car, we have fixed the tire conditions, the shape and surface of
the vehicle, and fuel type. By restricting the highway driving speeds to be near the optimal
speed, we obtain the simplifying assumptions of constant engine efficiency and constant
gear ratio over small changes in vehicular velocity. Restricting a problem as originally posed
is a very powerful technique for obtaining a manageable model.

The newspaper article fromwhich this problemwas derived also gave the rule of thumb
that for every 5 mph over 50 mph, there is a loss of 1 mile to the gallon. Let’s graph this
rule. If you plot the loss in miles per gallon against speed minus 50, the graph is a straight
line passing through the origin as depicted in Figure 2.27. Let’s see if this linear graph is
qualitatively correct.

Since the automobile is to be driven at constant speeds, the acceleration is zero. We
know from Newton’s second law that the resultant force must be zero, or that the forces of
propulsion and resistance must be in equilibrium. That is,

Fp D Fr

where Fp represents the propulsion force and Fr the resisting force.

J Figure 2.27
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First consider the force of propulsion. Each gallon of gasoline contains an amount of
energy, sayK. IfCr represents the amount of fuel burned per unit time, thenCrK represents
the power available to the car. Assuming a constant rate of power conversion, it follows
that the converted power is proportional to CrK. Because power is the product of force and
velocity for a constant force, this argument yields the proportionality relation

Fp / CrK

v

When we further assume a constant fuel rating K; this last proportionality simplifies to

Fp / Cr

v
(2.14)

Next consider the resisting force. Becausewe restricted the problem to highway speeds,
it is reasonable to assume that frictional forces are small when compared to the drag forces
caused by air resistance. At highway speeds, one sensible submodel for these drag forces is

Fr / Sv2

where S is the cross-sectional area perpendicular to the direction of the moving car. (This
assumption is commonly used in engineering formoderate sizes ofS .) BecauseS is constant
in our restricted problem, it follows that

Fr / v2

Application of the condition Fp D Fr and the proportionality (2.14) then yields

Cr

v
/ v2

or

Cr / v3 (2.15)

The proportionality (2.15) gives the qualitative information that the fuel consumption rate
should increase as the cube of the velocity. However, fuel consumption rate is not an
especially good indicator of fuel efficiency: Although proportionality (2.15) says that the
car is using more fuel per unit time at higher speeds, the car is also traveling farther.
Therefore, we define gasoline mileage as follows:

mileage D distance
consumption

Substitution of vt for distance and Cr t for consumption then gives the proportionality

mileage D v

Cr

/ v�2 (2.16)

Thus, gasoline mileage is inversely proportional to the square of the velocity.
Model (2.16) provides some useful qualitative information to assist us in explaining

automobile fuel consumption. First, we should be very suspicious of the rule of thumb
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suggesting a linear graph as depicted in Figure 2.27. We should be careful about the conclu-
sions we do draw. Although the power relationship in Equation (2.16) appears impressive,
it is valid only over a restricted range of speeds. Over that restricted range the relationship
could be nearly linear, depending on the size of the constant of proportionality. Moreover,
do not forget that we have ignored many factors in our analysis and have assumed that
several important factors are constant. Thus, our model is quite fragile, and its use is limited
to a qualitative explanation over a restricted range of speeds. But then, that is precisely how
we identified the problem.

2.42.4 PROBLEMS

1. In the automobile gasoline mileage example, suppose you plot miles per gallon against
speed as a graphical representation of the general rule (instead of the graph depicted in
Figure 2.27). Explain why it would be difficult to deduce a proportionality relationship
from that graph.

2. In the automobile gasoline mileage example, assume the drag forces are proportional
to Sv, where S is the cross-sectional area perpendicular to the direction of the moving
car and v is its speed. What conclusions can you draw? Discuss the factors that might
influence the choice of Sv2 over Sv for the drag forces submodel. How could you test
the submodel?

3. Discuss several factors that were completely ignored in our analysis of the gasoline
mileage problem.

2.52.5 Body Weight and Height, Strength and Agility
Body Weight and Height
A question of interest to almost all Americans is, How much should I weigh? A rule often
given to people desiring to run a marathon is 2 lb of body weight per inch of height, but
shorter marathon runners seem to have a much easier time meeting this rule than taller ones.
Tables have been designed to suggest weights for different purposes. Doctors are concerned
about a reasonable weight for health purposes, and Americans seek weight standards based
on physical appearance. Moreover, some organizations, such as the Army, are concerned
about physical conditioning and define an upper weight allowance for acceptability. Quite
often these weight tables are categorized in some manner. For example, consider Table 2.7,
which gives upper weight limits of acceptability for males between the ages of 17 and 21.
(The table has no further delineators such as bone structure.)

If the differences between successive weight entries in Table 2.7 are computed to
determine how much weight is allowed for each additional inch of height, it will be seen
that throughout a large portion of the table, a constant 5 lb per inch is allowed (with some
fours and sixes appearing at the lower and upper ends of the scales, respectively). Certainly
this last rule is more liberal than the rule recommended for marathoners (2 lb per inch), but
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Table 2.7 Weight versus height for males aged 17–21

Height (in.) Weight (lb) Height (in.) Weight (lb)

60 132 71 185
61 136 72 190
62 141 73 195
63 145 74 201
64 150 75 206
65 155 76 212
66 160 77 218
67 165 78 223
68 170 79 229
69 175 80 234
70 180

© Cengage Learning

just how reasonable a constant-weight-per-height rule is remains to be seen. In this section
we examine qualitatively how weight and height should vary.

Body weight depends on a number of factors, some of which we have mentioned. In
addition to height, bone density could be a factor. Is there a significant variation in bone
density, or is it essentially constant?What about the relative volume occupied by the bones?
Is the volume essentially constant, or are there heavy, medium, and light bone structures?
Andwhat about a body density factor? How can differences in the densities of bone, muscle,
and fat be accounted for? Do these densities vary? Is body density typically a function of
age and gender in the sense that the relative composition of muscle, bone, and fat varies as
a person becomes older? Are there different compositions of muscle and fat between males
and females of the same age?

Let’s define the problem so that bone density is considered constant (by accepting an
upper limit) and predict weight as a function of height, gender, age, and body density. The
purposes or basis of the weight table must also be specified, so we base the table on physical
appearance.

Problem Identification We identify the problem as follows: For various heights, gen-
ders, and age groups, determine upper weight limits that represent maximum levels of
acceptability based on physical appearance.

Assumptions Assumptions about body density are needed if we are to successfully pre-
dict weight as a function of height. As one simplifying assumption, suppose that some
parts of the body are composed of an inner core of a different density. Assume too that
the inner core is composed primarily of bones and muscle material and that the outer core
is primarily a fatty material, giving rise to the different densities (Figure 2.28). We next
construct submodels to explain how the weight of each core might vary with height.

How does body weight vary with height? To begin, assume that for adults, certain parts
of the body, such as the head, have the same volume and density for different people. Thus
the weight of an adult is given by

W D k1 C Win C Wout (2.17)
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J Figure 2.28
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where k1 > 0 is the constant weight of those parts having the same volume and density
for different individuals, and Win and Wout are the weights of the inner and outer cores,
respectively.

Next, let’s turn our attention to the inner core. How does the volume of the extremities
and trunk vary with height? We know that people are not geometrically similar because
they do not appear to be scaled models of one another, having different shapes and different
relative proportions of the trunk and extremities. By definition of the problem at hand,
however, we are concerned with an upper weight limit based on physical appearance. Even
though this may be somewhat subjective, it would seem reasonable that whatever image
might be visualized as an upper limit standard of acceptability for a 74-in. personwould be a
scaled image of a 65-in. person. Thus, for purposes of our problem, geometric similarity of
individuals is a reasonable assumption. Note that no particular shape is being assumed, but
only that the ratios of distances between corresponding points in individuals are the same.
Under this assumption, the volume of each component we are considering is proportional
to the cube of a characteristic dimension, which we select to be height h. Hence, the sum
of the components must be proportional to the cube of the height, or

Vin / h3 (2.18)

Now, what should be assumed about the average weight density of the inner core?
Assuming that the inner core is composed of muscle and bone, each of which has a different
density, what percentage of the total volume of the inner core is occupied by the bones? If
bone diameter is assumed to be proportional to the height, then the total volume occupied
by the bones is proportional to the cube of the height. This implies that the percentage of the
total volume of the inner core occupied by the bones in geometrically similar individuals
is constant. It follows from the ensuing argument that the average weight density �in is
constant as well. For example, consider the average weight density �avg of a volume V
consisting of two components V1 and V2, each with a density �1 and �2. Then

V D V1 C V2

and

�avgV D W D �1V1 C �2V2

yield

�avg D �1

V1

V
C �2

V2

V
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Therefore, as long as the ratios V1=V and V2=V do not change, the average weight density
�avg is constant. Application of this result to the inner core implies that the average weight
density �in is constant, yielding

Win D Vin�in / h3

or

Win D k2h3 for k2 > 0 (2.19)

Note that the preceding submodel includes any case of materials with densities different
from that of muscles and bone (such as tendons, ligaments, and organs) as long as the
percentage of the total volume of the inner core occupied by those materials is constant.

Now consider the outer core of fatty material. Because the table is to be based on
personal appearance, it can be argued that the thickness of the outer core should be constant
regardless of the height (see Problem 3). If � represents this thickness, then the weight of
the outer core is

Wout D ��outSout

where Sout is the surface area of the outer core and �out is the density of the outer core.
Again assuming that the subjects are geometrically similar, it follows that the surface area
is proportional to the square of the height. If the density of the outer core of fatty material
is assumed to be constant for all individuals, then we have

Wout / h2

It may be argued, however, that taller people can carry a greater thickness for the fatty layer.
If it is assumed that the thickness of the outer core is proportional to the height, then

Wout / h3

Allowing both these assumptions to reside in a single submodel gives

Wout D k3h2 C k4h3; where k3; k4 � 0 (2.20)

Here the constants k3 and k4 are allowed to assume a zero value.
Summing the submodels represented by Equations (2.17), (2.19), and (2.20) to deter-

mine a model for weight yields

W D k1 C k3h2 C k5h3 for k1; k5 > 0 and k3 � 0 (2.21)

where k5 D k2 Ck4. Note that Model (2.21) suggests variations in weight of a higher order
than the first power of h. If the model is valid, then taller people will indeed have a difficult
time satisfying the linear rules given earlier. At the moment, however, our judgment can
be only qualitative because we have not verified our submodels. Some ideas on how to test
the model are discussed in the problem set. Furthermore, we have not placed any relative
significance on the higher-order terms occurring in Equation (2.21). In the study of statistics,
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regression techniques are given to provide insight into the significance of each term in the
model.

Model Interpretation Let’s interpret the general rules given earlier, which allowed a
constant weight increase for each additional inch of height, in terms of our submodel. Con-
sider the amount of weight attributable to an increase in the length of the trunk. Because the
total allowable weight increase per inch is assumed constant by the given rules, the portion
allowed for the trunk increase may also be assumed constant. To allow a constant weight
increase, the trunk must increase in length while maintaining the same cross-sectional area.
This implies, for example, that the waist size remains constant. Let’s suppose that in the age
17–21 category, a 30-in. waist is judged the upper limit acceptable for the sake of personal
appearance in a male with a height of 66 in. The 2-lb-per-inch rule would allow a 30-in.
waist for a male with a height of 72 in. as well. On the other hand, the model based on geo-
metric similarity suggests that all distances between corresponding points should increase
by the same ratio. Thus, the male with a height of 72 in. should have a waist of 30.72=66/,
or approximately 32.7 in., to be proportioned similarly. Comparing the two models, we get
the following data:

Height Linear models Geometric similarity model
(in.) (in., waist measure) (in., waist measure)

66 30 30.0
72 30 32.7
78 30 35.5
84 30 38.2

Now we can see why tall marathoners who follow the 2-lb-per-inch rule appear very thin.

Strength and Agility
Consider a competitive sports contest in which men or women of various sizes compete in
events emphasizing strength (such as weight lifting) or agility (such as running an obstacle
course). How would you handicap such events? Let’s define a problem as follows.

Problem Identification For various heights, weights, genders, and age groups, deter-
mine their relationship with agility in competitive sports.

Assumptions Let’s initially neglect gender and age.We assume that agility is proportional
to the ratio strength/weight. We further assume that strength is proportional to the size of
the muscles being used in the event, and we measure this size in terms of the muscles’
cross-sectional area. (See Project 1 in Section 2.3.) Recall too that weight is proportional to
volume (assuming constant weight density). If we assume all participants are geometrically
similar, we have

agility / strength
weight

/ l2

l3
/ 1

l
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This is clearly a nonlinear relationship between agility and the characteristic dimension, l .
We also see that under these assumptions, agility has a nonlinear relationship with weight.
How would you collect data for your model? How would you test and verify your model?

2.52.5 PROBLEMS

1. Describe in detail the data you would like to obtain to test the various submodels sup-
porting Model (2.21). How would you go about collecting the data?

2. Tests exist to measure the percentage of body fat. Assume that such tests are accurate
and that a great many carefully collected data are available. You may specify any other
statistics, such as waist size and height, that you would like collected. Explain how
the data could be arranged to check the assumptions underlying the submodels in this
section. For example, suppose the data for males between ages 17 and 21 with constant
body fat and height are examined. Explain how the assumption of constant density of
the inner core could be checked.

3. A popular measure of physical condition and personal appearance is the pinch test. To
administer this test, you measure the thickness of the outer core at selected locations on
the body by pinching. Where and how should the pinch be made? What thickness of
pinch should be allowed? Should the pinch thickness be allowed to vary with height?

4. It has been said that gymnastics is a sport that requires great agility. Use the model
and assumptions developed for agility in this section to argue why there are few tall
gymnasts.

2.52.5 PROJECT

1. Consider an endurance test that measures only aerobic fitness. This test could be a
swimming test, running test, or bike test. Assume that we want all competitors to do
an equal amount of work. Build a mathematical model that relates work done by the
competitor to some measurable characteristic, such as height or weight. Next consider
a refinement using kinetic energy in your model. Collect some data for one of these
aerobic tests and determine the reasonableness of these models.
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Introduction

In the mathematical modeling process we encounter situations that cause us to analyze data
for different purposes. We have already seen how our assumptions can lead to a model of a
particular type. For example, in Chapter 2 when we analyzed the distance required to bring
a car to a safe stop once the brakes are applied, our assumptions led to a submodel of the
form

db D C v2

where db is the distance required to stop the car, v is the velocity of the car at the time the
brakes are applied, and C is some arbitrary constant of proportionality. At this point we can
collect and analyze sufficient data to determine whether the assumptions are reasonable. If
they are, we want to determine the constant C that selects the particular member from the
family y D C v2 corresponding to the braking distance submodel.

Wemay encounter situations in which there are different assumptions leading to differ-
ent submodels. For example, when studying the motion of a projectile through a medium
such as air, we can make different assumptions about the nature of a drag force, such as
the drag force being proportional to v or v2. We might even choose to neglect the drag
force completely. As another example, when we are determining how fuel consumption
varies with automobile velocity, our different assumptions about the drag force can lead to
models that predict that mileage varies as C1v�1 or as C2v�2. The resulting problem can be
thought of in the following way: First, use some collected data to chooseC1 andC2 in a way
that selects the curve from each family that best fits the data, and then choose whichever
resultant model is more appropriate for the particular situation under investigation.

A different case arises when the problem is so complex as to prevent the formulation of
a model explaining the situation. For instance, if the submodels involve partial differential
equations that are not solvable in closed form, there is little hope for constructing a master
model that can be solved and analyzed without the aid of a computer. Or there may be
so many significant variables involved that one would not even attempt to construct an
explicative model. In such cases, experiments may have to be conducted to investigate the
behavior of the independent variable(s) within the range of the data points.

The preceding discussion identifies three possible tasks when we are analyzing a col-
lection of data points:

105
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1. Fitting a selected model type or types to the data.
2. Choosing the most appropriate model from competing types that have been fitted. For

example, wemay need to determinewhether the best-fitting exponential model is a better
model than the best-fitting polynomial model.

3. Making predictions from the collected data.

In the first two tasks amodel or competingmodels exist that seem to explain the observed
behavior. We address these two cases in this chapter under the general heading of model
fitting. However, in the third case, a model does not exist to explain the observed behavior.
Rather, there exists a collection of data points that can be used to predict the behavior
within some range of interest. In essence, we wish to construct an empirical model based
on the collected data. In Chapter 4 we study such empirical model construction under the
general heading of interpolation. It is important to understand both the philosophical and
the mathematical distinctions between model fitting and interpolation.

Relationship Between Model Fitting and Interpolation
Let’s analyze the three tasks identified in the preceding paragraph to determine what must
be done in each case. In Task 1 the precise meaning of best model must be identified and
the resulting mathematical problem resolved. In Task 2 a criterion is needed for comparing
models of different types. In Task 3 a criterion must be established for determining how to
make predictions in between the observed data points.

Note the difference in the modeler’s attitude in each of these situations. In the two
model-fitting tasks a relationship of a particular type is strongly suspected, and the modeler
is willing to accept some deviation between the model and the collected data points to have
a model that satisfactorily explains the situation under investigation. In fact, the modeler
expects errors to be present in both the model and the data. On the other hand, when
interpolating, the modeler is strongly guided by the data that have been carefully collected
and analyzed, and a curve is sought that captures the trend of the data to predict in between
the data points. Thus, the modeler generally attaches little explicative significance to the
interpolating curves. In all situations the modeler may ultimately want to make predictions
from the model. However, the modeler tends to emphasize the proposed models over the
data when model fitting, whereas when interpolating, he or she places greater confidence
in the collected data and attaches less significance to the form of the model. In a sense,
explicative models are theory driven, whereas predictive models are data driven.

Let’s illustrate the preceding ideas with an example. Suppose we are attempting to
relate two variables, y and x, and have gathered the data plotted in Figure 3.1. If the

J Figure 3.1
Observations relating the
variables y and x
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J Figure 3.2
Interpolating the data using
a smooth polynomial
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modeler is going to make predictions based solely on the data in the figure, he or she might
use a technique such as spline interpolation (which we study in Chapter 4) to pass a smooth
polynomial through the points. Note that in Figure 3.2 the interpolating curve passes through
the data points and captures the trend of the behavior over the range of observations.

Suppose that in studying the particular behavior depicted in Figure 3.1, the modeler
makes assumptions leading to the expectation of a quadratic model, or parabola, of the form
y D C1x2 C C2x C C3. In this case the data of Figure 3.1 would be used to determine the
arbitrary constants C1, C2, and C3 to select the best parabola (Figure 3.3). The fact that
the parabola may deviate from some or all of the data points would be of no concern. Note
the difference in the values of the predictions made by the curves in Figures 3.2 and 3.3
in the vicinity of the values x1 and x5.

A modeler may find it necessary to fit a model and also to interpolate in the same prob-
lem. Using the best-fitting model of a given type may prove unwieldy, or even impossible,
for subsequent analysis involving operations such as integration or differentiation. In such
situations the model may be replaced with an interpolating curve (such as a polynomial)
that is more readily differentiated or integrated. For example, a step function used to model
a square wave might be replaced by a trigonometric approximation to facilitate subsequent
analysis. In these instances the modeler desires the interpolating curve to approximate
closely the essential characteristics of the function it replaces. This type of interpolation is
usually called approximation and is typically addressed in introductory numerical analysis
courses.

J Figure 3.3
Fitting a parabola
y D C1x 2 C C2x C C3 to the
data points
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Sources of Error in the Modeling Process
Before discussing criteria on which to base curve-fitting and interpolation decisions, we
need to examine the modeling process to ascertain where errors can arise. If error consider-
ations are neglected, undue confidencemay be placed in intermediate results, causing faulty
decisions in subsequent steps. Our goal is to ensure that all parts of the modeling process
are computationally compatible and to consider the effects of cumulative errors likely to
exist from previous steps.
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For purposes of easy reference, we classify errors under the following category scheme:

1. Formulation error
2. Truncation error
3. Round-off error
4. Measurement error

Formulation errors result from the assumption that certain variables are negligible
or from simplifications in describing interrelationships among the variables in the various
submodels. For example, whenwe determined a submodel for braking distance in Chapter 2,
we completely neglected road friction, and we assumed a very simple relationship for the
nature of the drag force due to air resistance. Formulation errors are present in even the best
models.

Truncation errors are attributable to the numerical method used to solve a mathemati-
cal problem. For example, we may find it necessary to approximate sin x with a polynomial
representation obtained from the power series

sin x D x � x3

3Š
C x5

5Š
� � � �

An error will be introduced when the series is truncated to produce the polynomial.
Round-off errors are caused by using a finite digit machine for computation. Because

all numbers cannot be represented exactly using only finite representations, we must always
expect round-off errors to be present. For example, consider a calculator or computer that
uses 8-digit arithmetic. Then the number 1

3
is represented by .33333333 so that 3 times 1

3

is the number .99999999 rather than the actual value 1. The error 10�8 is due to round-off.
The ideal real number 1

3
is an infinite string of decimal digits :3333 : : : ; but any calculator

or computer can do arithmetic only with numbers having finite precision. When many arith-
metic operations are performed in succession, each with its own round-off, the accumulated
effect of round-off can significantly alter the numbers that are supposed to be the answer.
Round-off is just one of the things we have to live with—and be aware of—when we use
computing machines.

Measurement errors are caused by imprecision in the data collection. This imprecision
may include such diverse things as human errors in recording or reporting the data or
the actual physical limitations of the laboratory equipment. For example, considerable
measurement error would be expected in the data reflecting the reaction distance and the
braking distance in the braking distance problem.

3.13.1 Fitting Models to Data Graphically

Assume the modeler has made certain assumptions leading to a model of a particular type.
The model generally contains one or more parameters, and sufficient data must be gathered
to determine them. Let’s consider the problem of data collection.

The determination of how many data points to collect involves a trade-off between
the cost of obtaining them and the accuracy required of the model. As a minimum, the
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modeler needs at least as many data points as there are arbitrary constants in the model
curve. Additional points are required to determine any arbitrary constants involved with the
requirements of the best-fit method we are using. The range over which the model is to be
used determines the endpoints of the interval for the independent variable(s).

The spacing of the data points within that interval is also important because any part
of the interval over which the model must fit particularly well can be weighted by using
unequal spacing.Wemay choose to takemore data points where maximum use of the model
is expected, or we may collect more data points where we anticipate abrupt changes in the
dependent variable(s).

Even if the experiment has been carefully designed and the trials meticulously con-
ducted, the modeler needs to appraise the accuracy of the data before attempting to fit the
model. How were the data collected?What is the accuracy of the measuring devices used in
the collection process? Do any points appear suspicious? Following such an appraisal and
elimination (or replacement) of spurious data, it is useful to think of each data point as an
interval of relative confidence rather than as a single point. This idea is shown in Figure 3.4.
The length of each interval should be commensurate with the appraisal of the errors present
in the data collection process.

J Figure 3.4
Each data point is thought
of as an interval of
confidence.
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Visual Model Fitting with the Original Data
Suppose we want to fit the model y D ax C b to the data shown in Figure 3.4. How might
we choose the constants a and b to determine the line that best fits the data? Generally,
when more than two data points exist, not all of them can be expected to lie exactly along
a single straight line, even if such a line accurately models the relationship between the
two variables x and y. Ordinarily, there will be some vertical discrepancy between a few
of the data points and any particular line under consideration. We refer to these vertical
discrepancies as absolute deviations (Figure 3.5). For the best-fitting line, we might try to

J Figure 3.5
Minimizing the sum of the
absolute deviations from
the fitted line
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minimize the sum of these absolute deviations, leading to the model depicted in Figure 3.5.
Although success may be achieved in minimizing the sum of the absolute deviations, the
absolute deviation from individual points may be quite large. For example, consider pointD
in Figure 3.5. If the modeler has confidence in the accuracy of this data point, there will
be concern for the predictions made from the fitted line near the point. As an alternative,
suppose a line is selected that minimizes the largest deviation from any point. Applying this
criterion to the data points might give the line shown in Figure 3.6.

J Figure 3.6
Minimizing the largest
absolute deviation from the
fitted line
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Although these visual methods for fitting a line to data points may appear imprecise,
the methods are often quite compatible with the accuracy of the modeling process. The
grossness of the assumptions and the imprecision involved in the data collection may not
warrant a more sophisticated analysis. In such situations, the blind application of one of the
analytic methods to be presented in Section 3.2 may lead to models far less appropriate than
one obtained graphically. Furthermore, a visual inspection of the model fitted graphically
to the data immediately gives an impression of how good the fit is and where it appears
to fit well. Unfortunately, these important considerations are often overlooked in problems
with large amounts of data analytically fitted via computer codes. Because the model-fitting
portion of the modeling process seems to be more precise and analytic than some of the
other steps, there is a tendency to place undue faith in the numerical computations.

Transforming the Data
Most of us are limited visually to fitting only lines. So how can we graphically fit curves
as models? Suppose, for example, that a relationship of the form y D Cex is suspected for
some submodel and the data shown in Table 3.1 have been collected.

The model states that y is proportional to ex . Thus, if we plot y versus ex , we should
obtain approximately a straight line. The situation is depicted in Figure 3.7. Because the
plotted data points do lie approximately along a line that projects through the origin, we
conclude that the assumed proportionality is reasonable. From the figure, the slope of the
line is approximated as

C D 165 � 60:1

54:6 � 20:1
� 3:0

Table 3.1 Collected data

x 1 2 3 4

y 8.1 22.1 60.1 165
© Cengage Learning
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J Figure 3.7
Plot of y versus e x for the
data given in Table 3.1
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Now let’s consider an alternative technique that is useful in a variety of problems. Take
the logarithm of each side of the equation y D Cex to obtain

lny D lnC C x

Note that this expression is an equation of a line in the variables lny and x. The number
lnC is the intercept when x D 0. The transformed data are shown in Table 3.2 and plotted
in Figure 3.8. Semilog paper or a computer is useful when plotting large amounts of data.

Table 3.2 The transformed data
from Table 3.1

x 1 2 3 4

lny 2.1 3.1 4.1 5.1
© Cengage Learning

J Figure 3.8
Plot of ln y versus x using
Table 3.2
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From Figure 3.8, we can determine that the intercept lnC is approximately 1.1, giving
C D e1:1 � 3:0 as before.

A similar transformation can be performed on a variety of other curves to produce
linear relationships among the resulting transformed variables. For example, if y D xa,
then

lny D a ln x

is a linear relationship in the transformed variables lny and ln x. Here, log–log paper or a
computer is useful when plotting large amounts of data.

Let’s pause and make an important observation. Suppose we do invoke a transforma-
tion and plot lny versus x, as in Figure 3.8, and find the line that successfully minimizes

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_03_ch03_p105-136 January 23, 2013 19:39 112

112 Chapter 3 Model Fitting

the sum of the absolute deviations of the transformed data points. The line then determines
lnC , which in turn produces the proportionality constant C . Although it is not obvious,
the resulting model y D Cex is not the member of the family of exponential curves of the
form kex that minimizes the sum of the absolute deviations from the original data points
(when we plot y versus x). This important idea will be demonstrated both graphically
and analytically in the ensuing discussion. When transformations of the form y D ln x
are made, the distance concept is distorted. Although a fit that is compatible with the
inherent limitations of a graphical analysis may be obtained, the modeler must be aware
of this distortion and verify the model using the graph from which it is intended to make
predictions or conclusions—namely the y versus x graph in the original data rather than
the graph of the transformed variables.

We now present an example illustrating how a transformation may distort distance in
the xy-plane. Consider the data plotted in Figure 3.9 and assume the data are expected to
fit a model of the form y D Ce1=x . Using a logarithmic transformation as before, we find

lny D 1

x
C lnC

J Figure 3.9
A plot of some collected
data points
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J Figure 3.10
A plot of the transformed
data points
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A plot of the points lny versus 1=x based on the original data is shown in Figure 3.10.
Note from the figure how the transformation distorts the distances between the original
data points and squeezes them all together. Consequently, if a straight line is made to fit
the transformed data plotted in Figure 3.10, the absolute deviations appear relatively small
(i.e., small computed on the Figure 3.10 scale rather than on the Figure 3.9 scale). If we
were to plot the fitted model y D Ce1=x to the data in Figure 3.9, we would see that it fits
the data relatively poorly, as shown in Figure 3.11.

From the preceding example, it can be seen that if a modeler is not careful when
using transformations, he or she can be tricked into selecting a relatively poor model. This
realization becomes especially important when comparing alternative models. Very serious
errors can be introduced when selecting the best model unless all comparisons are made
with the original data (plotted in Figure 3.9 in our example). Otherwise, the choice of
best model may be determined by a peculiarity of the transformation rather than on the
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J Figure 3.11
A plot of the curve
y D Ce1=x based on the
value lnC D 0:9 from
Figure 3.10
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merits of the model and how well it fits the original data. Although the danger of making
transformations is evident in this graphical illustration, a modeler may be fooled if he or
she is not especially observant because many computer codes fit models by first making
a transformation. If the modeler intends to use indicators such as the sum of the absolute
deviations to make decisions about the adequacy of a particular submodel or choose among
competing submodels, themodelermust first ascertain how those indicators were computed.

3.13.1 PROBLEMS

1. The model in Figure 3.2 would normally be used to predict behavior between x1 and
x5. What would be the danger of using the model to predict y for values of x less than
x1 or greater than x5? Suppose we are modeling the trajectory of a thrown baseball.

2. The following table gives the elongation e in inches per inch (in./in.) for a given stress
S on a steel wire measured in pounds per square inch (lb/in:2). Test the model e D c1S
by plotting the data. Estimate c1 graphically.

S .�10�3/ 5 10 20 30 40 50 60 70 80 90 100

e .�105/ 0 19 57 94 134 173 216 256 297 343 390

3. In the following data, x is the diameter of a ponderosa pine in inches measured at
breast height and y is a measure of volume—number of board feet divided by 10. Test
the model y D axb by plotting the transformed data. If the model seems reasonable,
estimate the parameters a and b of the model graphically.

x 17 19 20 22 23 25 28 31 32 33 36 37 38 39 41

y 19 25 32 51 57 71 113 141 123 187 192 205 252 259 294

4. In the following data, V represents a mean walking velocity and P represents the
population size. We wish to know if we can predict the population size P by observing
how fast people walk. Plot the data. What kind of a relationship is suggested? Test the
following models by plotting the appropriate transformed data.
a. P D aV b

b. P D a lnV
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V 2.27 2.76 3.27 3.31 3.70 3.85 4.31 4.39 4.42

P 2500 365 23700 5491 14000 78200 70700 138000 304500

V 4.81 4.90 5.05 5.21 5.62 5.88

P 341948 49375 260200 867023 1340000 1092759

5. The following data represent the growth of a population of fruit flies over a 6-week
period. Test the following models by plotting an appropriate set of data. Estimate the
parameters of the following models.
a. P D c1t

b. P D aebt

t (days) 7 14 21 28 35 42

P (number of observed flies) 8 41 133 250 280 297

6. The following data represent (hypothetical) energy consumption normalized to the year
1900. Plot the data. Test themodelQDaebx by plotting the transformed data. Estimate
the parameters of the model graphically.

x Year Consumption Q

0 1900 1.00
10 1910 2.01
20 1920 4.06
30 1930 8.17
40 1940 16.44
50 1950 33.12
60 1960 66.69
70 1970 134.29
80 1980 270.43
90 1990 544.57

100 2000 1096.63

7. In 1601 the German astronomer Johannes Kepler became director of the Prague Ob-
servatory. Kepler had been helping Tycho Brahe in collecting 13 years of observations
on the relative motion of the planet Mars. By 1609 Kepler had formulated his first two
laws:
i. Each planet moves on an ellipse with the sun at one focus.
ii. For each planet, the line from the sun to the planet sweeps out equal areas in equal

times.
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Kepler spent many years verifying these laws and formulating a third law, which relates
the planets’ orbital periods and mean distances from the sun.
a. Plot the period time T versus the mean distance r using the following updated

observational data.

Mean distance from the sun
Planet Period (days) (millions of kilometers)

Mercury 88 57.9
Venus 225 108.2
Earth 365 149.6
Mars 687 227.9
Jupiter 4,329 778.1
Saturn 10,753 1428.2
Uranus 30,660 2837.9
Neptune 60,150 4488.9

b. Assuming a relationship of the form

T D C ra

determine the parametersC and a by plotting lnT versus ln r . Does the model seem
reasonable? Try to formulate Kepler’s third law.

3.23.2 Analytic Methods of Model Fitting

In this section we investigate several criteria for fitting curves to a collection of data points.
Each criterion suggests a method for selecting the best curve from a given family so that
according to the criterion, the curve most accurately represents the data. We also discuss
how the various criteria are related.

Chebyshev Approximation Criterion
In the preceding sectionwe graphically fit lines to a given collection of data points. One of the
best-fit criteria used was to minimize the largest distance from the line to any corresponding
data point. Let’s analyze this geometric construction. Given a collection of m data points
.xi ; yi /, i D 1; 2; : : : ; m, fit the collection to the line y D ax C b, determined by the
parameters a and b, that minimizes the distance between any data point .xi ; yi / and its
corresponding data point on the line .xi ; axi C b/. That is, minimize the largest absolute
deviation jyi � y.xi /j over the entire collection of data points. Now let’s generalize this
criterion.

Given some function typey D f .x/ and a collection ofm data points .xi ; yi/, minimize
the largest absolute deviation jyi � f .xi/j over the entire collection. That is, determine the
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parameters of the function type y D f .x/ that minimizes the number

Maximum jyi � f .xi/j i D 1; 2; : : : ; m (3.1)

This important criterion is often called the Chebyshev approximation criterion. The dif-
ficulty with the Chebyshev criterion is that it is often complicated to apply in practice, at
least using only elementary calculus. The optimization problems that result from apply-
ing the criterion may require advanced mathematical procedures or numerical algorithms
necessitating the use of a computer.
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ngJ Figure 3.12
The line segment AC is
divided into two segments,
AB and BC .

For example, suppose you want to measure the line segments AB , BC , and AC repre-
sented in Figure 3.12. Assume your measurements yield the estimates AB D 13, BC D 7,
andAC D 19. As you should expect in any physical measuring process, discrepancy results.
In this situation, the values of AB and BC add up to 20 rather than the estimated AC D 19.
Let’s resolve the discrepancy of 1 unit using the Chebyshev criterion. That is, we will assign
values to the three line segments in such away that the largest absolute deviation between any
corresponding pair of assigned and observed values is minimized. Assume the same degree
of confidence in each measurement so that each measurement has equal weight. In that case,
the discrepancy should be distributed equally across each segment, resulting in the predic-
tions AB D 12 2

3
, BC D 6 2

3
, and AC D 19 1

3
. Thus, each absolute deviation is 1

3
. Convince

yourself that reducing any of these deviations causes one of the other deviations to increase.
(Remember that AB C BC must equal AC:/ Let’s formulate the problem symbolically.

Let x1 represent the true value of the length of the segment AB and x2 the true value
for BC . For ease of our presentation, let r1, r2, and r3 represent the discrepancies between
the true and measured values as follows:

x1 � 13 D r1 .line segment AB/

x2 � 7 D r2 .line segment BC /

x1 C x2 � 19 D r3 .line segment AC /

The numbers r1; r2, and r3 are called residuals. Note that residuals can be positive or
negative, whereas absolute deviations are always positive.

If the Chebyshev approximation criterion is applied, values are assigned to x1 and x2

in such a way as to minimize the largest of the three numbers jr1j, jr2j, jr3j. If we call that
largest number r , then we want to

Minimize r

subject to the three conditions:

jr1j � r or � r � r1 � r

jr2j � r or � r � r2 � r

jr3j � r or � r � r3 � r
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Each of these conditions can be replaced by two inequalities. For example, jr1j � r
can be replaced by r �r1 � 0 and r Cr1 � 0. If this is done for each condition, the problem
can be stated in the form of a classical mathematical problem:

Minimize r

Subject to
r � x1 C 13 � 0 .r � r1 � 0/

r C x1 � 13 � 0 .r C r1 � 0/

r � x2 C 7 � 0 .r � r2 � 0/

r C x2 � 7 � 0 .r C r2 � 0/

r � x1 � x2 C 19 � 0 .r � r3 � 0/

r C x1 C x2 � 19 � 0 .r C r3 � 0/

This problem is called a linear program. We will discuss linear programs further in Chap-
ter 7. Even large linear programs can be solved by computer implementation of an algorithm
known as the SimplexMethod. In the preceding line segment example, the SimplexMethod
yields a minimum value of r D 1

3
, and x1 D 12 2

3
and x2 D 6 2

3
.

We now generalize this procedure. Given some function type y D f .x/, whose param-
eters are to be determined, and a collection of m data points .xi ; yi/, define the residuals
ri D yi � f .xi/. If r represents the largest absolute value of these residuals, then the
problem is

Minimize r

subject to

r � ri � 0

r C ri � 0

�
for i D 1; 2; : : : ; m

Although we discuss linear programs in Chapter 7, we should note here that the model
resulting from this procedure is not always a linear program; for example, consider fitting
the function f .x/ D sin kx. Also note that many computer codes of the Simplex algorithm
require using variables that are allowed to assume only nonnegative values. This requirement
can be accomplished with simple substitution (see Problem 5).

As we will see, alternative criteria lead to optimization problems that often can be
resolved more conveniently. Primarily for this reason, the Chebyshev criterion is not used
often for fitting a curve to a finite collection of data points. However, its application should be
considered whenever we desire to minimize the largest absolute deviation. (We consider
several applications of the criterion in Chapter 7.) Furthermore, the principle underlying
the Chebyshev criterion is extremely important when one is replacing a function defined
over an interval by another function and the largest difference between the two functions
over the interval must be minimized. This topic is studied in approximation theory and is
typically covered in introductory numerical analysis.

Minimizing the Sum of the Absolute Deviations
When we were graphically fitting lines to the data in Section 3.1, one of our criteria
minimized the total sum of the absolute deviations between the data points and their
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corresponding points on the fitted line. This criterion can be generalized: Given some
function type y D f .x/ and a collection of m data points .xi ; yi/, minimize the sum of
the absolute deviations jyi � f .xi/j. That is, determine the parameters of the function type
y D f .x/ to minimize

mX

iD1

jyi � f .xi/j (3.2)

If we let Ri D jyi � f .xi/j, i D 1; 2; : : : ; m represent each absolute deviation, then
the preceding criterion (3.2) can be interpreted as minimizing the length of the line formed
by adding together the numbers Ri . This is illustrated for the case m D 2 in Figure 3.13.

0 R1 R1 + R2

R2

©
 C

en
ga

ge
 Le

ar
ni

ngJ Figure 3.13
A geometric interpretation
of minimizing the sum of
the absolute deviations

Although we geometrically applied this criterion in Section 3.1 when the function
type y D f .x/ was a line, the general criterion presents severe problems. To solve this
optimization problem using the calculus, we need to differentiate the sum (3.2) with respect
to the parameters of f .x/ to find the critical points. However, the various derivatives of the
sum fail to be continuous because of the presence of the absolute values, so we will not
pursue this criterion further. In Chapter 7 we consider other applications of the criterion
and present techniques for approximating solutions numerically.

Least-Squares Criterion
Currently, the most frequently used curve-fitting criterion is the least-squares criterion. If
we use the same notation shown earlier, the problem is to determine the parameters of the
function type y D f .x/ to minimize the sum

mX

iD1

jyi � f .xi/j2 (3.3)

Part of the popularity of this criterion stems from the ease with which the resulting optimiza-
tion problem can be solved using only the calculus of several variables. However, relatively
recent advances in mathematical programming techniques (such as the SimplexMethod for
solving many applications of the Chebyshev criterion) and advances in numerical methods
for approximating solutions to the criterion (3.2) promise to dissipate this advantage. The
justification for the use of the least-squares method increases when we consider probabilis-
tic arguments that assume the errors are distributed randomly. However, we will not discuss
such probabilistic arguments until later in the text.

We now give a geometric interpretation of the least-squares criterion. Consider the case
of three data points and let Ri D jyi � f .xi/j denote the absolute deviation between the
observed and predicted values for i D 1; 2; 3. Think of the Ri as the scalar components
of a deviation vector, as depicted in Figure 3.14. Thus the vector R D R1iC R2 jC R3k
represents the resultant deviation between the observed and predicted values. Themagnitude
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J Figure 3.14
A geometric interpretation
of the least-squares
criterion
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of the deviation vector is given by

jRj D
q

R2
1 C R2

2 C R2
3

To minimize jRj we can minimize jRj2 (see Problem 1). Thus, the least-squares problem is
to determine the parameters of the function type y D f .x/ such that

jRj2 D
3X

iD1

R2
i D

3X

iD1

jyi � f .xi/j2

is minimized. That is, we may interpret the least-squares criterion as minimizing the magni-
tude of the vector whose coordinates represent the absolute deviation between the observed
and predicted values.

For data sets greater than 3 pairs, we no longer can provide a plot, but suffice it to
say we are still minimizing the magnitude of the vector whose coordinates represent the
absolute deviation between the observed and the predicted values.

Relating the Criteria
The geometric interpretations of the three curve-fitting criteria help in providing a qualitative
description comparing the criteria. Minimizing the sum of the absolute deviations tends
to treat each data point with equal weight and to average the deviations. The Chebyshev
criterion gives more weight to a single point potentially having a large deviation. The
least-squares criterion is somewhere in between as far as weighting individual points with
significant deviations is concerned. But let’s be more precise. Because the Chebyshev and
least-squares criteria are the most convenient to apply analytically, we now derive a method
for relating the deviations resulting from using these two criteria.

Suppose the Chebyshev criterion is applied and the resulting optimization problem
solved to yield the function f1.x/. The absolute deviations resulting from the fit are defined
as follows:

jyi � f1.xi/j D ci ; i D 1; 2; : : : ; m

Now define cmax as the largest of the absolute deviations ci . There is a special signifi-
cance attached to cmax. Because the parameters of the function f1.x/ are determined so as
to minimize the value of cmax, it is the minimal largest absolute deviation obtainable.

On the other hand, suppose the least-squares criterion is applied and the resulting
optimization problem solved to yield the function f2.x/. The absolute deviations resulting
from the fit are then given by

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_03_ch03_p105-136 January 23, 2013 19:39 120

120 Chapter 3 Model Fitting

jyi � f2.xi/j D di ; i D 1; 2; : : : ; m

Define dmax as the largest of the absolute deviations di . At this point it can only be
said that dmax is at least as large as cmax because of the special significance of the latter as
previously discussed. However, let’s attempt to relate dmax and cmax more precisely.

The special significance the least-squares criterion attaches to the di is that the sum of
their squares is the smallest such sum obtainable. Thus, it must be true that

d 2
1 C d 2

2 C � � � C d 2
m � c2

1 C c2
2 C � � � C c2

m

Because ci � cmax for every i , these inequalities imply

d 2
1 C d 2

2 C � � � C d 2
m � mc2

max

or
s

d 2
1 C d 2

2 C � � � C d 2
m

m
� cmax

For ease of discussion, define

D D

s
d 2

1 C d 2
2 C � � � C d 2

m

m

Thus,

D � cmax � dmax

This last relationship is very revealing. Suppose it is more convenient to apply the least-
squares criterion in a particular situation, but there is concern about the largest absolute
deviation cmax that may result. If we compute D, a lower bound on cmax is obtained, and
dmax gives an upper bound. Thus, if there is considerable difference between D and dmax,
the modeler should consider applying the Chebyshev criterion.

3.23.2 PROBLEMS

1. Using elementary calculus, show that the minimum and maximum points for y D f .x/
occur among the minimum and maximum points for y D f 2.x/. Assuming f .x/ � 0,
why can we minimize f .x/ by minimizing f 2.x/?

2. For each of the following data sets, formulate the mathematical model that minimizes
the largest deviation between the data and the line y D axCb. If a computer is available,
solve for the estimates of a and b.
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a. x 1.0 2.3 3.7 4.2 6.1 7.0

y 3.6 3.0 3.2 5.1 5.3 6.8

b. x 29.1 48.2 72.7 92.0 118 140 165 199

y 0.0493 0.0821 0.123 0.154 0.197 0.234 0.274 0.328

c. x 2.5 3.0 3.5 4.0 4.5 5.0 5.5

y 4.32 4.83 5.27 5.74 6.26 6.79 7.23

3. For the following data, formulate the mathematical model that minimizes the largest
deviation between the data and the model y D c1x2 C c2x C c3: If a computer is
available, solve for the estimates of c1, c2, and c3.

x 0.1 0.2 0.3 0.4 0.5

y 0.06 0.12 0.36 0.65 0.95

4. For the following data, formulate the mathematical model that minimizes the largest
deviation between the data and the model P D aebt . If a computer is available, solve
for the estimates of a and b.

t 7 14 21 28 35 42

P 8 41 133 250 280 297

5. Suppose the variable x1 can assume any real value. Show that the following substitution
using nonnegative variables x2 and x3 permits x1 to assume any real value.

x1 D x2 � x3; where x1 is unconstrained

and

x2 � 0 and x3 � 0

Thus, if a computer code allows only nonnegative variables, the substitution allows
for solving the linear program in the variables x2 and x3 and then recovering the value
of the variable x1.

3.33.3 Applying the Least-Squares Criterion

Suppose that our assumptions lead us to expect a model of a certain type and that data have
been collected and analyzed. In this section the least-squares criterion is applied to estimate
the parameters for several types of curves.
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Fitting a Straight Line
Suppose a model of the form y D Ax C B is expected and it has been decided to use the m
data points .xi ; yi/, i D 1; 2; : : : ; m to estimate A and B . Denote the least-squares estimate
of y D Ax C B by y D ax C b. Applying the least-squares criterion (3.3) to this situation
requires the minimization of

S D
mX

iD1

Œyi � f .xi/�
2 D

mX

iD1

.yi � axi � b/2

A necessary condition for optimality is that the two partial derivatives @S=@a and
@S=@b equal zero, yielding the equations

@S

@a
D �2

mX

iD1

.yi � axi � b/xi D 0

@S

@b
D �2

mX

iD1

.yi � axi � b/ D 0

These equations can be rewritten to give

a
mP

iD1

x2
i C b

mP
iD1

xi D
mP

iD1

xiyi

a
mP

iD1

xi C mb D
mP

iD1

yi




(3.4)

The preceding equations can be solved for a and b once all the values for xi and yi are sub-
stituted into them. The solutions (see Problem 1 at the end of this section) for the parame-
ters a and b are easily obtained by elimination and are found to be

a D m
P

xiyi � P
xi

P
yi

m
P

x2
i � .

P
xi/

2
; the slope (3.5)

and

b D
P

x2
i

P
yi � P

xiyi

P
xi

m
P

x2
i � .

P
xi/

2
; the intercept (3.6)

Computer codes are easilywritten to compute these values for a and b for any collection
of data points. Equations (3.4) are called the normal equations.

Fitting a Power Curve
Now let’s use the least-squares criterion to fit a curve of the form y D Axn, where n
is fixed, to a given collection of data points. Call the least-squares estimate of the model
f .x/ D axn. Application of the criterion then requires minimization of

S D
mX

iD1

Œyi � f .xi/�
2 D

mX

iD1

�
yi � axn

i

�2
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A necessary condition for optimality is that the derivative ds=da equal zero, giving the
equation

dS

da
D �2

mX

iD1

xn
i

�
yi � axn

i

�
D 0

Solving the equation for a yields

a D
P

xn
i yiP

x2n
i

(3.7)

Remember, the number n is fixed in Equation (3.7).
The least-squares criterion can be applied to other models as well. The limitation in

applying the method lies in calculating the various derivatives required in the optimiza-
tion process, setting these derivatives to zero, and solving the resulting equations for the
parameters in the model type.

For example, let’s fit y D Ax2 to the data shown in Table 3.3 and predict the value of
y when x D 2:25.

Table 3.3 Data collected to fit y D Ax2

x 0.5 1.0 1.5 2.0 2.5

y 0.7 3.4 7.2 12.4 20.1
© Cengage Learning

In this case, the least-squares estimate a is given by

a D
P

x2
i yiP
x4

i

We compute
P

x4
i D 61:1875,

P
x2

i yi D 195:0 to yield a D 3:1869 (to four decimal
places). This computation gives the least-squares approximate model

y D 3:1869x2

When x D 2:25, the predicted value for y is 16.1337.

Transformed Least-Squares Fit
Although the least-squares criterion appears easy to apply in theory, in practice it may be
difficult. For example, consider fitting themodely D AeBx using the least-squares criterion.
Call the least-squares estimate of the model f .x/ D aebx . Application of the criterion then
requires the minimization of

S D
mX

iD1

Œyi � f .xi/�
2 D

mX

iD1

�
yi � aebxi

�2

A necessary condition for optimality is that @S=@a D @S=@b D 0. Formulate the
conditions and convince yourself that solving the resulting system of nonlinear equations
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would not be easy. Many simple models result in derivatives that are very complex or in
systems of equations that are difficult to solve. For this reason, we use transformations that
allow us to approximate the least-squares model.

In graphically fitting lines to data in Section 3.1, we often found it convenient to trans-
form the data first and then fit a line to the transformed points. For example, in graphically
fitting y D Cex , we found it convenient to plot lny versus x and then fit a line to the
transformed data. The same idea can be used with the least-squares criterion to simplify
the computational aspects of the process. In particular, if a convenient substitution can be
found so that the problem takes the form Y D AX C B in the transformed variables X and
Y , then Equation (3.4) can be used to fit a line to the transformed variables. We illustrate
the technique with the example that we just worked out.

Suppose we wish to fit the power curve y D AxN to a collection of data points. Let’s
denote the estimate of A by ˛ and the estimate of N by n. Taking the logarithm of both
sides of the equation y D ˛xn yields

lny D ln˛ C n ln x (3.8)

When the variables lny versus ln x are plotted, Equation (3.8) yields a straight line.
On that graph, ln˛ is the intercept when ln x D 0 and the slope of the line is n. Using
Equations (3.5) and (3.6) to solve for the slope n and intercept ln˛ with the transformed
variables and m D 5 data points, we have

n D 5
P

.ln xi/.lnyi/ � .
P

ln xi/ .
P

lnyi/

5
P

.ln xi/2 � .
P

ln xi/
2

ln˛ D
P

.ln xi/
2.lnyi/ � P

.ln xi lnyi/
P

.ln xi/

5
P

.ln xi/2 � .
P

ln xi/
2

For the data displayed in Table 3.3 we get
P

ln xi D 1:3217558,
P

lnyi D
8:359597801,

P
.ln xi/

2 D 1:9648967,
P

.ln xi/.lnyi/ D 5:542315175, yielding n D
2:062809314 and ln˛ D 1:126613508, or ˛ D 3:085190815. Thus, our least-squares best
fit of Equation (3.8) is (rounded to four decimal places)

y D 3:0852x2:0628

This model predicts y D 16:4348 when x D 2:25. Note, however, that this model fails to
be a quadratic like the one we fit previously.

Suppose we still wish to fit a quadratic y D Ax2 to the collection of data. Denote
the estimate of A by a1 to distinguish this constant from the constants a and ˛ computed
previously. Taking the logarithm of both sides of the equation y D a1x2 yields

lny D ln a1 C 2 ln x

In this situation the graph of lny versus ln x is a straight line of slope 2 and intercept
ln a1. Using the second equation in (3.4) to compute the intercept, we have

2
X

ln xi C 5 ln a1 D
X

lnyi
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For the data displayed in Table 3.3, we get
P

ln xi D 1:3217558 and
P

lnyi D
8:359597801. Therefore, this last equation gives ln a1 D 1:14321724, or a1 D 3:136844129,
yielding the least-squares best fit (rounded to four decimal places)

y D 3:1368x2

Themodel predicts y D 15:8801when x D 2:25, which differs significantly from the value
16:1337 predicted by the first quadratic y D 3:1869x2 obtained as the least-squares best
fit of y D Ax2 without transforming the data. We compare these two quadratic models (as
well as a third model) in the next section.

The preceding example illustrates two facts. First, if an equation can be transformed to
yield an equation of a straight line in the transformed variables, Equation (3.4) can be used
directly to solve for the slope and intercept of the transformed graph. Second, the least-
squares best fit to the transformed equations does not coincide with the least-squares best fit
of the original equations. The reason for this discrepancy is that the resulting optimization
problems are different. In the case of the original problem, we are finding the curve that
minimizes the sum of the squares of the deviations using the original data, whereas in the
case of the transformed problem, we are minimizing the sum of the squares of the deviations
using the transformed variables.

3.33.3 PROBLEMS

1. Solve the two equations given by (3.4) to obtain the values of the parameters given by
Equations (3.5) and (3.6), respectively.

2. Use Equations (3.5) and (3.6) to estimate the coefficients of the line y D ax C b such
that the sum of the squared deviations between the line and the following data points
is minimized.

a. x 1.0 2.3 3.7 4.2 6.1 7.0

y 3.6 3.0 3.2 5.1 5.3 6.8

b. x 29.1 48.2 72.7 92.0 118 140 165 199

y 0.0493 0.0821 0.123 0.154 0.197 0.234 0.274 0.328

c. x 2.5 3.0 3.5 4.0 4.5 5.0 5.5

y 4.32 4.83 5.27 5.74 6.26 6.79 7.23

For each problem, compute D and dmax to bound cmax. Compare the results to your
solutions to Problem 2 in Section 3.2.

3. Derive the equations that minimize the sum of the squared deviations between a set of
data points and the quadratic model y D c1x2 C c2x C c3. Use the equations to find
estimates of c1, c2, and c3 for the following set of data.
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x 0.1 0.2 0.3 0.4 0.5

y 0.06 0.12 0.36 0.65 0.95

ComputeD and dmax to bound cmax. Compare the results with your solution to Problem 3
in Section 3.2.

4. Make an appropriate transformation to fit the model P D aebt using Equation (3.4).
Estimate a and b.

t 7 14 21 28 35 42

P 8 41 133 250 280 297

5. Examine closely the system of equations that result when you fit the quadratic in
Problem 3. Suppose c2 D 0. What would be the corresponding system of equations?
Repeat for the cases c1 D 0 and c3 D 0. Suggest a system of equations for a cubic.
Check your result. Explain how you would generalize the system of Equation (3.4) to
fit any polynomial. Explain what you would do if one or more of the coefficients in the
polynomial were zero.

6. A general rule for computing a person’s weight is as follows: For a female, multiply
the height in inches by 3:5 and subtract 108; for a male, multiply the height in inches
by 4:0 and subtract 128. If the person is small bone-structured, adjust this computation
by subtracting 10%; for a large bone-structured person, add 10%. No adjustment is
made for an average-size person. Gather data on the weight versus height of people
of differing age, size, and gender. Using Equation (3.4), fit a straight line to your data
for males and another straight line to your data for females. What are the slopes and
intercepts of those lines? How do the results compare with the general rule?

In Problems 7–10, fit the data with the models given, using least squares.

7. x 1 2 3 4 5

y 1 1 2 2 4

a. y D b C ax

b. y D ax2

8. Data for stretch of a spring

x.�10�3/ 5 10 20 30 40 50 60 70 80 90 100

y.�10�5/ 0 19 57 94 134 173 216 256 297 343 390

a. y D ax

b. y D b C ax

c. y D ax2
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9. Data for the ponderosa pine

x 17 19 20 22 23 25 28 31 32 33 36 37 39 42

y 19 25 32 51 57 71 113 140 153 187 192 205 250 260

a. y D ax C b

b. y D ax2

c. y D ax3

d. y D ax3 C bx2 C c

10. Data for planets

Body Period (sec) Distance from sun (m)

Mercury 7:60 � 106 5:79 � 1010

Venus 1:94 � 107 1:08 � 1011

Earth 3:16 � 107 1:5 � 1011

Mars 5:94 � 107 2:28 � 1011

Jupiter 3:74 � 108 7:79 � 1011

Saturn 9:35 � 108 1:43 � 1012

Uranus 2:64 � 109 2:87 � 1012

Neptune 5:22 � 109 4:5 � 1012

Fit the model y D ax3=2:

3.33.3 PROJECTS

1. Compete the requirements of the module ‘‘Curve Fitting via the Criterion of Least
Squares,’’ by John W. Alexander, Jr., UMAP 321. (See enclosed CD for UMAP mod-
ule.) This unit provides an easy introduction to correlations, scatter diagrams (polyno-
mial, logarithmic, and exponential scatters), and lines and curves of regression. Students
construct scatter diagrams, choose appropriate functions to fit specific data, and use a
computer program to fit curves. Recommended for students who wish an introduction
to statistical measures of correlation.

2. Select a project from Projects 1–7 in Section 2.3 and use least squares to fit your pro-
posed proportionality model. Compare your least-squares results with the model used
from Section 2.3. Find the bounds on the Chebyshev criterion and interpret the results.

3.3 Further Reading
Burden, Richard L., & J. Douglas Faires. Numerical Analysis, 7th ed. Pacific Grove, CA:

Brooks/Cole, 2001.
Cheney, E. Ward, & David Kincaid. Numerical Mathematics and Computing. Monterey, CA:

Brooks/Cole, 1984.
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Cheney, E. Ward, & David Kincaid. Numerical Analysis, 4th ed. Pacific Grove, CA: Brooks/Cole,
1999.

Hamming, R. W. Numerical Methods for Scientists and Engineers. New York: McGraw-Hill, 1973.
Stiefel, Edward L. An Introduction to Numerical Mathematics. New York: Academic Press, 1963.

3.43.4 Choosing a Best Model

Let’s consider the adequacy of the various models of the form y D Ax2 that we fit using
the least-squares and transformed least-squares criteria in the previous section. Using the
least-squares criterion, we obtained the model y D 3:1869x2. One way of evaluating how
well the model fits the data is to compute the deviations between the model and the actual
data. If we compute the sum of the squares of the deviations, we can bound cmax as well.
For the model y D 3:1869x2 and the data given in Table 3.3, we compute the deviations
shown in Table 3.4.

Table 3.4 Deviations between the data in Table 3.3 and the fitted model y D3:1869x2

xi 0.5 1.0 1.5 2.0 2.5

yi 0.7 3.4 7.2 12.4 20.1

yi � y.xi / �0:0967 0.2131 0.02998 �0:3476 0.181875
© Cengage Learning

From Table 3.4 we compute the sum of the squares of the deviations as 0.20954, so
D D .0:20954=5/1=2 D 0:204714. Because the largest absolute deviation is 0.3476 when
x D 2:0, cmax can be bounded as follows:

D D 0:204714 � cmax � 0:3476 D dmax

Let’s find cmax. Because there are five data points, the mathematical problem is to
minimize the largest of the five numbers jri j D jyi � y.xi/j. Calling that largest number r ,
we want to minimize r subject to r � ri and r � �ri for each i D 1; 2; 3; 4; 5. Denote
our model by y.x/ D a2x2. Then, substitution of the observed data points in Table 3.3 into
the inequalities r � ri and r � �ri for each i D 1; 2; 3; 4; 5 yields the following linear
program:

Minimize r

subject to

r � r1 D r � .0:7 � 0:25a2/ � 0

r C r1 D r C .0:7 � 0:25a2/ � 0

r � r2 D r � .3:4 � a2/ � 0

r C r2 D r C .3:4 � a2/ � 0
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r � r3 D r � .7:2 � 2:25a2/ � 0

r C r3 D r C .7:2 � 2:25a2/ � 0

r � r4 D r � .12:4 � 4a2/ � 0

r C r4 D r C .12:4 � 4a2/ � 0

r � r5 D r � .20:1 � 6:25a2/ � 0

r C r5 D r C .20:1 � 6:25a2/ � 0

In Chapter 7 we show that the solution of the preceding linear program yields r D
0:28293 and a2 D 3:17073. Thus, we have reduced our largest deviation from dmax D0:3476
to cmax D 0:28293. Note that we can reduce the largest deviation no further than 0.28293
for the model type y D Ax2.

We have now determined three estimates of the parameter A for the model type y D
Ax2. Which estimate is best? For each model we can readily compute the deviations from
each data point as recorded in Table 3.5.

Table 3.5 Summary of the deviations for each model y D Ax2

xi yi yi � 3:1869x2
i yi � 3:1368x2

i yi � 3:17073x2
i

0.5 0.7 �0:0967 �0:0842 �0:0927
1.0 3.4 0:2131 0:2632 0:2293
1.5 7.2 0:029475 0:1422 0:0659
2.0 12.4 �0:3476 �0:1472 �0:2829
2.5 20.1 0:181875 0:4950 0:28293

© Cengage Learning

For each of the three models we can compute the sum of the squares of the deviations
and the maximum absolute deviation. The results are shown in Table 3.6.

As we would expect, each model has something to commend it. However, notice the
increase in the sum of the squares of the deviations in the transformed least-squares model.
It is tempting to apply a simple rule, such as choose the model with the smallest absolute
deviation. (Other statistical indicators of goodness of fit exist as well. For example, see
Probability and Statistics in Engineering and Management Science, by William W. Hines
and Douglas C. Montgomery, New York: Wiley, 1972.) These indicators are useful for
eliminating obviously poor models, but there is no easy answer to the question, Which
model is best? The model with the smallest absolute deviation or the smallest sum of
squares may fit very poorly over the range where you intend to use it most. Furthermore,
as you will see in Chapter 4, models can easily be constructed that pass through each data
point, thereby yielding a zero sum of squares and zero maximum deviation. So we need to

Table 3.6 Summary of the results for the three models

Criterion Model
P

Œyi � y.xi /�
2 Max jyi � y.xi /j

Least-squares y D 3:1869x2 0.2095 0.3476
Transformed least-squares y D 3:1368x2 0.3633 0.4950
Chebyshev y D 3:17073x2 0.2256 0.28293
© Cengage Learning
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J Figure 3.15
In all of these graphs, the
model y D x has the same
sum of squared deviations.
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answer the question of whichmodel is best on a case-by-case basis, taking into account such
things as the purpose of the model, the precision demanded by the scenario, the accuracy
of the data, and the range of values for the independent variable over which the model will
be used.

When choosing among models or judging the adequacy of a model, we may find it
tempting to rely on the value of the best-fit criterion being used. For example, it is tempting
to choose the model that has the smallest sum of squared deviations for the given data set
or to conclude that a sum of squared deviations less than a predetermined value indicates
a good fit. However, in isolation these indicators may be very misleading. For example,
consider the data displayed in Figure 3.15. In all of the four cases, the model y D x results
in exactly the same sum of squared deviations. Without the benefit of the graphs, therefore,
we might conclude that in each case the model fits the data about the same. However, as the
graphs show, there is a significant variation in each model’s ability to capture the trend of
the data. The following examples illustrate how the various indicators may be used to help
in reaching a decision on the adequacy of a particular model. Normally, a graphical plot is
of great benefit.

EXAMPLE 1 Vehicular Stopping Distance

Let’s reconsider the problem of predicting a motor vehicle’s stopping distance as a func-
tion of its speed. (This problem was addressed in Sections 2.2 and 3.3.) In Section 3.3 the
submodel in which reaction distance dr was proportional to the velocity v was tested graph-
ically, and the constant of proportionality was estimated to be 1.1. Similarly, the submodel
predicting a proportionality between braking distance db and the square of the velocity was
tested.We found reasonable agreement with the submodel and estimated the proportionality
constant to be 0.054. Hence, the model for stopping distance was given by

d D 1:1v C 0:054v2 (3.9)

We now fit these submodels analytically and compare the various fits.
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To fit the model using the least-squares criterion, we use the formula from Equa-
tion (3.7):

A D
P

xiyiP
x2

i

where yi denotes the driver reaction distance and xi denotes the speed at each data point.
For the 13 data points given in Table 2.4, we compute

P
xiyi D 40905 and

P
x2

i D 37050,
giving A D 1:104049.

For the model type db D Bv2, we use the formula

B D
P

x2
i yiP
x4

i

where yi denotes the average braking distance and xi denotes the speed at each data
point. For the 13 data points given in Table 2.4, we compute

P
x2

i yi D 8258350 andP
x4

i D 152343750, giving B D 0:054209. Because the data are relatively imprecise and
the modeling is done qualitatively, we round the coefficients to obtain the model

d D 1:104v C 0:0542v2 (3.10)

Model (3.10) does not differ significantly from that obtained graphically in Chapter 3. Next,
let’s analyze how well the model fits. We can readily compute the deviations between the
observed data points in Table 2.4 and the values predicted by Models (3.9) and (3.10).
The deviations are summarized in Table 3.7. The fits of both models are very similar. The
largest absolute deviation for Model (3.9) is 30.4 and for Model (3.10) it is 28.8. Note
that both models overestimate the stopping distance up to 70 mph, and then they begin to
underestimate the stopping distance. A better-fitting model would be obtained by directly
fitting the data for total stopping distance to

Table 3.7 Deviations from the observed data points and
Models (3.9) and (3.10)

Speed Graphical model (3.9) Least-squares model (3.10)

20 1:6 1:76
25 5:25 5:475
30 8:1 8:4
35 13:15 13:535
40 14:4 14:88
45 16:35 16:935
50 17 17:7
55 14:35 15:175
60 12:4 13:36
65 7:15 8:255
70 �1:4 �0:14
75 �14:75 �13:325
80 �30:4 �28:8

© Cengage Learning
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J Figure 3.16
A plot of the proposed model and the observed data points provides a visual
check on the adequacy of the model.

d D k1v C k2v2

instead of fitting the submodels individually as we did. The advantage of fitting the sub-
models individually and then testing each submodel is that we can measure how well they
explain the behavior.

A plot of the proposedmodel(s) and the observed data points is useful to determine how
well the model fits the data. Model (3.10) andthe observations are plotted in Figure 3.16. It
is evident from the figure that a definite trend exists in the data and that Model (3.10) does
a reasonable job of capturing that trend, especially at the lower speeds.

A powerful technique for quickly determining where the model is breaking down is
to plot the deviations (residuals) as a function of the independent variable(s). For Model
(3.10), a plot of the deviations is given in Figure 3.17 showing that the model is indeed
reasonable up to 70 mph. Beyond 70 mph there is a breakdown in the model’s ability to
predict the observed behavior.

Let’s examine Figure 3.17more closely. Note that although the deviations up to 70mph
are relatively small, they are all positive. If the model fully explains the behavior, not only
should the deviations be small, but some should be positive and some negative. Why? In
Figure 3.17 we note a definite pattern in the nature of the deviations, which might cause
us to reexamine the model and/or the data. The nature of the pattern in the deviations can
give us clues on how to refine the model further. In this case, the imprecision in the data
collection process probably does not warrant further model refinement. J J J

EXAMPLE 2 Comparing the Criterion

We consider the following data for diameter, height, volume, and diameter3. We see the
trend in Figure 3.18.
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We want to fit the model, V D kD3. We compare all three criterion: (a) least squares,
(b) sum of absolute deviations, and (c) minimize the largest error (Chebyshev’s criterion).
Although the solutions to some of these methods, (b) & (c), have yet to be covered in the
text, we illustrate the results from those models here.
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J Figure 3.17
A plot of the deviations (residuals) reveals those regions where the model
does not fit well.
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Scatterplot of diameter versus volume.
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(a) Method of Least Squares Using our formula to find the least squares estimate k,

k D
P

D3
i VP

D6
i

k D 1864801=19145566 D 0:00974

The regression equation is

Volume D 0:00974 Diameter3

The total SSE is 451.

(b) Sum of Absolute Deviations We use the numerical optimization methods described
in Chapter 7 to solve this problem.

We solve minimize S D P jyi � ax3
i j for i D 1; 2; : : : ; 14. A summary of the model

and absolute error are provided. Using numerical methods, we find the best coefficient
value for a is 0.009995, which yields a sum of absolute error of 68.60255.

Diameter Volume Model ABS_Error Coefficient 0.009995

8.3 10.3 5.714861 4.585139
8.8 10.2 6.811134 3.388866

10.5 16.4 11.57016 4.829842
11.3 24.2 14.42138 9.778624
11.4 21.4 14.80764 6.592357
12 19.1 17.27091 1.829094
12.9 22.2 21.45559 0.744408
13.7 25.7 25.7 2.45E-06
14 34.5 27.42556 7.074441
14.5 36.3 30.47021 5.829794
16 38.3 40.93844 2.638444
17.3 55.4 51.74992 3.650079
18 51 58.28931 7.289307
20.6 77 87.37215 10.37215

Sum of abs_error 68.60255

The sum of the absolute errors is 68.6055. The model is

Volume D 0:009995 Diameter3

Note:We point out that if you used this model and calculated its SSE, it would be greater
than 451, the value from the least-squares model. Additionally, if you computed the sum of
absolute errors for the least-squares model, it would be greater than 68.60255.

(c) The Chebyshev Method We use the linear programming formulation process dis-
cussed in Chapter 7. We will utilize appropriate technology to solve the formulation. The
model formulation for the Chebyshevs method is
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Minimize R

Subject to:

R C 10:3 � 571:787k � 0

R � .10:3 � 571:787k/ � 0

R C 10:2 � 681:472k � 0

R � .10:2 � 681:472k/ � 0

: : :

R C 77 � 8741:816k � 0

R � .77 � 8741:816k/ � 0

R; k � 0

The optimal solution is found as k D 0:009936453825 and R D 9:862690776. The
model is

Volume D 0:009936453825 � Diameter3

The objective function value, Minimize R, the largest error is 9.862690776.
We note that it is the criterion that we choose that determines which model form we

pursue: minimize the sum of squared error, minimize the sum of the absolute errors, or
minimize the largest absolute error. J J J

3.43.4 PROBLEMS

For Problems 1–6, find a model using the least-squares criterion either on the data or on the
transformed data (as appropriate). Compare your results with the graphical fits obtained
in the problem set 3.1 by computing the deviations, the maximum absolute deviation, and
the sum of the squared deviations for each model. Find a bound on cmax if the model was fit
using the least-squares criterion.

1. Problem 3 in Section 3.1

2. Problem 4a in Section 3.1

3. Problem 4b in Section 3.1

4. Problem 5a in Section 3.1

5. Problem 2 in Section 3.1

6. Problem 6 in Section 3.1

7. a. In the following data, W represents the weight of a fish (bass) and l represents its
length. Fit the model W D kl3 to the data using the least-squares criterion.
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Length, l (in.) 14.5 12.5 17.25 14.5 12.625 17.75 14.125 12.625

Weight, W (oz) 27 17 41 26 17 49 23 16

b. In the following data, g represents the girth of a fish. Fit the model W D klg2 to the
data using the least-squares criterion.

Length, l (in.) 14.5 12.5 17.25 14.5 12.625 17.75 14.125 12.625

Girth, g (in.) 9.75 8.375 11.0 9.75 8.5 12.5 9.0 8.5

Weight, W (oz) 27 17 41 26 17 49 23 16

c. Which of the two models fits the data better? Justify fully. Which model do you
prefer? Why?

8. Use the data presented in Problem 7b to fit themodelsW D cg3 andW D kgl2. Interpret
these models. Compute appropriate indicators and determine which model is best.
Explain.

3.43.4 PROJECTS

1. Write a computer program that finds the least-squares estimates of the coefficients in
the following models.
a. y D ax2 C bx C c

b. y D axn

2. Write a computer program that computes the deviation from the data points and any
model that the user enters. Assuming that the model was fitted using the least-squares
criterion, compute D and dmax. Output each data point, the deviation from each data
point, D, dmax, and the sum of the squared deviations.

3. Write a computer program that uses Equations (3.4) and the appropriate transformed
data to estimate the parameters of the following models.
a. y D bxn

b. y D beax

c. y D a ln x C b

d. y D ax2

e. y D ax3

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_04_ch04_p137-184 January 24, 2013 15:25 137

44 Experimental Modeling

Introduction
In Chapter 3 we discussed the philosophical differences between curve fitting and interpo-
lation. When fitting a curve, the modeler is using some assumptions that select a particular
type of model that explains the behavior under observation. If collected data then corrobo-
rate the reasonableness of those assumptions, the modeler’s task is to choose the parameters
of the selected curve that best fits the data according to some criterion (such as least squares).
In this situation the modeler expects, and willingly accepts, some deviations between the
fitted model and the collected data to obtain a model explaining the behavior. The problem
with this approach is that in many cases the modeler is unable to construct a tractable model
form that satisfactorily explains the behavior. Thus, the modeler does not knowwhat kind of
curve actually describes the behavior. If it is necessary to predict the behavior nevertheless,
the modeler may conduct experiments (or otherwise gather data) to investigate the behav-
ior of the dependent variable(s) for selected values of the independent variable(s) within
some range. In essence, the modeler desires to construct an empirical model based on the
collected data rather than select a model based on certain assumptions. In such cases the
modeler is strongly influenced by the data that have been carefully collected and analyzed,
so he or she seeks a curve that captures the trend of the data to predict in between the
data points.

For example, consider the data shown in Figure 4.1a. If the modeler’s assumptions lead
to the expectation of a quadratic model, a parabola will fit the data points, as illustrated in
Figure 4.1b. However, if the modeler has no reason to expect a particular type of model, a
smooth curve may pass through the data points instead, as illustrated in Figure 4.1c.
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J Figure 4.1
If the modeler expects a quadratic relationship, a parabola may be fit to the data,
as in b. Otherwise, a smooth curve may be passed through the points, as in c.
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In this chapter, we address the construction of empirical models. In Section 4.1, we
study the selection process for simple one-term models that capture the trend of the data.
A few scenarios are addressed for which few modelers would attempt to construct an
explicative model—namely, predicting the harvest of sea life in the Chesapeake Bay. In
Section 4.2, we discuss the construction of higher-order polynomials that pass through
the collected data points. In Section 4.3, we investigate smoothing of data using low-order
polynomials. Finally, in Section 4.4, we present the technique of cubic spline interpo-
lation, where a distinct cubic polynomial is used across successive pairs of data
points.

4.14.1 Harvesting in the Chesapeake Bay
and Other One-Term Models

Let’s consider a situation in which a modeler has collected some data but is unable to
construct an explicative model. In 1992, the Daily Press (a newspaper in Virginia) reported
some observations (data) collected during the past 50 years on harvesting sea life in the
Chesapeake Bay. We will examine several scenarios using observations from (a) harvesting
bluefish and (b) harvesting blue crabs by the commercial industry of the Chesapeake Bay.
Table 4.1 shows the data we will use in our one-term models.

A scatterplot of harvesting bluefish versus time is shown in Figure 4.2, and a scatterplot
of harvesting blue crabs is shown in Figure 4.3. Figure 4.2 clearly shows a tendency to harvest
more bluefish over time, indicating or suggesting the availability of bluefish. A more precise
description is not so obvious. In Figure 4.3, the tendency is for the increase of harvesting
of blue crabs. Again, a precise model is not so obvious.

In the rest of this section, we suggest how we might begin to predict the availability
of bluefish over time. Our strategy will be to transform the data of Table 4.1 in such a way
that the resulting graph approximates a line, thus achieving a working model. But how do

Table 4.1 Harvesting the bay, 1940–1990

Year Bluefish (lb) Blue crabs (lb)

1940 15,000 100,000
1945 150,000 850,000
1950 250,000 1,330,000
1955 275,000 2,500,000
1960 270,000 3,000,000
1965 280,000 3,700,000
1970 290,000 4,400,000
1975 650,000 4,660,000
1980 1,200,000 4,800,000
1985 1,500,000 4,420,000
1990 2,750,000 5,000,000
© Cengage Learning
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J Figure 4.2
Scatterplot of harvesting
bluefish versus base year
(5-year periods from 1940
to 1990)
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J Figure 4.3
Scatterplot of harvesting
blue crabs versus base year
(5-year periods from 1940
to 1990)
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we determine the transformation? We will use the ladder of powers1 of a variable z to help
in the selection of the appropriate linearizing transformation.

Figure 4.4 shows a set of five data points .x; y/ together with the line y D x, for x > 1.
Suppose we change the y value of each point to

p
y. This procedure yields a new relation

y D p
x whose y values are closer together over the domain in question. Note that all the

y values are reduced, but the larger values are reduced more than the smaller ones.
Changing the y value of each point to log y has a similar but more pronounced effect,

and each additional step down the ladder produces a stronger version of the same effect.
We started in Figure 4.4 in the simplest way—with a linear function. However, that

was only for convenience. If we take a concave up, positive-valued function, such as y D
f .x/; x > 1,

then some transformation in the ladder below y—changing the y values to
p

y, or log y, or
a more drastic change—squeezes the right-hand tail downward and increases the likelihood
of generating a new function more linear than the original. Which transformation should
be used is a matter of trial and error and experience. Another possibility is to stretch the
right-hand tail to the right (try changing the x values to x2, x3 values, etc.).

Ladder of
powers

:::

z2

zp
z

log z
1p
z

1
z

1
z2

:::

1See Paul F. Velleman and David C. Hoaglin, Applications, Basics, and Computing of Exploratory Data
Analysis (Boston: Duxbury Press, 1981), p. 49.
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J Figure 4.4
Relative effects of three
transformations
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If we take a concave down, positive-valued increasing function, y D f .x/, x > 1,
such as

we can hope to linearize it further by stretching the right-hand tail upward (try changing y
values to y2, y3 values, etc.). Another possibility is to squeeze the right-hand tail to the left
(try changing the x values to

p
x, or log x, or by a more drastic choice from the ladder).

Note that although replacing z by 1=z or 1=z2 and so onmay sometimes have a desirable
effect, such replacements also have an undesirable one—an increasing function is converted
into a decreasing one. As a result, when using the transformation in the ladder of powers
below log z, data analysts generally use a negative sign to keep the transformation data in
the same order as the original data. Table 4.2 shows the ladder of transformations as it is
generally used.

With this information on the ladder of transformations, let’s return to the Chesapeake
Bay harvesting data.

Table 4.2
Ladder of
Transfor-
mations

:::

z3

z2

z (no change)

�




p
z

log z
�1p

z

�1
z

�1
z2

:::

© Cengage Learning
�The transforma-
tions most often
used.

EXAMPLE 1 Harvesting Bluefish

Recall from the scatterplot in Figure 4.2 that the trend of the data appears to be increasing
and concave up. Using the ladder of powers to squeeze the right-hand tail downward, we
can change y values by replacing y with log y or other transformations down the ladder.
Another choice would be to replace x values with x2 or x3 values or other powers up the
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Table 4.3 Harvesting the bay: Bluefish, 1940–1990

Year Base year Bluefish (lb)

x y
1940 0 15,000
1945 1 150,000
1950 2 250,000
1955 3 275,000
1960 4 270,000
1965 5 280,000
1970 6 290,000
1975 7 650,000
1980 8 1,200,000
1985 9 1,550,000
1990 10 2,750,000
© Cengage Learning

ladder. We will use the data displayed in Table 4.3, where 1940 is the base year of x D 0
for numerical convenience, with each base year representing a 5-year period.

We begin by squeezing the right-hand tail rightward by changing x to various values
going up the ladder (x2, x3, etc.). None of these transformations results in a linear graph.
We next change y to values of

p
y and log y, going down the ladder. Both

p
y and log y

plots versus x appeared more linear than the transformations to the x variable. (The plots of
y versus x2 and x versus

p
y were identical in their linearity.) We choose the log y versus

x model. We fit with least squares the model of the form

logy D mx C b

and obtain the following estimated curve:

logy D 0:7231 C 0:1654x

where x is the base year and logy is to the base 10 and y is measured in 104 pounds. (See
Figure 4.5.)

Using the property that y D log n if and only if 10y D n, we can rewrite this equation
(with the aid of a calculator) as

y D 5:2857.1:4635/x (4.1)

J Figure 4.5
Superimposed data and
model y D 5:2857.1:4635/x
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where y is measured in 104 pounds of bluefish and x is the base year. The plot of the model
appears to fit the data reasonablywell. Figure 4.5 shows the graph of this curve superimposed
on the scatterplot. We will accept some error to have a simple one-term model. J J J

EXAMPLE 2 Harvesting Blue Crabs

Recall from our original scatterplot, Figure 4.3, that the trend of the data is increasing and
concave down. With this information, we can utilize the ladder of transformations. We will
use the data in Table 4.4, modified by making 1940 (year x D 0) the base year, with each
base year representing a 5-year period.

Table 4.4 Harvesting the bay: Blue crabs, 1940–1990

Year Base year Blue crabs (lb)

x y
1940 0 100,000
1945 1 850,000
1950 2 1,330,000
1955 3 2,500,000
1960 4 3,000,000
1965 5 3,700,000
1970 6 4,400,000
1975 7 4,660,000
1980 8 4,800,000
1985 9 4,420,000
1990 10 5,000,000
© Cengage Learning

As previously stated, we can attempt to linearize these data by changing y values to
y2 or y3 values or to others moving up the ladder. After several experiments, we chose to
replace the x values with

p
x. This squeezes the right-hand tail to the left. We provide a

plot of y versus
p

x (Figure 4.6). In Figure 4.7, we superimpose a line y D k
p

x projected
through the origin (no y-intercept). We use least squares from Chapter 3 to find k, yielding

y D 158:344
p

x (4.2)

where y is measured in 104 pounds of blue crabs and x is the base year.

J Figure 4.6
Blue crabs (in 104 lb)
versus
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J Figure 4.7
The line y D 158:344
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J Figure 4.8
Superimposed data and
model y D 158:344
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Figure 4.8 shows the graph of the preceding model superimposed on the scatterplot.
Note that the curve seems to be reasonable, because it fits the data about as well as expected
for a simple one-term model. J J J

Verifying the Models
How good are the predictions based on the models? Part of the answer lies in comparing
the observed values with those predicted. We can calculate the residuals and the relative
errors for each pair of data. In many cases, the modeler is asked to predict or extrapolate to
the future. How would these models hold up in predicting the amounts of harvests from the
bay in the year 2010?

The following result for the bluefish may be larger than one might predict, whereas the
result for the blue crabs may be a little lower than one might predict.

Bluefish y D 5:2857.1:4635/14 D 1092:95 .104 lb/ � 10:9 million lb
Blue crabs y D 158:344

p
14 D 592:469 .104 lb/ � 5:92 million lb

These simple, one-term models should be used for interpolation and not extrapolation. We
discuss modeling population growth more thoroughly in Chapters 11 and 12.

Let’s summarize the ideas of this section. When we are constructing an empirical
model, we always begin with a careful analysis of the collected data. Do the data suggest
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the existence of a trend? Are there data points that obviously lie outside the trend? If such
outliers do exist, it may be desirable to discard them or, if theywere obtained experimentally,
to repeat the experiment as a check for a data collection error. When it is clear that a trend
exists, we next attempt to find a function that will transform the data into a straight line
(approximately). In addition to trying the functions listed in the ladder of transformations
presented in this section, we can also attempt the transformations discussed in Chapter 3.
Thus, if the model y D axb were selected, we would plot lny versus ln x to see if a straight
line results. Likewise, when investigating the appropriateness of the model y D aebx , we
would plot lny versus x to see if a straight line results. Keep in mind our discussion in
Chapter 3 about how the use of transformations may be deceiving, especially if the data
points are squeezed together. Our judgment is strictly qualitative; the idea is to determine
if a particular model type appears promising. When we are satisfied that a certain model
type does seem to capture the trend of the data, we can estimate the parameters of the
model graphically or using the analytical techniques discussed in Chapter 3. Eventually,
we must analyze the goodness of fit using the indicators discussed in Chapter 3. Remember
to graph the proposed model against the original data points, not the transformed data. If
we are dissatisfied with the fit, we can investigate other one-term models. Because of their
inherent simplicity, however, one-term models cannot fit all data sets. In such situations,
other techniques can be used; we discuss these methods in the next several sections.

4.14.1 PROBLEMS

In 1976,Marc andHelen Bornstein studied the pace of life.2 To see if life becomesmore hectic
as the size of the city becomes larger, they systematically observed the mean time required
for pedestrians to walk 50 feet on the main streets of their cities and towns. In Table 4.5,
we present some of the data they collected. The variable P represents the population of the
town or city, and the variable V represents the mean velocity of pedestrians walking the
50 feet. Problems 1–5 are based on the data in Table 4.5.

1. Fit the model V D CP a to the ‘‘pace of life’’ data in Table 4.5. Use the transforma-
tion logV D a logP C logC . Plot logV versus logP . Does the relationship seem
reasonable?
a. Make a table of logP versus logV .
b. Construct a scatterplot of your log–log data.
c. Eyeball a line l onto your scatterplot.
d. Estimate the slope and the intercept.
e. Find the linear equation that relates logV and logP .
f. Find the equation of the form V D CP a that expresses V in terms of P .

2. Graph the equation you found in Problem 1f superimposed on the original scatterplot.

2Bornstein, Marc H., and Helen G. Bornstein, ‘‘The Pace of Life.’’ Nature 259 (19 February 1976): 557–559.
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Table 4.5 Population and mean velocity over a 50-foot
course, for 15 locations�

Population Mean velocity
Location P V (ft=sec)

(1) Brno, Czechoslovakia 341,948 4.81
(2) Prague, Czechoslovakia 1,092,759 5.88
(3) Corte, Corsica 5,491 3.31
(4) Bastia, France 49,375 4.90
(5) Munich, Germany 1,340,000 5.62
(6) Psychro, Crete 365 2.76
(7) Itea, Greece 2,500 2.27
(8) Iraklion, Greece 78,200 3.85
(9) Athens, Greece 867,023 5.21
(10) Safed, Israel 14,000 3.70
(11) Dimona, Israel 23,700 3.27
(12) Netanya, Israel 70,700 4.31
(13) Jerusalem, Israel 304,500 4.42
(14) New Haven, U.S.A. 138,000 4.39
(15) Brooklyn, U.S.A. 2,602,000 5.05
© Cengage Learning
�Bornstein data.

3. Using the data, a calculator, and themodel you determined forV (Problem 1f), complete
Table 4.6.

4. From the data in Table 4.6, calculate the mean (i.e., the average) of the Bornstein errors
jVobserved � Vpredictedj. What do the results suggest about the merit of the model?

Table 4.6 Observed mean velocity for 15 locations

Location� Observed velocity V Predicted velocities

1 4.81
2 5.88
3 3.31
4 4.90
5 5.62
6 2.76
7 2.27
8 3.85
9 5.21

10 3.70
11 3.27
12 4.31
13 4.42
14 4.39
15 5.05

© Cengage Learning
�For location names, see Table 4.5.
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Table 4.7 Oysters in the bay

Oysters
Year harvested (bushels)

1940 3,750,000
1945 3,250,000
1950 2,800,000
1955 2,550,000
1960 2,650,000
1965 1,850,000
1970 1,500,000
1975 1,000,000
1980 1,100,000
1985 750,000
1990 330,000
© Cengage Learning

5. Solve Problems 1–4 with the model V D m.logP / C b. Compare the errors with
those computed in Problem 4. Compare the two models. Which is better?

6. Table 4.7 and Figure 4.9 present data representing the commercial harvesting of oysters
in Chesapeake Bay. Fit a simple, one-term model to the data. How well does the best
one-term model you find fit the data? What is the largest error? The average error?

J Figure 4.9
Oysters (millions of
pounds) versus base year
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7. In Table 4.8, X is the Fahrenheit temperature, and Y is the number of times a cricket
chirps in 1 minute. Fit a model to these data. Analyze how well it fits.

8. Fit a model to Table 4.9. Do you recognize the data? What relationship can be inferred
from them?

9. The following data measure two characteristics of a ponderosa pine. The variable X
is the diameter of the tree, in inches, measured at breast height; Y is a measure of
volume—the number of board feet divided by 10. Fit a model to the data. Then express
Y in terms of X .
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Diameter and volume for 20 ponderosa pine trees

Observation Observation
number X Y number X Y

1 36 192 11 31 141
2 28 113 12 20 32
3 28 88 13 25 86
4 41 294 14 19 21
5 19 28 15 39 231
6 32 123 16 33 187
7 22 51 17 17 22
8 38 252 18 37 205
9 25 56 19 23 57
10 17 16 20 39 265

Data reported in Croxton, Cowden, and Klein, Applied General Statistics, p. 421.

Table 4.8 Temperature and chirps per minute for 20 crickets

Observation Observation
number X Y number X Y

1 46 40 11 61 96
2 49 50 12 62 88
3 51 55 13 63 99
4 52 63 14 64 110
5 54 72 15 66 113
6 56 70 16 67 120
7 57 77 17 68 127
8 58 73 18 71 137
9 59 90 19 72 132
10 60 93 20 71 137

© Cengage Learning

Data inferred from a scatterplot in Frederick E. Croxton, Dudley J. Cowden, and
SidneyKlein,AppliedGeneral Statistics, 3rd ed. (EnglewoodCliffs, NJ: Prentice-
Hall, 1967), p. 390.

Table 4.9

Observation
number X Y

1 35.97 0.241
2 67.21 0.615
3 92.96 1.000
4 141.70 1.881
5 483.70 11.860
6 886.70 29.460
7 1783.00 84.020
8 2794.00 164.800
9 3666.00 248.400

© Cengage Learning

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_04_ch04_p137-184 January 23, 2013 19:39 148

148 Chapter 4 Experimental Modeling

10. The following data represent the length and weight of a set of fish (bass). Model weight
as a function of the length of the fish.

Length (in.) 12.5 12.625 14.125 14.5 17.25 17.75

Weight (oz) 17 16.5 23 26.5 41 49

11. The following data give the population of the United States from 1800 to 2000. Model
the population (in thousands) as a function of the year. How well does your model fit?
Is a one-term model appropriate for these data? Why?

Year 1800 1820 1840 1860 1880 1900 1920

Population (thousands) 5308 9638 17,069 31,443 50,156 75,995 105,711

Year 1940 1960 1980 1990 2000

Population (thousands) 131,669 179,323 226,505 248,710 281,416

4.14.1 PROJECT

1. Compete the requirements of UMAP 551, ‘‘The Pace of Life, An Introduction to
Model Fitting,’’ by Bruce King. Prepare a short summary for classroom discussion.

4.1 Further Reading
Bornstein, Marc H., & Helen G. Bornstein. ‘‘The Pace of Life.’’ Nature 259 (19 February 1976):

557–559.
Croxton, Fredrick E., Dudley J. Crowden, & Sidney Klein. Applied General Statistics, 7th ed. Engle-

wood Cliffs, NJ: Prentice-Hall, 1985.
Neter, John, &WilliamWassermann. Applied Linear Statistical Models, 4th ed. Boston: McGraw-Hill,

1996.
Vellman, Paul F., & David C. Hoaglin. Applications, Basics, and Computing of Exploratory Data

Analysis. Boston: Duxbury Press, 1984.
Yule, G. Udny. ‘‘Why Do We Sometimes Get Nonsense-Correlations between Time Series? A Study

in Sampling and the Nature of Time Series.’’ Journal of the Royal Statistical Society 89 (1926):
1–69.

4.24.2 High-Order Polynomial Models
In Section 4.1, we investigated the possibility of finding a simple, one-term model that
captures the trend of the collected data. Because of their inherent simplicity, one-termmodels
facilitate model analysis, including sensitivity analysis, optimization, and estimation of rates
of change and area under the curve. Because of their mathematical simplicity, however, one-
term models are limited in their ability to capture the trend of any collection of data. In some
cases, models with more than one term must be considered. The remainder of this chapter
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considers one type of multiterm model—namely, the polynomial. Because polynomials are
easy to integrate and to differentiate, they are especially popular. However, polynomials
also have their disadvantages. For example, it is far more appropriate to approximate a data
set having a vertical asymptote using a quotient of polynomials p.x/=q.x/ rather than a
single polynomial.

Let’s begin by studying polynomials that pass through each point in a data set that
includes only one observation for each value of the independent variable.

(x2, y2) (x2, y2) (x2, y2)

(x1, y1)

(x3, y3)(x3, y3)

(x'3, y'3)
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x x x

y y

a b c

P1(x)

P2(x)

P3(x)

©
 C

en
ga

ge
 Le

ar
ni

ng

J Figure 4.10
A unique polynomial of at most degree 2 can be passed through three data points
(a and b), but an infinite number of polynomials of degree greater than 2 can be
passed through three data points (c)

Consider the data in Figure 4.10a. Through the two given data points, a unique line
y D a0 C a1x can pass. Determine the constants a0 and a1 by the conditions that the line
passes through the points .x1; y1/ and .x2; y2/. Thus,

y1 D a0 C a1x1

and

y2 D a0 C a1x2

In a similar manner, a unique polynomial function of (at most) degree 2, y D a0 C a1x C
a2x2, can be passed through three distinct points, as shown in Figure 4.10b. Determine the
constants a0, a1, and a2 by solving the following system of linear equations:

y1 D a0 C a1x1 C a2x2
1

y2 D a0 C a1x2 C a2x2
2

y3 D a0 C a1x3 C a2x2
3

Let’s explain why the qualifier ‘‘at most’’ is needed with this polynomial function. Note
that if the three points in Figure 4.10b happen to lie along a straight line, then the unique
polynomial function of at most degree 2 passing through the points would necessarily be
a straight line (a polynomial of degree 1) rather than a quadratic function, as generally
would be expected. The descriptor unique is also important. There are an infinite number
of polynomials of degree greater than 2 that pass through the three points depicted
in Figure 4.10b. (Convince yourself of this fact before proceeding by using Figure 4.10c.)
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There is, however, only one polynomial of degree 2 or less. Although this fact may not
be obvious, we later state a theorem in its support. For now, remember from high school
geometry that a unique circle, which is also represented by an algebraic equation of degree 2,
is determined by three points in a plane. Next we illustrate these ideas in an applied problem;
we then discuss the advantages and disadvantages of the procedure.

EXAMPLE 1 Elapsed Time of a Tape Recorder

We collected data relating the counter on a particular tape recorder with its elapsed playing
time. Suppose we are unable to build an explicative model of this system but are still
interested in predicting what may occur. How can we resolve this difficulty? As an example,
let’s construct an empirical model to predict the amount of elapsed time of a tape recorder
as a function of its counter reading.

Thus, let ci represent the counter reading and ti.sec/ the corresponding amount of
elapsed time. Consider the following data:

ci 100 200 300 400 500 600 700 800

ti (sec) 205 430 677 945 1233 1542 1872 2224

One empirical model is a polynomial that passes through each of the data points. Because
we have eight data points, a unique polynomial of at most degree 7 is expected. Denote the
polynomial symbolically by

P7.c/ D a0 C a1c C a2c2 C a3c3 C a4c4 C a5c5 C a6c6 C a7c7

The eight data points require that the constants ai satisfy the following system of linear
algebraic equations:

205 D a0 C 1a1 C 12a2 C 13a3 C 14a4 C 15a5 C 16a6 C 17a7

430 D a0 C 2a1 C 22a2 C 23a3 C 24a4 C 25a5 C 26a6 C 27a7

:::

2224 D a0 C 8a1 C 82a2 C 83a3 C 84a4 C 85a5 C 86a6 C 87a7

Large systems of linear equations can be difficult to solve with great numerical pre-
cision. In the preceding illustration, we divided each counter reading by 100 to lessen the
numerical difficulties. Because the counter data values are being raised to the seventh power,
it is easy to generate numbers differing by several orders of magnitude. It is important to
have as much accuracy as possible in the coefficients ai because each is being multiplied by
a number raised to a power as high as 7. For instance, a small a7 may become significant as
c becomes large. This observation suggests why there may be dangers in using even good
polynomial functions that capture the trend of the data when we are beyond the range of the
observations. The following solution to this system was obtained with the aid of a handheld

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_04_ch04_p137-184 January 23, 2013 19:39 151

4.2 High-Order Polynomial Models 151

calculator program:

a0 D �13:9999923 a4 D �5:354166491

a1 D 232:9119031 a5 D 0:8013888621

a2 D �29:08333188 a6 D �0:0624999978

a3 D 19:78472156 a7 D 0:0019841269

Let’s see how well the empirical model fits the data. Denoting the polynomial predic-
tions by P7.ci/, we find

ci 100 200 300 400 500 600 700 800

ti 205 430 677 945 1233 1542 1872 2224

P7.ci / 205 430 677 945 1233 1542 1872 2224

Rounding the predictions for P7.ci/ to four decimal places gives complete agreement
with the observed data (as would be expected) and results in zero absolute deviations. Now
we can see the folly of applying any of the criteria of best-fit studies in Chapter 3 as the sole
judge for the best model. Can we really consider this model to be better than other models
we could propose?

Let’s see how well this new model P7.ci/ captures the trend of the data. The model is
graphed in Figure 4.11. J J J

J Figure 4.11
An empirical model for
predicting the elapsed time
of a tape recorder
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Lagrangian Form of the Polynomial
From the preceding discussion we might expect that given (nC1/ distinct data points, there
is a unique polynomial of at most degree n that passes through all the data points. Because
there are the same number of coefficients in the polynomial as there are data points, intu-
itively we would think that only one such polynomial exits. This hypothesis is indeed the
case, although we will not prove that fact here. Rather, we present the Lagrangian form of
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the cubic polynomial followed by a brief discussion of how the coefficients may be found
for higher-order polynomials.

Suppose the following data have been collected:

x x1 x2 x3 x4

y y1 y2 y3 y4

Consider the following cubic polynomial:

P3.x/ D .x � x2/.x � x3/.x � x4/

.x1 � x2/.x1 � x3/.x1 � x4/
y1 C .x � x1/.x � x3/.x � x4/

.x2 � x1/.x2 � x3/.x2 � x4/
y2

C .x � x1/.x � x2/.x � x4/

.x3 � x1/.x3 � x2/.x3 � x4/
y3 C .x � x1/.x � x2/.x � x3/

.x4 � x1/.x4 � x2/.x4 � x3/
y4

Convince yourself that the polynomial is indeed cubic and agrees with the value yi

when x D xi . Notice that the xi values must all be different to avoid division by zero.
Observe the pattern for forming the numerator and the denominator for the coefficient of
each yi . This same pattern is followed when forming polynomials of any desired degree.
The procedure is justified by the following result.

Theorem 1
If x0; x1; : : : ; xn are (n C 1) distinct points and y0; y1; : : : ; yn are corresponding
observations at these points, then there exists a unique polynomial P.x/, of at
most degree n, with the property that

yk D P.xk/ for each k D 0; 1; : : : ; n

This polynomial is given by

P.x/ D y0L0.x/ C � � � C ynLn.x/ (4.3)

where

Lk.x/ D .x � x0/.x � x1/ � � � .x � xk�1/.x � xkC1/ � � � .x � xn/

.xk � x0/.xk � x1/ � � � .xk � xk�1/.xk � xkC1/ � � � .xk � xn/

Because the polynomial (4.3) passes through each of the data points, the resultant
sum of absolute deviations is zero. Considering the various criteria of best fit presented in
Chapter 3, we are tempted to use high-order polynomials to fit larger sets of data. After
all, the fit is precise. Let’s examine both the advantages and the disadvantages of using
high-order polynomials.

Advantages and Disadvantages of High-Order Polynomials
It may be of interest to determine the area under the curve representing our model or its rate
of change at a particular point. Polynomial functions have the distinct advantage of being
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easily integrated and differentiated. If a polynomial can be found that reasonably represents
the underlying behavior, it will be easy to approximate the integral and the derivative of
the unknown true model as well. Now consider some of the disadvantages of higher-order
polynomials. For the 17 data points presented in Table 4.10, it is clear that the trend of the
data is y D 0 for all x over the interval �8 � x � 8.

Table 4.10

xi �8 �7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7 8

yi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
© Cengage Learning

Suppose Equation (4.3) is used to determine a polynomial that passes through the
points. Because there are 17 distinct data points, it is possible to pass a unique polynomial
of degree at most 16 through the given points. The graph of a polynomial passing through
the data points is depicted in Figure 4.12.

J Figure 4.12
Fitting a higher-order
polynomial through the
data points in Table 4.10
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Note that although the polynomial does pass through the data points (within tolerances
of computer round-off error), there is severe oscillation of the polynomial near each end of
the interval. Thus, there would be gross error in estimating y between the data points near
C8 or �8. Likewise, consider the error in using the derivative of the polynomial to estimate
the rate of change of the data or in using the area under the polynomial to estimate the area
trapped by the data. This tendency of high-order polynomials to oscillate severely near the
endpoints of the interval is a serious disadvantage to using them.

Here is another example of fitting a higher-order polynomial to data. The scatterplot
for the data suggests a smooth, increasing, concave up curve (see Figure 4.13).

x 0.55 1.2 2 4 6.5 12 16

y 0.13 0.64 5.8 102 210 2030 3900
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J Figure 4.13
Scatterplot of data
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We fit a 6th-order polynomial to the data (where we have seven pairs, n D 7) and then
plot the polynomial in Figure 4.14.

y D �0:0138x6 C0:5084x5 �6:4279x4 C34:8575x3 �73:9916x2 C64:3128x �18:0951

Thus, although the higher-order .n � 1/st-order polynomial gives a perfect fit, its change
from increasing to decreasing at the endpoint makes prediction questionable beyond the
range of the data. Moreover within the range of the data, the polynomial changes from
increasing to decreasing, also making interpolation questionable.

Let’s illustrate another disadvantage of high-order polynomials. Consider the three sets
of data presented in Table 4.11.

Let’s discuss the three cases. Case 2 is merely Case 1 with less precise data: There is
one less significant digit for each of the observed data points. Case 3 is Case 1 with an error

J Figure 4.14
The plot of 6th-order
polynomial fit
superimposed on the
scatterplot
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Table 4.11

xi 0.2 0.3 0.4 0.6 0.9

Case 1: yi 2.7536 3.2411 3.8016 5.1536 7.8671
Case 2: yi 2.754 3.241 3.802 5.154 7.867
Case 3: yi 2.7536 3.2411 3.8916 5.1536 7.8671
© Cengage Learning

introduced in the observation corresponding to x D 0:4. Note that the error occurs in the
third significant digit (3.8916 instead of 3.8016). Intuitively, we would think that the three
interpolating polynomials would be similar because the trends of the data are all similar.
Let’s determine the interpolating polynomials and see if that is really the situation.

Because there are five distinct data points in each case, a unique polynomial of at
most degree 4 can be passed through each set of data. Denote the fourth-degree polynomial
symbolically as follows:

P4.x/ D a0 C a1x C a2x2 C a3x3 C a4x4

Table 4.12 tabulates the coefficients a0; a1; a2; a3; a4 (to four decimal places) determined
by fitting the data points in each of the three cases. Note how sensitive the values of the
coefficients are to the data. Nevertheless, the graphs of the polynomials are nearly the same
over the interval of observations .0:2; 0:9/.

Table 4.12

a0 a1 a2 a3 a4

Case 1 2 3 4 �1 1
Case 2 2.0123 2.8781 4.4159 �1:5714 1.2698
Case 3 3.4580 �13:2000 64.7500 �91:0000 46.0000
© Cengage Learning

The graphs of the three fourth-degree polynomials representing each case are presented
in Figure 4.15. This example illustrates the sensitivity of the coefficients of high-order
polynomials to small changes in the data. Because we do expect measurement error to
occur, the tendency of high-order polynomials to oscillate, as well as the sensitivity of their
coefficients to small changes in the data, is a disadvantage that restricts their usefulness
in modeling. In the next two sections we consider techniques that address the deficiencies
noted in this section.

4.24.2 PROBLEMS

1. For the tape recorder problem in this section, give a system of equations determining the
coefficients of a polynomial that passes through each of the data points. If a computer is
available, determine and sketch the polynomial. Does it represent the trend of the data?

2. Consider the ‘‘pace of life’’ data from Problem 1, Section 4.1. Consider fitting a 14th-
order polynomial to the data. Discuss the disadvantages of using the polynomial to make
predictions. If a computer is available, determine and graph the polynomial.
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J Figure 4.15
Small measurement errors
can cause huge differences
in the coefficients of the
higher-order polynomials
that result; note that the
polynomials diverge
outside the range of
observations.
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3. In the following data, X is the Fahrenheit temperature and Y is the number of times a
cricket chirps in 1 minute (see Problem 7, Section 4.1). Make a scatterplot of the data
and discuss the appropriateness of using an 18th-degree polynomial that passes through
the data points as an empirical model. If you have a computer available, fit a polynomial
to the data and plot the results.

X 46 49 51 52 54 56 57 58 59 60

Y 40 50 55 63 72 70 77 73 90 93

X 61 62 63 64 66 67 68 71 72

Y 96 88 99 110 113 120 127 137 132
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4. In the following data, X represents the diameter of a ponderosa pine measured at breast
height, and Y is a measure of volume—number of board feet divided by 10. Make a
scatterplot of the data. Discuss the appropriateness of using a 13th-degree polynomial that
passes through the data points as an empirical model. If you have a computer available,
fit a polynomial to the data and graph the results.

X 17 19 20 22 23 25 31 32 33 36 37 38 39 41

Y 19 25 32 51 57 71 141 123 187 192 205 252 248 294

4.34.3 Smoothing: Low-Order Polynomial Models
We seek methods that retain many of the conveniences found in high-order polynomials
without incorporating their disadvantages. One popular technique is to choose a low-order
polynomial regardless of the number of data points. This choice normally results in a
situation in which the number of data points exceeds the number of constants necessary to
determine the polynomial. Because there are fewer constants to determine than there are
data points, the low-order polynomial generally will not pass through all the data points.
For example, suppose it is decided to fit a quadratic to a set of 10 data points. Because it is
generally impossible to force a quadratic to pass through 10 data points, it must be decided
which quadratic best fits the data (according to some criterion, as discussed in Chapter 3).
This process, which is called smoothing, is illustrated in Figure 4.16. The combination of
using a low-order polynomial and not requiring that it pass through each data point reduces
both the tendency of the polynomial to oscillate and its sensitivity to small changes in the
data. This quadratic function smooths the data because it is not required to pass through all
the data points.

The process of smoothing requires two decisions. First, the order of the interpolating
polynomialmust be selected. Second, the coefficients of the polynomialmust be determined
according to some criterion for the best-fitting polynomial. The problem that results is an
optimization problem of the form addressed in Chapter 3. For example, it may be decided
to fit a quadratic model to 10 data points using the least-squares best-fitting criterion. We
will review the process of fitting a polynomial to a set of data points using the least-squares
criterion and then later return to the more difficult question of how to best choose the order
of the interpolating polynomial.

J Figure 4.16
The quadratic function
smooths the data because it
is not required to pass
through all the data points.
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EXAMPLE 1 Elapsed Time of a Tape Recorder Revisited

Consider again the tape recorder problem modeled in the previous section. For a particular
cassette deck or tape recorder equipped with a counter, relate the counter to the amount of
playing time that has elapsed. If we are interested in predicting the elapsed time but are
unable to construct an explicative model, it may be possible to construct an empirical model
instead. Let’s fit a second-order polynomial of the following form to the data:

P2.c/ D a C bc C dc2

where c is the counter reading, P2.c/ is the elapsed time, and a; b, and d are constants to
be determined. Consider the collected data for the tape recorder problem in the previous
section, shown in Table 4.13.

Table 4.13 Data collected for the tape recorder problem

ci 100 200 300 400 500 600 700 800

ti (sec) 205 430 677 945 1233 1542 1872 2224
© Cengage Learning

Our problem is to determine the constants a, b, and d so that the resultant quadratic
model best fits the data. Although other criteria might be used, we will find the quadratic
that minimizes the sum of the squared deviations. Mathematically, the problem is

Minimize S D
mX

iD1

�
ti �

�
a C bci C dc2

i

��2

The necessary conditions for a minimum to exist (@S=@a D @S=@b D @S=@d D 0/ yield
the following equations:

ma C
�X

ci
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b C

�X
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i
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X
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ci ti
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�X
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�
b C

�X
c4

i

�
d D

X
c2

i ti

For the data given in Table 4.13, the preceding system of equations becomes

8a C 3600b C 2;040;000d D 9128

3600a C 2;040;000b C 1;296;000;000d D 5;318;900

2;040;000a C 1;296;000;000b C 8:772 � 1011d D 3;435;390;000

Solution of the preceding system yields the values a D 0:14286; b D 1:94226, and
d D 0:00105, giving the quadratic

P2.c/ D 0:14286 C 1:94226c C 0:00105c2
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We can compute the deviation between the observations and the predictions made by the
model P2.c/:

ci 100 200 300 400 500 600 700 800

ti 205 430 677 945 1233 1542 1872 2224

ti � P2.ci / 0.167 �0:452 0.000 0.524 0.119 �0:214 �0:476 0.333

Note that the deviations are very small compared to the order of magnitude of the times.J J J
When we are considering the use of a low-order polynomial for smoothing, two issues

come to mind:

1. Should a polynomial be used?
2. If so, what order of polynomial would be appropriate?

The derivative concept can help in answering these two questions.

Divided Differences
Notice that a quadratic function is characterized by the properties that its second derivative
is constant and its third derivative is zero. That is, given

P.x/ D a C bx C cx2

we have

P 0.x/ D b C 2cx

P 00.x/ D 2c

P 000.x/ D 0

However, the only information available is a set of discrete data points. How can these points
be used to estimate the various derivatives? Refer to Figure 4.17, and recall the definition
of the derivative:

dy

dx
D lim

�x!0

�y

�x

J Figure 4.17
The derivative of y D f.x/
at x D x1 is the limit of the
slope of the secant line.
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Because dy=dx at x D x1 can be interpreted geometrically as the slope of the line tan-
gent to the curve there, we see from Figure 4.17 that unless �x is small, the ratio �y=�x is
probably not a good estimate of dy=dx. Nevertheless, if dy=dx is to be zero everywhere, then
�y must go to zero. Thus, we can compute the differences yiC1 � yi D �y between suc-
cessive function values in our tabled data to gain insight into what the first derivative is doing.

Likewise, because the first derivative is a function, the process can be repeated to
estimate the second derivative. That is, the differences between successive estimates of the
first derivative can be computed to approximate the second derivative. Before describing
the entire process, we illustrate this idea with a simple example.

We know that the curve y D x2 passes through the points .0; 0/, .2; 4/, .4; 16/, .6; 36/,
and .8; 64/. Suppose the data displayed in Table 4.14 have been collected. Using the data
in Table 4.14, we can construct a difference table, as shown in Table 4.15.

Table 4.14 A hypothetical set of
collected data

xi 0 2 4 6 8

yi 0 4 16 36 64
© Cengage Learning

Table 4.15 A difference table for the data of Table 4.14

Data Differences
xi yi � �2 �3 �4

0 0
4

2 4 8
12 0

4 16 8 0
20 0

6 36 8
28

8 64
© Cengage Learning

The first differences, denoted by �, are constructed by computing yiC1 � yi for i D
1; 2; 3; 4. The second differences, denoted by �2, are computed by finding the difference
between successive first differences from the � column. The process can be continued,
column by column, until �n�1 is computed for n data points. Note from Table 4.15 that
the second differences in our example are constant and the third differences are zero. These
results are consistent with the fact that a quadratic function has a constant second derivative
and a zero third derivative.

Even if the data are essentially quadratic in nature, we would not expect the differences
to go to zero precisely because of the various errors present in the modeling and data
collection processes. We might, however, expect the data to become small. Our judgment
of the significance of small can be improved by computing divided differences. Note
that the differences computed in Table 4.15 are estimates of the numerator of each of the
various order derivatives. These estimates can be improved by dividing the numerator by
the corresponding estimate of the denominator.

Consider the three data points and corresponding estimates of the first and second
derivative, called the first and second divided differences, respectively, in Table 4.16. The
first divided difference follows immediately from the ratio of �y=�x. Because the second
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Table 4.16 The first and second divided differences
estimate the first and second derivatives, respectively

First Second
Data divided difference divided difference

x1 y1
y2 � y1

x2 � x1

x2 y2

y3 � y2

x3 � x2
� y2 � y1

x2 � x1

x3 � x1y3 � y2

x3 � x2
x3 y3

© Cengage Learning

J Figure 4.18
The second divided
difference may be
interpreted as the difference
between the adjacent slopes
(first divided differences)
divided by the length of the
interval over which the
change has taken place.
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derivative represents the rate of change of the first derivative, we can estimate how much
the first derivative changes between x1 and x3. That is, we can compute the differences
between the adjacent first divided differences and divide by the length of the interval over
which that change takes place (x3 � x1 in this case). Refer to Figure 4.18 for a geometric
interpretation of the second divided difference.

In practice it is easy to construct a divided difference table.We generate the next-higher-
order divided difference by taking differences between adjacent current-order divided dif-
ferences and then dividing them by the length of the interval over which the change has
taken place. Using �n to denote the nth divided difference, a divided difference table for
the data of Table 4.14 is displayed in Table 4.17.

Table 4.17 A divided difference table for the data
of Table 4.14

Data Divided differences
xi yi � �2 �3

0 0
4=2 D 2

2 4 4=4 D 1
12=2 D 6 0=6 D 04 16 4=4 D 1

�x D 6




20=2 D 10 0=6 D 0
6 36 4=4 D 1

28=2 D 14
8 64

© Cengage Learning
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It is easy to remember what the numerator should be in each divided difference of the
table. To remember what the denominator should be for a given divided difference, we can
construct diagonal lines back to yi of the original data entries and compute the differences
in the corresponding xi . This is illustrated for a third-order divided difference in Table 4.17.
This construction becomes more critical when the xi are unequally spaced.

EXAMPLE 2 Elapsed Time of a Tape Recorder Revisited Again

Returning now to our construction of an empirical model for the elapsed time for a tape
recorder, how might the order of the smoothing polynomial be chosen? Let’s begin by
constructing the divided difference table for the given data from Table 4.13. The divided
differences are displayed in Table 4.18.

Table 4.18 A divided difference table for the tape
recorder data

Data Divided differences
xi yi � �2 �3 �4

100 205
2.2500

200 430 0.0011
2.4700 0.0000

300 677 0.0011 0.0000
2.6800 0.0000

400 945 0.0010 0.0000
2.8800 0.0000

500 1233 0.0011 0.0000
3.0900 0.0000

600 1542 0.0011 0.0000
3.3000 0.0000

700 1872 0.0011
3.5200

800 2224
© Cengage Learning

Note from Table 4.18 that the second divided differences are essentially constant and
that the third divided differences equal zero to four decimal places. The table suggests
the data are essentially quadratic, which supports the use of a quadratic polynomial as an
empirical model. The modeler may now want to reinvestigate the assumptions to determine
whether a quadratic relationship seems reasonable. J J J

Observations on Difference Tables
Several observations about divided difference tables are in order. First, the xi must be dis-
tinct and listed in increasing order. It is important to be sensitive to xi that are close together
because division by a small number can cause numerical difficulties. The scales used to
measure both the xi and the yi must also be considered. For example, suppose the xi rep-
resent distances and are currently measured in miles. If the units are changed to feet, the
denominators become much larger, resulting in divided differences that are much smaller.
Thus, judgment on what is small is relative and qualitative. Remember, however, that we
are trying to decide whether a low-order polynomial is worth further investigation. Before
accepting the model, we would want to graph it and analyze the goodness of fit.
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When using a divided difference table, we must be sensitive to errors and irregularities
that occur in the data. Measurement errors can propagate themselves throughout the table
and even magnify themselves. For example, consider the following difference table:

�n�1 �n �nC1

6.01
�0:01

6.00 0.02
0:01

6.01

Let’s suppose that the �n�1 column is actually constant except for the presence of
a relatively small measurement error. Note how the measurement error gives rise to the
negative sign in the �n column. Note also that the magnitudes of the numbers in the �nC1

column are larger than those of the numbers in the�n column, even though the�n�1 column
is essentially constant. The effect of these errors not only is present in subsequent columns
but also spreads to other rows. Because errors and irregularities are normally present in
collected data, it is important to be sensitive to the effects they can cause in difference tables.

Historically, divided difference tables were used to determine various forms of inter-
polating polynomials that passed through a chosen subset of the data points. Today other
interpolating techniques, such as smoothing and cubic splines, are more popular. Never-
theless, difference tables are easily constructed on a computer and, like the derivatives that
they approximate, provide an inexpensive source of useful information about the data.

EXAMPLE 3 Vehicular Stopping Distance

The following problem was presented in Section 2.2: Predict a vehicle’s total stopping
distance as a function of its speed. In previous chapters, explicativemodels were constructed
describing the vehicle’s behavior. Thosemodels will be reviewed in the next section. For the
time being, suppose there is no explicative model but only the data displayed in Table 4.19.

If the modeler is interested in constructing an empirical model by smoothing the data,
a divided difference table can be constructed as displayed in Table 4.20.

An examination of the table reveals that the third divided differences are small in
magnitude compared to the data and that negative signs have begun to appear. As previously
discussed, the negative signs may indicate the presence of measurement error or variations
in the data that will not be capturedwith low-order polynomials. The negative signs will also
have a detrimental effect on the differences in the remaining columns. Here, we may decide
to use a quadratic model, reasoning that higher-order terms will not reduce the deviations
sufficiently to justify their inclusion, but our judgment is qualitative. The cubic term will
probably account for some for the deviations not accounted for by the best quadratic model
(otherwise, the optimal value of the coefficient of the cubic term would be zero, causing

Table 4.19 Data relating total stopping distance and speed

Speed v (mph) 20 25 30 35 40 45 50 55 60 65 70 75 80

Distance d (ft) 42 56 73.5 91.5 116 142.5 173 209.5 248 292.5 343 401 464
© Cengage Learning
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Table 4.20 A divided difference table for the data relating
total vehicular stopping distance and speed

Data Divided differences
vi di � �2 �3 �4

20 42
2.2800

25 56 0.0700
3.5000 �0:0040

30 73.5 0.0100 0.0006
3.6000 0.0080

35 91.5 0.1300 �0:0007
4.9000 �0:0060

40 116 0.0400 0.0004
5.3000 0.0027

45 142.5 0.0800 0.0000
6.1000 0.0027

50 173 0.1200 �0:0004
7.3000 �0:0053

55 209.5 0.0400 0.0005
7.7000 0.0053

60 248 0.1200 �0:0003
8.9000 0.0000

65 292.5 0.1200 0.0001
10.1000 0.0020

70 343 0.1500 �0:0003
11.6000 �0:0033

75 401 0.1000
12.6000

80 464
© Cengage Learning

the quadratic and cubic polynomials to coincide), but the addition of higher-order terms
increases the complexity of the model, its susceptibility to oscillation, and its sensitivity to
data errors. These considerations are studied in statistics.

In the following model, v is the speed of the vehicle, P.v/ is the stopping distance, and
a, b, and c are constants to be determined.

P.v/ D a C bv C cv2

Our problem is to determine the constants a, b, and c so that the resultant quadratic model
best fits the data. Although other criteria might be used, we will find the quadratic that
minimizes the sum of the squared deviations. Mathematically, the problem is

Minimize S D
mX

iD1

�
di �

�
a C bvi C cv2

i

��2

The necessary conditions for a minimum to exist (@S=@a D @S=@b D @S=@c D 0/ yield
the following equations:

ma C
�X

vi

�
b C

�X
v2

i

�
c D

X
d

�X
vi

�
a C

�X
v2

i

�
b C

�X
v3

i

�
c D

X
vidi

�X
v2

i

�
a C

�X
v3

i

�
b C

�X
v4

i

�
c D

X
v2

i di

Substitution from the data in Table 4.19 gives the system

13a C 650b C 37;050c D 2652:5

650a C 37;050b C 2;307;500c D 163;970

37;050a C 2;307;500b C 152;343;750c D 10;804;975
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which leads to the solution a D 50:0594, b D �1:9701, and c D 0:0886 (rounded to four
decimals). Therefore, the empirical quadratic model is given by

P.v/ D 50:0594 � 1:9701v C 0:0886v2

Finally, the fit of P.v/ is analyzed in Table 4.21. This empirical model fits better than the
model

d D 1:104v C 0:0542v2

determined in Section 3.4, because there is an extra parameter (the constant a in this case)
that absorbs some of the error. Note, however, that the empirical model predicts a stopping
distance of approximately 50 ft when the velocity is zero. J J J
Table 4.21 Smoothing the stopping distance using a quadratic polynomial

vi 20 25 30 35 40 45 50

di 42 56 73.5 91.5 116 142.5 173

di � P.vi / �4:097 �0:182 2.804 1.859 2.985 1.680 �0:054

vi 55 60 65 70 75 80

di 209.5 248 292.5 343 401 464

di � P.vi / �0:719 �2:813 �3:838 �3:292 0.323 4.509
© Cengage Learning

EXAMPLE 4 Growth of a Yeast Culture

In this example we consider a collection of data points for which a divided difference table
can help in deciding whether a low-order polynomial will provide a satisfactory empirical
model. The data represent the population of yeast cells in a culture measured over time (in
hours). A divided difference table for the population data is given by Table 4.22.

Note that the first divided differences � are increasing until t D 8 hr, when they
begin to decrease. This characteristic is reflected in the column �2 with the appearance of a
consecutive string of negative signs, indicating a change in concavity. Thus, we cannot hope
to capture the trend of these data with a quadratic function that has only a single concavity.
In the �3 column, additional negative signs appear sporadically, although the magnitude of
the numbers is relatively large.

A scatterplot of the data is given in Figure 4.19. Although the divided difference table
suggests that a quadratic function would not be a good model, for illustrative purposes
suppose we try to fit a quadratic anyway. Using the least-squares criterion and the equations
developed previously for the tape recorder example, we determine the following quadratic
model for the data in Table 4.22:

P D �93:82 C 65:70t � 1:12t2
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Table 4.22 A divided difference table for the growth of
yeast in a culture

Data Divided differences
ti Pi � �2 �3 �4

0 9.60
8.70

1 18.30 1.00
10.70 0.92

2 29.00 3.75 �0:31
18.20 �0:30

3 47.20 2.85 0.84
23.90 3.07

4 71.10 12.05 �1:46
48.00 �2:77

5 119.10 3.75 1.51
55.50 3.28

6 174.60 13.60 �1:51
82.70 �2:75

7 257.30 5.35 0.11
93.40 �2:30

8 350.70 �1:55 �0:05
90.30 �2:48

9 441.00 �9:00 0.29
72.30 �1:32

10 513.30 �12:95 0.94
46.40 2.43

11 559.70 �5:65 �0:16
35.10 1.80

12 594.80 �0:25 �1:40
34.60 �3:78

13 629.40 �11:60 1.87
11.40 3.68

14 640.80 �0:55 �1:10
10.30 �0:73

15 651.10 �2:75 0.37
4.80 0.73

16 655.90 �0:55 �0:20
3.70 �0:07

17 659.60 �0:75
2.20

18 661.80
© Cengage Learning

J Figure 4.19
A scatterplot of the ‘‘yeast
growth in a culture’’ data
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J Figure 4.20
The best-fitting quadratic
model fails to capture the
trend of the data; note the
magnitude of the deviations
Pi � P .t i /.
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The model and the data points are plotted in Figure 4.20. The model fits very poorly, as we
expected, and fails to capture the trend of the data. In the problem set you will be asked to
fit the cubic model and check its reasonableness. In the next section you will be asked to
construct a cubic spline model that fits the data much better. J J J

4.34.3 PROBLEMS

For the data sets in Problems 1–4, construct a divided difference table. What conclusions
can you make about the data? Would you use a low-order polynomial as an empirical
model? If so, what order?

1. x 0 1 2 3 4 5 6 7

y 2 8 24 56 110 192 308 464

2. x 0 1 2 3 4 5 6 7

y 23 48 73 98 123 148 173 198

3. x 0 1 2 3 4 5 6 7

y 7 15 33 61 99 147 205 273

4. x 0 1 2 3 4 5 6 7

y 1 4.5 20 90 403 1808 8103 36,316

5. Construct a scatterplot for the ‘‘yeast growth in a culture’’ data. Do the data seem
reasonable? Construct a divided difference table. Try smoothing with a low-order cubic
polynomial using an appropriate criterion. Analyze the fit and compare your model to
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the quadratic we developed in this section. Graph your model, the data points, and the
deviations.

In Problems 6–12, construct a scatterplot of the given data. Is there a trend in the data?
Are any of the data points outliers? Construct a divided difference table. Is smoothing with
a low-order polynomial appropriate? If so, choose an appropriate polynomial and fit using
the least-squares criterion of best fit. Analyze the goodness of fit by examining appropriate
indicators and graphing the model, the data points, and the deviations.

6. In the following data, X is the Fahrenheit temperature and Y is the number of times a
cricket chirps in 1 min (see Problem 3, Section 4.2).

X 46 49 51 52 54 56 57 58 59 60

Y 40 50 55 63 72 70 77 73 90 93

X 61 62 63 64 66 67 68 71 72

Y 96 88 99 110 113 120 127 137 132

7. In the following data, X represents the diameter of a ponderosa pine measured at
breast height, and Y is a measure of volume—number of board feet divided by 10 (see
Problem 4, Section 4.2).

X 17 19 20 22 23 25 31 32 33 36 37 38 39 41

Y 19 25 32 51 57 71 141 123 187 192 205 252 248 294

8. The following data represent the population of the United States from 1790 to 2000.

Year Observed population

1790 3,929,000
1800 5,308,000
1810 7,240,000
1820 9,638,000
1830 12,866,000
1840 17,069,000
1850 23,192,000
1860 31,443,000
1870 38,558,000
1880 50,156,000
1890 62,948,000
1900 75,995,000
1910 91,972,000
1920 105,711,000
1930 122,755,000
1940 131,669,000
1950 150,697,000
1960 179,323,000
1970 203,212,000
1980 226,505,000
1990 248,709,873
2000 281,416,000
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9. The following data were obtained for the growth of a sheep population introduced into
a new environment on the island of Tasmania. (Adapted from J. Davidson, ‘‘On the
Growth of the Sheep Population in Tasmania,’’ Trans. Roy. Soc. S. Australia 62(1938):
342–346.)

t (year) 1814 1824 1834 1844 1854 1864

P.t/ 125 275 830 1200 1750 1650

10. The following data represent the ‘‘pace of life’’ data (see Problem 1, Section 4.1). P is
the population and V is the mean velocity in feet per second over a 50-ft course.

P 365 2500 5491 14000 23700 49375 70700 78200

V 2.76 2.27 3.31 3.70 3.27 4.90 4.31 3.85

P 138000 304500 341948 867023 1092759 1340000 2602000

V 4.39 4.42 4.81 5.21 5.88 5.62 5.05

11. The following data represent the length of a bass fish and its weight.

Length (in.) 12.5 12.625 14.125 14.5 17.25 17.75

Weight (oz) 17 16.5 23 26.5 41 49

12. The following data represent the weight-lifting results from the 1976 Olympics.

Bodyweight class (lb) Total winning lifts (lb)

Max. weight Snatch Jerk Total weight

Flyweight 114.5 231.5 303.1 534.6
Bantamweight 123.5 259.0 319.7 578.7
Featherweight 132.5 275.6 352.7 628.3
Lightweight 149.0 297.6 380.3 677.9
Middleweight 165.5 319.7 418.9 738.5
Light-heavyweight 182.0 358.3 446.4 804.7
Middle-heavyweight 198.5 374.8 468.5 843.3
Heavyweight 242.5 385.8 496.0 881.8

4.44.4 Cubic Spline Models
The use of polynomials in constructing empirical models that capture the trend of the
data is appealing, because polynomials are so easy to integrate and differentiate. High-
order polynomials, however, tend to oscillate near the endpoints of the data interval, and
the coefficients can be quite sensitive to small changes in the data. Unless the data are
essentially quadratic or cubic in nature, smoothing with a low-order polynomial may yield
a relatively poor fit somewhere over the range of the data. For instance, the quadratic model
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J Figure 4.21
A draftsperson might attempt to draw a smooth curve through the data points
using a French curve or a thin flexible rod called a spline.

that was fit to the data collected for the vehicular braking distance problem in Section 4.3
did not fit well at high velocities.

In this section a very popular modern technique called cubic spline interpolation is
introduced. By using different cubic polynomials between successive pairs of data points,
we can capture the trend of the data regardless of the nature of the underlying relationship,
while simultaneously reducing the tendency toward oscillation and the sensitivity to changes
in the data.

Consider the data in Figure 4.21a. What would a draftsperson do if asked to draw a
smooth curve connecting the points? One solution would be to use a drawing instrument
called a French curve (Figure 4.21b), which actually contains many different curves. By
manipulating the French curve, we can draw a curve that works reasonably well between
two data points and transitions smoothly to another curve for the next pair of data points.
Another alternative is to take a very thin flexible rod (called a spline) and tack it down at
each data point. Cubic spline interpolation is essentially the same idea, except that distinct
cubic polynomials are used between successive pairs of data points in a smooth way.

Linear Splines
Probably all of us at one time or another have referred to a table of values (e.g., square root,
trigonometric table, or logarithmic table) without locating the value we were seeking. We
found, instead, two values that bracket the desired value, and we made a proportionality
adjustment.

For example, consider Table 4.23. Suppose an estimate of the value of y at x D 1:67
is desired. Probably we would compute y.1:67/ � 5 C .2=3/.8 � 5/ D 7. That is, we
implicitly assume that the variation in y, between x D 1 and x D 2, occurs linearly.
Similarly, y.2:33/ � 13 2

3
. This procedure is called linear interpolation, and for many

applications it yields reasonable results, especially where the data are closely spaced.

Table 4.23
Linear
interpolation

xi y.xi /

1 5
2 8
3 25

© Cengage Learning

Figure 4.22 is helpful in interpreting the process of linear interpolation geometrically
in a manner that mimics what is done with cubic spline interpolation. When x is in the
interval x1 � x < x2, the model that is used is the linear spline S1.x/ passing through the
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J Figure 4.22
A linear spline model is a
continuous function
consisting of line segments.
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data points (x1; y1/ and .x2; y2/:

S1.x/ D a1 C b1x for x in Œx1; x2/

Similarly, when x2 � x < x3, the linear spline S2.x/ passing through (x2; y2/ and .x3; y3/
is used:

S2.x/ D a2 C b2x for x in Œx2; x3�

Note that both spline segments meet at the point (x2; y2/.
Let’s determine the constants for the respective splines for the data given in Table 4.23.

The spline S1.x/must pass through the points .1; 5/ and .2; 8/. Mathematically this implies

a1 C 1b1 D 5

a1 C 2b1 D 8

Similarly, the spline S2.x/ must pass through the points .2; 8/ and .3; 25/, yielding

a2 C 2b2 D 8

a2 C 3b2 D 25

Solution of these linear equations yields a1 D 2, b1 D 3, a2 D �26, and b2 D 17. The
linear spline model for the data in Table 4.23 is summarized in Table 4.24. To illustrate how
the linear spline model is used, let’s predict y.1:67/ and y.2:33/. Because 1 � 1:67 < 2,
S1.x/ is selected to compute S1.1:67/ � 7:01. Likewise, 2 � 2:33 � 3 gives rise to the
prediction S2.2:33/ � 13:61.

Although the linear spline method is sufficient for many applications, it fails to capture
the trend of the data. Furthermore, if we examine Figure 4.23, we see that the linear spline

Table 4.24 A linear spline
model for the data of Table 4.23

Interval Spline model

1 � x < 2 S1.x/ D 2 C 3x
2 � x � 3 S2.x/ D �26 C 17x

© Cengage Learning
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J Figure 4.23
The linear spline does not
appear smooth because the
first derivative is not
continuous.
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model does not appear smooth. That is, in the interval Œ1; 2/, S1.x/ has a constant slope 3,
whereas in the interval Œ2; 3� S2.x/ has a constant slope of 17. Thus, at x D 2 there is an
abrupt change in the slope of the model from 3 to 17, so that the first derivatives S 0

1.x/ and
S 0

2.x/ fail to agree at x D 2. As we will discover, the process of cubic splines interpolation
incorporates smoothness into the empirical model by requiring that both the first and second
derivatives of adjacent splines agree at each data point.

Cubic Splines
Consider now Figure 4.24. In a manner analogous to linear splines, we define a separate
spline function for the intervals x1 � x < x2 and x2 � x < x3 as follows:

S1.x/ D a1 C b1x C c1x2 C d1x3 for x in Œx1; x2/

S2.x/ D a2 C b2x C c2x2 C d2x3 for x in Œx2; x3�

Because we will want to refer to the first and second derivatives, let’s define them as
well:

S 0
1.x/ D b1 C 2c1x C 3d1x2 for x in Œx1; x2/

S 00
1 .x/ D 2c1 C 6d1x for x in Œx1; x2/

S 0
2.x/ D b2 C 2c2x C 3d2x2 for x in Œx2; x3�

S 00
2 .x/ D 2c2 C 6d2x for x in Œx2; x3�

The model is presented geometrically in Figure 4.24.

J Figure 4.24
A cubic spline model is a
continuous function with
continuous first and second
derivatives consisting of
cubic polynomial segments.

x1 x2 x3

(x1,  y1)
(x2,  y2)

(x3, y3)

S2(x) = a2 + b2x + c2x2 + d2x3

S1(x) = a1 + b1x + c1x2 + d1x3y

x
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Cubic splines offer the possibility of matching up not only the slopes but also the
curvature at each interior data point. To determine the constants defining each cubic spline
segment, we appeal to the requirement that each spline pass through two data points specified
by the interval over which the spline is defined. For the model depicted in Figure 4.24, this
requirement yields the equations

y1 D S1.x1/ D a1 C b1x1 C c1x2
1 C d1x3

1

y2 D S1.x2/ D a1 C b1x2 C c1x2
2 C d1x3

2

y2 D S2.x2/ D a2 C b2x2 C c2x2
2 C d2x3

2

y3 D S2.x3/ D a2 C b2x3 C c2x2
3 C d2x3

3

Note that there are eight unknowns .a1; b1; c1; d1; a2; b2; c2; d2/ and only four equations in
the preceding system. An additional four independent equations are needed to determine
the constants uniquely. Because smoothness of the spline system is also required, adjacent
first derivatives must match at the interior data point (in this case, when x D x2). This
requirement yields the equation

S 0
1.x2/ D b1 C 2c1x2 C 3d1x2

2 D b2 C 2c2x2 C 3d2x2
2 D S 0

2.x2/

It can also be required that adjacent second derivatives match at each interior point as well:

S 00
1 .x2/ D 2c1 C 6d1x2 D 2c2 C 6d2x2 D S 00

2 .x2/

To determine unique constants, we still require two additional independent equations.
Although conditions on the derivatives at interior data points have been applied, nothing
has been said about the derivatives at the exterior endpoints (x1 and x3 in Figure 4.24). Two
popular conditions may be specified. One is to require that there be no change in the first
derivative at the exterior endpoints. Mathematically, because the first derivative is constant,
the second derivative must be zero. Application of this condition at x1 and x3 yields

S 00
1 .x1/ D 2c1 C 6d1x1 D 0

S 00
2 .x3/ D 2c2 C 6d2x3 D 0

A cubic spline formed in this manner is called a natural spline. If we think again of our
analog with the thin flexible rod tacked down at the data points, a natural spline allows the
rod to be free at the endpoints to assume whatever direction the data points indicate. The
natural spline is interpreted geometrically in Figure 4.25a.

Alternatively, if the values of the first derivative at the exterior endpoints are known, the
first derivatives of the exterior splines can be required to match the known values. Suppose
the derivatives at the exterior endpoints are known and are given by f 0.x1/ and f 0.x3/.
Mathematically, this matching requirement yields the equations

S 0
1.x1/ D b1 C 2c1x1 C 3d1x2

1 D f 0.x1/

S 0
2.x3/ D b2 C 2c2x3 C 3d2x2

3 D f 0.x3/

A cubic spline formed in this manner is called a clamped spline. Again referring to our
flexible rod analog, this situation corresponds to clamping the flexible rod in a vise at the
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y

x
a.  Natural spline

y

x
b.  Clamped spline

Derivatives
forced to
known values
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J Figure 4.25
The conditions for the natural and clamped cubic splines result in first derivatives
at the two exterior endpoints that are constant; that constant value for the first
derivative is specified in the clamped spline, whereas it is free to assume a natural
value in the natural spline.

exterior endpoints to ensure that the flexible rod has the proper angle. The clamped cubic
spline is interpreted geometrically in Figure 4.25b. Unless precise information about the
first derivative at the endpoints is known, the natural spline is generally used.

Let’s illustrate the construction of a natural cubic spline model using the data displayed
in Table 4.23. We illustrate the technique with this simple example, because the procedure
is readily extended to problems with more data points.

Requiring the spline segment S1.x/ to pass through the two endpoints .1; 5/ and .2; 8/
of its interval requires that S1.1/ D 5 and S1.2/ D 8, or

a1 C 1b1 C 1c1 C 1d1 D 5

a1 C 2b1 C 22c1 C 23d1 D 8

Similarly, S2.x/ must pass through its endpoints of the second interval so that S2.2/ D 8
and S2.3/ D 25, or

a2 C 2b2 C 22c2 C 23d2 D 8

a2 C 3b2 C 32c2 C 33d2 D 25

Next, the first derivatives of S1.x/ and S2.x/ are forced to match at the interior data point
x2 D 2: S 0

1.2/ D S 0
2.2/, or

b1 C 2c1.2/ C 3d1.2/2 D b2 C 2c2.2/ C 3d2.2/2

Forcing the second derivatives of S1.x/ and S2.x/ to match at x2 D 2 requires S 00
1 .2/ D

S 00
2 .2/, or

2c1 C 6d1.2/ D 2c2 C 6d2.2/

Finally, a natural spline is built by requiring that the second derivatives at the endpoints be
zero: S 00

1 .1/ D S 00
2 .3/ D 0, or

2c1 C 6d1.1/ D 0

2c2 C 6d2.3/ D 0
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Table 4.25 A natural cubic spline model for
the data of Table 4.23

Interval Model

1 � x < 2 S1.x/ D 2 C 10x � 10:5x2 C 3:5x3

2 � x � 3 S2.x/ D 58 � 74x C 31:5x2 � 3:5x3

© Cengage Learning

J Figure 4.26
The natural cubic spline
model for the data in
Table 4.23 is a smooth curve
that is easily integrated and
differentiated.
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S2(x) = 58 – 74x + 31.5x2 – 3.5x3
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Thus, the procedure has yielded a linear algebraic system of eight equations in eight
unknowns that can be solved uniquely. The resulting model is summarized in Table 4.25
and graphed in Figure 4.26.

Let’s illustrate the use of the model by again predicting y.1:67/ and y.2:33/:

S1.1:67/ � 5:72

S2.2:33/ � 12:32

Compare these values with the values predicted by the linear spline. In which values
do you have the most confidence? Why?

The construction of cubic splines for more data points proceeds in the same manner.
That is, each spline is forced to pass through the endpoints of the interval over which it is
defined, the first and second derivatives of adjacent splines are forced tomatch at the interior
data points, and either the clamped or natural conditions are applied at the two exterior
data points. For computational reasons it would be necessary to implement the procedure
on a computer. The procedure we described here does not give rise to a computationally
or numerically efficient computer algorithm. Our approach was designed to facilitate our
understanding of the basic concepts underlying the cubic spline interpolation.3

It is revealing to view how the graphs of the different cubic splines fit together to form
a single composite interpolating curve between the data points. Consider the following data
(from Problem 4, Section 3.3.):

x 7 14 21 28 35 42

y 8 41 133 250 280 297

3For a computationally efficient algorithm, see R. L. Burden and J. D. Faires, Numerical Analysis, 9th ed.
(Pacific Grove, CA: Brooks/Cole, 2010).
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Because there are six data points, five distinct cubic polynomials, S1–S5, are calculated
to form the composite natural cubic spline. Each of these cubics is graphed and overlaid on
the same graph to obtain Figure 4.27. Between any two consecutive data points only one
of the five cubic polynomials is active, giving the smooth composite cubic spline shown in
Figure 4.28.

You should be concerned with whether the procedure just described results in a unique
solution. Also, you may be wondering why we jumped from a linear spline to a cubic spline
without discussing quadratic splines. Intuitively, you would think that first derivatives could
bematchedwith a quadratic spline. These and related issues are discussed inmost numerical
analysis texts (for example, see Burden and Faires cited earlier).

J Figure 4.27
Between any two
consecutive data points
only one cubic spline
polynomial is active.
(Graphics by Jim McNulty
and Bob Hatton)
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The smooth composite
cubic spline from the cubic
polynomials in Figure 4.27
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EXAMPLE 1 Vehicular Stopping Distance Revisited

Consider again the problem posed in Section 2.2: Predict a vehicle’s total stopping dis-
tance as a function of its speed. In Section 2.2, we reasoned that the model should have
the form

d D k1v C k2v2

where d is the total stopping distance, v is the velocity, and k1 and k2 are constants of
proportionality resulting from the submodels for reaction distance and mechanical braking
distance, respectively. We found reasonable agreement between the data furnished for the
submodels and the graphically estimated k1 and k2 to obtain the model

d D 1:1v C 0:054v2

In Section 3.4 we estimated k1 and k2 using the least-squares criterion and obtained the
model

d D 1:104v C 0:0542v2

The fit of the preceding two models was analyzed in Table 3.7. Note in particular that both
models break down at high speeds, where they increasingly underestimate the stopping
distances. In Section 4.3, we constructed an empirical model by smoothing the data with a
quadratic polynomial, and we analyzed the fit.

Now suppose that we are not satisfied with the predictions made by our analytic models
or are unable to construct an analytic model, but we find it necessary to make predictions. If
we are reasonably satisfied with the collected data, we might consider constructing a cubic
spline model for the data presented in Table 4.26.

Using a computer code, we obtained the cubic spline model summarized in Table 4.27.
The first three spline segments are plotted in Figure 4.29. Note how each segment passes
through the data points at either end of its interval, and note the smoothness of the transition
across adjacent segments. J J J
Summary: Constructing Empirical Models
We conclude this chapter by presenting a summary and suggesting a procedure for construct-
ing empirical models using the techniques presented. Begin the procedure by examining
the data in search of suspect data points that you need to examine more closely and perhaps

Table 4.26 Data relating total stopping distance and speed

Speed, v (mph) 20 25 30 35 40 45 50

Distance, d (ft) 42 56 73.5 91.5 116 142.5 173

Speed, v (mph) 55 60 65 70 75 80

Distance, d (ft) 209.5 248 292.5 343 401 464
© Cengage Learning

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_04_ch04_p137-184 January 23, 2013 19:39 178

178 Chapter 4 Experimental Modeling

Table 4.27 A cubic spline model for vehicular stopping distance

Interval Model

20 � v < 25 S1.v/ D 42 C 2:596.v � 20/ C 0:008.v � 20/3

25 � v < 30 S2.v/ D 56 C 3:208.v � 25/ C 0:122.v � 25/2 � 0:013.v � 25/3

30 � v < 35 S3.v/ D 73:5 C 3:472.v � 30/ � 0:070.v � 30/2 C 0:019.v � 30/3

35 � v < 40 S4.v/ D 91:5 C 4:204.v � 35/ C 0:216.v � 35/2 � 0:015.v � 35/3

40 � v < 45 S5.v/ D 116 C 5:211.v � 40/ � 0:015.v � 40/2 C 0:006.v � 40/3

45 � v < 50 S6.v/ D 142:5 C 5:550.v � 45/ C 0:082.v � 45/2 C 0:005.v � 45/3

50 � v < 55 S7.v/ D 173 C 6:787.v � 50/ C 0:165.v � 50/2 � 0:012.v � 50/3

55 � v < 60 S8.v/ D 209:5 C 7:503.v � 55/ � 0:022.v � 55/2 C 0:012.v � 55/3

60 � v < 65 S9.v/ D 248 C 8:202.v � 60/ C 0:161.v � 60/2 � 0:004.v � 60/3

65 � v < 70 S10.v/ D 292:5 C 9:489.v � 65/ C 0:096.v � 65/2 C 0:005.v � 65/3

70 � v < 75 S11.v/ D 343 C 10:841.v � 70/ C 0:174.v � 70/2 � 0:005.v � 70/3

75 � v < 80 S12.v/ D 401 C 12:245.v � 75/ C 0:106.v � 75/2 � 0:007.v � 75/3

© Cengage Learning
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J Figure 4.29
A plot of the cubic spline model for vehicular stopping distance for 20 � v � 35

discard or obtain anew. Simultaneously, look to see if a trend exists in the data. Normally,
these questions are best considered by constructing a scatterplot, possibly with the aid of
a computer if a great many data are under consideration. If a trend does appear to exist,
first investigate simple one-term models to see if one adequately captures the trend of the
data. You can then identify a one-term model using a transformation that converts the data
into a straight line (approximately). You can find the transformation among the ladder of
transformations or among the transformations discussed in Chapter 3. A graphical plot of
the transformed data is often useful to determine whether the one-term model linearizes the
data. If you find an adequate fit, the chosen model can be fit graphically or analytically using
one of the criteria discussed in Chapter 3. Next, conduct a careful analysis to determine how
well the model fits the data points by examining indicators such as the sum of the absolute
deviations, the largest absolute deviation, and the sum of squared deviations. A plot of the
deviations as a function of the independent variable(s) may be useful for determining where
the model does not fit well. If the fit proves unsatisfactory, consider other one-term models.
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J Figure 4.30
A flowchart for empirical model building
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If you determine that one-term models are inadequate, use polynomials. If there is a
small number of data points, try an (n�1/st-order polynomial through the n data points. Be
sure to note any oscillations, especially near the endpoints of the interval. A careful plot of
the polynomial will help reveal this feature. If there is a large number of data points, consider
a low-order polynomial to smooth the data. A divided difference table is a qualitative aid
in determining whether a low-order polynomial is appropriate and in choosing the order
of that polynomial. After the order of the polynomial is chosen, you may fit and analyze
the polynomial according to the techniques discussed in Chapter 3. If smoothing with a
low-order polynomial proves inadequate, use cubic (or linear) splines. See Figure 4.30 for
a flowchart summary of this discussion.

4.44.4 PROBLEMS

1. For each of the following data sets, write a system of equations to determine the
coefficients of the natural cubic splines passing through the given points. If a computer
program is available, solve the system of equations and graph the splines.

a. x 2 4 7

y 2 8 12

b. x 3 4 6

y 10 15 35

c. x 0 1 2

y 0 10 30

d. x 0 2 4

y 5 10 40

For Problems 2 and 3, find the natural cubic splines that pass through the given data points.
Use the splines to answer the requirements.

2. x 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

y 20.08 22.20 24.53 27.12 29.96 33.11 36.60 40.45 44.70 49.40

a. Estimate the derivative evaluated at x D 3:45. Compare your estimate with the
derivative of ex evaluated at x D 3:45.

b. Estimate the area under the curve from 3.3 to 3.6. Compare with

Z 3:6

3:3

ex dx

3. x 0 �=6 �=3 �=2 2�=3 5�=6 �

y 0.00 0.50 0.87 1.00 0.87 0.50 0.00
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4. For the data collected in the tape recorder problem (Sections 4.2 and 4.3) relating the
elapsed time with the counter reading, construct the natural spline that passes through
the data points. Compare this model with previous models that you have constructed.
Which model makes the best predictions?

5. The Cost of a Postage Stamp—Consider the following data. Use the procedures in this
chapter to capture the trend of the data if one exists. Would you eliminate any data
points? Why? Would you be willing to use your model to predict the price of a postage
stamp on January 1, 2010? What do the various models you construct predict about
the price on January 1, 2010? When will the price reach $1? You might enjoy reading
the article on which this problem is based: Donald R. Byrkit and Robert E. Lee, ‘‘The
Cost of a Postage Stamp, or Up, Up, and Away,’’Mathematics and Computer Education
17, no. 3 (Summer 1983): 184–190.

Date First-class stamp

1885–1917 $0.02
1917–1919 0.03 (Wartime increase)
1919 0.02 (Restored by Congress)
July 6, 1932 0.03
August 1, 1958 0.04
January 7, 1963 0.05
January 7, 1968 0.06
May 16, 1971 0.08
March 2, 1974 0.10
December 31, 1975 0.13 (Temporary)
July 18, 1976 0.13
May 15, 1978 0.15
March 22, 1981 0.18
November 1, 1981 0.20
February 17, 1985 0.22
April 3, 1988 0.25
February 3, 1991 0.29
January 1, 1995 0.32
January 10, 1999 0.33
January 7, 2001 0.34
June 30, 2002 0.37
January 8, 2006 0.39
May 14, 2007 0.41
May 12, 2008 0.42
May 11, 2009 0.44
January 22, 2012 0.45

4.44.4 PROJECTS

1. Construct a computer code for determining the coefficients of the natural splines that pass
through a given set of data points. See Burden and Faires, cited earlier in this chapter, for
an efficient algorithm.
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For Projects 2–9, use the software you developed in Project 1 to find the splines that pass
through the given data points. Use graphics software, if available, to sketch the resulting
splines.

2. Consider the rising cost of postcards over time. The data and scatterplot are provided in
the following:

Year Postcard cost in cents

1898 1
1952 2
1958 3
1963 4
1968 5
1971 6
1974 8
1975 7
1975 9
1978 10
1981 12
1981 13
1985 14
1988 15
1991 19
1995 20
1999 20
2001 20
2001 21
2001 23
2006 24
2007 26
2008 27
2009 28
2011 29
2012 32
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Develop a mathematical model to predict (a) when the cost might be $0.50 and (b) what
the cost might be in 2020.

3. The data presented in Table 4.22 on the growth of yeast in a culture (data from R. Pearl,
‘‘The Growth of Population,’’ Quart. Rev. Biol. 2(1927): 532–548).

4. The following data represent the population of the United States from 1790 to 2000.

Year Observed population

1790 3,929,000
1800 5,308,000
1810 7,240,000
1820 9,638,000
1830 12,866,000
1840 17,069,000
1850 23,192,000
1860 31,443,000
1870 38,558,000
1880 50,156,000
1890 62,948,000
1900 75,995,000
1910 91,972,000
1920 105,711,000
1930 122,755,000
1940 131,669,000
1950 150,697,000
1960 179,323,000
1970 203,212,000
1980 226,505,000
1990 248,709,873
2000 281,416,000

5. The following data were obtained for the growth of a sheep population introduced into a
new environment on the island of Tasmania (adapted from J. Davidson, ‘‘On the Growth
of the Sheep Population in Tasmania,’’ Trans. Roy. Soc. S. Australia 62(1938): 342–346).

t (year) 1814 1824 1834 1844 1854 1864

P.t/ 125 275 830 1200 1750 1650

6. The following data represent the pace of life (see Problem 1, Section 4.1). P is the pop-
ulation and V is the mean velocity in feet per second over a 50-ft course.

P 365 2500 5491 14000 23700 49375 70700 78200

V 2.76 2.27 3.31 3.70 3.27 4.90 4.31 3.85

P 138000 304500 341948 867023 1092759 1340000 2602000

V 4.39 4.42 4.81 5.21 5.88 5.62 5.05
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7. The following data represent the length and weight of a fish (bass).

Length (in.) 12.5 12.625 14.125 14.5 17.25 17.75

Weight (oz) 17 16.5 23 26.5 41 49

8. The following data represent the weight-lifting results from the 1976 Olympics.

Bodyweight class (lb) Total winning lifts (lb)

Max. weight Snatch Jerk Total weight

Flyweight 114.5 231.5 303.1 534.6
Bantamweight 123.5 259.0 319.7 578.7
Featherweight 132.5 275.6 352.7 628.3
Lightweight 149.0 297.6 380.3 677.9
Middleweight 165.5 319.7 418.9 738.5
Light-heavyweight 182.0 358.3 446.4 804.7
Middle-heavyweight 198.5 374.8 468.5 843.3
Heavyweight 242.5 385.8 496.0 881.8

9. You can use the cubic spline software you developed, coupled with some graphics, to
draw smooth curves to represent a figure you wish to draw on the computer. Overlay a
piece of graph paper on a picture or drawing that you wish to produce on a computer.
Record enough data to gain smooth curves ultimately. Take more data points where there
are abrupt changes (Figure 4.31).
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Now take the data points and determine the splines that pass through them. Note
that if natural discontinuities in the derivative occur in the data, such as at points A–G in
Figure 4.31, you will want to terminate one set of spline functions and begin another. You
can then graph the spline functions using graphics software. In essence, you are using
the computer to connect the dots with smooth curves. Select a figure of interest to you,
such as your school mascot, and draw it on the computer.
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Introduction

In many situations amodeler is unable to construct an analytic (symbolic) model adequately
explaining the behavior being observed because of its complexity or the intractability of the
proposed explicativemodel. Yet if it is necessary tomake predictions about the behavior, the
modeler may conduct experiments (or gather data) to investigate the relationship between
the dependent variable(s) and selected values of the independent variable(s) within some
range. We constructed empirical models based on collected data in Chapter 4. To collect
the data, the modeler may observe the behavior directly. In other instances, the behavior
might be duplicated (possibly in a scaled-down version) under controlled conditions, as we
will do when predicting the size of craters in Section 14.4.

In some circumstances, it may not be feasible either to observe the behavior directly
or to conduct experiments. For instance, consider the service provided by a system of
elevators during morning rush hour. After identifying an appropriate problem and defining
what is meant by good service, we might suggest some alternative delivery schemes, such
as assigning elevators to even and odd floors or using express elevators. Theoretically, each
alternative could be tested for some period of time to determine which one provided the
best service for particular arrival and destination patterns of the customers. However, such
a procedure would probably be very disruptive because it would be necessary to harass
the customers constantly as the required statistics were collected. Moreover, the customers
would become very confused because the elevator delivery system would keep changing.
Another problem concerns testing alternative schemes for controlling automobile traffic in
a large city. It would be impractical to constantly change directions of the one-way streets
and the distribution of traffic signals to conduct tests.

In still other situations, the system for which alternative procedures need to be tested
may not even exist yet. An example is the situation of several proposed communications
networks, with the problem of determining which is best for a given office building. Still
another example is the problem of determining locations of machines in a new industrial
plant. The cost of conducting experiments may be prohibitive. This is the case when an
agency tries to predict the effects of various alternatives for protecting and evacuating the
population in case of failure of a nuclear power plant.

In cases where the behavior cannot be explained analytically or data collected directly,
the modeler might simulate the behavior indirectly in somemanner and then test the various
alternatives under consideration to estimate how each affects the behavior. Data can then
be collected to determine which alternative is best. An example is to determine the drag
force on a proposed submarine. Because it is infeasible to build a prototype, we can build
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a scaled model to simulate the behavior of the actual submarine. Another example of this
type of simulation is using a scaled model of a jet airplane in a wind tunnel to estimate the
effects of very high speeds for various designs of the aircraft. There is yet another type of
simulation, which we will study in this chapter. ThisMonte Carlo simulation is typically
accomplished with the aid of a computer.

Suppose we are investigating the service provided by a system of elevators at morning
rush hour. In Monte Carlo simulation, the arrival of customers at the elevators during the
hour and the destination floors they select need to be replicated. That is, the distribution
of arrival times and the distribution of floors desired on the simulated trial must portray a
possible rush hour. Moreover, after we have simulated many trials, the daily distribution
of arrivals and destinations that occur must mimic the real-world distributions in proper
proportions. When we are satisfied that the behavior is adequately duplicated, we can
investigate various alternative strategies for operating the elevators. Using a large number
of trials, we can gather appropriate statistics, such as the average total delivery time of a
customer or the length of the longest queue. These statistics can help determine the best
strategy for operating the elevator system.

This chapter provides a brief introduction toMonte Carlo simulation. Additional studies
in probability and statistics are required to delve into the intricacies of computer simulation
and understand its appropriate uses. Nevertheless, you will gain some appreciation of this
powerful component of mathematical modeling. Keep in mind that there is a danger in
placing too much confidence in the predictions resulting from a simulation, especially if
the assumptions inherent in the simulation are not clearly stated. Moreover, the appearance
of using large amounts of data and huge amounts of computer time, coupled with the fact
the lay people can understand a simulation model and computer output with relative ease,
often leads to overconfidence in the results.

When any Monte Carlo simulation is performed, random numbers are used. We discuss
how to generate random numbers in Section 5.2. Loosely speaking, a ‘‘sequence of random
numbers uniformly distributed in an interval m to n’’ is a set of numbers with no apparent
pattern, where each number betweenm and n can appear with equal likelihood. For example,
if you toss a six-sided die 100 times andwrite down the number showing on the die each time,
you will have written down a sequence of 100 random integers approximately uniformly
distributed over the interval 1 to 6. Now, suppose that random numbers consisting of six
digits can be generated. The tossing of a coin can be duplicated by generating a random
number and assigning it a head if the random number is even and a tail if the random number
is odd. If this trial is replicated a large number of times, you would expect heads to occur
about 50% of the time. However, there is an element of chance involved. It is possible that a
run of 100 trials could produce 51 heads and that the next 10 trials could produce all heads
(although this is not very likely). Thus, the estimate with 110 trials would actually be worse
than the estimate with 100 trials. Processes with an element of chance involved are called
probabilistic, as opposed to deterministic, processes. Monte Carlo simulation is therefore
a probabilistic model.

The modeled behavior may be either deterministic or probabilistic. For instance, the
area under a curve is deterministic (even though it may be impossible to find it precisely).
On the other hand, the time between arrivals of customers at the elevator on a particular day
is probabilistic behavior. Referring to Figure 5.1, we see that a deterministic model can be
used to approximate either a deterministic or a probabilistic behavior, and likewise, aMonte
Carlo simulation can be used to approximate a deterministic behavior (as you will see with
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a Monte Carlo approximation to an area under a curve) or a probabilistic one. However, as
we would expect, the real power of Monte Carlo simulation lies in modeling a probabilistic
behavior.

A principal advantage of Monte Carlo simulation is the relative ease with which it can
sometimes be used to approximate very complex probabilistic systems. Additionally,Monte
Carlo simulation provides performance estimation over a wide range of conditions rather
than a very restricted range as often required by an analytic model. Furthermore, because
a particular submodel can be changed rather easily in a Monte Carlo simulation (such as
the arrival and destination patterns of customers at the elevators), there is the potential of
conducting a sensitivity analysis. Still another advantage is that themodeler has control over
the level of detail in a simulation. For example, a very long time frame can be compressed or
a small time frame expanded, giving a great advantage over experimental models. Finally,
there are very powerful, high-level simulation languages (such as GPSS, GASP, PROLOG,
SIMAN, SLAM, and DYNAMO) that eliminate much of the tedious labor in constructing
a simulation model.

On the negative side, simulation models are typically expensive to develop and operate.
Theymay require many hours to construct and large amounts of computer time andmemory
to run. Another disadvantage is that the probabilistic nature of the simulation model limits
the conclusions that can be drawn from a particular run unless a sensitivity analysis is
conducted. Such an analysis often requires many more runs just to consider a small number
of combinations of conditions that can occur in the various submodels. This limitation
then forces the modeler to estimate which combination might occur for a particular set of
conditions.

5.15.1 Simulating Deterministic Behavior:

Area Under a Curve

In this section we illustrate the use of Monte Carlo simulation to model a deterministic
behavior, the area under a curve. We begin by finding an approximate value to the area
under a nonnegative curve. Specifically, suppose y D f .x/ is some given continuous
function satisfying 0 � f .x/ � M over the closed interval a � x � b. Here, the numberM
is simply some constant that bounds the function. This situation is depicted in Figure 5.2.
Notice that the area we seek is wholly contained within the rectangular region of height M
and length b � a (the length of the interval over which f is defined).

Now we select a point P.x; y/ at random from within the rectangular region. We will
do so by generating two random numbers, x and y, satisfying a � x � b and 0 � y � M ,
and interpreting them as a point P with coordinates x and y. Once P.x; y/ is selected, we
ask whether it lies within the region below the curve. That is, does the y-coordinate satisfy
0 � y � f .x/? If the answer is yes, then count the point P by adding 1 to some counter.
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J Figure 5.2
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Two counters will be necessary: one to count the total points generated and a second to count
those points that lie below the curve (Figure 5.2). You can then calculate an approximate
value for the area under the curve by the following formula:

area under curve
area of rectangle

� number of points counted below curve
total number of random points

As discussed in the Introduction, the Monte Carlo technique is probabilistic and typically
requires a large number of trials before the deviation between the predicted and true values
becomes small. A discussion of the number of trials needed to ensure a predetermined level
of confidence in the final estimate requires a background in statistics. However, as a general
rule, to double the accuracy of the result (i.e., to cut the expected error in half), about four
times as many experiments are necessary.

The following algorithm gives the sequence of calculations needed for a general com-
puter simulation of this Monte Carlo technique for finding the area under a curve.

Monte Carlo Area Algorithm

Input Total number n of random points to be generated in the simulation.
Output AREA D approximate area under the specified curve y D f .x/ over the given interval

a � x � b, where 0 � f .x/ < M .
Step 1 Initialize: COUNTER D 0.
Step 2 For i D 1; 2; : : : ; n, do Steps 3–5.
Step 3 Calculate random coordinates xi and yi that satisfy a � xi � b and 0 � yi < M.
Step 4 Calculate f .xi/ for the random xi coordinate.
Step 5 If yi � f .xi/, then increment the COUNTER by 1. Otherwise, leave COUNTER as is.

Step 6 Calculate AREA D M.b � a/ COUNTER=n.
Step 7 OUTPUT (AREA)

STOP

Table 5.1 gives the results of several different simulations to obtain the area beneath
the curve y D cos x over the interval ��=2 � x � �=2, where 0 � cos x < 2.

The actual area under the curve y D cos x over the given interval is 2 square units.
Note that even with the relatively large number of points generated, the error is significant.
For functions of one variable, the Monte Carlo technique is generally not competitive with
quadrature techniques that you will learn in numerical analysis. The lack of an error bound
and the difficulty in finding an upper bound M are disadvantages as well. Nevertheless, the
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Table 5.1 Monte Carlo approximation to the area under
the curve y D cosx over the interval �ı=2 � x � ı=2

Number Approximation Number Approximation
of points to area of points to area

100 2.07345 2000 1.94465
200 2.13628 3000 1.97711
300 2.01064 4000 1.99962
400 2.12058 5000 2.01429
500 2.04832 6000 2.02319
600 2.09440 8000 2.00669
700 2.02857 10000 2.00873
800 1.99491 15000 2.00978
900 1.99666 20000 2.01093

1000 1.96664 30000 2.01186
© Cengage Learning

Monte Carlo technique can be extended to functions of several variables and becomes more
practical in that situation.

Volume Under a Surface
Let’s consider finding part of the volume of the sphere

x2 C y2 C z2 � 1

that lies in the first octant, x > 0, y > 0, z > 0 (Figure 5.3).
The methodology to approximate the volume is very similar to that of finding the area

under a curve. However, nowwewill use an approximation for the volume under the surface
by the following rule:

volume under surface
volume of box

� number of points counted below surface in 1st octant
total number of points

The following algorithm gives the sequence of calculations required to employMonte Carlo
techniques to find the approximate volume of the region.

J Figure 5.3
Volume of a sphere
x 2 C y 2 C z 2 � 1 that lies in
the first octant, x > 0, y > 0,
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Monte Carlo Volume Algorithm

Input Total number n of random points to be generated in the simulation.
Output VOLUME D approximate volume enclosed by the specified function, z D f .x; y/ in the

first octant, x > 0, y > 0, z > 0.
Step 1 Initialize: COUNTER D 0.
Step 2 For i D 1; 2; : : : ; n, do Steps 3–5.
Step 3 Calculate random coordinates xi , yi , zi that satisfy 0 � xi � 1, 0 � yi � 1, 0 � zi � 1.

(In general, a � xi � b, c � yi � d , 0 � zi � M .)
Step 4 Calculate f .xi ; yi/ for the random coordinate .xi ; yi/.
Step 5 If random zi � f .xi ; yi/, then increment the COUNTERby 1. Otherwise, leaveCOUNTER

as is.
Step 6 Calculate VOLUME D M.d � c/.b � a/COUNTER=n.
Step 7 OUTPUT (VOLUME)

STOP

Table 5.2 gives the results of several Monte Carlo runs to obtain the approximate volume of

x2 C y2 C z2 � 1

that lies in the first octant, x > 0, y > 0, z > 0.

Table 5.2 Monte Carlo approximation
to the volume in the first octant under
the surface x 2 C y 2 C z 2 � 1

Number of points Approximate volume

100 0.4700
200 0.5950
300 0.5030
500 0.5140

1,000 0.5180
2,000 0.5120
5,000 0.5180

10,000 0.5234
20,000 0.5242

© Cengage Learning

The actual volume in the first octant is found to be approximately 0:5236 cubic units
.�=6/. Generally, though not uniformly, the error becomes smaller as the number of points
generated increases.

5.15.1 PROBLEMS

1. Each ticket in a lottery contains a single ‘‘hidden’’ number according to the following
scheme: 55% of the tickets contain a 1, 35% contain a 2, and 10% contain a 3. A
participant in the lottery wins a prize by obtaining all three numbers 1, 2, and 3. Describe
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an experiment that could be used to determine how many tickets you would expect to
buy to win a prize.

2. Two record companies, A and B, produce classical music recordings. Label A is a budget
label, and 5% of A’s new compact discs exhibit significant degrees of warpage. Label B
is manufactured under tighter quality control (and consequently more expensive) than
A, so only 2% of its compact discs are warped. You purchase one label A and one label
B recording at your local store on a regular basis. Describe an experiment that could be
used to determine how many times you would expect to make such a purchase before
buying two warped compact discs for a given sale.

3. Using Monte Carlo simulation, write an algorithm to calculate an approximation to �
by considering the number of random points selected inside the quarter circle

Q W x2 C y2 D 1; x � 0; y � 0

where the quarter circle is taken to be inside the square

S W 0 � x � 1 and 0 � y � 1

Use the equation �=4 D area Q=area S .

4. Use Monte Carlo simulation to approximate the area under the curve f .x/ D p
x, over

the interval 1

2
� x � 3

2
.

5. Find the area trapped between the two curves y D x2 and y D 6 � x and the x- and
y-axes.

6. Using Monte Carlo simulation, write an algorithm to calculate that part of the volume
of an ellipsoid

x2

2
C y2

4
C z2

8
� 16

that lies in the first octant, x > 0, y > 0, z > 0.

7. Using Monte Carlo simulation, write an algorithm to calculate the volume trapped be-
tween the two paraboloids

z D 8 � x2 � y2 and z D x2 C 3y2

Note that the two paraboloids intersect on the elliptic cylinder

x2 C 2y2 D 4

5.25.2 Generating Random Numbers

In the previous section, we developed algorithms for Monte Carlo simulations to find areas
and volumes. A key ingredient common to these algorithms is the need for random numbers.
Random numbers have a variety of applications, including gambling problems, finding an
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area or volume, andmodeling larger complex systems such as large-scale combat operations
or air traffic control situations.

In some sense a computer does not really generate randomnumbers, because computers
employ deterministic algorithms. However, we can generate sequences of pseudorandom
numbers that, for all practical purposes, may be considered random. There is no single best
random number generator or best test to ensure randomness.

There are complete courses of study for random numbers and simulations that cover
in depth the methods and tests for pseudorandom number generators. Our purpose here is
to introduce a few random number methods that can be utilized to generate sequences of
numbers that are nearly random.

Many programming languages, such as Pascal and Basic, and other software (e.g.,
Minitab, MATLAB, and EXCEL) have built-in random number generators for user
convenience.

Middle-Square Method
The middle-square method was developed in 1946 by John Von Neuman, S. Ulm, and
N. Metropolis at Los Alamos Laboratories to simulate neutron collisions as part of the
Manhattan Project. Their middle-square method works as follows:

1. Start with a four-digit number x0, called the seed.
2. Square it to obtain an eight-digit number (add a leading zero if necessary).
3. Take the middle four digits as the next random number.

Continuing in this manner, we obtain a sequence that appears to be random over the
integers from 0 to 9999. These integers can then be scaled to any interval a to b. For example,
if we wanted numbers from 0 to 1, we would divide the four-digit numbers by 10,000. Let’s
illustrate the middle-square method.

Pick a seed, say x0 D 2041, and square it (adding a leading zero) to get 04165681. The
middle four digits give the next random number, 1656. Generating 13 random numbers in
this way yields

n 0 1 2 3 4 5 6 7 8 9 10 11 12

xn 2041 1656 7423 1009 0180 0324 1049 1004 80 64 40 16 2

We can use more than 4 digits if we wish, but we always take the middle number of
digits equal to the number of digits in the seed. For example, if x0 D 653217 (6 digits), its
square 426,692,449,089 has 12 digits. Thus, take the middle 6 digits as the random number,
namely, 692449.

The middle-square method is reasonable, but it has a major drawback in its tendency
to degenerate to zero (where it will stay forever). With the seed 2041, the random sequence
does seem to be approaching zero. Howmany numbers can be generated until we are almost
at zero?
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Linear Congruence
The linear congruence method was introduced by D. H. Lehmer in 1951, and a majority
of pseudorandom numbers used today are based on this method. One advantage it has over
other methods is that seeds can be selected that generate patterns that eventually cycle (we
illustrate this concept with an example). However, the length of the cycle is so large that the
pattern does not repeat itself on large computers for most applications. The method requires
the choice of three integers: a, b, and c. Given some initial seed, say x0, we generate a
sequence by the rule

xnC1 D .a � xn C b/mod.c/

where c is the modulus, a is the multiplier, and b is the increment. The qualifier mod.c/ in
the equation means to obtain the remainder after dividing the quantity .a � xn C b/ by c.
For example, with a D 1, b D 7, and c D 10,

xnC1 D .1 � xn C 7/mod.10/

means xnC1 is the integer remainder upon dividing xn C 7 by 10. Thus, if xn D 115, then
xnC1 D remainder . 122

10
/ D 2.

Before investigating the linear congruence methodology, we need to discuss cycling,
which is a major problem that occurs with random numbers. Cycling means the sequence
repeats itself, and, although undesirable, it is unavoidable. At some point, all pseudorandom
number generators begin to cycle. Let’s illustrate cycling with an example.

If we set our seed at x0 D 7, we find x1 D .1 � 7 C 7/ mod.10/ or 14 mod.10/, which
is 4. Repeating this same procedure, we obtain the sequence

7; 4; 1; 8; 5; 2; 9; 6; 3; 0; 7; 4; : : :

and the original sequence repeats again and again. Note that there is cycling after 10 numbers.
The methodology produces a sequence of integers between 0 and c � 1 inclusively before
cycling (which includes the possible remainders after dividing the integers by c). Cycling
is guaranteed with at most c numbers in the random number sequence. Nevertheless, c can
be chosen to be very large, and a and b can be chosen in such a way as to obtain a full set of
c numbers before cycling begins to occur. Many computers use c D 231 for the large value
of c. Again, we can scale the random numbers to obtain a sequence between any limits a
and b, as required.

A second problem that can occur with the linear congruencemethod is lack of statistical
independence among the members in the list of random numbers. Any correlations between
the nearest neighbors, the next-nearest neighbors, the third-nearest neighbors, and so forth
are generally unacceptable. (Because we live in a three-dimensional world, third-nearest
neighbor correlations can be particularly damaging in physical applications.) Pseudoran-
dom number sequences can never be completely statistically independent because they are
generated by a mathematical formula or algorithm. Nevertheless, the sequence will appear
(for practical purposes) independent when it is subjected to certain statistical tests. These
concerns are best addressed in a course in statistics.
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5.25.2 PROBLEMS

1. Use the middle-square method to generate
a. 10 random numbers using x0 D 1009.
b. 20 random numbers using x0 D 653217.
c. 15 random numbers using x0 D 3043.
d. Comment about the results of each sequence. Was there cycling? Did each sequence

degenerate rapidly?

2. Use the linear congruence method to generate
a. 10 random numbers using a D 5, b D 1, and c D 8.
b. 15 random numbers using a D 1, b D 7, and c D 10.
c. 20 random numbers using a D 5, b D 3, and c D 16.
d. Comment about the results of each sequence. Was there cycling? If so, when did it

occur?

5.25.2 PROJECTS

1. Complete the requirement for UMAP module 269, ‘‘Monte Carlo: The Use of Random
Digits to Simulate Experiments,’’ by Dale T. Hoffman. The Monte Carlo technique is
presented, explained, and used to find approximate solutions to several realistic problems.
Simple experiments are included for student practice.

2. Refer to ‘‘RandomNumbers’’ by Mark D. Myerson, UMAP 590. This module discusses
methods for generating random numbers and presents tests for determining the random-
ness of a string of numbers. Complete this module and prepare a short report on testing
for randomness.

3. Write a computer program to generate uniformly distributed random integers in the
interval m < x < n, where m and n are integers, according to the following algorithm:

Step 1 Let d D 231 and choose N (the number of random numbers to generate).
Step 2 Choose any seed integer Y such that

100000 < Y < 999999

Step 3 Let i D 1.
Step 4 Let Y D .15625 Y C 22221/mod.d/.
Step 5 Let Xi D m C floorŒ.n � m C 1/Y=d �.
Step 6 Increment i by 1: i D i C 1.
Step 7 Go to Step 4 unless i D N C 1.

Here, floor Œp� means the largest integer not exceeding p.
For most choices of Y , the numbersX1; X2; : : : form a sequence of (pseudo)random

integers as desired. One possible recommended choice is Y D 568731. To generate
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random numbers (not just integers) in an interval a to b with a < b, use the preceding
algorithm, replacing the formula in Step 5 by

Let Xi D a C Y.b � a/

d � 1

4. Write a program to generate 1000 integers between 1 and 5 in a random fashion so that
1 occurs 22% of the time, 2 occurs 15% of the time, 3 occurs 31% of the time, 4 occurs
26% of the time, and 5 occurs 6% of the time. Over what interval would you generate
the random numbers? How do you decide which of the integers from 1 to 5 has been
generated according to its specified chance of selection?

5. Write a program or use a spreadsheet to find the approximate area or volumes in Problems
3–7 in Section 5.1.

5.35.3 Simulating Probabilistic Behavior

One of the keys to goodMonte Carlo simulation practices is an understanding of the axioms
of probability. The term probability refers to the study of both randomness and uncertainty,
as well as to quantifying of the likelihoods associated with various outcomes. Probability
can be seen as a long-term average. For example, if the probability of an event occurring
is 1 out of 5, then in the long run, the chance of the event happening is 1/5. Over the long
haul, the probability of an event can be thought of as the ratio

number of favorable events
total number of events

Our goal in this section is to show how to model simple probabilistic behavior to build
intuition and understanding before developing submodels of probabilistic processes to in-
corporate in simulations (Sections 5.4 and 5.5).

We examine three simple probabilistic models:

1. Flip of a fair coin
2. Roll of a fair die or pair of dice
3. Roll of an unfair die or pair of unfair dice

A Fair Coin
Most people realize that the chance of obtaining a head or a tail on a coin is 1=2. What
happens if we actually start flipping a coin? Will one out of every two flips be a head?
Probably not. Again, probability is a long-term average. Thus, in the long run, the ratio of
heads to the number of flips approaches 0.5. Let’s define f .x/ as follows, where x is a
random number between Œ0; 1�.

f .x/ D
�
Head; 0 � x � 0:5

Tail; 0:5 < x � 1
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Note that f .x/ assigns the outcome head or tail to a number between Œ0; 1�. We want to
take advantage of the cumulative nature of this function as we make random assignments to
numbers between Œ0; 1�. In the long run, we expect to find the following percent occurrences:

Random number interval Cumulative occurrences Percent occurrence

x < 0 0 0.00
0 < x < 0:5 0.5 0.50
0:5 < x < 1:0 1 0.50

Let’s illustrate using the following algorithm:

Monte Carlo Fair Coin Algorithm
Input Total number n of random flips of a fair coin to be generated in the simulation.

Output Probability of getting a head when we flip a fair coin.
Step 1 Initialize: COUNTER D 0.
Step 2 For i D 1; 2; : : : ; n, do Steps 3 and 4.

Step 3 Obtain a random number xi between 0 and 1.
Step 4 If 0 � xi � 0:5, then COUNTER D COUNTER C 1. Otherwise, leave COUNTER as is.

Step 5 Calculate P.head/ D COUNTER=n.
Step 6 OUTPUT Probability of heads, P (head).

STOP

Table 5.3 illustrates our results for various choices n of the number of random xi gener-
ated. Note that as n gets large, the probability of heads occurring is 0:5, or half the time.

Table 5.3 Results from flipping a fair coin

Number of flips Number of heads Percent heads

100 49 0.49
200 102 0.51
500 252 0.504

1,000 492 0.492
5,000 2469 0.4930

10,000 4993 0.4993
© Cengage Learning

Roll of a Fair Die
Rolling a fair die adds a new twist to the process. In the flip of a coin, only one event is
assigned (with two possible answers, yes or no). Nowwemust devise a method to assign six
events because a die consists of the numbers f1; 2; 3; 4; 5; 6g. The probability of each event
occurring is 1=6, because each number is equally likely to occur. As before, this probability
of a particular number occurring is defined to be

number of occurences of the particular number f1; 2; 3; 4; 5; 6g
total number of trials

We can use the following algorithm to generate our experiment for a roll of a die.
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Monte Carlo Roll of a Fair Die Algorithm

Input Total number n of random rolls of a die in the simulation.
Output The percentage or probability for rolls f1; 2; 3; 4; 5; 6g.

Step 1 Initialize COUNTER 1 through COUNTER 6 to zero.
Step 2 For i D 1; 2; : : : ; n, do Steps 3 and 4.
Step 3 Obtain a random number satisfying 0 � xi � 1.
Step 4 If xi belongs to these intervals, then increment the appropriate COUNTER.

0 � xi � 1

6
COUNTER 1 D COUNTER 1 C 1

1

6
< xi � 2

6
COUNTER 2 D COUNTER 2 C 1

2

6
< xi � 3

6
COUNTER 3 D COUNTER 3 C 1

3

6
< xi � 4

6
COUNTER 4 D COUNTER 4 C 1

4

6
< xi � 5

6
COUNTER 5 D COUNTER 5 C 1

5

6
< xi � 1 COUNTER 6 D COUNTER 6 C 1

Step 5 Calculate probability of each roll j D f1; 2; 3; 4; 5; 6g by COUNTER.j /=n.
Step 6 OUTPUT probabilities.

STOP

Table 5.4 illustrates the results for 10, 100, 1000, 10,000, and 100,000 runs. We see
that with 100,000 runs we are close (for these trials) to the expected results.

Table 5.4 Results from a roll of a fair die (n D number of trials)

Die value 10 100 1000 10,000 100,000 Expected results

1 0.300 0.190 0.152 0.1703 0.1652 0.1667
2 0.00 0.150 0.152 0.1652 0.1657 0.1667
3 0.100 0.090 0.157 0.1639 0.1685 0.1667
4 0.00 0.160 0.180 0.1653 0.1685 0.1667
5 0.400 0.150 0.174 0.1738 0.1676 0.1667
6 0.200 0.160 0.185 0.1615 0.1652 0.1667

© Cengage Learning

Roll of an Unfair Die
Let’s consider a probability model in which the events are not all equally likely. Assume
the die is loaded or biased according to the following empirical distribution:

Roll value P (roll)

1 0.1
2 0.1
3 0.2
4 0.3
5 0.2
6 0.1
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The cumulative occurrences for the function to be used in our algorithm would be

Value of xi Assignment

Œ0; 0:1� ONE
.0:1; 0:2� TWO
.0:2; 0:4� THREE
.0:4; 0:7� FOUR
.0:7; 0:9� FIVE
.0:9; 1:0� SIX

We model the roll of an unfair die using the following algorithm:

Monte Carlo Roll of an Unfair Die Algorithm
Input Total number n of random rolls of a die in the simulation.

Output The percentage or probability for rolls f1; 2; 3; 4; 5; 6g.
Step 1 Initialize COUNTER 1 through COUNTER 6 to zero.
Step 2 For i D 1; 2; : : : ; n, do Steps 3 and 4.
Step 3 Obtain a random number satisfying 0 � xi � 1.
Step 4 If xi belongs to these intervals, then increment the appropriate COUNTER.

0 � xi � 0:1 COUNTER 1 D COUNTER 1 C 1

0:1 < xi � 0:2 COUNTER 2 D COUNTER 2 C 1

0:2 < xi � 0:4 COUNTER 3 D COUNTER 3 C 1

0:4 < xi � 0:7 COUNTER 4 D COUNTER 4 C 1

0:7 < xi � 0:9 COUNTER 5 D COUNTER 5 C 1

0:9 < xi � 1:0 COUNTER 6 D COUNTER 6 C 1

Step 5 Calculate probability of each roll j D f1; 2; 3; 4; 5; 6g by COUNTER.j /=n.
Step 6 OUTPUT probabilities.

STOP

The results are shown in Table 5.5. Note that a large number of trials are required for the
model to approach the long-term probabilities.

In the next section, we will see how to use these ideas to simulate a real-world proba-
bilistic situation.

Table 5.5 Results from a roll of an unfair die

Die value 100 1000 5000 10,000 40,000 Expected results

1 0.080 0.078 0.094 0.0948 0.0948 0.1
2 0.110 0.099 0.099 0.0992 0.0992 0.1
3 0.230 0.199 0.192 0.1962 0.1962 0.2
4 0.360 0.320 0.308 0.3082 0.3081 0.3
5 0.110 0.184 0.201 0.2012 0.2011 0.2
6 0.110 0.120 0.104 0.1044 0.1045 0.1
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5.35.3 PROBLEMS

1. You arrive at the beach for a vacation and are dismayed to learn that the local weather
station is predicting a 50% chance of rain every day. Using Monte Carlo simulation,
predict the chance that it rains three consecutive days during your vacation.

2. Use Monte Carlo simulation to approximate the probability of three heads occurring
when five fair coins are flipped.

3. Use Monte Carlo simulation to simulate the sum of 100 rolls of a pair of fair dice.

4. Given loaded dice according to the following distribution, use Monte Carlo simulation
to simulate the sum of 300 rolls of two unfair dice.

Roll Die 1 Die 2

1 0.1 0.3
2 0.1 0.1
3 0.2 0.2
4 0.3 0.1
5 0.2 0.05
6 0.1 0.25

5. Make up a game that uses a flip of a fair coin, and then use Monte Carlo simulation to
predict the results of the game.

5.35.3 PROJECTS

1. Blackjack—Construct and perform a Monte Carlo simulation of blackjack (also called
twenty-one). The rules of blackjack are as follows:

Most casinos use six or eight decks of cardswhen playing this game to inhibit ‘‘card counters.’’
You will use two decks of cards in your simulation (104 cards total). There are only two
players, you and the dealer. Each player receives two cards to begin play. The cards are worth
their face value for 2–10, 10 for face cards (jack, queen, and king), and either 1 or 11 points
for aces. The object of the game is to obtain a total as close to 21 as possible without going
over (called ‘‘busting’’) so that your total is more than the dealer’s.

If the first two cards total 21 (ace–10 or ace–face card), this is called blackjack and is
an automatic winner (unless both you and the dealer have blackjack, in which case it is a tie,
or ‘‘push,’’ and your bet remains on the table). Winning via blackjack pays you 3 to 2, or 1.5
to 1 (a $1 bet reaps $1.50, and you do not lose the $1 you bet).

If neither you nor the dealer has blackjack, you can take as many cards as you want,
one at a time, to try to get as close to 21 as possible. If you go over 21, you lose and the
game ends. Once you are satisfied with your score, you ‘‘stand.’’ The dealer then draws
cards according to the following rules:

The dealer stands on 17, 18, 19, 20, or 21. The dealer must draw a card if the total is 16
or less. The dealer always counts aces as 11 unless it causes him or her to bust, in which case
the ace is counted as a 1. For example, an ace–6 combo for the dealer is 17, not 7 (the dealer
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has no option), and the dealer must stand on 17. However, if the dealer has an ace–4 (for 15)
and draws a king, then the new total is 15 because the ace reverts to its value of 1 (so as not
to go over 21). The dealer would then draw another card.

If the dealer goes over 21, you win (even your bet money; you gain $1 for every $1 you
bet). If the dealer’s total exceeds your total, you lose all the money you bet. If the dealer’s
total equals your total, it is a push (no money exchanges hands; you do not lose your bet, but
neither do you gain any money).

What makes the game exciting in a casino is that the dealer’s original two cards are
one up, one down, so you do not know the dealer’s total and must play the odds based
on the one card showing. You do not need to incorporate this twist into your simulation
for this project. Here’s what you are required to do:

Run through 12 sets of two decks playing the game. You have an unlimited bankroll
(don’t you wish!) and bet $2 on each hand. Each time the two decks run out, the hand in
play continues with two fresh decks (104 cards). At that point record your standing (plus
or minus X dollars). Then start again at 0 for the next set of decks. Thus your output will
be the 12 results from playing each of the 12 sets of decks, which you can then average
or total to determine your overall performance.

What about your strategy? That’s up to you! But here’s the catch—you will assume
that you can see neither of the dealer’s cards (so you have no idea what cards the
dealer has). Choose a strategy to play, and then play it throughout the entire simulation.
(Blackjack enthusiasts can consider implementing doubling down and splitting pairs
into their simulation, but this is not necessary.)

Provide your instructor with the simulation algorithm, computer code, and output
results from each of the 12 decks.

2. Darts—Construct and perform a Monte Carlo simulation of a darts game. The rules are

Dart board area Points

Bullseye 50
Yellow ring 25
Blue ring 15
Red ring 10
White ring 5

From the origin (the center of the bullseye), the radius of each ring is as follows:

Distance to outer ring edge
Ring Thickness (in.) from the origin (in.)

Bullseye 1.0 1.0
Yellow 1.5 2.5
Blue 2.5 5.0
Red 3.0 8.0
White 4.0 12.0

The board has a radius of 1 ft (12 in.).
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Make an assumption about the distribution of how the darts hit on the board. Write
an algorithm, and code it in the computer language of your choice. Run 1000 simulations
to determine the mean score for throwing five darts. Also, determine which ring has the
highest expected value (point value times the probability of hitting that ring).

3. Craps—Construct and perform a Monte Carlo simulation of the popular casino game of
craps. The rules are as follows:

There are two basic bets in craps, pass and don’t pass. In the pass bet, you wager that the
shooter (the person throwing the dice) will win; in the don’t pass bet, you wager that the
shooter will lose. We will play by the rule that on an initial roll of 12 (‘‘boxcars’’), both pass
and don’t pass bets are losers. Both are even-money bets.

Conduct of the game:
Roll a 7 or 11 on the first roll: Shooter wins (pass bets win and don’t pass bets lose).
Roll a 12 on the first roll: Shooter loses (boxcars; pass and don’t pass bets lose).
Roll a 2 or 3 on the first roll: Shooter loses (pass bets lose, don’t pass bets win).
Roll 4, 5, 6, 8, 9, 10 on the first roll: This becomes the point. The object then becomes

to roll the point again before rolling a 7.
The shooter continues to roll the dice until the point or a 7 appears. Pass bettors win if

the shooter rolls the point again before rolling a 7. Don’t pass bettors win if the shooter rolls
a 7 before rolling the point again.

Write an algorithm and code it in the computer language of your choice. Run the
simulation to estimate the probability of winning a pass bet and the probability of winning
a don’t pass bet. Which is the better bet? As the number of trials increases, to what do
the probabilities converge?

4. Horse Race—Construct and perform a Monte Carlo simulation of a horse race. You can
be creative and use odds from the newspaper, or simulate the Mathematical Derby with
the entries and odds shown in following table.

Mathematical Derby

Entry’s name Odds

Euler’s Folly 7–1
Leapin’ Leibniz 5–1
Newton Lobell 9–1
Count Cauchy 12–1
Pumped up Poisson 4–1
Loping L’Hôpital 35–1
Steamin’ Stokes 15–1
Dancin’ Dantzig 4–1

Construct and perform a Monte Carlo simulation of 1000 horse races. Which horse
won the most races? Which horse won the fewest races? Do these results surprise you?
Provide the tallies of how many races each horse won with your output.

5. Roulette—In American roulette, there are 38 spaces on the wheel: 0, 00, and 1–36. Half
the spaces numbered 1–36 are red and half are black. The two spaces 0 and 00 are green.
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Simulate the playing of 1000 games betting either red or black (which pay even
money, 1:1). Bet $1 on each game and keep track of your earnings.What are the earnings
per game betting red/black according to your simulation?Whatwas your longest winning
streak? Your longest losing streak?

Simulate 1000 games betting green (pays 17:1, so if you win, you add $17 to your
kitty, and if you lose, you lose $1). What are your earnings per game betting green
according to your simulation? How does it differ from your earnings betting red/black?
What was your longest winning streak betting green? Longest losing streak? Which
strategy do you recommend using, and why?

6. The Price Is Right—On the popular TV game show The Price Is Right, at the end of
each half hour, the three winning contestants face off in the Showcase Showdown. The
game consists of spinning a large wheel with 20 spaces on which the pointer can land,
numbered from $0.05 to $1.00 in 5-cents increments. The contestant who has won the
least amount of money at this point in the show spins first, followed by the one who has
won the next most, followed by the biggest winner for that half hour.

The objective of the game is to obtain as close to $1.00 as possible without going
over that amount with a maximum of two spins. Naturally, if the first player does not go
over, the other two will use one or both spins in an attempt to overtake the leader.

However, what of the person spinning first? If he or she is an expected value decision
maker, how high a value on the first spin does he or she need to not want a second spin?
Remember, the person will lose if
a. Either of the other two players surpasses the player’s total or
b. The player spins again and goes over $1.

7. Let’s Make a Deal—You are dressed to kill in your favorite costume and the host picks
you out of the audience. You are offered the choice of three wallets. Two wallets contain
a single $50 bill, and the third contains a $1000 bill. You choose one of the wallets, 1, 2,
or 3. The host, who knows which wallet contains the $1000, then shows you one of the
other two wallets, which has $50 inside. The host does this purposely because he has at
least one wallet with $50 inside. If he also has the $1000 wallet, he simply shows you
the $50 one he holds. Otherwise, he just shows you one of his two $50 wallets. The host
then asks you if you want to trade your choice for the one he’s still holding. Should you
trade?

Develop an algorithm and construct a computer simulation to support your answer.

8. Inventory Model—The demand for steel belted radial tires for resupply on a weekly
basis is provided in the following table:

Demand Frequency Probability Cumulative Probability

0 15 0.05 0.05
1 30 0.10 0.15
2 60 0.20 0.35
3 120 0.40 0.75
4 45 0.15 0.90
5 30 0.10 1.00
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Assumptions: Lead time for resupply is between 1 and 3 days. Currently, we have
7 steel belted radial tires in stock and no orders are currently due. We seek to determine
the order quantity and order point to reduce our total and average costs. The fixed costs
for placing an order is $20. The cost for holding the unused stock is $0.02 per tire per
day. Each time we cannot satisfy a demand, the customer goes elsewhere. Assume a loss
of $8 to the company for each lost customer. The resupply company operates 24 hours
a day, 7 days a week.

5.45.4 Inventory Model: Gasoline

and Consumer Demand

In the previous section, we began modeling probabilistic behaviors using Monte Carlo sim-
ulation. In this section we will learn a method to approximate more probabilistic processes.
Additionally, we will check to determine how well the simulation duplicates the process
under examination. We begin by considering an inventory control problem.

You have been hired as a consultant by a chain of gasoline stations to determine how
often and howmuch gasoline should be delivered to the various stations. Each time gasoline
is delivered, a cost of d dollars is incurred, which is in addition to the cost of gasoline and
is independent of the amount delivered. The gasoline stations are near interstate highways,
so demand is fairly constant. Other factors determining the costs include the capital tied
up in the inventory, the amortization costs of equipment, insurance, taxes, and security
measures. We assume that in the short run, the demand and price of gasoline are constant
for each station, yielding a constant total revenue as long as the station does not run out of
gasoline. Because total profit is total revenue minus total cost, and total revenue is constant
by assumption, total profit can be maximized by minimizing total cost. Thus, we identify
the following problem:Minimize the average daily cost of delivering and storing sufficient
gasoline at each station to meet consumer demand.

After discussing the relative importance of the various factors determining the average
daily cost, we develop the following model:

average daily cost D f .storage costs, delivery costs, demand rate/

Turning our attention to the various submodels, we argue that although the cost of
storage may vary with the amount stored, it is reasonable to assume the cost per unit stored
would be constant over the range of values under consideration. Similarly, the delivery cost
is assumed constant per delivery, independent of the amount delivered, over the range of
values under consideration. Plotting the daily demand for gasoline at a particular station is
very likely to give a graph similar to the one shown in Figure 5.4a. If the frequency of each
demand level over a fixed time period (e.g., 1 year) is plotted, then a plot similar to that
shown in Figure 5.4b might be obtained.

If demands are tightly packed around the most frequently occurring demand, then we
would accept the daily demand as being constant. In some cases, it may be reasonable to
assume a constant demand. Finally, even though the demands occur in discrete time peri-
ods, a continuous submodel for demand can be used for simplicity. A continuous submodel
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A constant demand rate

is depicted in Figure 5.4c, where the slope of the line represents the constant daily demand.
Notice the importance of each of the preceding assumptions in producing the linear sub-
model.

From these assumptions we will construct, in Chapter 13, an analytic model for the
average daily cost and use it to compute an optimal time between deliveries and an optimal
delivery quantity:

T � D
r

2d

sr

Q� D rT �

where

T � D optimal time between deliveries in days
Q� D optimal delivery quantity of gasoline in gallons
r D demand rate in gallons per day
d D delivery cost in dollars per delivery
s D storage cost per gallon per day

Wewill see how the analytic model depends heavily on a set of conditions that, although
reasonable in some cases, would never be met precisely in the real world. It is difficult to
develop analytic models that take into account the probabilistic nature of the submodels.

Suppose we decide to check our submodel for constant demand rate by inspecting the
sales for the past 1000 days at a particular station. Thus, the data displayed in Table 5.6 are
collected.

For each of the 10 intervals of demand levels given in Table 5.6, compute the relative
frequency of occurrence by dividing the number of occurrences by the total number of
days, 1000. This computation results in an estimate of the probability of occurrence for
each demand level. These probabilities are displayed in Table 5.7 and plotted in histogram
form in Figure 5.5.
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Table 5.6 History of demand at a particular gasoline station

Number of occurrences
Number of gallons demanded (in days)

1000–1099 10
1100–1199 20
1200–1299 50
1300–1399 120
1400–1499 200
1500–1599 270
1600–1699 180
1700–1799 80
1800–1899 40
1900–1999 30

1000
© Cengage Learning

Table 5.7 Probability of the occurrence of each demand level

Number of gallons demanded Probability of occurrence

1000–1099 0.01
1100–1199 0.02
1200–1299 0.05
1300–1399 0.12
1400–1499 0.20
1500–1599 0.27
1600–1699 0.18
1700–1799 0.08
1800–1899 0.04
1900–1999 0:03

1.00
© Cengage Learning

J Figure 5.5
The relative frequency
of each of the demand
intervals in Table 5.7
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If we are satisfied with the assumption of a constant demand rate, we might estimate
this rate at 1550 gallons per day (from Figure 5.5). Then the analytic model could be used to
compute the optimal time between deliveries and the delivery quantities from the delivery
and storage costs.
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Table 5.8 Using random numbers uniformly distributed over 0 � x � 1 to duplicate
the occurrence of the various demand intervals

Random number Corresponding demand Percent occurrence

0 � x < 0:01 1000–1099 0.01
0:01 � x < 0:03 1100–1199 0.02
0:03 � x < 0:08 1200–1299 0.05
0:08 � x < 0:20 1300–1399 0.12
0:20 � x < 0:40 1400–1499 0.20
0:40 � x < 0:67 1500–1599 0.27
0:67 � x < 0:85 1600–1699 0.18
0:85 � x < 0:93 1700–1799 0.08
0:93 � x < 0:97 1800–1899 0.04
0:97 � x � 1:00 1900–1999 0.03
© Cengage Learning

Suppose, however, that we are not satisfied with the assumption of constant daily de-
mand. How could we simulate the submodel for the demand suggested by Figure 5.5? First,
we could build a cumulative histogram by consecutively adding together the probabilities
of each individual demand level, as displayed in Figure 5.6. Note in Figure 5.6 that the dif-
ference in height between adjacent columns represents the probability of occurrence of the
subsequent demand interval. Thus, we can construct a correspondence between the numbers
in the interval 0 � x � 1 and the relative occurrence of the various demand intervals. This
correspondence is displayed in Table 5.8.

Thus, if the numbers between 0 and 1 are randomly generated so that each number has
an equal probability of occurring, the histogram of Figure 5.5 can be approximated. Using
a random number generator on a handheld programmable calculator, we generated random
numbers between 0 and 1 and then used the assignment procedure suggested by Table 5.7
to determine the demand interval corresponding to each random number. The results for
1000 and 10,000 trials are presented in Table 5.9.

For the gasoline inventory problem, we ultimately want to be able to determine a
specific demand, rather than a demand interval, for each day simulated. How can this be

J Figure 5.6
A cumulative histogram
of the demand submodel
from the data in Table 5.7
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Table 5.9 A Monte Carlo approximation of the demand submodel

Number of occurrences=expected no. of occurrences
Interval 1000 trials 10,000 trials

1000–1099 8=10 91=100
1100–1199 16=20 198=200
1200–1299 46=50 487=500
1300–1399 118=120 1205=1200
1400–1499 194=200 2008=2000
1500–1599 275=270 2681=2700
1600–1699 187=180 1812=1800
1700–1799 83=80 857=800
1800–1899 34=40 377=400
1900–1999 39=30 284=300

1000=1000 10;000=10;000

© Cengage Learning

accomplished? There are several alternatives. Consider the plot of the midpoints of each
demand interval as displayed in Figure 5.7. Because we want a continuous model capturing
the trend of the plotted data, we can use methods discussed in Chapter 4.

In many instances, especially where the subintervals are small and the data fairly
approximate, a linear spline model is suitable. A linear spline model for the data displayed
in Figure 5.7 is presented in Figure 5.8, and the individual spline functions are given in
Table 5.10. The interior spline functions—S2.q/–S9.q/—were computed by passing a line
through the adjacent data points. S1.q/ was computed by passing a line through .1000; 0/
and the first data point .1050; 0:01/. S10.q/ was computed by passing a line through the
points .1850; 0:97/ and .2000; 1:00/. Note that if we use the midpoints of the intervals,
we have to make a decision on how to construct the two exterior splines. If the intervals
are small, it is usually easy to construct a linear spline function that captures the trend of
the data.

J Figure 5.7
A cumulative plot of the
demand submodel
displaying only the center
point of each interval

1
1
5
0

1
0
5
0

1
2
5
0

1
3
5
0

1
4
5
0

1
5
5
0

1
6
5
0

1
7
5
0

1
8
5
0

1
9
5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Gallons
demanded

C
u
m

u
la

ti
ve

 p
ro

b
ab

il
it

y
 o

f 
o
cc

u
rr

en
ce

©
 C

en
ga

ge
 Le

ar
ni

ng

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_05_ch05_p185-223 January 23, 2013 19:40 208

208 Chapter 5 Simulation Modeling

Table 5.10 Linear splines for the empirical
demand submodel

Demand interval Linear spline

1000 � q < 1050 S1.q/ D 0:0002q � 0:2
1050 � q < 1150 S2.q/ D 0:0002q � 0:2
1150 � q < 1250 S3.q/ D 0:0005q � 0:545
1250 � q < 1350 S4.q/ D 0:0012q � 1:42
1350 � q < 1450 S5.q/ D 0:002q � 2:5
1450 � q < 1550 S6.q/ D 0:0027q � 3:515
1550 � q < 1650 S7.q/ D 0:0018q � 2:12
1650 � q < 1750 S8.q/ D 0:0008q � 0:47
1750 � q < 1850 S9.q/ D 0:0004q C 0:23
1850 � q � 2000 S10.q/ D 0:0002q C 0:6

© Cengage Learning

Now suppose wewish to simulate a daily demand for a given day. To do this, we generate
a random number x between 0 and 1 and compute a corresponding demand, q. That is, x is the
independent variable from which a unique corresponding q is calculated. This calculation
is possible, because the function depicted in Figure 5.8 is strictly increasing. (Think about
whether this situation will always be the case.) Thus, the problem is to find the inverse
functions for the splines listed in Table 5.10. For instance, given x D S1.q/ D 0:0002q�0:2,
we can solve for q D .x C 0:2/5000. In the case of linear splines, it is very easy to find the
inverse functions summarized in Table 5.11.

Let’s illustrate how Table 5.11 can be used to represent the daily demand submodel.
To simulate a demand for a given day, we generate a random number between 0 and 1, say
x D 0:214. Because 0:20 � 0:214 < 0:40, the spline q D .x C2:5/500 is used to compute
q D 1357. Thus, 1357 gallons is the simulated demand for that day.

Note that the inverse splines presented in Table 5.11 could have been constructed di-
rectly from the data in Figure 5.6 by choosing x as the independent variable instead of q. We

J Figure 5.8
A linear spline model for
the demand submodel
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Table 5.11 Inverse linear splines provide
for the daily demand as a function of a
random number in Ň0; 1�

Random number Inverse linear spline

0 � x < 0:01 q D .x C 0:2/5000
0:01 � x < 0:03 q D .x C 0:2/5000
0:03 � x < 0:08 q D .x C 0:545/2000
0:08 � x < 0:20 q D .x C 1:42/833:33
0:20 � x < 0:40 q D .x C 2:5/500
0:40 � x < 0:67 q D .x C 3:515/370:37
0:67 � x < 0:85 q D .x C 2:12/555:55
0:85 � x < 0:93 q D .x C 0:47/1250
0:93 � x < 0:97 q D .x � 0:23/2500
0:97 � x � 1:00 q D .x � 0:6/5000

© Cengage Learning

will follow this procedure later when computing the cubic spline demand submodel. (The
preceding development was presented to help you understand the process and also because
it mimics what you will do after studying probability.) Figure 5.6 is an example of a cumu-
lative distribution function. Many types of behavior approximate well-known probability
distributions, which can be used as the basis for Figure 5.6 rather than experimental data.
The inverse function must then be found to use as the demand submodel in the simulation,
and thismay prove to be difficult. In such cases, the inverse function is approximatedwith an
empiricalmodel, such as a linear spline or cubic spline. For an excellent introduction to some
types of behavior that follow well-known probability distributions, see UMAP 340, ‘‘The
Poisson Random Process,’’ by Carroll Wilde, listed in the projects at the end of this section.

If we want a smooth continuous submodel for demand, we can construct a cubic spline
submodel.Wewill construct the splines directly as a function of the random number x. That
is, using a computer program, we calculate the cubic splines for the following data points:

x 0 0.01 0.03 0.08 0.2 0.4 0.67 0.85 0.93 0.97 1.0

q 1000 1050 1150 1250 1350 1450 1550 1650 1750 1850 2000

The splines are presented in Table 5.12. If the random number x D 0:214 is gener-
ated, the empirical cubic spline model yields the demand q D 1350 C 715:5.0:014/ �
1572:5.0:014/2 C 2476.0:014/3 D 1359:7 gal.

An empirical submodel for demand can be constructed in a variety of other ways. For
example, rather than using the intervals for gallons demanded as given in Table 5.6, we can
use smaller intervals. If the intervals are small enough, the midpoint of an interval could
be a reasonable approximation to the demand for the entire interval. Thus, a cumulative
histogram similar to that in Figure 5.6 could serve as a submodel directly. If preferred, a
continuous submodel could be constructed readily from the refined data.

The purpose of our discussion has been to demonstrate how a submodel for a proba-
bilistic behavior can be constructed using Monte Carlo simulation and experimental data.
Now let’s see how the inventory problem can be simulated in general terms.
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Table 5.12 An empirical cubic spline model for demand

Random number Cubic spline

0 � x < 0:01 S1.x/ D 1000 C 4924:92x C 750788:75x3

0:01 � x < 0:03 S2.x/ D 1050 C 5150:18.x � 0:01/ C 22523:66.x � 0:01/2 � 1501630:8.x � 0:01/3

0:03 � x < 0:08 S3.x/ D 1150 C 4249:17.x � 0:03/ � 67574:14.x � 0:03/2 C 451815:88.x � 0:03/3

0:08 � x < 0:20 S4.x/ D 1250 C 880:37.x � 0:08/ C 198:24.x � 0:08/2 � 4918:74.x � 0:08/3

0:20 � x < 0:40 S5.x/ D 1350 C 715:46.x � 0:20/ � 1572:51.x � 0:20/2 C 2475:98.x � 0:20/3

0:40 � x < 0:67 S6.x/ D 1450 C 383:58.x � 0:40/ � 86:92.x � 0:40/2 C 140:80.x � 0:40/3

0:67 � x < 0:85 S7.x/ D 1550 C 367:43.x � 0:67/ C 27:12.x � 0:67/2 C 5655:69.x � 0:67/3

0:85 � x < 0:93 S8.x/ D 1650 C 926:92.x � 0:85/ C 3081:19.x � 0:85/2 C 11965:43.x � 0:85/3

0:93 � x < 0:97 S9.x/ D 1750 C 1649:66.x � 0:93/ C 5952:90.x � 0:93/2 C 382645:25.x � 0:93/3

0:97 � x � 1:00 S10.x/ D 1850 C 3962:58.x � 0:97/ C 51870:29.x � 0:97/2 � 576334:88.x � 0:97/3

© Cengage Learning

An inventory strategy consists of specifying a delivery quantityQ and a timeT between
deliveries, given values for storage cost per gallon per day s and a delivery cost d . If s and d
are known, then a specific inventory strategy can be tested using a Monte Carlo simulation
algorithm, as follows:

Summary of Monte Carlo Inventory Algorithm Terms

Q Delivery quantity of gasoline in gallons
T Time between deliveries in days
I Current inventory in gallons
d Delivery cost in dollars per delivery
s Storage cost per gallon per day

C Total running cost
c Average daily cost

N Number of days to run the simulation
K Days remaining in the simulation
xi A random number in the interval Œ0; 1�

qi A daily demand
Flag An indicator used to terminate the algorithm

Monte Carlo Inventory Algorithm

Input Q, T , d , s, N

Output c

Step 1 Initialize:
K D N

I D 0

C D 0

Flag D 0
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Step 2 Begin the next inventory cycle with a delivery:
I D I C Q

C D C C d

Step 3 Determine if the simulation will terminate during this cycle:
If T � K, then set T D K and Flag D 1

Step 4 Simulate each day in the inventory cycle (or portion remaining):
For i D 1, 2, : : : , T , do Steps 5–9

Step 5 Generate the random number xi .
Step 6 Compute qi using the demand submodel.
Step 7 Update the current inventory: I D I � qi .
Step 8 Compute the daily storage cost and total running cost, unless the inventory has been depleted:

If I � 0, then set I D 0 and GOTO Step 9.
Else C D C C I � s.

Step 9 Decrement the number of days remaining in the simulation:
K D K � 1

Step 10 If Flag D 0, then GOTO Step 2. Else GOTO Step 11.
Step 11 Compute the average daily cost: c D C=N .
Step 12 Output c.

STOP

Various strategies can now be tested with the algorithm to determine the average daily
costs. You probably want to refine the algorithm to keep track of other measures of effec-
tiveness, such as unsatisfied demands and number of days without gasoline, as suggested
in the following problem set.

5.45.4 PROBLEMS

1. Modify the inventory algorithm to keep track of unfilled demands and the total number
of days that the gasoline station is without gasoline for at least part of the day.

2. Most gasoline stations have a storage capacity Qmax that cannot be exceeded. Refine the
inventory algorithm to take this consideration into account. Because of the probabilistic
nature of the demand submodel at the end of the inventory cycle, there might still
be significant amounts of gasoline remaining. If several cycles occur in succession,
the excess might build up to Qmax. Because there is a financial cost in carrying excess
inventory, this situationwould be undesirable.What alternatives can you suggest?Modify
the inventory algorithm to take your alternatives into account.

3. In many situations, the time T between deliveries and the order quantity Q is not fixed.
Instead, an order is placed for a specific amount of gasoline. Depending on how many
orders are placed in a given time interval, the time to fill an order varies. You have no
reason to believe that the performance of the delivery operation will change. Therefore,
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you have examined records for the past 100 deliveries and found the following lag times,
or extra days, required to fill your order:

Lag time
(in days) Number of occurrences

2 10
3 25
4 30
5 20
6 13
7 2

Total: 100

Construct a Monte Carlo simulation for the lag time submodel. If you have a handheld
calculator or computer available, test your submodel by running 1000 trials and com-
paring the number of occurrences of the various lag times with the historical data.

4. Problem 3 suggests an alternative inventory strategy. When the inventory reaches a certain
level (an order point), an order can be placed for an optimal amount of gasoline. Construct
an algorithm that simulates this process and incorporates probabilistic submodels for
demand and lag times. How could you use this algorithm to search for the optimal order
point and the optimal order quantity?

5. In the case in which a gasoline station runs out of gas, the customer is simply going to
go to another station. In many situations (name a few), however, some customers will
place a back order or collect a rain check. If the order is not filled within a time period
varying from customer to customer in a probabilistic fashion, the customer will cancel
his or her order. Suppose we examine historical data for 1000 customers and find the
data shown in Table 5.13. That is, 200 customers will not even place an order, and an
additional 150 customers will cancel if the order is not filled within 1 day.

Table 5.13 Hypothetical data for a back order
submodel

Number of days Number
customer is willing to of Cumulative
wait before canceling occurrences occurrences

0 200 200
1 150 350
2 200 550
3 200 750
4 150 900
5 50 950
6 50 1000

1000
© Cengage Learning

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_05_ch05_p185-223 January 23, 2013 19:40 213

5.5 Queuing Models 213

a. Construct a Monte Carlo simulation for the back order submodel. If you have a
calculator or computer available, test your submodel by running 1000 trials and
comparing the number of occurrences of the various cancellations with the historical
data.

b. Consider the algorithm you modified in Problem 1. Further modify the algorithm to
consider back orders. Do you think back orders should be penalized in some fashion?
If so, how would you do it?

5.45.4 PROJECTS

1. Complete the requirements of UMAP module 340, ‘‘The Poisson Random Process,’’ by
Carroll O. Wilde. Probability distributions are introduced to obtain practical information
on random arrival patterns, interarrival times or gaps between arrivals, waiting line
buildup, and service loss rates. The Poisson distribution, the exponential distribution,
and Erlang’s formulas are used. The module requires an introductory probability course,
the ability to use summation notation, and basic concepts of the derivative and the integral
from calculus. Prepare a 10-min summary of the module for a classroom presentation.

2. Assume a storage cost of $0.001 per gallon per day and a delivery charge of $500 per
delivery. Construct a computer code of the algorithm you constructed in Problem 4, and
compare various order points and order quantity strategies.

5.55.5 Queuing Models

EXAMPLE 1 A Harbor System

Consider a small harbor with unloading facilities for ships. Only one ship can be unloaded
at any one time. Ships arrive for unloading of cargo at the harbor, and the time between
the arrival of successive ships varies from 15 to 145 min. The unloading time required for
a ship depends on the type and amount of cargo and varies from 45 to 90 min. We seek
answers to the following questions:

1. What are the average and maximum times per ship in the harbor?
2. If the waiting time for a ship is the time between its arrival and the start of unloading,

what are the average and maximum waiting times per ship?
3. What percentage of the time are the unloading facilities idle?
4. What is the length of the longest queue?

To obtain some reasonable answers, we can simulate the activity in the harbor using
a computer or programmable calculator. We assume the arrival times between successive
ships and the unloading time per ship are uniformly distributed over their respective time
intervals. For instance, the arrival time between ships can be any integer between 15 and
145, and any integer within that interval can appear with equal likelihood. Before giving a
general algorithm to simulate the harbor system, let’s consider a hypothetical situation with
five ships.
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We have the following data for each ship:

Ship 1 Ship 2 Ship 3 Ship 4 Ship 5

Time between successive ships 20 30 15 120 25
Unloading time 55 45 60 75 80

Because Ship 1 arrives 20 min after the clock commences at t D 0 min, the harbor
facilities are idle for 20min at the start. Ship 1 immediately begins to unload. The unloading
takes 55 min; meanwhile, Ship 2 arrives on the scene at t D 20 C 30 D 50 min after the
clock begins. Ship 2 cannot start to unload until Ship 1 finishes unloading at t D 20C55 D
75 min. This means that Ship 2 must wait 75 � 50 D 25 min before unloading begins. The
situation is depicted in the following timeline diagram:

0 20 50 75

Ship 1
arrives

Ship 2 arrives

Ship 1 !nishes unloading:
start unloading Ship 2Idle

Clock time (min)

Timeline 1

Now before Ship 2 starts to unload, Ship 3 arrives at time t D 50 C 15 D 65 min. Because
the unloading of Ship 2 starts at t D 75 min and it takes 45 min to unload, unloading Ship
3 cannot start until t D 75 C 45 D 120 min, when Ship 2 is finished. Thus, Ship 3 must
wait 120 � 65 D 55 min. The situation is depicted in the next timeline diagram:

0 20 50 65 75 120

Ship 3
arrives

Ship 2 !nishes unloading:
start unloading Ship 3

Idle

Clock time (min)

Timeline 2

Ship 4 does not arrive in the harbor until t D 65 C 120 D 185 min. Therefore, Ship
3 has already finished unloading at t D 120 C 60 D 180 min, and the harbor facilities are
idle for 185 � 180 D 5 min. Moreover, the unloading of Ship 4 commences immediately
upon its arrival, as depicted in the next diagram:

0 20 50 65 75 120 180 185

Ship 4 arrivesShip 3 !nishes unloading

Idle

Clock time (min)

Timeline 3

Finally, Ship 5 arrives at t D 185 C 25 D 210 min, before Ship 4 finishes unloading at
t D 185 C 75 D 260 min. Thus, Ship 5 must wait 260 � 210 D 50 min before it starts
to unload. The simulation is complete when Ship 5 finishes unloading at t D 260 C 80 D
340 min. The final situation is shown in the next diagram:

180 1850 20 50 65 75 120 210 260 340

Ship 5 arrives
Ship 4 !nishes unloading

Idle
Idle

Ship 5
!nishes

unloading

Timeline 4
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J Figure 5.9
Idle and unloading times for the ships and docking facilities

In Figure 5.9, we summarize thewaiting and unloading times for each of the five hypothetical
ship arrivals. In Table 5.14, we summarize the results of the entire simulation of the five
hypothetical ships. Note that the total waiting time spent by all five ships before unloading
is 130 min. This waiting time represents a cost to the shipowners and is a source of customer
dissatisfaction with the docking facilities. On the other hand, the docking facility has only
25 min of total idle time. It is in use 315 out of the total 340 min in the simulation, or
approximately 93% of the time.

Suppose the owners of the docking facilities are concerned with the quality of service
they are providing and want various management alternatives to be evaluated to determine
whether improvement in service justifies the added cost. Several statistics can help in
evaluating the quality of the service. For example, the maximum time a ship spends in the
harbor is 130min by Ship 5, whereas the average is 89min (Table 5.14). Generally, customers
are very sensitive to the amount of time spent waiting. In this example, the maximum time
spent waiting for a facility is 55 min, whereas the average time spent waiting is 26 min.
Some customers are apt to take their business elsewhere if queues are too long. In this case,
the longest queue is two. The following Monte Carlo simulation algorithm computes such
statistics to assess various management alternatives.

Table 5.14 Summary of the harbor system simulation

Ship Random time Arrival Start Queue length Wait Random Time Dock
no. between ship arrivals time service at arrival time unload time in harbor idle time

1 20 20 20 0 0 55 55 20
2 30 50 75 1 25 45 70 0
3 15 65 120 2 55 60 115 0
4 120 185 185 0 0 75 75 5
5 25 210 260 1 50 80 130 0

Total (if appropriate): 130 25
Average (if appropriate): 26 63 89
© Cengage Learning

Note: All times are given in minutes after the start of the clock at time t D 0.
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Summary of Harbor System Algorithm Terms

betweeni Time between successive arrivals of Ships i and i � 1 (a random integer varying between
15 and 145 min)

arrivei Time from start of clock at t D 0 when Ship i arrives at the harbor for unloading
unloadi Time required to unload Ship i at the dock (a random integer varying between 45 and

90 min)
starti Time from start of clock at which Ship i commences its unloading
idlei Time for which dock facilities are idle immediately before commencement of unloading

Ship i

waiti Time Ship i waits in the harbor after arrival before unloading commences
finishi Time from start of clock at which service for Ship i is completed at the unloading facilities

harbori Total time Ship i spends in the harbor
HARTIME Average time per ship in the harbor
MAXHAR Maximum time of a ship in the harbor
WAITIME Average waiting time per ship before unloading
MAXWAIT Maximum waiting time of a ship
IDLETIME Percentage of total simulation time unloading facilities are idle

Harbor System Simulation Algorithm

Input Total number n of ships for the simulation.
Output HARTIME, MAXHAR, WAITIME, MAXWAIT, and IDLETIME.

Step 1 Randomly generate between1 and unload1. Then set arrive1 D between1.
Step 2 Initialize all output values:

HARTIME D unload1; MAXHAR D unload1,
WAITIME D 0; MAXWAIT D 0; IDLETIME D arrive1

Step 3 Calculate finish time for unloading of Ship1:
finish1 D arrive1 C unload1

Step 4 For i D 2; 3; : : : ; n, do Steps 5–16.
Step 5 Generate the random pair of integers betweeni and unloadi over their respective time

intervals.
Step 6 Assuming the time clock begins at t D 0 min, calculate the time of arrival for Shipi :

arrivei D arrivei�1 C betweeni

Step 7 Calculate the time difference between the arrival of Shipi and the finish time for unloading
the previous Shipi�1:

timediff D arrivei � finishi�1

Step 8 For nonnegative timediff, the unloading facilities are idle:
idlei D timediff and waiti D 0

For negative timediff, Shipi must wait before it can unload:
waiti D �timediff and idlei D 0

Step 9 Calculate the start time for unloading Shipi :
starti D arrivei C waiti

Step 10 Calculate the finish time for unloading Shipi :
finishi D starti C unloadi

Step 11 Calculate the time in harbor for Shipi :
harbori D waiti C unloadi

Step 12 Sum harbori into total harbor time HARTIME for averaging.
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Step 13 If harbori > MAXHAR, then set MAXHAR D harbori . Otherwise leave
MAXHAR as is.

Step 14 Sum waiti into total waiting time WAITIME for averaging.
Step 15 Sum idlei into total idle time IDLETIME.
Step 16 If waiti > MAXWAIT, then set MAXWAIT D waiti . Otherwise leave MAXWAIT as is.

Step 17 Set HARTIME D HARTIME=n, WAITIME D WAITIME=n, and IDLETIME D
IDLETIME=finishn.

Step 18 OUTPUT (HARTIME, MAXHAR, WAITIME, MAXWAIT, IDLETIME)
STOP

Table 5.15 gives the results, according to the preceding algorithm, of six independent
simulation runs of 100 ships each.

Now suppose you are a consultant for the owners of the docking facilities. What would
be the effect of hiring additional labor or acquiring better equipment for unloading cargo so
that the unloading time interval is reduced to between 35 and 75 min per ship? Table 5.16
gives the results based on our simulation algorithm.

You can see from Table 5.16 that a reduction of the unloading time per ship by 10 to
15 min decreases the time ships spend in the harbor, especially the waiting times. However,
the percentage of the total time during which the dock facilities are idle nearly doubles. The
situation is favorable for shipowners because it increases the availability of each ship for
hauling cargo over the long run. Thus, the traffic coming into the harbor is likely to increase.
If the traffic increases to the extent that the time between successive ships is reduced to
between 10 and 120 min, the simulated results are as shown in Table 5.17. We can see from
this table that the ships again spend more time in the harbor with the increased traffic, but
now harbor facilities are idle much less of the time. Moreover, both the shipowners and the
dock owners are benefiting from the increased business.

Table 5.15 Harbor system simulation results for 100 ships

Average time of a ship in the harbor 106 85 101 116 112 94
Maximum time of a ship in the harbor 287 180 233 280 234 264
Average waiting time of a ship 39 20 35 50 44 27
Maximum waiting time of a ship 213 118 172 203 167 184
Percentage of time dock facilities are idle 0.18 0.17 0.15 0.20 0.14 0.21
© Cengage Learning

Note: All times are given in minutes. Time between successive ships is 15–145 min. Unloading time per ship
varies from 45 to 90 min.

Table 5.16 Harbor system simulation results for 100 ships

Average time of a ship in the harbor 74 62 64 67 67 73
Maximum time of a ship in the harbor 161 116 167 178 173 190
Average waiting time of a ship 19 6 10 12 12 16
Maximum waiting time of a ship 102 58 102 110 104 131
Percentage of time dock facilities are idle 0.25 0.33 0.32 0.30 0.31 0.27
© Cengage Learning

Note: All times are given in minutes. Time between successive ships is 15–145 min. Unloading time per ship
varies from 35 to 75 min.
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Suppose now that we are not satisfied with the assumption that the arrival time between
ships (i.e., their interarrival times) and the unloading time per ship are uniformly distributed
over the time intervals 15 � betweeni � 145 and 45� unloadi � 90, respectively.We decide
to collect experimental data for the harbor system and incorporate the results into ourmodel,
as discussed for the demand submodel in the previous section. We observe (hypothetically)
1200 ships using the harbor to unload their cargoes, and we collect the data displayed in
Table 5.18.

Following the procedures outlined in Section 5.4, we consecutively add together the
probabilities of each individual time interval between arrivals aswell as probabilities of each
individual unloading time interval. These computations result in the cumulative histograms
depicted in Figure 5.10.

Next we use random numbers uniformly distributed over the interval 0 � x � 1
to duplicate the various interarrival times and unloading times based on the cumulative
histograms. We then use the midpoints of each interval and construct linear splines through
adjacent data points. (We ask you to complete this construction in Problem 1.) Because
it is easy to calculate the inverse splines directly, we do so and summarize the results in
Tables 5.19 and 5.20.

Table 5.17 Harbor system simulation results for 100 ships

Average time of a ship in the harbor 114 79 96 88 126 115
Maximum time of a ship in the harbor 248 224 205 171 371 223
Average waiting time of a ship 57 24 41 35 71 61
Maximum waiting time of a ship 175 152 155 122 309 173
Percentage of time dock facilities are idle 0.15 0.19 0.12 0.14 0.17 0.06
© Cengage Learning

Note: All times are given in minutes. Time between successive ships is 10–120 min. Unloading time per ship
varies from 35 to 75 min.

Table 5.18 Data collected for 1200 ships using the harbor facilities

Time Number Probability Number Probability
between of of Unloading of of
arrivals occurrences occurrence time occurrences occurrence

15–24 11 0.009
25–34 35 0.029
35–44 42 0.035 45–49 20 0.017
45–54 61 0.051 50–54 54 0.045
55–64 108 0.090 55–59 114 0.095
65–74 193 0.161 60–64 103 0.086
75–84 240 0.200 65–69 156 0.130
85–94 207 0.172 70–74 223 0.185
95–104 150 0.125 75–79 250 0.208

105–114 85 0.071 80–84 171 0.143
115–124 44 0.037 85–90 109 0:091
125–134 21 0.017 1200 1.000
135–145 3 0:003

1200 1.000
© Cengage Learning

Note: All times are given in minutes.
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J Figure 5.10
Cumulative histograms of
the time between ship
arrivals and the unloading
times, from the data in
Table 5.18
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Finally, we incorporate our linear spline submodels into the simulation model for the
harbor system by generating betweeni and unloadi for i D 1; 2; : : : ; n in Steps 1 and
5 of our algorithm, according to the rules displayed in Tables 5.19 and 5.20. Employ-
ing these submodels, Table 5.21 gives the results of six independent simulation runs of
100 ships each. J J J

EXAMPLE 2 Morning Rush Hour

In the previous example, we initially considered a harbor system with a single facility for
unloading ships. Such problems are often called single-server queues. In this example, we
consider a system with four elevators, illustrating multiple-server queues. We discuss the
problem and present the algorithm in Appendix B.
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Table 5.19 Linear segment submodels provide for the time
between arrivals of successive ships as a function of a
random number in the interval Ň0; 1�.

Random number Corresponding
interval arrival time Inverse linear spline

0 � x < 0:009 15 � b < 20 b D 555:6x C 15:0000
0:009 � x < 0:038 20 � b < 30 b D 344:8x C 16:8966
0:038 � x < 0:073 30 � b < 40 b D 285:7x C 19:1429
0:073 � x < 0:124 40 � b < 50 b D 196:1x C 25:6863
0:124 � x < 0:214 50 � b < 60 b D 111:1x C 36:2222
0:214 � x < 0:375 60 � b < 70 b D 62:1x C 46:7080
0:375 � x < 0:575 70 � b < 80 b D 50:0x C 51:2500
0:575 � x < 0:747 80 � b < 90 b D 58:1x C 46:5698
0:747 � x < 0:872 90 � b < 100 b D 80:0x C 30:2400
0:872 � x < 0:943 100 � b < 110 b D 140:8x � 22:8169
0:943 � x < 0:980 110 � b < 120 b D 270:3x � 144:8649
0:980 � x < 0:997 120 � b < 130 b D 588:2x � 456:4706
0:997 � x � 1:000 130 � b � 145 b D 5000:0x � 4855

© Cengage Learning

Table 5.20 Linear segment submodels provide for the
unloading time of a ship as a function of a random number in
the interval Ň0; 1�.

Random number Corresponding
interval unloading time Inverse linear spline

0 � x < 0:017 45 � u < 47:5 u D 147x C 45:000
0:017 � x < 0:062 47:5 � u < 52:5 u D 111x C 45:611
0:062 � x < 0:157 52:5 � u < 57:5 u D 53x C 49:237
0:157 � x < 0:243 57:5 � u < 62:5 u D 58x C 48:372
0:243 � x < 0:373 62:5 � u < 67:5 u D 38:46x C 53:154
0:373 � x < 0:558 67:5 � u < 72:5 u D 27x C 57:419
0:558 � x < 0:766 72:5 � u < 77:5 u D 24x C 59:087
0:766 � x < 0:909 77:5 � u < 82:5 u D 35x C 50:717
0:909 � x � 1:000 82:5 � u � 90 u D 82:41x C 7:582

© Cengage Learning

Consider an office building with 12 floors in a metropolitan area of some city. During
the morning rush hour, from 7:50 to 9:10 a.m., workers enter the lobby of the building
and take an elevator to their floor. There are four elevators servicing the building. The time
between arrivals of the customers at the building varies in a probabilistic manner every
0–30 sec, and upon arrival each customer selects the first available elevator (numbered
1–4). When a person enters an elevator and selects the floor of destination, the elevator
waits 15 sec before closing its doors. If another person arrives within the 15-sec interval,
the waiting cycle is repeated. If no person arrives within the 15-sec interval, the elevator
departs to deliver all of its passengers. We assume no other passengers are picked up along
the way. After delivering its last passenger, the elevator returns to the main floor, picking up
no passengers on the way down. The maximum occupancy of an elevator is 12 passengers.
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Table 5.21 Harbor system simulation results for 100 ships

Average time of a ship in the harbor 108 95 125 78 123 101
Maximum time of a ship in the harbor 237 188 218 133 250 191
Average waiting time of a ship 38 25 54 9 53 31
Maximum waiting time of a ship 156 118 137 65 167 124
Percentage of time dock facilities are idle 0.09 0.09 0.08 0.12 0.06 0.10
© Cengage Learning

Note: Based on the data exhibited in Table 5.18. All times are given in minutes.

When a person arrives in the lobby and no elevator is available (because all four elevators
are transporting their load of passengers), a queue begins to form in the lobby.

Themanagement of the buildingwants to provide good elevator service to its customers
and is interested in exactly what service it is now giving. Some customers claim that they
have towait too long in the lobby before an elevator returns. Others complain that they spend
too much time riding the elevator, and still others say that there is considerable congestion
in the lobby during the morning rush hour. What is the real situation? Can the management
resolve these complaints by a more effective means of scheduling or utilizing the elevators?

We wish to simulate the elevator system using an algorithm for computer implemen-
tation that will give answers to the following questions:

1. How many customers are actually being serviced in a typical morning rush hour?
2. If the waiting time of a person is the time the person stands in a queue—the time from

arrival at the lobby until entry into an available elevator—what are the average and
maximum times a person waits in a queue?

3. What is the length of the longest queue? (The answer to this question will provide the
management with information about congestion in the lobby.)

4. If the delivery time is the time it takes a customer to reach his or her floor after arrival
in the lobby, including any waiting time for an available elevator, what are the average
and maximum delivery times?

5. What are the average and maximum times a customer actually spends in the elevator?
6. How many stops are made by each elevator? What percentage of the total morning rush

hour time is each elevator actually in use?

An algorithm is presented in Appendix B. J J J

5.55.5 PROBLEMS

1. Using the data from Table 5.18 and the cumulative histograms of Figure 5.10, construct
cumulative plots of the time between arrivals and unloading time submodels (as in
Figure 5.7). Calculate equations for the linear splines over each random number interval.
Compare your results with the inverse splines given in Tables 5.19 and 5.20.

2. Use a smooth polynomial to fit the data in Table 5.18 to obtain arrivals and unloading
times. Compare results to those in Tables 5.19 and 5.20.

3. Modify the ship harbor system algorithm to keep track of the number of ships waiting
in the queue.
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4. Most small harbors have a maximum number of ships Nmax that can be accommodated
in the harbor area while they wait to be unloaded. If a ship cannot get into the harbor,
assume it goes elsewhere to unload its cargo. Refine the ship harbor algorithm to take
these considerations into account.

5. Suppose the owners of the docking facilities decide to construct a second facility to
accommodate the unloading of more ships. When a ship enters the harbor, it goes to the
next available facility, which is facility 1 if both facilities are available. Using the same
assumption for interarrival times between successive ships and unloading times as in the
initial text example, modify the algorithm for a system with two facilities.

6. Construct a Monte Carlo simulation of a baseball game. Use individual batting statistics
to simulate the probability of a single, double, triple, home run, or out. In a more refined
model, how would you handle walks, hit batsman, steals, and double plays?

5.55.5 PROJECTS

1. Write a computer simulation to implement the ship harbor algorithm.

2. Write a computer simulation to implement a baseball game between your two favorite
teams (see Problem 6).

3. Pick a traffic intersection with a traffic light. Collect data on vehicle arrival times and
clearing times. Build a Monte Carlo simulation to model traffic flow at this intersection.

4. In the Los Angeles County School District, substitute teachers are placed in a pool and
paid whether they teach or not. It is assumed that if the need for substitutes exceeds the
size of the pool, classes can be covered by regular teachers, but at a higher pay rate.
Letting x represent the number of substitutes needed on a given day, S the pool size, p
the amount of pay for pool members, and r the daily overtime rate, we have for the cost

C.x; S/ D
�

pS if x < S
pS C .x � S/r if x � S

�

Here, we assume p < r .
a. Use the data provided for the number of substitutes needed on Mondays to simulate

the situation in an attempt to optimize the pool size. The optimized pool will be the
one with the lowest expected cost to the school district. Use, for pay rates, p D $45
and r D $81. Assume that the data are distributed uniformly.
i. Make 500 simulations at each value of S from S D 100 to S D 900 in steps of

100, using the averages of the 500 runs to estimate the cost for each value of S .
ii. Narrow the search for the best value of S to an interval of length 200 and make

runs of 1000 simulations for each of ten equally spaced values ofS in this interval.
iii. Continue the process narrowing the search for the optimal size of the pool, each

time stepping the values of S a smaller amount and increasing the number of
iterations for better accuracy. When you have determined the optimal value for
the pool size, S , submit your choice with substantiating evidence.
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Demand for substitute teachers on Mondays

Number of teachers Relative percentage Cumulative percentage

201–275 2.7 2.7
276–350 2.7 5.4
351–425 2.7 8.1
426–500 2.7 10.8
501–575 16.2 27
576–650 10.8 37.8
651–725 48.6 86.4
726–800 8.1 94.5
801–875 2.7 97.2
876–950 2.7 99.9

b. Redo part (a) with p D $36 and r D $81.
c. Redo part (a) using the data provided for Tuesdays. Assume p D $45 and r D $81.
d. Redo part (c) using the data for Tuesdays assuming p D $36 and r D $81.

Demand for substitute teachers on Tuesdays

Number of teachers Relative percentage Cumulative percentage

201–275 2.5 2.5
276–350 2.5 5.0
351–425 5.0 10.0
426–500 7.5 17.5
501–575 12.5 30.0
576–650 17.5 47.5
651–725 42.5 90.0
726–800 5.0 95.0
801–875 2.5 97.5
876–950 2.5 100.0
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66
Discrete Probabilistic

Modeling

Introduction

We have been developing models using proportionality and determining the constants of
proportionality. However, what if variation actually takes place as in the demand for gasoline
at the gasoline station? In this chapter, we will allow the constants of proportionality to vary
in a random fashion rather than to be fixed. We begin by revisiting discrete dynamical
systems from Chapter 1 and introduce scenarios that have probabilistic parameters.

6.16.1 Probabilistic Modeling with Discrete Systems

In this section we revisit the systems of difference equations studied in Section 1.4, but now
we allow the coefficients of the systems to vary in a probabilistic manner. A special case,
called a Markov chain, is a process in which there are the same finite number of states or
outcomes that can be occupied at any given time. The states do not overlap and cover all
possible outcomes. In a Markov process, the system may move from one state to another,
one for each time step, and there is a probability associated with this transition for each
possible outcome. The sum of the probabilities for transitioning from the present state to
the next state is equal to 1 for each state at each time step. AMarkov process with two states
is illustrated in Figure 6.1.

J Figure 6.1
A Markov chain with two
states; the sum of the
probabilities for the
transition from a present
state is 1 for each state (e.g.,
p C .1 � p/ D 1 for state 1).
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EXAMPLE 1 Rental Car Company Revisited

Consider a rental car company with branches in Orlando and Tampa. Each rents cars to
Florida tourists. The company specializes in catering to travel agencies that want to arrange
tourist activities in both Orlando and Tampa. Consequently, a traveler will rent a car in one

224
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city and drop off the car in either city. Travelers begin their itinerary in either city. Cars can
be returned to either location, which can cause an imbalance in available cars to rent. The
following historical data on the percentages of cars rented and returned to these locations
have been collected for the previous few years.

Next state

Orlando Tampa

Present state Orlando 0.6 0.4
Tampa 0.3 0.7

This array of data is called a transition matrix and shows that the probability for returning
a car to Orlando that was also rented in Orlando is 0.6, whereas the probability that it
will be returned in Tampa is 0.4. Likewise, a car rented in Tampa has a 0.3 likelihood of
being returned to Orlando and a 0.7 probability of being returned to Tampa. This represents a
Markov process with two states: Orlando and Tampa. Notice that the sum of the probabilities
for transitioning from a present state to the next state, which is the sum of the probabilities
in each row, equals 1 because all possible outcomes are taken into account. The process is
illustrated in Figure 6.2.

J Figure 6.2
Two-state Markov chain
for the rental car example

0.6

0.4

0.3

0.7Orlando Tampa
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Model Formulation Let’s define the following variables:

pn D the percentage of cars available to rent in Orlando at the end of period n

qn D the percentage of cars available to rent in Tampa at the end of period n

Using the previous data and discrete modeling ideas from Section 1.4, we construct the
following probabilistic model:

pnC1 D 0:6pn C 0:3qn

qnC1 D 0:4pn C 0:7qn

(6.1)

Model Solution Assuming that all of the cars are originally in Orlando, numerical
solutions to System (6.1) give the long-term behavior of the percentages of cars available
at each location. The sum of these long-term percentages or probabilities also equals 1.
Table 6.1 and Figure 6.3 show the results in table form and graphically:
Notice that

pk ! 3=7 D 0:428571

qk ! 4=7 D 0:571429

Model Interpretation If the two branches begin the year with a total of n cars, then in
the long run, approximately 57% of the cars will be in Tampa and 43% will be in Orlando.
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Table 6.1 Iterated solution to the rental car example

n Orlando Tampa

0 1 0
1 0.6 0.4
2 0.48 0.52
3 0.444 0.556
4 0.4332 0.5668
5 0.42996 0.57004
6 0.428988 0.571012
7 0.428696 0.571304
8 0.428609 0.571391
9 0.428583 0.571417

10 0.428575 0.571425
11 0.428572 0.571428
12 0.428572 0.571428
13 0.428572 0.571428
14 0.428571 0.571429
© Cengage Learning

J Figure 6.3
Graphical solution to the
rental car example
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Thus, starting with 100 cars in each location, about 114 cars will be based out of Tampa and
86 will be based out of Orlando in the steady state (and it would take only approximately
5 days to reach this state). J J J

EXAMPLE 2 Voting Tendencies

Presidential voting tendencies are of interest every 4 years. During the past decade, the
Independent party has emerged as a viable alternative for voters in the presidential race.
Let’s consider a three-party system with Republicans, Democrats, and Independents.

Problem Identification Can we find the long-term behavior of voters in a presidential
election?

Assumptions During the past decade, the trends have been to vote less strictly along
party lines. We provide hypothetical historical data for voting trends in the past 10 years
of statewide voting. The data are presented in the following hypothetical transition matrix
and shown in Figure 6.4.
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Next state

Republicans Democrats Independents

Republicans 0.75 0.05 0.20
Present state Democrats 0.20 0.60 0.20

Independents 0.40 0.20 0.40

J Figure 6.4
Three-state Markov chain
for presidential voting
tendencies
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Model Formulation Let’s define the following variables:

Rn D the percentage of voters to vote Republican in period n

Dn D the percentage of voters to vote Democratic in period n

In D the percentage of voters to vote Independent in period n

Using the previous data and the ideas on discrete dynamical systems from Chapter 1,
we can formulate the following system of equations giving the percentage of voters who
vote Republican, Democratic, or Independent at each time period.

RnC1 D 0:75Rn C 0:20Dn C 0:40In

DnC1 D 0:05Rn C 0:60Dn C 0:20In (6.2)
InC1 D 0:20Rn C 0:20Dn C 0:40In

Model Solution Assume that initially 1=3 of the voters are Republican, 1=3 are Demo-
crats, and 1=3 are Independent. We then obtain the numerical results shown in Table 6.2
for the percentage of voters in each group at each period n. The table shows that in the
long run (and after approximately 10 time periods), approximately 56% of the voters cast
their ballots for the Republican candidate, 19% vote Democrat, and 25% vote Independent.
Figure 6.5 shows these results graphically. J J J

Let’s summarize the ideas of a Markov chain. AMarkov chain is a process consisting
of a sequence of events with the following properties:

1. An event has a finite number of outcomes, called states. The process is always in one
of these states.
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Table 6.2 Iterated solution to the presidential voting problem

n Republican Democrat Independent

0 0.33333 0.33333 0.33333
1 0.449996 0.283331 0.266664
2 0.500828 0.245831 0.253331
3 0.52612 0.223206 0.250664
4 0.539497 0.210362 0.250131
5 0.546747 0.203218 0.250024
6 0.550714 0.199273 0.250003
7 0.552891 0.1971 0.249999
8 0.554088 0.195904 0.249998
9 0.554746 0.195247 0.249998

10 0.555108 0.194885 0.249998
11 0.555307 0.194686 0.249998
12 0.555416 0.194576 0.249998
13 0.555476 0.194516 0.249998
14 0.55551 0.194483 0.249998
© Cengage Learning

J Figure 6.5
Graphical solution to the
presidential voting
tendencies example
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2. At each stage or period of the process, a particular outcome can transition from its present

state to any other state or remain in the same state.
3. The probability of going from one state to another in a single stage is represented by a

transition matrix for which the entries in each row are between 0 and 1; each row sums
to 1. These probabilities depend only on the present state and not on past states.

6.16.1 PROBLEMS

1. Consider a model for the long-term dining behavior of the students at College USA. It is
found that 25% of the students who eat at the college’s Grease Dining Hall return to eat
there again, whereas those who eat at Sweet Dining Hall have a 93% return rate. These
are the only two dining halls available on campus, and assume that all students eat at
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one of these halls. Formulate a model to solve for the long-term percentage of students
eating at each hall.

2. Consider adding a pizza delivery service as an alternative to the dining halls. Table 6.3
gives the transition percentages based on a student survey. Determine the long-term
percentages eating at each place.

Table 6.3 Survey of dining at College USA
Next state

Grease Sweet Pizza
Dining Hall Dining Hall delivery

Grease Dining Hall 0.25 0.25 0.50
Present state Sweet Dining Hall 0.10 0.30 0.60

Pizza delivery 0.05 0.15 0.80
© Cengage Learning

3. In Example 1, assume that all cars were initially in Orlando. Try several different starting
values. Is equilibrium achieved in each case? If so, what is the final distribution of cars
in each case?

4. In Example 2, it was assumed that initially the voters were equally divided among the
three parties. Try several different starting values. Is equilibrium achieved in each case?
If so, what is the final distribution of voters in each case?

6.16.1 PROJECT

1. Consider the pollution in two adjoining lakes in which the lakes are shown in Figure 6.6
and assume the water flows freely between the two lakes but the pollutants flow as in
the Markov state diagram, Figure 6.7. Let an and bn be the total amounts of pollution in
Lake A and Lake B, respectively, after n years. It has also been determined that we can
measure the amount of pollutants given in the lake in which they originated. Formulate
and solve the model of the pollution flow as aMarkov chain using a system of difference
equations.

J Figure 6.6
Pollution between two lakes
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Lake B
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J Figure 6.7
Two-state Markov chain for
the two lake pollution
project.
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6.26.2 Modeling Component and System Reliability

Do your personal computer and your automobile perform well for a reasonably long period
of time? If they do, we say that these systems are reliable. The reliability of a component or
system is the probability that it will not fail over a specific time period n. Let’s define f .t/
to be the failure rate of an item, component, or system over time t , so f .t/ is a probability
distribution. Let F.t/ be the cumulative distribution function corresponding to f .t/ as we
discussed in Section 5.3. We define the reliability of the item, component, or system by

R.t/ D 1 � F.t/ (6.3)

Thus, the reliability at any time t is 1 minus the expected cumulative failure rate at time t .
Human–machine systems, whether electronic or mechanical, consist of components,

some of which may be combined to form subsystems. (Consider systems such as your
personal computer, your stereo, or your automobile.) We want to build simple models to
examine the reliability of complex systems. We now consider design relationships in series,
parallel, or combinations of these. Although individual item failure rates can follow a wide
variety of distributions, we consider only a few elementary examples.

EXAMPLE 1 Series Systems

A series system is one that performs well as long as all of the components are fully func-
tional. Consider a NASA space shuttle’s rocket propulsion system as displayed in Figure 6.8.
This is an example of a series system because failure for any one of the independent booster
rockets will result in a failed mission. If the reliabilities of the three components are given by
R1.t/ D 0:90, R2.t/ D 0:95, and R3.t/ D 0:96, respectively, then the system reliability
is defined to be the product

Rs.t/ D R1.t/R2.t/R3.t/ D .0:90/.0:95/.0:96/ D 0:8208

Note that in a series relationship the reliability of the whole system is less than any
single component’s reliability, because each component has a reliability that is less than 1.J J J

J Figure 6.8
A NASA rocket propulsion
system for a space shuttle
showing the booster rockets
in series (for three stages)

R1(t) = 0.9 R2(t) = 0.95 R3(t) = 0.96
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EXAMPLE 2 Parallel Systems

A parallel system is one that performs as long as a single one of its components remains
operational. Consider the communication system of a NASA space shuttle, as displayed
in Figure 6.9. Note that there are two separate and independent communication systems,
either of which can operate to provide satisfactory communications with NASA control. If
the independent component reliabilities for these communication systems areR1.t/ D 0:95
and R2.t/ D 0:96, then we define the system reliability to be

Rs.t/ D R1.t/ C R2.t/ � R1.t/R2.t/ D 0:95 C 0:96 � .0:95/.0:96/ D 0:998

J Figure 6.9
Two NASA space shuttle
communication systems
operating in parallel
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R2(t) = 0.96
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Note that in parallel relationships, the system reliability is higher than any of the individual
component reliabilities. J J J

EXAMPLE 3 Series and Parallel Combinations

Let’s now consider a system combining series and parallel relationships, as we join together
the previous two subsystems for a controlled propulsion ignition system (Figure 6.10).
We examine each subsystem. Subsystem 1 (the communication system) is in a parallel
relationship, and we found its reliability to be 0.998. Subsystem 2 (the propulsion system)
is in a series relationship, and we found its system reliability to be 0.8208. These two
systems are in a series relationship, so the reliability for the entire system is the product of
the two subsystem reliabilities:

Rs.t/ D Rs1
.t/ � Rs2

.t/ D .0:998/.0:8208/ D 0:8192 J J J

J Figure 6.10
A NASA-controlled space
shuttle propulsion ignition
system
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6.26.2 PROBLEMS

1. Consider a stereo with CD player, FM–AM radio tuner, speakers (dual), and power
amplifier (PA) components, as displayed with the reliabilities shown in Figure 6.11.
Determine the system’s reliability. What assumptions are required in your model?

J Figure 6.11
Reliability of stereo
components
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2. Consider a personal computer with each item’s reliability as shown in Figure 6.12.
Determine the reliability of the computer system. What assumptions are required?
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J Figure 6.12
Personal computer reliabilities

3. Consider a more advanced stereo system with component reliabilities as displayed in
Figure 6.13. Determine the system’s reliability. What assumptions are required?

J Figure 6.13
Advanced stereo system
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6.26.2 PROJECT

1. Two alternative designs are submitted for a landing module to enable the transport of
astronauts to the surface of Mars. The mission is to land safely on Mars, collect several
hundred pounds of samples from the planet’s surface, and then return to the shuttle in its
orbit around Mars. The alternative designs are displayed together with their reliabilities
in Figure 6.14. Which design would you recommend to NASA? What assumptions are
required? Are the assumptions reasonable?
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J Figure 6.14
Alternative designs for the Mars module

6.36.3 Linear Regression

In Chapter 3 we discussed various criteria for fitting models to collected data. In particular,
the least-squares criterion that minimizes the sum of the squared deviations was presented.
We showed that the formulation of minimizing the sum of the squared deviations is an
optimization problem. Until now, we have considered only a single observation yi for each
value of the independent variable xi . However, what if we have multiple observations? In
this section we explore a statistical methodology for minimizing the sum of the squared
deviations, called linear regression. Our objectives are

1. To illustrate the basic linear regression model and its assumptions.
2. To define and interpret the statistic R2.
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3. To illustrate a graphical interpretation for the fit of the linear regression model by ex-
amining and interpreting the residual scatterplots.

We introduce only basic concepts and interpretations here. More in-depth studies of
the subject of linear regression are given in advanced statistics courses.

The Linear Regression Model
The basic linear regression model is defined by

yi D axi C b for i D 1; 2; : : : ; m data points (6.4)

In Section 3.3 we derived the normal equations

a

mX

iD1

x2
i C b

mX

iD1

xi D
mX

iD1

xiyi

(6.5)

a

mX

iD1

xi C mb D
mX

iD1

yi

and solved them to obtain the slope a and y-intercept b for the least-squares best-fitting
line:

a D m
P

xiyi � P
xi

P
yi

m
P

x2
i � .

P
xi/

2
; the slope (6.6)

and

b D
P

x2
i

P
yi � P

xiyi

P
xi

m
P

x2
i � .

P
xi/

2
; the intercept (6.7)

We now add several additional equations to aid in the statistical analysis of the basic
model (6.4).

The first of these is the error sum of squares given by

SSE D
mX

iD1

Œyi � .axi C b/�2 (6.8)

which reflects variation about the regression line. The second concept is the total corrected
sum of squares of y defined by

SST D
mX

iD1

.yi � Ny/2 (6.9)

where Ny is the average of the y values for the data points .xi ; yi/, i D 1; : : : ; m. (The
number Ny is also the average value of the linear regression line y D ax C b over the range
of data.) Equations (6.8) and (6.9) then produce the regression sum of squares given by
the equation

SSR D SST � SSE (6.10)
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The quantity SSR reflects the amount of variation in the y values explained by the linear
regression line y D ax C b when compared with the variation in the y values about the
line y D Ny.

From Equation (6.10), SST is always at least as large as SSE. This fact prompts the
following definition of the coefficient of determination R2, which is a measure of fit for
the regression line.

R2 D 1 � SSE
SST

(6.11)

The number R2 expresses the proportion of the total variation in the y variable of the
actual data (when compared with the line y D Ny/ that can be accounted for by the straight-
line model, whose values are given by ax Cb (the predicted values) and calculated in terms
of the x variable. If R2 D 0:81, for instance, then 81% of the total variation of the y values
(from the line y D Ny/ is accounted for by a linear relationship with the values of x. Thus,
the closer the value of R2 is to 1, the better the fit of the regression line model to the actual
data. If R2 D 1, then the data lie perfectly along the regression line. (Note that R2 � 1
always holds.) The following are additional properties of R2:

1. The value of R2 does not depend on which of the two variables is labeled x and which
is labeled y.

2. The value of R2 is independent of the units of x and y.

Another indicator of the reasonableness of the fit is a plot of the residuals versus
the independent variable. Recall that the residuals are the errors between the actual and
predicted values:

ri D yi � f .xi/ D yi � .axi � b/ (6.12)

If we plot the residuals versus the independent variable, we obtain some valuable information
about them:

1. The residuals should be randomly distributed and contained in a reasonably small band
that is commensurate with the accuracy of the data.

2. An extremely large residual warrants further investigation of the associated data point
to discover the cause of the large residual.

3. A pattern or trend in the residuals indicates that a forecastable effect remains to be mod-
eled. The nature of the pattern often provides clues to how to refine the model, if a
refinement is needed. These ideas are illustrated in Figure 6.15.

EXAMPLE 1 Ponderosa Pines

Recall the ponderosa pine data from Chapter 2, provided in Table 6.4. Figure 6.16 on
page 237 shows a scatterplot of the data and suggests a trend. The plot is concave up and
increasing, which could suggest a power function model (or an exponential model).

Problem Identification Predict the number of board-feet as a function of the diameter
of the ponderosa pine.
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J Figure 6.15
Possible patterns of residuals plots

Table 6.4 Ponderosa pine data

Diameter (in.) Board feet

36 192
28 113
28 88
41 294
19 28
32 123
22 51
38 252
25 56
17 16
31 141
20 32
25 86
19 21
39 231
33 187
17 22
37 205
23 57
39 265

© Cengage Learning

Assumptions We assume that the ponderosa pines are geometrically similar and have
the shape of a right circular cylinder. This allows us to use the diameter as a characteristic
dimension to predict the volume. We can reasonably assume that the height of a tree is
proportional to its diameter.

Model Formulation Geometric similarity gives the proportionality

V / d 3 (6.13)

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_06_ch06_p224-241 January 23, 2013 20:2 237

6.3 Linear Regression 237

J Figure 6.16
Scatterplot of the
ponderosa pine data
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where d is the diameter of a tree (measured at ground level). If we further assume that the
ponderosa pines have constant height (rather than assuming height is proportional to the
diameter), then we obtain

V / d 2 (6.14)

Assuming there is a constant volume associated with the underground root system would
then suggest the following refinements of these proportionality models:

V D ad 3 C b (6.15)

and

V D ˛d 2 C ˇ (6.16)

Let’s use linear regression to find the constant parameters in the four model types and then
compare the results.

Model Solution The following solutions were obtained using a computer and applying
linear regression on the four model types:

V D 0:00431d 3

V D 0:00426d 3 C 2:08

V D 0:152d 2

V D 0:194d 2 � 45:7

Table 6.5 displays the results of these regression models.
Notice that the R2 values are all quite large (close to 1), which indicates a strong linear

relationship. The residuals are calculated using Equation (6.12), and their plots are shown in
Figure 6.17. (Recall that we are searching for a random distribution of the residuals having
no apparent pattern.) Note that there is an apparent trend in the errors corresponding to the
model V D 0:152d 2. We would probably reject (or refine) this model based on this plot,
while accepting the other models that appear reasonable. J J J
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Table 6.5 Key information from regression models using the ponderosa pine data

Model SSE SSR SST R2

V D 0:00431d3 3,742 458,536 462,278 0.9919
V D 0:00426d3 C 2:08 3,712 155,986 159,698 0.977
V D 0:152d2 12,895 449,383 462,278 0.9721
V D 0:194d2 � 45:7 3,910 155,788 159,698 0.976
© Cengage Learning
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J Figure 6.17
Residual plots for various models for board-feet D f.diameter/ for the ponderosa pine data
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EXAMPLE 2 The Bass Fishing Derby Revisited

Let’s revisit the bass fishing problem from Section 2.3. We have collected much more data
and now have 100 data points to use for fitting the model. These data are given in Table 6.6
and plotted in Figure 6.18. Based on the analysis in Section 2.3, we assume the following
model type:

W D al3 C b (6.17)

where W is the weight of the fish and l is its length.

Table 6.6 Data for bass fish with weight .W / in oz and length (l ) in in.

W 13 13 13 13 13 14 14 15 15 15
l 12 12.25 12 12.25 14.875 12 12 12.125 12.125 12.25

W 15 15 15 16 16 16 16 16 16 16
l 12 12.5 12.25 12.675 12.5 12.75 12.75 12 12.75 12.25

W 16 16 16 16 16 17 17 17 17 17
l 12 13 12.5 12.5 12.25 12.675 12.25 12.75 12.75 13.125

W 17 17 17 18 18 18 18 18 18 18
l 15.25 12.5 13.5 12.5 13 13.125 13 13.375 16.675 13

W 18 19 19 19 19 19 19 20 20 20
l 13.375 13.25 13.25 13.5 13.5 13.5 13 13.75 13.125 13.75

W 20 20 20 20 20 20 21 21 21 22
l 13.5 13.75 13.5 13.75 17 14.5 13.75 13.5 13.25 13.765

W 22 22 23 23 23 24 24 24 24 24
l 14 14 14.25 14.375 14 14.75 13.5 13.5 14.5 14

W 24 25 25 26 26 27 27 28 28 28
l 17 14.25 14.25 14.375 14.675 16.75 14.25 14.75 13 14.75

W 28 29 29 30 35 36 40 41 41 44
l 14.875 14.5 13.125 14.5 12.5 15.75 16.25 17.375 14.5 13.25

W 45 46 47 47 48 49 53 56 62 78
l 17.25 17 18 16.5 18 17.5 18 18.375 19.25 20
© Cengage Learning

The linear regression solution is

W D 0:008l3 C 0:95 (6.18)

and the analysis of variance is illustrated in Table 6.7.
The R2 value for our model is 0.735, which is reasonably close to 1, considering the

nature of the behavior being modeled. The residuals are found from Equation (6.12) and
plotted in Figure 6.19. We see no apparent trend in the plot, so there is no suggestion on
how to refine the model for possible improvement. J J J
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J Figure 6.18
Scatterplot of the bass fish
data
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Table 6.7 Key information from a regression model for the
bass fish example with 100 data points

Model SSE SSR SST R2

W D 0:008l3 C 0:95 3758 10,401 14,159 0.735
© Cengage Learning

J Figure 6.19
Residual plot for
W D 0:008l3 C 0:95; the
model appears to be
adequate because no trends
appear in the residual plot.
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6.36.3 PROBLEMS

Use the basic linear model y D ax C b to fit the following data sets. Provide the model,
provide the values of SSE, SSR, SST, and R2, and provide a residual plot.

1. For Table 2.7, predict weight as a function of height.

2. For Table 2.7, predict weight as a function of the cube of the height.
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6.36.3 PROJECT

1. Use linear regression to formulate and analyze Projects 1–5 in Section 2.3.

6.3 Further Reading
Mendenhall, William, & Terry Sincich. A Second Course in Statistics: Regression Analysis, 6th ed.

Upper Saddle River, NJ: Prentice Hall, 2003.
Neter, John, M. Kutner, C. Nachstheim, &W.Wasserman. Applied Statistical Models, 4th ed. Boston:

McGraw–Hill, 1996.
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77 Optimization of Discrete

Models

Introduction

In Chapter 3 we considered three criteria for fitting a selected model to a collection of data:

1. Minimize the sum of the absolute deviations.
2. Minimize the largest of the absolute deviations (Chebyshev criterion).
3. Minimize the sum of the squared deviations (least-squares criterion).

Also in Chapter 3 we used calculus to solve the optimization problem resulting from the
application of the least-squares criterion. Although we formulated several optimization
problems resulting from the first criterion to minimize the sum of the absolute deviations,
wewere unable to solve the resultingmathematical problem. In Section 7.6 we study several
search techniques that allow us to find good solutions to that curve-fitting criterion, and we
examine many other optimization problems as well.

In Chapter 3 we interpreted the Chebyshev criterion for several models. For example,
given a collection of m data points .xi ; yi/, i D 1; 2; : : : ; m, fit the collection to that line
y D axCb (determined by the parameters a and b) that minimizes the greatest distance rmax

between any data point .xi ; yi/ and its corresponding point .xi ; axiCb/ on the line. That is,
the largest absolute deviation, r D Maximum fjyi � y.xi/jg, is minimized over the entire
collection of data points. This criterion defines the optimization problem

Minimize r

subject to

r � ri � 0
r C ri � 0

�
for i D 1; 2; : : : ; m

which is a linear program for many applications. You will learn how to solve linear pro-
grams geometrically and algebraically in Sections 7.2–7.4. You will learn how to determine
the sensitivity of the optimal solution to the coefficients appearing in the linear program in
Section 7.5. We begin by providing a general classification of discrete optimization prob-
lems. Our emphasis is on model formulation, which will allow you additional practice on
the first several steps of the modeling process, while simultaneously providing a preview
of the kinds of problems you will learn to solve in advanced mathematics courses.

242
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7.17.1 An Overview of Optimization Modeling

We offer a basic model providing a framework for discussing a class of optimization prob-
lems. The problems are classified according to various characteristics of the basic model
intrinsic to the particular problem. We also discuss variations from the basic model. The
basic model is

Optimize fj .X/ for j in J (7.1)

subject to

gi.X/




�
D
�


 bi for all i in I

Now let’s explain the notation. To optimize means to maximize or minimize. The
subscript j indicates that there may be one or more functions to optimize. The functions
are distinguished by the integer subscripts that belong to the finite set J . We seek the vector
X0 giving the optimal value for the set of functions fj .X/. The various components of the
vector X are called the decision variables of the model, whereas the functions fj .X/ are
called the objective functions. By adding subject to, we indicate that certain side conditions
must be met. For example, if the objective is to minimize costs of producing a particular
product, it might be specified that all contractual obligations for the product must be met.
Side conditions are typically called constraints. The integer subscript i indicates that there
may be one or more constraint relationships that must be satisfied. A constraint may be
an equality (such as precisely meeting the demand for a product) or an inequality (such as
not exceeding budgetary limitations or providing the minimal nutritional requirements in
a diet problem). Finally, each constant bi represents the level that the associated constraint
function gi.X/ must achieve and, because of the way optimization problems are typically
written, is often called the right-hand side in the model. Thus, the solution vector X0 must
optimize each of the objective functions fj .X/ and simultaneously satisfy each constraint
relationship. We now consider one simple problem illustrating the basic ideas.

EXAMPLE 1 Determining a Production Schedule

A carpenter makes tables and bookcases. He is trying to determine howmany of each type of
furniture he shouldmake eachweek. The carpenter wishes to determine aweekly production
schedule for tables and bookcases that maximizes his profits. It costs $5 and $7 to produce
tables and bookcases, respectively. The revenues are estimated by the expressions

50x1 � 0:2x2
1 , where x1 is the number of tables produced per week

and

65x2 � 0:3x2
2 , where x2 is the number of bookcases produced per week
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In this example, the problem is to decide how many tables and bookcases to make every
week. Consequently, the decision variables are the quantities of tables and bookcases to be
made per week. We assume this is a schedule, so noninteger values of tables and bookcases
make sense. That is, wewill permit x1 and x2 to take on any real valueswithin their respective
ranges. The objective function is a nonlinear expression representing the net weekly profit
to be realized from selling the tables and bookcases. Profit is revenue minus costs. The
profit function is

f .x1; x2/ D 50x1 � 0:2x2
1 C 65x2 � 0:3x2

2 � 5x1 � 7x2

There are no constraints in this problem.
Let’s consider a variation to the previous scenario. The carpenter realizes a net unit

profit of $25 per table and $30 per bookcase. He is trying to determine how many of each
piece of furniture he shouldmake eachweek. He has up to 690 board-feet of lumber to devote
weekly to the project and up to 120 hr of labor. He can use lumber and labor productively
elsewhere if they are not used in the production of tables and bookcases. He estimates that
it requires 20 board-feet of lumber and 5 hr of labor to complete a table and 30 board-feet
of lumber and 4 hr of labor for a bookcase. Moreover, he has signed contracts to deliver at
least four tables and two bookcases every week. The carpenter wishes to determine a weekly
production schedule for tables and bookcases that maximizes his profits. The formulation
yields

Maximize 25x1 C 30x2

subject to

20x1 C 30x2 � 690 (lumber)
5x1 C 4x2 � 120 (labor)

x1 � 4 (contract)
x2 � 2 (contract) J J J

Classifying Some Optimization Problems
There are various ways of classifying optimization problems. These classifications are not
meant to be mutually exclusive but just to describe certain mathematical characteristics pos-
sessed by the problem under investigation. We now describe several of these classifications.

An optimization problem is said to be unconstrained if there are no constraints and
constrained if one or more side conditions are present. The first production schedule
problem described in Example 1 illustrates an unconstrained problem.

An optimization problem is said to be a linear program if it satisfies the following
properties:

1. There is a unique objective function.
2. Whenever a decision variable appears in either the objective function or one of the con-

straint functions, it must appear only as a power term with an exponent of 1, possibly
multiplied by a constant.
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3. No term in the objective function or in any of the constraints can contain products of the
decision variables.

4. The coefficients of the decision variables in the objective function and each constraint
are constant.

5. The decision variables are permitted to assume fractional as well as integer values.

These properties ensure, among other things, that the effect of any decision variable is
proportional to its value. Let’s examine each property more closely.

Property 1 limits the problem to a single objective function. Problems with more than
one objective function are called multiobjective or goal programs. Properties 2 and 3 are
self-explanatory, and any optimization problem that fails to satisfy either one of them is
said to be nonlinear. The first production schedule objective function had both decision
variables as squared terms and thus violated Property 2. Property 4 is quite restrictive for
many scenarios you might wish to model. Consider examining the amount of board-feet
and labor required to make tables and bookcases. It might be possible to know exactly the
number of board-feet and labor required to produce each item and incorporate these into
constraints. Often, however, it is impossible to predict the required values precisely (consider
trying to predict the market price of corn), or the coefficients represent average values with
rather large deviations from the actual values occurring in practice. The coefficients may
be time dependent as well. Time-dependent problems in a certain class are called dynamic
programs. If the coefficients are not constant but instead are probabilistic in nature, the
problem is classified as a stochastic program. Finally, if one or more of the decision
variables are restricted to integer values (hence violating Property 5), the resulting problem
is called an integer program (or amixed-integer program if the integer restriction applies
only to a subset of the decision variables). In the variation of the production scheduling
problem, it makes sense to allow fractional numbers of tables and bookcases in determining
a weekly schedule, because they can be completed during the following week. Classifying
optimization problems is important because different solution techniques apply to distinct
categories. For example, linear programming problems can be solved efficiently by the
Simplex Method presented in Section 7.4.

Unconstrained Optimization Problems
A criterion considered for fitting a model to data points is minimizing the sum of absolute
deviations. For themodel y D f .x/, if y.xi/ represents the function evaluated at xDxi and
.xi ; yi/ denotes the corresponding data point for i D 1; 2; : : : ; m points, then this criterion
can be formulated as follows: Find the parameters of the model y D f .x/ to

Minimize
mX

iD1

jyi � y.xi/j

This last condition illustrates an unconstrained optimization problem. Because the derivative
of the function being minimized fails to be continuous (because of the presence of the
absolute value), it is impossible to solve this problem with a straightforward application
of the elementary calculus. A numerical solution based on pattern search is presented in
Section 7.6.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_07_ch07_p242-297 January 23, 2013 19:40 246

246 Chapter 7 Optimization of Discrete Models

Integer Optimization Programs
The requirements specified for a problem may restrict one or more of its decision variables
to integer values. For example, in seeking the right mix of various-sized cars, vans, and
trucks for a company’s transportation fleet to minimize cost under some set of conditions,
it would not make sense to determine a fractional part of a vehicle. Integer optimization
problems also arise in coded problems, where binary (0 and 1) variables represent specific
states, such as yes/no or on/off.

EXAMPLE 2 Space Shuttle Cargo

There are various items to be taken on a space shuttle. Unfortunately, there are restrictions
on the allowable weight and volume capacities. Suppose there are m different items, each
given some numerical value cj and having weight wj and volume vj . (How might you
determine cj in an actual problem?) Suppose the goal is to maximize the value of the items
that are to be taken without exceeding the weight limitation W or the volume limitation V .
We can formulate this model

Let yj D
�

1; if item j is taken (yes)
0; if item j is not taken (no)

Then the problem is

Maximize
mX

j D1

cj yj

subject to

mX

j D1

vj yj � V

mX

j D1

wj yj � W

The ability to use binary variables such as yj permits great flexibility in modeling.
They can be used to represent yes/no decisions, such as whether to finance a given project
in a capital budgeting problem, or to restrict variables to being ‘‘on’’ or ‘‘off.’’ For example,
the variable x can be restricted to the values 0 and a by using the binary variable y as a
multiplier:

x D ay; where y D 0 or 1

Another illustration restricts x either to be in the interval .a; b/ or to be zero by using the
binary variable y:

ay < x < yb; where y D 0 or 1 J J J
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EXAMPLE 3 Approximation by a Piecewise Linear Function

The power of using binary variables to represent intervals can be more fully appreciated
when the object is to approximate a nonlinear function by a piecewise linear one. Specifi-
cally, suppose the nonlinear function in Figure 7.1a represents a cost function and we want
to find its minimum value over the interval 0 � x � a3. If the function is particularly
complicated, it could be approximated by a piecewise linear function such as that shown
in Figure 7.1b. (The piecewise linear function might occur naturally in a problem, such as
when different rates are charged for electrical use based on the amount of consumption.)

When we use the approximation suggested in Figure 7.1, our problem is to find the
minimum of the function:

c.x/ D



b1 C k1.x � 0/ if 0 � x � a1

b2 C k2.x � a1/ if a1 � x � a2

b3 C k3.x � a2/ if a2 � x � a3

Define the three new variables x1 D .x � 0/, x2 D .x � a1/, and x3 D .x � a2/ for each
of the three intervals, and use the binary variables y1, y2, and y3 to restrict the xi to the
appropriate interval:

0 � x1 � y1a1

0 � x2 � y2.a2 � a1/

0 � x3 � y3.a3 � a2/

where y1, y2, and y3 equal 0 or 1. Because we want exactly one xi to be active at any time,
we impose the following constraint:

y1 C y2 C y3 D 1

Now that only one of the xi is active at any one time, our objective function becomes

c.x/ D y1.b1 C k1x1/C y2.b2 C k2x2/C y3.b3 C k3x3/

c(x)

x
a1

b3

b1

b2

a2 a3

a

c(x)

x
a1

b3

b1

b2

a2 a3

b

Cost function c(x) 

Piecewise linear approximation to c(x)

Slope k1
Slope k2

Slope k3
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J Figure 7.1
Using a piecewise linear function to approximate a nonlinear function
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Observe that whenever yi D 0, the variable xi D 0 as well. Thus, products of the form xiyi

are redundant, and the objective function can be simplified to give the following model:

Minimize k1x1 C k2x2 C k3x3 C y1b1 C y2b2 C y3b3

subject to

0 � x1 � y1a1

0 � x2 � y2.a2 � a1/

0 � x3 � y3.a3 � a2/

y1 C y2 C y3 D 1

where y1, y2, and y3 equal 0 or 1. J J J
The model in Example 3 is classified as a mixed-integer programming problem be-

cause only some decision variables are restricted to integer values. The Simplex Method
does not solve integer or mixed-integer problems directly. There are many difficulties as-
sociated with solving such problems, which are addressed in more advanced courses. One
methodology that has proved successful is to devise rules to find good feasible solutions
quickly and then to use tests to show which of the remaining feasible solutions can be
discarded. Unfortunately, some tests work well for certain classes of problems but fail
miserably for others.

Multiobjective Programming: An Investment Problem
Consider the following problem: An investor has $40,000 to invest. She is considering
investments in savings at 7%, municipal bonds at 9%, and stocks that have been consis-
tently averaging 14%. Because there are varying degrees of risk involved in the various
investments, the investor has listed the following goals for her portfolio:

1. A yearly return of at least $5000.
2. An investment of at least $10,000 in stocks.
3. The investment in stocks should not exceed the combined total in bonds and savings.
4. A liquid savings account between $5000 and $15,000.
5. The total investment must not exceed $40,000.

We can see from the portfolio that the investor has more than one objective. Un-
fortunately, as is often the case with real-world problems, not all goals can be achieved
simultaneously. If the investment returning the lowest yield is set as low as possible (in
this example, $5000 into savings), the best return possible without violating Goals 2–5 is
obtained by investing $15,000 in bonds and $20,000 in stocks. However, this portfolio falls
short of the desired yearly return of $5000. How are problems with more than one objective
reconciled?

Let’s begin by formulating each objective mathematically. Let x denote the investment
in savings, y the investment in bonds, and z the investment in stocks. Then the goals are as
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follows:

Goal 1. 0:07x C 0:09y C 0:14z � 5;000

Goal 2. z � 10;000

Goal 3. z � x C y

Goal 4. 5;000 � x � 15;000

Goal 5. x C y C z � 40;000

We have seen that the investor will have to compromise on one or more of her goals to
find a feasible solution. Suppose the investor feels she must have a return of $5000, must
invest at least $10,000 in stocks, and cannot spend more than $40,000 but is willing to
compromise on Goals 3 and 4. However, she wants to find a solution that minimizes the
amounts by which these two goals fail to be met. Let’s formulate these new requirements
mathematically and illustrate a method applicable to similar problems. Thus, let G3 denote
the amount by which Goal 3 fails to be satisfied, and G4 denote the amount by which Goal
4 fails to be met. Then the model is

Minimize G3 CG4

subject to

0:07x C 0:09y C 0:14z � 5;000

z � 10;000

z �G3 � x C y

5000 �G4 � x � 15;000

x C y C z � 40;000

where x; y, and z are positive.
This last condition is included to ensure that negative investments are not allowed. This

problem is now a linear program that can be solved by the Simplex Method (Section 7.4).
If the investor believes that some goals are more important than others, the objective func-
tion can be weighted to emphasize those goals. Furthermore, a sensitivity analysis of the
weights in the objective function will identify the breakpoints for the range over which
various solutions are optimal. This process generates a number of solutions to be carefully
considered by the investor before making her investments. Normally, this is the best that
can be accomplished when qualitative decisions are to be made.

Dynamic Programming Problems
Often, the optimizationmodel requires that decisions bemade at various time intervals rather
than all at once. In the 1950s, the American mathematician Richard Bellman developed a
technique for optimizing such models in stages rather than simultaneously and referred to
such problems as dynamic programs. Here’s a problem scenario that lends itself to solution
by dynamic programming techniques:

A rancher enters the cattle business with an initial herd of k cattle. He intends to retire
and sell any remaining cattle after N years. Each year the rancher is faced with the decision
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of how many cattle to sell and how many to keep. If he sells, he estimates his profit to be
pi in year i . Also, the number of cattle kept in year i is expected to double in year i C 1.

Although this scenario neglects many factors that an analyst might consider in the real
world (name several), we can see that the cattle rancher is faced with a trade-off decision
each year: take a profit or build for the future.

In the next several sections we focus our attention on solving linear programming
problems, first geometrically and then by the Simplex Method.

7.17.1 PROBLEMS

Use the model-building process described in Chapter 2 to analyze the following scenarios.
After identifying the problem to be solved using the process, you may find it helpful to
answer the following questions in words before formulating the optimization model.

a. Identify the decision variables: What decision is to be made?
b. Formulate the objective function: How do these decisions affect the objective?
c. Formulate the constraint set: What constraints must be satisfied? Be sure to consider

whether negative values of the decision variables are allowed by the problem, and ensure
they are so constrained if required.

After constructing the model, check the assumptions for a linear program and compare
the form of the model to the examples in this section. Try to determine which method of
optimization may be applied to obtain a solution.

1. Resource Allocation—You have just become the manager of a plant producing plastic
products. Although the plant operation involves many products and supplies, you are
interested in only three of the products: (1) a vinyl–asbestos floor covering, the output of
which is measured in boxed lots, each covering a certain area; (2) a pure vinyl counter
top, measured in linear yards; and (3) a vinyl–asbestos wall tile, measured in squares,
each covering 100 ft2.

Of the many resources needed to produce these plastic products, you have identified
four: vinyl, asbestos, labor, and time on a trimming machine. A recent inventory shows
that on any given day you have 1500 lb of vinyl and 200 lb of asbestos available for use.
Additionally, after talking to your shop foreman and to various labor leaders, you realize
that you have 3 person-days of labor available for use per day and that your trimming
machine is available for 1 machine-day on any given day. The following table indicates
the amount of each of the four resources required to produce a unit of the three desired
products, where the units are 1 box of floor cover, 1 yard of counter top, and 1 square of
wall tiles. Available resources are tabulated below.

Vinyl Asbestos Labor Machine
(lb) (lb) (person-days) (machine-days) Profit

Floor cover (per box) 30 3 0.02 0.01 $0.8
Countertop (per yard) 20 0 0.1 0.05 5.0
Wall tile (per square) 50 5 0.2 0.05 5.5
Available (per day) 1500 200 3 1 —
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Formulate a mathematical model to help determine how to allocate resources to
maximize profits.

2. Nutritional Requirements—A rancher has determined that the minimum weekly nutri-
tional requirements for an average-sized horse include 40 lb of protein, 20 lb of carbohy-
drates, and 45 lb of roughage. These are obtained from the following sources in varying
amounts at the prices indicated:

Protein Carbohydrates Roughage
(lb) (lb) (lb) Cost

Hay 0.5 2.0 5.0 $1.80
(per bale)

Oats 1.0 4.0 2.0 3.50
(per sack)

Feeding blocks 2.0 0.5 1.0 0.40
(per block)

High-protein 6.0 1.0 2.5 1.00
concentrate
(per sack)

Requirements 40.0 20.0 45.0
per horse
(per week)

Formulate a mathematical model to determine how tomeet the minimum nutritional
requirements at minimum cost.

3. Scheduling Production—A manufacturer of an industrial product has to meet the fol-
lowing shipping schedule:

Month Required shipment (units)

January 10,000
February 40,000
March 20,000

The monthly production capacity is 30,000 units and the production cost per unit is $10.
Because the company does not warehouse, the service of a storage company is utilized
whenever needed. The storage company determines its monthly bill by multiplying
the number of units in storage on the last day of the month by $3. On the first day
of January the company does not have any beginning inventory, and it does not want
to have any ending inventory at the end of March. Formulate a mathematical model
to assist in minimizing the sum of the production and storage costs for the 3-month
period.

How does the formulation change if the production cost is 10xC 10 dollars, where
x is the number of items produced?
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4. Mixing Nuts—A candy store sells three different assortments of mixed nuts, each as-
sortment containing varying amounts of almonds, pecans, cashews, and walnuts. To
preserve the store’s reputation for quality, certain maximum and minimum percentages
of the various nuts are required for each type of assortment, as shown in the following
table:

Selling price
Nut assortment Requirements per pound

Regular Not more than 20% cashews $0.89
Not less than 40% walnuts
Not more than 25% pecans
No restriction on almonds

Deluxe Not more than 35% cashews 1.10
Not less than 25% almonds
No restriction on walnuts

and pecans

Blue Ribbon Between 30% and 50% cashews 1.80
Not less than 30% almonds
No restriction on walnuts

and pecans

The following table gives the cost per pound and the maximum quantity of each type of
nut available from the store’s supplier each week.

Cost Maximum quantity
Nut type per pound available per week (lb)

Almonds $0.45 2000
Pecans 0.55 4000
Cashews 0.70 5000
Walnuts 0.50 3000

The store would like to determine the exact amounts of almonds, pecans, cashews,
and walnuts that should go into each weekly assortment to maximize its weekly profit.
Formulate a mathematical model that will assist the store management in solving the
mixing problem.Hint:Howmany decisions need to be made? For example, do you need
to distinguish between the cashews in the regular mix and the cashews in the deluxe
mix?

5. Producing Electronic Equipment—An electronics firm is producing three lines of prod-
ucts for sale to the government: transistors, micromodules, and circuit assemblies. The
firm has four physical processing areas designated as follows: transistor production, cir-
cuit printing and assembly, transistor and module quality control, and circuit assembly
test and packing.
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The various production requirements are as follows: Production of one transistor
requires 0.1 standard hour of transistor production area capacity, 0.5 standard hour of
transistor quality control area capacity, and $0.70 in direct costs. Production of micro-
modules requires 0.4 standard hour of the quality control area capacity, three transis-
tors, and $0.50 in direct costs. Production of one circuit assembly requires 0.1 stan-
dard hour of the capacity of the circuit printing area, 0.5 standard hour of the capacity
of the test and packing area, one transistor, three micromodules, and $2.00 in direct
costs.

Suppose that the three products (transistors, micromodules, and circuit assemblies)
may be sold in unlimited quantities at prices of $2, $8, and $25 each, respectively. There
are 200 hours of production time open in each of the four process areas in the com-
ing month. Formulate a mathematical model to help determine the production that will
produce the highest revenue for the firm.

6. Purchasing Various Trucks—A truck company has allocated $800,000 for the purchase
of new vehicles and is considering three types. Vehicle A has a 10-ton payload capacity
and is expected to average 45 mph; it costs $26,000. Vehicle B has a 20-ton payload
capacity and is expected to average 40 mph; it costs $36,000. Vehicle C is a modified
form of B and carries sleeping quarters for one driver. This modification reduces the
capacity to an 18-ton payload and raises the cost to $42,000, but its operating speed is
still expected to average 40 mph.

Vehicle A requires a crew of one driver and, if driven on three shifts per day, could
be operated for an average of 18 hr per day. Vehicles B and C must have crews of two
drivers each to meet local legal requirements. Vehicle B could be driven an average of
18 hr per daywith three shifts, and vehicle C could average 21 hr per daywith three shifts.
The company has 150 drivers available each day to make up crews and will not be able
to hire additional trained crews in the near future. The local labor union prohibits any
driver from working more than one shift per day. Also, maintenance facilities are such
that the total number of vehicles must not exceed 30. Formulate a mathematical model
to help determine the number of each type of vehicle the company should purchase to
maximize its shipping capacity in ton-miles per day.

7. A Farming Problem—A farm family owns 100 acres of land and has $25,000 in funds
available for investment. Its members can produce a total of 3500 work-hours worth
of labor during the winter months (mid-September to mid-May) and 4000 work-hours
during the summer. If any of these work-hours are not needed, younger members of the
family will use them to work on a neighboring farm for $4.80 per hour during the winter
and $5.10 per hour during the summer.

Cash income may be obtained from three crops (soybeans, corn, and oats) and two
types of livestock (dairy cows and laying hens). No investment funds are needed for the
crops. However, each cow requires an initial investment outlay of $400, and each hen
requires $3. Each cow requires 1.5 acres of land and 100 work-hours of work during
the winter months and another 50 work-hours during the summer. Each cow produces
a net annual cash income of $450 for the family. The corresponding figures for the hen
are as follows: no acreage, 0.6 work-hour during the winter, 0.3 more work-hour in the
summer, and an annual net cash income of $3.50. The chicken house accommodates a
maximum of 3000 hens, and the size of the barn limits the cow herd to a maximum of
32 head.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_07_ch07_p242-297 January 23, 2013 19:40 254

254 Chapter 7 Optimization of Discrete Models

Estimated work-hours and income per acre planted in each of the three crops are as
shown in the following table:

Winter Summer Net annual cash
Crop work-hours work-hours income (per acre)

Soybean 20 30 $175.00
Corn 35 75 300.00
Oats 10 40 120.00

Formulate a mathematical model to assist in determining how much acreage should
be planted in each of the crops and howmany cows and hens should be kept tomaximize
net cash income.

7.17.1 PROJECTS

For Projects 1–5, complete the requirements in the referencedUMAPmodule ormonograph.
(See enclosed CD for UMAP modules.)

1. ‘‘Unconstrained Optimization,’’ by Joan R. Hundhausen and Robert A. Walsh, UMAP
522. This unit introduces gradient search procedures with examples and applications.
Acquaintance with elementary partial differentiation, chain rules, Taylor series, gradi-
ents, and vector dot products is required.

2. ‘‘Calculus of Variations with Applications in Mechanics,’’ by Carroll O. Wilde, UMAP
468. This module provides a brief introduction to finding functions that yield the maxi-
mumorminimumvalue of certain definite integral forms, with applications inmechanics.
Students learn Euler’s equations for some definite integral forms and learn Hamilton’s
principle and its application to conservative dynamical systems. The basic physics of
kinetic and potential energy, the multivariate chain rules, and ordinary differential equa-
tions are required.

3. The High Cost of Clean Water: Models for Water Quality Management, by Edward
Beltrami, UMAP Expository Monograph. To cope with the severe wastewater disposal
problems caused by increases in the nation’s population and industrial activity, the
U.S. Environmental Protection Agency (EPA) has fostered the development of regional
wastewater management plans. This monograph discusses the EPA plan developed for
Long Island and formulates a model that allows for the articulation of the trade-offs
between cost and water quality. The mathematics involves partial differential equations
and mixed-integer linear programming.

4. ‘‘Geometric Programming,’’ by Robert E. D. Woolsey, UMAP 737. This unit provides
some alternative optimization formulations, including geometric programming. Famil-
iarity with basic differential calculus is required.

5. ‘‘Municipal Recycling: Location and Optimality,’’ by Jannett Highfill and Michael
McAsey, UMAP Journal Vol. 15(1), 1994. This article considers optimization in mu-
nicipal recycling. Read the article and prepare a 10-min classroom presentation.
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7.27.2 Linear Programming I: Geometric Solutions

Consider using the Chebyshev criterion to fit the model y D cx to the following data set:

x 1 2 3

y 2 5 8

The optimization problem that determines the parameter c to minimize the largest absolute
deviation ri D jyi � y.xi/j (residual or error) is the linear program

Minimize r

subject to

r � .2 � c/ � 0 (constraint 1)
r C .2 � c/ � 0 (constraint 2)

r � .5 � 2c/ � 0 (constraint 3)
r C .5 � 2c/ � 0 (constraint 4)
r � .8 � 3c/ � 0 (constraint 5)
r C .8 � 3c/ � 0 (constraint 6)




(7.2)

In this section we solve this problem geometrically.

Interpreting a Linear Program Geometrically
Linear programs can include a set of constraints that are linear equations or linear inequali-
ties. Of course, in the case of two decision variables, an equality requires that solutions to the
linear program lie precisely on the line representing the equality. What about inequalities?
To gain some insight, consider the constraints

x1 C 2x2 � 4 (7.3)
x1; x2 � 0

The nonnegativity constraints x1; x2 � 0 mean that possible solutions lie in the first
quadrant. The inequality x1 C 2x2 � 4 divides the first quadrant into two regions. The
feasible region is the half-space in which the constraint is satisfied. The feasible region
can be found by graphing the equation x1 C 2x2 D 4 and determining which half-plane is
feasible, as shown in Figure 7.2.

If the feasible half-plane fails to be obvious, choose a convenient point (such as the
origin) and substitute it into the constraint to determine whether it is satisfied. If it is, then
all points on the same side of the line as this point will also satisfy the constraint.

A linear program has the important property that the points satisfying the constraints
form a convex set. A set is convex if for every pair of points in the set, the line segment
joining them lies wholly in the set. The set depicted in Figure 7.3a fails to be convex,
whereas the set in Figure 7.3b is convex.

An extreme point (corner point) of a convex set is any boundary point in the convex
set that is the unique intersection point of two of the (straight-line) boundary segments.
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J Figure 7.2
The feasible region for the
constraints x1 C 2x2 � 4,
x1; x2 � 0
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J Figure 7.3
The set shown in a is not
convex, whereas the set
shown in b is convex. A
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In Figure 7.3b, points A–F are extreme points. Let’s now find the feasible region and the
optimal solution for the carpenter’s problem formulated in Example 1 in Section 7.1.

EXAMPLE 1 The Carpenter’s Problem

Consider a version of the carpenter’s problem from Section 7.1. The carpenter realizes a net
unit profit of $25 per table and $30 per bookcase. He is trying to determine howmany tables
(x1) and how many bookcases (x2) he should make each week. He has up to 690 board-feet
of lumber and up to 120 hours of labor to devote weekly to the project. The lumber and labor
can be used productively elsewhere if not used in the production of tables and bookcases.
He estimates that it requires 20 board-feet of lumber and 5 hr of labor to complete a table
and 30 board-feet of lumber and 4 hr of labor for a bookcase. This formulation yields

Maximize 25x1 C 30x2

subject to

20x1 C 30x2 � 690 (lumber)
5x1 C 4x2 � 120 (labor)

x1; x2 � 0 (nonnegativity)

The convex set for the constraints in the carpenter’s problem is graphed and given by
the polygon region ABCD in Figure 7.4. Note that there are six intersection points of the
constraints, but only four of these points (namely, A–D) satisfy all of the constraints and
hence belong to the convex set. The points A–D are the extreme points of the polygon.
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J Figure 7.4
The set of points satisfying
the constraints of the
carpenter’s problem form a
convex set.
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5x1 + 4x2 ≤ 120, Constraint 2

20x1 + 30x2 ≤ 690
Constraint 1

Objective function value:
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If an optimal solution to a linear program exists, it must occur among the extreme points
of the convex set formed by the set of constraints. The values of the objective function (profit
for the carpenter’s problem) at the extreme points are

Extreme point Objective function value

A .0; 0/ $0
B .24; 0/ 600
C .12; 15/ 750
D .0; 23/ 690

Thus, the carpenter should make 12 tables and 15 bookcases each week to earn a max-
imum weekly profit of $750. We provide further geometric evidence later in this section
that extreme point C is optimal. J J J

Before considering a second example, let’s summarize the ideas presented thus far.
The constraint set to a linear program is a convex set, which generally contains an infinite
number of feasible points to the linear program. If an optimal solution to the linear program
exists, it must be taken on at one or more of the extreme points. Thus, to find an optimal
solution, we choose from among all the extreme points the one with the best value for the
objective function.

EXAMPLE 2 A Data-Fitting Problem

Let’s now solve the linear program represented by Equation (7.2). Given the model y D cx
and the data set

x 1 2 3

y 2 5 8
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J Figure 7.5
The feasible region for
fitting y D cx to a collection
of data
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we wish to find a value for c such that the resulting largest absolute deviation r is as small
as possible. In Figure 7.5 we graph the set of six constraints

r � .2 � c/ � 0 (constraint 1)
r C .2 � c/ � 0 (constraint 2)

r � .5 � 2c/ � 0 (constraint 3)
r C .5 � 2c/ � 0 (constraint 4)
r � .8 � 3c/ � 0 (constraint 5)
r C .8 � 3c/ � 0 (constraint 6)

by first graphing the equations

r � .2 � c/ D 0 (constraint 1 boundary)
r C .2 � c/ D 0 (constraint 2 boundary)

r � .5 � 2c/ D 0 (constraint 3 boundary)
r C .5 � 2c/ D 0 (constraint 4 boundary)
r � .8 � 3c/ D 0 (constraint 5 boundary)
r C .8 � 3c/ D 0 (constraint 6 boundary)

We note that constraints 1, 3, and 5 are satisfied above and to the right of the graph of their
boundary equations. Similarly, constraints 2, 4, and 6 are satisfied above and to the left of
their boundary equations.

The intersection of all the feasible regions for constraints 1–6 forms a convex set in the
c; r plane, with extreme points labeled A–C in Figure 7.5. The point A is the intersection
of constraint 5 and the r-axis: r � .8 � 3c/ D 0 and c D 0, or A D .0; 8/. Similarly, B is
the intersection of constraints 5 and 2:

r � .8 � 3c/ D 0 or r C 3c D 8

r C .2 � c/ D 0 or r � c D �2
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yielding c D 5

2
and r D 1

2
, or B D . 5

2
; 1

2
/. Finally, C is the intersection of constraints 2 and

4 yielding C D .3; 1/. Note that the set is unbounded. (We discuss unbounded convex sets
later.) If an optimal solution to the problem exists, at least one extreme point must take on
the optimal solution. We now evaluate the objective function f .r/ D r at each of the three
extreme points.

Extreme point Objective function value

.c; r/ f .r/ D r
A 8
B 1

2

C 1

The extreme point with the smallest value of r is the extreme point B with coordinates
. 5

2
; 1

2
/. Thus, c D 5

2
is the optimal value of c. No other value of c will result in a largest

absolute deviation as small as jrmaxj D 1

2
. J J J

Model Interpretation
Let’s interpret the optimal solution for the data-fitting problem in Example 2. Resolving
the linear program, we obtained a value of c D 5

2
corresponding to the model y D 5

2
x.

Furthermore, the objective function value r D 1

2
should correspond to the largest deviation

resulting from the fit. Let’s check to see if that is true.
The data points and the model y D 5

2
x are plotted in Figure 7.6. Note that a largest

deviation of ri D 1

2
occurs for both the first and third data points. Fix one end of a ruler at

the origin. Now rotate the ruler to convince yourself geometrically that no other line passing
through the origin can yield a smaller largest absolute deviation. Thus, the model y D 5

2
x

is optimal by the Chebyshev criterion.

J Figure 7.6
The line y D .5=2/x results
in a largest absolute
deviation rmax D 1

2 , the
smallest possible rmax.
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Empty and Unbounded Feasible Regions
We have been careful to say that if an optimal solution to the linear program exists, at least
one of the extreme points must take on the optimal value for the objective function. When
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does an optimal solution fail to exist? Moreover, when does more than one optimal solution
exist?

If the feasible region is empty, no feasible solution can exist. For example, given the
constraints

x1 � 3

and

x1 � 5

there is no value of x1 that satisfies both of them. We say that such constraint sets are
inconsistent.

There is another reason an optimal solution may fail to exist. Consider Figure 7.5 and
the constraint set for the data-fitting problem in which we noted that the feasible region is
unbounded (in the sense that either x1 or x2 can become arbitrarily large). Then it would
be impossible to

Maximize x1 C x2

over the feasible region because x1 and x2 can take on arbitrarily large values. Note, however,
that even though the feasible region is unbounded, an optimal solution does exist for the
objective function we considered in Example 2, so it is not necessary for the feasible region
to be bounded for an optimal solution to exist.

Level Curves of the Objective Function
Consider again the carpenter’s problem. The objective function is 25x1 C 30x2 and in
Figure 7.7 we plot the lines

25x1 C 30x2 D 650

25x1 C 30x2 D 750

25x1 C 30x2 D 850

in the first quadrant.

J Figure 7.7
The level curves of the
objective function f are
parallel line segments in the
first quadrant; the objective
function either increases or
decreases as we move in a
direction perpendicular to
the level curves.

x2

x1

25x1 + 30x2 = 850

25x1 + 30x2 = 750

25x1 + 30x2 = 650

©
 C

en
ga

ge
 Le

ar
ni

ng

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_07_ch07_p242-297 January 23, 2013 19:40 261

7.2 Linear Programming I: Geometric Solutions 261

Note that the objective function has constant values along these line segments. The
line segments are called level curves of the objective function. As we move in a direction
perpendicular to these line segments, the objective function either increases or decreases.
Now superimpose the constraint set from the carpenter’s problem

20x1 C 30x2 � 690 (lumber)
5x1 C 4x2 � 120 (labor)

x1; x2 � 0 (nonnegativity)

onto these level curves (Figure 7.8). Notice that the level curve with value 750 is the one
that intersects the feasible region exactly once at the extreme point C.12; 15/.

J Figure 7.8
The level curve
25x1 C 30x2 D 750 is
tangent to the feasible
region at extreme point C .

0
    1
28–
    3( ,        )

( ,        )0
    2
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x2

x1

25x1 + 30x2 = 850

20x1 + 30x2 ≤ 690

25x1 + 30x2 = 750

25x1 + 30x2 = 650

C(12, 15)

A(0, 0) B(24, 0)

D(0, 23)
(0, 25)

(0, 30)

(26, 0)

(30, 0)
(34.5, 0)

(34, 0)

Feasible region
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Can there be more than one optimal solution? Consider the following slight variation
of the carpenter’s problem in which the labor constraint has been changed:

Maximize 25x1 C 30x2

subject to

20x1 C 30x2 � 690 (lumber)
5x1 C 6x2 � 150 (labor)

x1; x2 � 0 (nonnegativity)

The constraint set and the level curve 25x1C30x2 D 750 are graphed in Figure 7.9. Notice
that the level curve and boundary line for the labor constraint coincide. Thus, both extreme
points B and C have the same objective function value of 750, which is optimal. In fact,
the entire line segment BC coincides with the level curve 25x1C30x2 D 750. Thus, there
are infinitely many optimal solutions to the linear program, all along line segment BC .

In Figure 7.10 we summarize the general two-dimensional case for optimizing a linear
function on a convex set. The figure shows a typical convex set together with the level curves
of a linear objective function. Figure 7.10 provides geometric intuition for the following
fundamental theorem of linear programming.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_07_ch07_p242-297 January 23, 2013 19:40 262

262 Chapter 7 Optimization of Discrete Models

J Figure 7.9
The line segment BC
coincides with the level
curve 25x1 C 30x2 D 750;
every point between
extreme points C and B , as
well as extreme points C
and B , is an optimal
solution.

x2

x1

20x1 + 30x2 ≤ 690

25x1 + 30x2 = 750

5x1 + 6x2 = 150

C(12, 15)

A(0, 0) B(30, 0)

D(0, 23)
(0, 25)
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J Figure 7.10
A linear function assumes
its maximum and minimum
values on a nonempty and
bounded convex set at an
extreme point.

x2

x1

Objective function ax1 + bx2 maximized

Objective function ax1 + bx2 minimized

Level curves

Objective function
decreasing

Objective function
increasing
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Theorem 1

Suppose the feasible region of a linear program is a nonempty and bounded convex
set. Then the objective function must attain both a maximum and aminimum value
occurring at extreme points of the region. If the feasible region is unbounded, the
objective function need not assume its optimal values. If either a maximum or a
minimum does exist, it must occur at one of the extreme points.

The power of this theorem is that it guarantees an optimal solution to a linear program
from among the extreme points of a bounded nonempty convex set.
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7.27.2 PROBLEMS

1. Consider a company that carves wooden soldiers. The company specializes in twomain
types: Confederate and Union soldiers. The profit for each is $28 and $30, respectively.
It requires 2 units of lumber, 4 hr of carpentry, and 2 hr of finishing to complete a
Confederate soldier. It requires 3 units of lumber, 3.5 hr of carpentry, and 3 hr of
finishing to complete a Union soldier. Each week the company has 100 units of lumber
delivered. There are 120 hr of carpenter machine time available and 90 hr of finishing
time available. Determine the number of each wooden soldier to produce to maximize
weekly profits.

2. A local company restores cars and trucks for resale. Each vehicle must be processed
in the refinishing/paint shop and the machine/body shop. Each car (on average) con-
tributes $3000 to profit, and each truck contributes (on average) $2000 to profit. The
refinishing/paint shop has 2400 work-hours available and the machine/body shop has
2500work-hours available. A car requires 50work-hours in themachine/body shop and
40 work-hours in the refinishing/paint shop, whereas a truck requires 50 work-hours in
the machine/body shop and 60 work-hours in the refinishing/paint shop. Use graphical
linear programming to determine a daily production schedule that will maximize the
company’s profits.

3. AMontana farmer owns 45 acres of land. She is planning to plant each acre with wheat
or corn. Each acre of wheat yields $200 in profits, whereas each acre of corn yields
$300 in profits. The labor and fertilizer requirements for each are provided here. The
farmer has 100 workers and 120 tons of fertilizer available. Determine howmany acres
of wheat and corn need to be planted to maximize profits.

Wheat Corn

Labor (workers) 3 2
Fertilizer (tons) 2 4

Solve Problems 4–7 using graphical analysis.

4. Maximize x C y
subject to

x C y � 6

3x � y � 9

x; y � 0

5. Minimize x C y
subject to

x C y � 6

3x � y � 9

x; y � 0
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6. Maximize 10x C 35y
subject to

8x C 6y � 48 (board-feet of lumber)
4x C y � 20 (hours of carpentry)

y � 5 (demand)
x; y � 0 (nonnegativity)

7. Minimize 5x C 7y
subject to

2x C 3y � 6

3x � y � 15

�x C y � 4

2x C 5y � 27

x � 0

y � 0

For Problems 8–12, find both the maximum solution and the minimum solution using graph-
ical analysis. Assume x � 0 and y � 0 for each problem.

8. Optimize 2x C 3y
subject to

2x C 3y � 6

3x � y � 15

�x C y � 4

2x C 5y � 27

9. Optimize 6x C 4y
subject to

�x C y � 12

x C y � 24

2x C 5y � 80

10. Optimize 6x C 5y
subject to

x C y � 6

2x C y � 9

11. Optimize x � y
subject to

x C y � 6

2x C y � 9
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12. Optimize 5x C 3y
subject to

1:2x C 0:6y � 24

2x C 1:5y � 80

13. Fit the model to the data using Chebyshev’s criterion to minimize the largest deviation.
a. y D cx

y 11 25 54 90

x 5 10 20 30

b. y D cx2

y 10 90 250 495

x 1 3 5 7

7.37.3 Linear Programming II: Algebraic Solutions

The graphical solution to the carpenter’s problem suggests a rudimentary procedure for
finding an optimal solution to a linear program with a nonempty and bounded feasible
region:

1. Find all intersection points of the constraints.
2. Determine which intersection points, if any, are feasible to obtain the extreme points.
3. Evaluate the objective function at each extreme point.
4. Choose the extreme point(s) with the largest (or smallest) value for the objective function.

To implement this procedure algebraically, wemust characterize the intersection points
and the extreme points.

The convex set depicted in Figure 7.11 consists of three linear constraints (plus the two
nonnegativity constraints). The nonnegative variables y1, y2, and y3 indicated in the figure
measure the degree by which a point satisfies the constraints 1, 2, and 3, respectively. The
variable yi is added to the left side of inequality constraint i to convert it to an equality.
Thus, y2 D 0 characterizes those points that lie precisely on constraint 2, and a negative
value for y2 indicates the violation of constraint 2. Likewise, the decision variables x1 and
x2 are constrained to nonnegative values. Thus, the values of the decision variables x1 and x2

measure the degree of satisfaction of the nonnegativity constraints, x1 � 0 and x2 � 0. Note
that along the x1-axis, the decision variable x2 is 0. Now consider the values for the entire set
of variables fx1; x2; y1; y2; y3g. If two of the variables simultaneously have the value 0, then
we have characterized an intersection point in the x1x2-plane. All (possible) intersection
points can be determined systematically by setting all possible distinguishable pairs of the
five variables to zero and solving for the remaining three dependent variables. If a solution
to the resulting system of equations exists, then it must be an intersection point, which may
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y1
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y3
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B
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Constraint 3
Constraint 1

Constraint 2

©
 C

en
ga

ge
 Le

ar
ni

ng

J Figure 7.11
The variables x1, x2, y1, y2, and y3 measure the satisfaction of each of the
constraints; intersection point A is characterized by y1 D x1 D 0; intersection point B
is not feasible because y1 is negative; the intersection points surrounding the shaded
region are all feasible because none of the five variables is negative there.

ormay not be a feasible solution. A negative value for any of the five variables indicates that
a constraint is not satisfied. Such an intersection point would be infeasible. For example,
the intersection point B , where y2 D 0 and x1 D 0, gives a negative value for y1 and hence
is not feasible. Other pairs of variables such as x1 and y3, cannot simultaneously be zero
because they represent constraints that are parallel lines. Let’s illustrate the procedure by
solving the carpenter’s problem algebraically.

EXAMPLE 1 Solving the Carpenter’s Problem Algebraically

The carpenter’s model is

Maximize 25x1 C 30x2

subject to

20x1 C 30x2 � 690 (lumber)
5x1 C 4x2 � 120 (labor)

x1; x2 � 0 (nonnegativity)

We convert each of the first two inequalities to equations by adding new nonnegative
‘‘slack’’ variablesy1 andy2. If eithery1 ory2 is negative, the constraint is not satisfied. Thus,
the problem becomes

Maximize 25x1 C 30x2
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J Figure 7.12
The variables fx1; x2; y1; y2g
measure the satisfaction of
each constraint; an
intersection point is
characterized by setting two
of the variables to zero.
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subject to

20x1 C 30x2 C y1 D 690

5x1 C 4x2 C y2 D 120

x1; x2; y1; y2 � 0

We now consider the entire set of four variables fx1; x2; y1; y2g, which are interpreted
geometrically in Figure 7.12. To determine a possible intersection point in the x1x2-plane,
assign two of the four variables the value zero. There are 4Š

2Š 2Š
D 6 possible intersection

points to consider in this way (four variables taken two at a time). Let’s begin by assigning
the variables x1 and x2 the value zero, resulting in the following set of equations:

y1 D 690

y2 D 120

which is a feasible intersection point A.0; 0/ because all four variables are nonnegative.
For the second intersection point we choose the variables x1 and y1 and set them to

zero, resulting in the system

30x2 D 690

4x2 C y2 D 120

that has solution x2 D 23 and y2 D 28, which is also a feasible intersection point D.0; 23/.
For the third intersection point we choose x1 and y2 and set them to zero, yielding the

system

30x2 C y1 D 690

4x2 D 120

with solution x2 D 30 and y1 D �210. Thus, the first constraint is violated by 210 units,
indicating that the intersection point .0; 30/ is infeasible.

In a similar manner, choosing y1 and y2 and setting them to zero gives x1 D 12 and
x2 D 15, corresponding to the intersection point C.12; 15/, which is feasible. Our fifth
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choice is to choose the variables x2 and y1 and set them to zero, giving values of x1 D 34:5
and y2 D �52:5, so the second constraint is not satisfied. Thus, the intersection point
.34:5; 0/ is infeasible.

Finally we determine the sixth intersection point by setting the variables x2 and y2

to zero to determine x1 D 24 and y1 D 210; therefore, the intersection point B.24; 0/ is
feasible.

In summary, of the six possible intersection points in the x1x2-plane, four were found
to be feasible. For the four we find the value of the objective function by substitution:

Extreme point Value of objective function

A.0; 0/ $0
D.0; 23/ 690
C.12; 15/ 750
B.24; 0/ 600

Our procedure determines that the optimal solution to maximize the profit is x1 D 12
and x2 D 15. That is, the carpenter should make 12 tables and 15 bookcases for a maximum
profit of $750. J J J
Computational Complexity: Intersection Point Enumeration
We now generalize the procedure presented in the carpenter example. Suppose we have
a linear program with m nonnegative decision variables and n constraints, where each
constraint is an inequality of the form �. First, convert each inequality to an equation by
adding a nonnegative ‘‘slack’’ variable yi to the i th constraint. We now have a total of mCn
nonnegative variables. To determine an intersection point, choosem of the variables (because
we have m decision variables) and set them to zero. There are .mCn/Š

mŠ nŠ
possible choices to

consider. Obviously, as the size of the linear program increases (in terms of the numbers
of decision variables and constraints), this technique of enumerating all possible intersection
points becomes unwieldy, even for powerful computers. How canwe improve the procedure?

Note that we enumerated some intersection points in the carpenter example that turned
out to be infeasible. Is there a way to quickly identify that a possible intersection point is
infeasible? Moreover, if we have found an extreme point (i.e., a feasible intersection point)
and know the corresponding value of the objective function, can we quickly determine
if another proposed extreme point will improve the value of the objective function? In
conclusion, we desire a procedure that does not enumerate infeasible intersection points
and that enumerates only those extreme points that improve the value of the objective
function for the best solution found so far in the search. We study one such procedure in
the next section.

7.37.3 PROBLEMS

1–7. Using the method of this section, resolve Problems 1–6 and 13 in Section 7.2.

8. How many possible intersection points are there in the following cases?
a. 2 decision variables and 5 � inequalities
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b. 2 decision variables and 10 � inequalities
c. 5 decision variables and 12 � inequalities
d. 25 decision variables and 50 � inequalities
e. 2000 decision variables and 5000 � inequalities

7.47.4 Linear Programming III: The Simplex Method

So far we have learned to find an optimal extreme point by searching among all possible
intersection points associated with the decision and slack variables. Can we reduce the
number of intersection points we actually consider in our search? Certainly, once we find
an initial feasible intersection point, we need not consider a potential intersection point that
fails to improve the value of the objective function. Can we test the optimality of our current
solution against other possible intersection points? Even if an intersection point promises
to be more optimal than the current extreme point, it is of no interest if it violates one or
more of the constraints. Is there a test to determine whether a proposed intersection point is
feasible? The SimplexMethod, developed byGeorgeDantzig, incorporates both optimality
and feasibility tests to find the optimal solution(s) to a linear program (if one exists).

An optimality test shows whether or not an intersection point corresponds to a value
of the objective function better than the best value found so far.
A feasibility test determines whether the proposed intersection point is feasible.

To implement the Simplex Method we first separate the decision and slack variables
into two nonoverlapping sets that we call the independent and dependent sets. For the
particular linear programs we consider, the original independent set will consist of the
decision variables, and the slack variables will belong to the dependent set.

Steps of the Simplex Method
1. Tableau Format: Place the linear program in Tableau Format, as explained later.
2. Initial ExtremePoint:The SimplexMethod beginswith a known extreme point, usually

the origin .0; 0/.
3. Optimality Test: Determine whether an adjacent intersection point improves the value

of the objective function. If not, the current extreme point is optimal. If an improvement
is possible, the optimality test determines which variable currently in the independent
set (having value zero) should enter the dependent set and become nonzero.

4. Feasibility Test: To find a new intersection point, one of the variables in the dependent
set must exit to allow the entering variable from Step 3 to become dependent. The fea-
sibility test determines which current dependent variable to choose for exiting, ensuring
feasibility.

5. Pivot: Form a new, equivalent system of equations by eliminating the new dependent
variable from the equations do not contain the variable that exited in Step 4. Then set
the new independent variables to zero in the new system to find the values of the new
dependent variables, thereby determining an intersection point.

6. Repeat Steps 3–5 until an optimal extreme point is found.
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J Figure 7.13
The set of points satisfying
the constraints of a linear
program (the shaded
region) form a convex set.
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Tableau 0

Tableau 1

Tableau 2, optimal

5x1 + 4x2 ≤ 120, Constraint 2

20x1 + 30x2 ≤ 690
Constraint 1

Objective function value:
25x1 + 30x2 = 750
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Before detailing each of the preceding steps, let’s examine the carpenter’s problem
(Figure 7.13). The origin is an extreme point, so we choose it as our starting point. Thus,
x1 and x2 are the current arbitrary independent variables and are assigned the value zero,
whereas y1 and y2 are the current dependent variables with values of 690 and 120, respec-
tively. The optimality test determines whether a current independent variable assigned the
value zero could improve the value of the objective function if it is made dependent and
positive. For example, either x1 or x2, if made positive, would improve the objective function
value. (They have positive coefficients in the objective function we are trying to maximize.)
Thus, the optimality test determines a promising variable to enter the dependent set. Later,
we give a rule of thumb for choosing which independent variable to enter when more than
one candidate exists. In the carpenter’s problem at hand, we select x2 as the new dependent
variable.

The variable chosen for entry into the dependent set by the optimality condition re-
places one of the current dependent variables. The feasibility condition determines which
exiting variable this entering variable replaces. Basically, the entering variable replaces
whichever current dependent variable can assume a zero value while maintaining nonneg-
ative values for all the remaining dependent variables. That is, the feasibility condition en-
sures that the new intersection point will be feasible and hence an extreme point. In Figure
7.13, the feasibility test would lead us to the intersection point .0; 23/, which is feasible, and
not to .0; 30/, which is infeasible. Thus, x2 replaces y1 as a dependent or nonzero variable.
Therefore, x2 enters and y1 exits the set of dependent variables.

Computational Efficiency
The feasibility test does not require actual computation of the values of the dependent
variables when selecting an exiting variable for replacement. Instead, we will see that
an appropriate exiting variable is selected by quickly determining whether any variable
becomes negative if the dependent variable being considered for replacement is assigned
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the value zero (a ratio test that will be explained later). If any variable would become
negative, then the dependent variable under consideration cannot be replaced by the entering
variable if feasibility is to be maintained. Once a set of dependent variables corresponding
to a more optimal extreme point is found from the optimality and feasibility tests, the values
of the new dependent variables are determined by pivoting. The pivoting process essentially
solves an equivalent system of equations for the new dependent variables after the exchange
of the entering and exiting variables in the dependent set. The values of the new dependent
variables are obtained by assigning the independent variables the value zero. Note that
only one dependent variable is replaced at each stage. Geometrically, the Simplex Method
proceeds from an initial extreme point to an adjacent extreme point until no adjacent extreme
point is more optimal. At that time, the current extreme point is an optimal solution. We
now detail the steps of the Simplex Method.

STEP 1 TABLEAU FORMAT Many formats exist for implementing the Simplex Method. The format
we use assumes that the objective function is to be maximized and that the constraints are
less than or equal to inequalities. (If the problem is not expressed initially in this format, it
can easily be changed to this format.) For the carpenter’s example, the problem is

Maximize 25x1 C 30x2

subject to

20x1 C 30x2 � 690

5x1 C 4x2 � 120

x1; x2 � 0

Next we adjoin a new constraint to ensure that any solution improves the best value of
the objective function found so far. Take the initial extreme point as the origin, where the
value of the objective function is zero. We want to constrain the objective function to be
better than its current value, so we require

25x1 C 30x2 � 0

Because all the constraints must be � inequalities, multiply the new constraint by �1
and adjoin it to the original constraint set:

20x1 C 30x2 � 690 (constraint 1, lumber)
5x1 C 4x2 � 120 (constraint 2, labor)

�25x1 � 30x2 � 0 (objective function constraint)

The Simplex Method implicitly assumes that all variables are nonnegative, so we do
not repeat the nonnegativity constraints in the remainder of the presentation.

Next, we convert each inequality to an equality by adding a nonnegative new variable
yi (or z), called a slack variable because it measures the slack or degree of satisfaction of
the constraint. A negative value for yi indicates the constraint is not satisfied. (We use the
variable z for the objective function constraint to avoid confusionwith the other constraints.)
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This process gives the augmented constraint set

20x1 C 30x2 C y1 D 690

5x1 C 4x2 C y2 D 120

�25x1 � 30x2 C z D 0

where the variables x1, x2, y1, y2 are nonnegative. The value of the variable z represents
the value of the objective function, as we shall see later. (Note from the last equation that
z D 25x1 C 30x2 is the value of the objective function.)

STEP 2 INITIAL EXTREME POINT Because there are two decision variables, all possible intersection
points lie in the x1x2-plane and can be determined by setting two of the variables
fx1; x2; y1; y2g to zero. (The variable z is always a dependent variable and represents the
value of the objective function at the extreme point in question.) The origin is feasible and
corresponds to the extreme point characterized by x1 D x2 D 0, y1 D 690, and y2 D 120.
Thus, x1 and x2 are independent variables assigned the value 0; y1, y2, and z are dependent
variables whose values are then determined. As we will see, z conveniently records the cur-
rent value of the objective function at the extreme points of the convex set in the x1x2-plane
as we compute them by elimination.

STEP 3 THE OPTIMALITY TEST FOR CHOOSING AN ENTERING VARIABLE In the preceding format, a neg-
ative coefficient in the last (or objective function) equation indicates that the corresponding
variable could improve the current objective function value. Thus, the coefficients�25 and
�30 indicate that either x1 or x2 could enter and improve the current objective function
value of z D 0. (The current constraint corresponds to z D 25x1 C 30x2 � 0, with x1

and x2 currently independent and 0.) When more than one candidate exists for the entering
variable, a rule of thumb for selecting the variable to enter the dependent set is to select that
variable with the largest (in absolute value) negative coefficient in the objective function
row. If no negative coefficients exist, the current solution is optimal. In the case at hand,
we choose x2 as the new entering variable. That is, x2 will increase from its current value
of zero. The next step determines how great an increase is possible.

STEP 4 THE FEASIBILITY CONDITION FOR CHOOSING AN EXITING VARIABLE The entering variable x2

(in our example) must replace either y1 or y2 as a dependent variable (because z always
remains the third dependent variable). To determine which of these variables is to exit
the dependent set, first divide the right-hand-side values 690 and 120 (associated with
the original constraint inequalities) by the components for the entering variable in each
inequality (30 and 4, respectively, in our example) to obtain the ratios 690

30
D23 and 120

4
D30.

From the subset of ratios that are positive (both in this case), the variable corresponding
to the minimum ratio is chosen for replacement (y1, which corresponds to 23 in this case).
The ratios represent the value the entering variable would obtain if the corresponding
exiting variable were assigned the value 0. Thus, only positive values are considered and
the smallest positive value is chosen so as not to drive any variable negative. For instance,
if y2 were chosen as the exiting variable and assigned the value 0, then x2 would assume a
value 30 as the new dependent variable. However, then y1 would be negative, indicating that
the intersection point .0; 30/ does not satisfy the first constraint. Note that the intersection
point .0; 30/ is not feasible in Figure 7.13. The minimum positive ratio rule illustrated
previously obviates enumeration of any infeasible intersection points. In the case at hand,
the dependent variable corresponding to the smallest ratio 23 is y1, so it becomes the exiting

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_07_ch07_p242-297 January 23, 2013 19:40 273

7.4 Linear Programming III: The Simplex Method 273

variable. Thus, x2, y2, and z form the new set of dependent variables, and x1 and y1 form
the new set of independent variables.

STEP 5 PIVOTING TO SOLVE FOR THE NEW DEPENDENT VARIABLE VALUES Next we derive a new
(equivalent) system of equations by eliminating the entering variable x2 in all the equa-
tions of the previous system that do not contain the exiting variable y1. There are numerous
ways to execute this step, such as the method of elimination used in Section 7.3. Then
we find the values of the dependent variables x2, y2, and z when the independent vari-
ables x1 and y1 are assigned the value 0 in the new system of equations. This is called the
pivoting procedure. The values of x1 and x2 give the new extreme point .x1; x2/, and z is
the (improved) value of the objective function at that point.

After performing the pivot, apply the optimality test again to determinewhether another
candidate entering variable exists. If so, choose an appropriate one and apply the feasibility
test to choose an exiting variable. Then the pivoting procedure is performed again. The
process is repeated until no variable has a negative coefficient in the objective function row.
We now summarize the procedure and use it to solve the carpenter’s problem.

Summary of the Simplex Method

STEP 1 PLACE THE PROBLEM IN TABLEAU FORMAT. Adjoin slack variables as needed to convert in-
equality constraints to equalities. Remember that all variables are nonnegative. Include the
objective function constraint as the last constraint, including its slack variable z.

STEP 2 FINDONE INITIAL EXTREMEPOINT. (For the problemswe consider, the originwill be an extreme
point.)

STEP 3 APPLY THE OPTIMALITY TEST. Examine the last equation (which corresponds to the objective
function). If all its coefficients are nonnegative, then stop: The current extreme point is
optimal. Otherwise, some variables have negative coefficients, so choose the variable with
the largest (in absolute value) negative coefficient as the new entering variable.

STEP 4 APPLY THE FEASIBILITY TEST. Divide the current right-hand-side values by the corresponding
coefficient values of the entering variable in each equation. Choose the exiting variable to
be the one corresponding to the smallest positive ratio after this division.

STEP 5 PIVOT. Eliminate the entering variable from all the equations that do not contain the exiting
variable. (For example, you can use the elimination procedure presented in Section 7.2.)
Then assign the value 0 to the variables in the new independent set (consisting of the
exited variable and the variables remaining after the entering variable has left to become
dependent). The resulting values give the new extreme point .x1; x2/ and the objective
function value z for that point.

STEP 6 REPEAT STEPS 3–5 until an optimal extreme point is found.

EXAMPLE 1 The Carpenter’s Problem Revisited

STEP 1 The Tableau Format gives

20x1 C 30x2 C y1 D 690

5x1 C 4x2 C y2 D 120

�25x1 � 30x2 C z D 0
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STEP 2 The origin .0; 0/ is an initial extreme point for which the independent variables are x1 D
x2 D 0 and the dependent variables are y1 D 690, y2 D 120, and z D 0.

STEP 3 We apply the optimality test to choose x2 as the variable entering the dependent set because
it corresponds to the negative coefficient with the largest absolute value.

STEP 4 Applying the feasibility test, we divide the right-hand-side values 690 and 120 by the
components for the entering variable x2 in each equation (30 and 4, respectively), yielding
the ratios 690

30
D 23 and 120

4
D 30. The smallest positive ratio is 23, corresponding to the

first equation that has the slack variable y1. Thus, we choose y1 as the exiting dependent
variable.

STEP 5 Wepivot to find the values of the new dependent variables x2,y2, and z when the independent
variables x1 and y1 are set to the value 0. After eliminating the new dependent variable x2

from each previous equation that does not contain the exiting variable y1, we obtain the
equivalent system

2

3
x1 C x2 C

1

30
y1 D 23

7

3
x1 � 2

15
y1 C y2 D 28

�5x1 C y1 C z D 690

Setting x1 D y1 D 0, we determine x2 D 23, y2 D 28, and z D 690. These results give the
extreme point (0; 23) where the value of the objective function is z D 690.

Applying the optimality test again, we see that the current extreme point (0; 23) is not
optimal (because there is a negative coefficient �5 in the last equation corresponding to the
variable x1). Before continuing, observe that we really do not need to write out the entire
symbolism of the equations in each step. We merely need to know the coefficient values as-
sociated with the variables in each of the equations together with the right-hand side. A table
format, or tableau, is commonly used to record these numbers. We illustrate the completion
of the carpenter’s problem using this format, where the headers of each column designate the
variables; the abbreviation RHS heads the column where the values of the right-hand side
appear. We begin with Tableau 0, corresponding to the initial extreme point at the origin.

Tableau 0 (Original Tableau)

x1 x2 y1 y2 z RHS

20 30 1 0 0 690 .D y1/
5 4 0 1 0 120 .D y2/

�25 �30 0 0 1 0 .D z/

Dependent variables: fy1; y2; zg
Independent variables: x1 D x2 D 0
Extreme point: .x1; x2/ D .0; 0/
Value of objective function: z D 0

Optimality Test The entering variable is x2 (corresponding to �30 in the last row).

Feasibility Test Compute the ratios for the RHS divided by the coefficients in the column
labeled x2 to determine the minimum positive ratio.
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Entering variable

x1 x2̌ y1 y2 z RHS Ratio

20 30 1 0 0 690 23 .D 690=30/ Exiting variable
5 4 0 1 0 120 30 .D 120=4)

�25 �30 0 0 1 0 *

Choose y1 corresponding to the minimum positive ratio 23 as the exiting variable.

Pivot Divide the row containing the exiting variable (the first row in this case) by the
coefficient of the entering variable in that row (the coefficient of x2 in this case), giving a
coefficient of 1 for the entering variable in this row. Then eliminate the entering variable
x2 from the remaining rows (which do not contain the exiting variable y1 and have a zero
coefficient for it). The results are summarized in the next tableau, where we use five-place
decimal approximations for the numerical values.

Tableau 1

x1 x2 y1 y2 z RHS

0.66667 1 0.03333 0 0 23 .D x2/
2.33333 0 �0:13333 1 0 28 .D y2/

�5:00000 0 1.00000 0 1 690 .D z/

Dependent variables: fx2; y2; zg
Independent variables: x1 D y1 D 0
Extreme point: .x1; x2/ D .0; 23/
Value of objective function: z D 690

The pivot determines that the new dependent variables have the values x2 D 23, y2 D 28,
and z D 690.

Optimality Test The entering variable is x1 (corresponding to the coefficient �5 in the
last row).

Feasibility Test Compute the ratios for the RHS.

Entering variable

x1̌ x2 y1 y2 z RHS Ratio

0.66667 1 0.03333 0 0 23 34:5 .D 23=0:66667/
2.33333 0 �0:13333 1 0 28 12:0 .D 28=2:33333/� Exiting variable

�5:00000 0 1.00000 0 1 690 *

Choose y2 as the exiting variable because it corresponds to the minimum positive ratio 12.
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Pivot Divide the row containing the exiting variable (the second row in this case) by the
coefficient of the entering variable in that row (the coefficient of x1 in this case), giving a
coefficient of 1 for the entering variable in this row. Then eliminate the entering variable
x1 from the remaining rows (which do not contain the exiting variable y2 and have a zero
coefficient for it). The results are summarized in the next tableau.

Tableau 2

x1 x2 y1 y2 z RHS

0 1 0:071429 �0:28571 0 15 .D x2/
1 0 �0:057143 0:42857 0 12 .D x1/

0 0 0:714286 2:14286 1 750 .D z/

Dependent variables: fx2; x1; zg
Independent variables: y1 D y2 D 0
Extreme point: .x1; x2/ D .12; 15/
Value of objective function: z D 750

Optimality Test Because there are no negative coefficients in the bottom row, x1 D 12
and x2 D 15 gives the optimal solution z D $750 for the objective function. Note that
starting with an initial extreme point, we had to enumerate only two of the possible six
intersection points. The power of the Simplex Method is its reduction of the computations
required to find an optimal extreme point. J J J

EXAMPLE 2 Using the Tableau Format

Solve the problem

Maximize 3x1 C x2

subject to

2x1 C x2 � 6

x1 C 3x2 � 9

x1; x2 � 0:

The problem in Tableau Format is

2x1 C x2 C y1 D 6

x1 C 3x2 C y2 D 9

�3x1 � x2 C z D 0

where x1, x2, y1, y2, and z � 0.
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Tableau 0 (Original Tableau)

x1 x2 y1 y2 z RHS

2 1 1 0 0 6 .D y1/
1 3 0 1 0 9 .D y2/

�3 �1 0 0 1 0 .D z/

Dependent variables: fy1; y2; zg
Independent variables: x1 D x2 D 0
Extreme point: .x1; x2/ D .0; 0/
Value of objective function: z D 0

Optimality Test The entering variable is x1 (corresponding to �3 in the bottom row).

Feasibility Test Compute the ratios of the RHS divided by the column labeled x1 to
determine the minimum positive ratio.

x1 x2 y1 y2 z RHS Ratio

2 1 1 0 0 6 3 .D 6=2/ Exiting variable
1 3 0 1 0 9 9 .D 9=1/
�3 �1 0 0 1 0 *
"

Entering variable

Choose y1 corresponding to the minimum positive ratio 3 as the exiting variable.

Pivot Divide the row containing the exiting variable (the first row in this case) by the
coefficient of the entering variable in that row (the coefficient of x1 in this case), giving a
coefficient of 1 for the entering variable in this row. Then eliminate the entering variable
x1 from the remaining rows (which do not contain the exiting variable y1 and have a zero
coefficient for it). The results are summarized in the next tableau.

Tableau 1

x1 x2 y1 y2 z RHS

1 1
2

1
2 0 0 3 .D x1/

0 5
2 �1

2 1 0 6 .D y2/

0 1
2

3
2 0 1 9 .D z/

Dependent variables: fx1; y2; zg
Independent variables: x2 D y1 D 0
Extreme point: .x1; x2/ D .3; 0/
Value of objective function: z D 9

The pivot determines that the dependent variables have the values x1 D 3, y2 D 6, and
z D 9.

Optimality Test There are no negative coefficients in the bottom row. Thus, x1 D 3 and
x2 D 0 is an extreme point giving the optimal objective function value z D 9. J J J
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Remarks We have assumed that the origin is a feasible extreme point. If it is not, then
some extreme point must be found before the SimplexMethod can be used as presented.We
have also assumed that the linear program is not degenerate in the sense that no more than
two constraints intersect at the same point. These restrictions and other topics are studied
in more advanced treatments of linear programming.

7.47.4 PROBLEMS

1–7. Use the Simplex Method to resolve Problems 1–6 and 13 in Section 7.2.

Use the Simplex Method to find both the maximum solution and the minimum solution to
Problems 8–12. Assume x � 0 and y � 0 for each problem.

8. Optimize 2x C 3y
subject to

2x C 3y � 6

3x � y � 15

�x C y � 4

2x C 5y � 27

9. Optimize 6x C 4y
subject to

�x C y � 12

x C y � 24

2x C 5y � 80

10. Optimize 6x C 5y
subject to

x C y � 6

2x C y � 9

11. Optimize x � y
subject to

x C y � 6

2x C y � 9

12. Optimize 5x C 3y
subject to

1:2x C 0:6y � 24

2x C 1:5y � 80
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7.47.4 PROJECT

1. Write a computer code to perform the basic simplex algorithm. Solve Problem 3 using
your code.

7.57.5 Linear Programming IV: Sensitivity Analysis

A mathematical model typically approximates a problem under study. For example, the
coefficients in the objective function of a linear program may only be estimates. Or the
amount of the resources constraining production made available by management may vary,
depending on the profit returned per unit of resource invested. (Management may be willing
to procure additional resources if the additional profit is high enough.) Thus, management
would like to know whether the potential additional profit justifies the cost of another unit
of resource. If so, over what range of values for the resources is the analysis valid? Hence,
in addition to solving a linear program, we would like to know how sensitive the optimal
solution is to changes in the various constants used to formulate the program. In this section
we analyze graphically the effect on the optimal solution of changes in the coefficients of
the objective function and the amount of resource available. Using the carpenter’s problem
as an example, we answer the following questions:

1. Over what range of values for the profit per table does the current solution remain
optimal?

2. What is the value of another unit of the second resource (labor)? That is, how much will
the profit increase if another unit of labor is obtained? Over what range of labor values
is the analysis valid? What is required to increase profit beyond this limit?

Sensitivity of the Optimal Solution to Changes
in the Coefficients of the Objective Function
The objective function in the carpenter’s problem is to maximize profits where each table
nets $25 profit and each bookcase $30. If z represents the amount of profit, then we wish to

Maximize z D 25x1 C 30x2

Note that z is a function of two variables and we can draw the level curves of z in the
x1x2-plane. In Figure 7.14, we graph the level curves z D 650, z D 750, and z D 850 for
illustrative purposes.

Note that every level curve is a line with slope � 5

6
. In Figure 7.15, we superimpose on

the previous graph the constraint set for the carpenter’s problem and see that the optimal
solution .12; 15/ gives an optimal objective function value of z D 750.

Now we ask the following question: What is the effect of changing the value of the
profit for each table? Intuitively, if we increase the profit sufficiently, we eventually make
only tables (giving the extreme point of 24 tables and 0 bookcases/, instead of the current
mix of 12 tables and 15 bookcases. Similarly, if we decrease the profit per table sufficiently,
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J Figure 7.14
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The level curve z D 750 is
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we should make only bookcases at the extreme point .0; 23/. Note again that the slope of
the level curves of the objective function is � 5

6
. If we let c1 represent the profit per table,

then the objective function becomes

Maximize z D c1x1 C 30x2

with slope �c1=30 in the x1x2-plane. As we vary c1, the slope of the level curves of the
objective function changes. Examine Figure 7.16 to convince yourself that the current
extreme point .12; 15/ remains optimal as long as the slope of the objective function is
between the slopes of the two binding constraints. In this case, the extreme point .12; 15/
remains optimal as long as the slope of the objective function is less than � 2

3
but greater

than � 5

4
, the slopes of the lumber and labor constraints, respectively. If we start with the

slope for the objective function as � 2

3
, as we increase c1, we rotate the level curve of the

objective function clockwise. If we rotate clockwise, the optimal extreme point changes to
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J Figure 7.16
The extreme point .12; 15/
remains optimal for
objective functions with a
slope between �5=4 and
�2=3.
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.24; 0/ if the slope of the objective function is less than � 5

4
. Thus, the range of values for

which the current extreme point remains optimal is given by the inequality

�5

4
� � c1

30
� �2

3

or

20 � c1 � 37:5

Interpreting this result, if the profit per table exceeds 37:5, the carpenter should produce
only tables (i.e., 24 tables). If the profit per table is reduced below 20, the carpenter should
produce only bookcases (i.e., 23 bookcases). If c1 is between 20 and 37:5, he should produce
the mix of 12 bookcases and 15 tables. Of course, as we change c1 over the range Œ20; 37:5�,
the value of the objective function changes even though the location of the extreme point
does not. Because he is making 12 tables, the objective function changes by a factor of 12
times the change in c1. Note that at the limit c1 D 20 there are two extreme points C and
B , which produce the same value for the objective function. Likewise, if c1 D 37:5, the
extreme points D and C produce the same value for the objective function. In such cases,
we say that there are alternative optimal solutions.

Changes in the Amount of Resource Available
Currently, there are 120 units of labor available, all of which are used to produce the 12 tables
and 15 bookcases represented by the optimal solution. What is the effect of increasing the
amount of labor? If b2 represents the units of available labor (the second resource constraint),
the constraint can be rewritten as

5x1 C 4x2 � b2

What happens geometrically as we vary b2? To answer this question, graph the constraint
set for the carpenter’s problem with the original value of b2 D 120 and a second value, such
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J Figure 7.17
As the amount of labor
resource b2 increases from
120 to 150 units, the optimal
solution moves from A to A0
along the lumber
constraint, increasing x1
and decreasing x2.
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as b2 D 150 (Figure 7.17). Note that the effect of increasing b2 is to translate the constraint
upward and to the right. As this happens, the optimal value of the objective function moves
along the line segment AA0, which lies on the lumber constraint. As the optimal solution
moves along the line segment from A to A0, the value for x1 increases and the value of x2

decreases. The net effect of increasing b2 is to increase the value of the objective function,
but by howmuch? One goal is to determine howmuch the objective function value changes
as b2 increases by 1 unit.

Note, however, that if b2 increases beyond 5 � 34:5 D 172:5, the optimal solution
remains at the extreme point .34:5; 0/. That is, at .34:5; 0/ the lumber constraint must also
be increased if the objective function is to be increased further. Thus, increasing the labor
constraint to 200 units results in some excess labor that cannot be used unless the amount
of lumber is increased beyond its present value of 690 (Figure 7.18). Following a similar
analysis, if b2 is decreased, the value of the objective function moves along the lumber
constraint until the extreme point .0; 23/ is reached. Further reductions in b2 would cause
the optimal solution to move from .0; 23/ down the y-axis to the origin.

J Figure 7.18
As resource b2 increases
from 120 to 172.5, the
optimal solution moves
from A to A0 along the line
segment AA0; increasing b2
beyond b2 D 172:5 does not
increase the value of the
objective function unless
the lumber constraint is
also increased (moving it
upward to the right).

x2
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J Figure 7.19
As b2 increases from 92 to
172.5, the optimal solution
moves from point D.0; 23/
to point E.34:5; 0/ along the
line segment DE , the
lumber constraint.

D(0, 23)

E(34.5, 0)

(0, 43.125)

(18.4, 0)

5x1 + 4x2 = 172.5 (Labor)

5x1 + 4x2 = 92 (Labor)

20x1 + 30x2 = 690 (Lumber)
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Now let’s find the range of values of b2 for which the optimal solution moves along the
lumber constraint as the amount of labor varies. Refer to Figure 7.19 and convince yourself
that we wish to find the value for b2 for which the labor constraint would intersect the
lumber constraint on the x1-axis, or point E .34:5; 0/. At point E .34:5; 0/, the amount of
labor is 5 � 34:5C 4 � 0 D 172:5. Similarly, we wish to find the value for b2 at point D
.0; 23/, which is 5 � 0C 4 � 23 D 92. Summarizing, as b2 changes, the optimal solution
moves along the lumber constraint as long as

92 � b2 � 172:5

However, by how much does the objective function change as b2 increases by 1 unit
within the range 92 � b2 � 172:5‹ We will analyze this in two ways. First, suppose
b2 D 172:5. The optimal solution is then the ‘‘new’’ extreme pointE .34:5; 0/ and the value
of the objective function is 34:5 � 25 D 862:5 at E. Thus the objective function increased
by 862:5� 750 D 112:5 units when b2 increased by 172:5� 120 D 52:5 units. Hence, the
change in the objective function for 1 unit of change in labor is

862:5 � 750

172:5 � 120
D 2:14

Now let’s analyze the value of a unit change of labor in another way. If b2 increases by
1 unit from 120 to 121, then the new extreme point A0 represented by the intersection of
the constraints

20x1 C 30x2 D 690

5x1 C 4x2 D 121

is the point A0.12:429; 14:714/, which has an objective function value of 752:14. Thus, the
net effect as b2 increases by 1 unit is to increase the objective function by 2:14 units.
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Economic Interpretation of a Unit Change in a Resource
In the foregoing analysis, we saw that as 1 more unit of labor is added, the objective function
increases by 2:14 as long as the total amount of labor does not exceed 172:5 units. Thus, in
terms of the objective function, an additional unit of labor is worth 2:14 units. If management
can procure a unit of labor for less than 2:14 it would be profitable to do so. Conversely, if
management can sell labor for more than 2:14 (which is valid until labor is reduced to 92
units) it should also consider doing that. Note that our analysis gives the value of a unit of
resource in terms of the value of the objective function at the optimal extreme point, which
is a marginal value.

Sensitivity analysis is a powerful methodology for interpreting linear programs. The
information embodied in a carefully accomplished sensitivity analysis is often at least as
valuable to the decision maker as the optimal solution to the linear program. In advanced
courses in optimization, you can learn how to perform a sensitivity analysis algebraically.
Moreover, the coefficients in the constraint set, as well as the right-hand side of the con-
straints, can be analyzed for their sensitivity.

Sections 7.2–7.5 discussed a solution method for a certain class of optimization prob-
lem: those with linear constraints and a linear objective function. Unfortunately, many
optimization problems encountered in practice do not fall into this category. For example,
rather than allowing the variables to take on any real value, we sometimes restrict them to
a discrete set of values. Examples would include allowing variables to take on any integer
values and allowing only binary values (either 0 or 1).

Another class of problem ariseswhenwe allow the objective function and/or constraints
to be nonlinear. Recall from Section 7.1 that an optimization problem is nonlinear if it fails
to satisfy Properties 2 and 3 on pages 244 and 245. In the next section, we will briefly turn
our attention to solving unconstrained nonlinear optimization problems.

7.57.5 PROBLEMS

1. For the example problem in this section, determine the sensitivity of the optimal solution
to a change in c2 using the objective function 25x1 C c2x2.

2. Perform a complete sensitivity analysis (objective function coefficients and right-hand-
side values) of the wooden toy soldier problem in Section 7.2 (Problem 1).

3. Why is sensitivity analysis important in linear programming?

7.57.5 PROJECTS

1. With the rising cost of gasoline and increasing prices to consumers, the use of additives to
enhance performance of gasoline may be considered. Suppose there are two additives,
Additive 1 and Additive 2, and several restrictions must hold for their use: First, the
quantity of Additive 2 plus twice the quantity of Additive 1 must be at least 1=2 lb per
car. Second, 1 lb of Additive 1 will add 10 octane units per tank, and 1 lb of Additive 2
will add 20 octane units per tank. The total number of octane units added must not be
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less than 6. Third, additives are expensive and cost $1.53 per pound for Additive 1 and
$4.00 per pound for Additive 2.
a. Build a linear programming model and determine the quantity of each additive that

meets the restrictions and minimizes their cost.
b. Perform a sensitivity analysis on the cost coefficients and the resource values. Prepare

a letter discussing your conculsions from your sensitivity analysis.

2. A farmer has 30 acres onwhich to grow tomatoes and corn. Each 100 bushels of tomatoes
require 1000 gallons of water and 5 acres of land. Each 100 bushels of corn require 6000
gallons of water and 2.5 acres of land. Labor costs are $1 per bushel for both corn and
tomatoes. The farmer has available 30,000 gallons of water and $750 in capital. He
knows that he cannot sell more than 500 bushels of tomatoes or 475 bushels of corn. He
estimates a profit of $2 on each bushel of tomatoes and $3 on each bushel of corn.
a. How many bushels of each should he raise to maximize profits?
b. Next, assume that the farmer has the oppportunity to sign a nice contract with a

grocery store to grow and deliver at least 300 bushels of tomatoes and at least 500
bushels of corn. Should the farmer sign the contract? Support your recommendation.

c. Now assume that the farmer can obtain an additional 10,000 gallons ofwater for a total
cost of $50. Should he obtain the additional water? Support your recommendation.

3. Firestone, headquartered in Akron, Ohio, has a plant in Florence, South Carolina, that
manufactures two types of tires: SUV 225 radials and SUV 205 radials. Demand is high
because of the recent recall of tires. Each batch of 100 SUV 225 radial tires requires
100 gal of synthetic plastic and 5 lb of rubber. Each batch of 100 SUV 205 radial tires
requires 60 gal of synthetic plastic and 2.5 lb of rubber. Labor costs are $1 per tire
for each type of tire. The manufacturer has weekly quantities available of 660 gal of
synthetic plastic, $750 in capital, and 300 lb of rubber. The company estimates a profit
of $3 on each SUV 225 radial and $2 on each SUV 205 radial.
a. Howmany of each type of tire should the company manufacture in order to maximize

its profits?
b. Assume now that the manufacturer has the opportunity to sign a nice contract with a

tire outlet store to deliver at least 500 SUV 225 radial tires and at least 300 SUV 205
radial tires. Should the manufacturer sign the contract? Support your recommenda-
tion.

c. If the manufacturer can obtain an additional 1000 gal of synthetic plastic for a total
cost of $50, should he? Support your recommendation.

7.67.6 Numerical Search Methods

Consider the problem of maximizing a differentiable function f .x/ over some interval
.a; b/. Students of calculus will recall that if we compute the first derivative f .x/ and solve
f .x/ D 0 for x, we obtain the critical points off .x/. The second derivative testmay then be
employed to characterize the nature of these critical points. We also know that we may have
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to check the endpoints and points where the first derivative fails to exist. However, it may
be impossible to solve algebraically the equation resulting from setting the first derivative
equal to zero. In such cases, we can use a search procedure to approximate the optimal
solution.

Various search methods permit us to approximate solutions to nonlinear optimization
problems with a single independent variable. Two search methods commonly used are the
Dichotomous and Golden Section methods. Both share several features common to most
search methods.

A unimodal function on an interval has exactly one point where amaximumorminimum
occurs in the interval. If the function is known (or assumed to be) multimodal, then it must
be subdivided into separate unimodal functions. (In most practical problems, the optimal
solution is known to lie in some restricted range of the independent variable.)More precisely,
f .x/ is a unimodal functionwith an interior local maximumon an interval Œa; b� if for some
point x� on Œa; b�, the function is strictly increasing on Œa; x�� and strictly decreasing on
Œx�; b�. A similar statement holds for f .x/ being unimodal with an interior local minimum.
These concepts are illustrated in Figure 7.20.

f(x)

x
a b

f(x)

x
a b

f (x)

x
a b

a. Unimodal functions on the interval [a, b] b. A function that is not unimodal
on the interval [a, b] ©
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J Figure 7.20
Examples of unimodal functions

The unimodal assumption is important to find the subset of the interval Œa; b� that
contains the optimal point x to maximize (or minimize) f .x/.

The Search Method Paradigm
With most search methods, we divide the region Œa; b� into two overlapping intervals [a; x2]
and [x1; b] after placing two test points x1and x2 in the original interval Œa; b� according to
some criterion of our chosen searchmethod, as illustrated in Figure 7.21.We next determine
the subinterval where the optimal solution lies and then use that subinterval to continue the
search based on the function evaluations f .x1/ and f .x2/. There are three cases (illustrated
in Figure 7.22) in the maximization problem (the minimization problem is analogous) with
experiments x1 and x2 placed between Œa; b� according to the chosen search method (fully
discussed later):

Case 1: f .x1/ < f .x2/. Because f .x/ is unimodal, the solution cannot occur in the
interval [a; x1]. The solution must lie in the interval Œx2; b�.
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J Figure 7.21
Location of test points for
search methods
(overlapping intervals)
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J Figure 7.22
Cases where f.x1/ < f.x2/, f.x1/ > f.x2/, and f.x1/ D f.x2/

Case 2: f .x1/ > f .x2/. Because f .x/ is unimodal, the solution cannot occur in the
interval Œx2; b�. The solution must lie in the interval Œa; x2�.
Case 3: f .x1/ D f .x2/. The solution must lie somewhere in the interval (x1; x2).

Dichotomous Search Method
Assume we have a function f .x/ to maximize over a specified interval Œa; b�. The dichoto-
mous method computes the midpoint aCb

2
and then moves slightly to either side of the mid-

point to compute two test points: aCb

2
˙ ", where " is some very small real number. In

practice, the number " is chosen as small as the accuracy of the computational device will
permit, the objective being to place the two experimental points as close together as possible.
Figure 7.23 illustrates this procedure for a maximization problem. The procedure continues
until it gets within some small interval containing the optimal solution. Table 7.1 lists the
steps in this algorithm.

In this presentation, the number of iterations to perform is determined by the reduction
in the length of uncertainty desired. Alternatively, one may wish to continue to iterate until
the change in the dependent variable is less than some predetermined amount, such as �.
That is, continue to iterate until f .a/�f .b/ � �. For example, in an application in which
f .x/ represents the profit realized by producing x items, it might make more sense to stop
when the change in profit is less than some acceptable amount. To minimize a function
y D f .x/, either maximize �y or switch the directions of the signs in Steps 4a and 4b.
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J Figure 7.23
Dichotomous search
computes the two test
points from the midpoint of
the interval.
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Table 7.1 Dichotomous Search algorithm to maximize f.x/ over the interval
a � x � b

STEP 1 Initialize: Choose a small number " > 0, such as 0:01. Select a small t > 0,
between Œa; b�, called the length of uncertainty for the search. Calculate the number
of iterations n using the formula

.0:5/n D t=Œb � a�

STEP 2 For k D 1 to n, do Steps 3 and 4.

STEP 3

x1 D
�

aC b

2

�
� " and x2 D

�
aC b

2

�
C "

STEP 4 (For a maximization problem)
a. If f .x1/ � f .x2/, then let

a D a
b D x2
k D k C 1

Return to Step 3.

b. If f .x1/ < f .x2/, then let

b D b
a D x1
k D k C 1

Return to Step 3.

STEP 5 Let x� D aCb
2 and MAX D f .x�/.

STOP
© Cengage Learning
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EXAMPLE 1 Using the Dichotomous Search Method

Suppose we want to maximize f .x/ D �x2�2x over the interval�3 � x � 6. Assumewe
want the optimal tolerance to be less than 0:2. We arbitrarily choose " (the distinguishability
constant) to be 0:01. Next we determine the number n of iterations using the relationship
.0:5/n D 0:2=.6 � .�3//, or n ln.0:5/ D ln.0:2=9/, which implies that n D 5:49 (and we
round to the next higher integer, n D 6/. Table 7.2 gives the results for implementing the
search in the algorithm.

Table 7.2 Results of a Dichotomous Search for Example 1�

a b x1 x2 f .x1/ f .x2/

�3 6 1.49 1.51 �5:2001 �5:3001
�3 1.51 �0:755 �0:735 0.9400 0.9298
�3 �0:735 �1:8775 �1:8575 0.2230 0.2647
�1:8775 �0:735 �1:3163 �1:2963 0.9000 0.9122
�1:3163 �0:735 �1:0356 �1:0156 0.9987 0.9998
�1:0356 �0:735 �0:8953 �0:8753 0.9890 0.9845
�1:0356 �0:8753

© Cengage Learning
�The numerical results in this section were computed carrying the 13-place accuracy of the com-
putational device being used. The results were then rounded to 4 places for presentation.

The length of the final interval of uncertainty is less than the 0:2 tolerance initially
specified. From Step 5 we estimate the location of a maximum at

x� D �1:0356 � 0:8753

2
D �0:9555

with f .�0:9555/ D 0:9980. (Examining our table we see that f .�1:0156/ D 0:9998,
a better estimate.) We note that the number of evaluations n D 6 refers to the number
of intervals searched. (For this example, we can use calculus to find the optimal solution
f .�1/ D 1 at x D �1:/ J J J
Golden Section Search Method
The Golden Section Search Method is a procedure that uses the golden ratio. To better
understand the golden ratio, divide the interval Œ0; 1� into two separate subintervals of
lengths r and 1� r , as shown in Figure 7.24. These subintervals are said to be divided into
the golden ratio if the length of the whole interval is to the length of the longer segment as
the length of the longer segment is to the length of the smaller segment. Symbolically, this
can be written as 1=r D r=.1 � r/ or r2 C r � 1 D 0, because r > 1 � r in the figure.

r
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(1 − r)
0 1
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J Figure 7.24
Golden ratio using a line segment
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Solving this last equation gives the two roots

r1 D .
p

5 � 1/=2 and r2 D .�
p

5 � 1/=2

Only the positive root r1 lies in the given interval Œ0; 1�. The numerical value of r1 is
approximately 0:618 and is known as the golden ratio.

The Golden Section Method incorporates the following assumptions:

1. The function f .x/ must be unimodal over the specified interval Œa; b�.
2. The function must have a maximum (or minimum) value over a known interval of

uncertainty.
3. The method gives an approximation to the maximum rather than the exact maximum.

Themethodwill determine a final interval containing the optimal solution. The length of
the final interval can be controlled and made arbitrarily small by the selection of a tolerance
value. The length of the final interval will be less than our specified tolerance level.

The search procedure to find an approximation to the maximum value is iterative. It
requires evaluations of f .x/ at the test points x1 D a C .1 � r/.b � a/ and x2 D a C
r.b � a/ and then determines the new interval of search (Figure 7.25). If f .x1/ < f .x2/,
then the new interval is .x1; b/; if f .x1/ > f .x2/, then the new interval is .a; x2/, as in
the Dichotomous Search Method. The iterations continue until the final interval length is
less than the tolerance imposed, and the final interval contains the optimal solution point.
The length of this final interval determines the accuracy in finding the approximate optimal
solution point. The number of iterations required to achieve the tolerance length can be found
as the integer greater than k, where k D lnŒ.tolerance/=.b�a/�= lnŒ0:618�. Alternatively, the
method can be stopped when an interval Œa; b� is less than the required tolerance. Table 7.3
summarizes the steps of the Golden Section Search Method.

To minimize a function y D f .x/, either maximize �y or switch the directions of the
signs in Steps 4a and 4b. Note that the advantage of the Golden Section Search Method
is that only one new test point (and one evaluation of the function at the test point) must
be computed at each successive iteration, compared with two new test points (and two
evaluations of the function at those test points) for the Dichotomous Search Method. Using

J Figure 7.25
Location of x1 and x2 for the
Golden Section Search

x1 = a + 0.382 (b − a) x2 = a + 0.618 (b − a)
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Table 7.3 Golden Section Search Method to maximize f.x/ over the interval
a � x � b

STEP 1 Initialize: Choose a tolerance t > 0.

STEP 2 Set r D 0:618 and define the test points:

x1 D aC .1 � r/.b � a/

x2 D aC r.b � a/

STEP 3 Calculate f .x1/ and f .x2/.

STEP 4 (For a maximization problem) Compare f .x1/ with f .x2/:
(a) If f .x1/ � f .x2/, then the new interval is .x1; b/:

a becomes the previous x1.
b does not change.
x1 becomes the previous x2.
Find the new x2 using the formula in Step 2.

(b) If f .x1/ > f .x2/, then the new interval is .a; x2/:
a remains unchanged.
b becomes the previous x2.
x2 becomes the previous x1.
Find the new x1 using the formula in Step 2.

STEP 5 If the new interval [either .x1; b/ or .a; x2/� is less than the tolerance t specified, then stop.
Otherwise go back to Step 3.

STEP 6 Estimate x� as the midpoint of the final interval x� D aCb
2 and compute MAX D f .x�/.

STOP
© Cengage Learning

the Golden Section Search Method, the length of the interval of uncertainty is 61.8% of the
length of the previous interval of uncertainty. Thus, for large n, the interval of uncertainty is
reduced by approximately (0.618)n after n test points are computed. (Comparewith (0.5)n=2

for the Dichotomous Search Method.)

EXAMPLE 2 Using the Golden Section Search Method

Suppose wewant tomaximize f .x/ D �3x2C21:6xC1 over 0 � x � 25, with a tolerance
of t D 0:25. Determine the first two test points and evaluate f .x/ at each test point:

x1 D aC 0:382.b � a/! x1 D 0C 0:382.25 � 0/ D 9:55

and

x2 D aC 0:618.b � a/! x2 D 0C 0:618.25 � 0/ D 15:45

Then

f .x1/ D �66:3275 and f .x2/ D �381:3875
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Because f .x1/ > f .x2/, we discard all values in [x2; b� and select the new interval Œa; b� D
Œ0; 15:45�. Then x2 D 9:55, which is the previous x1, and f .x2/ D �66:2972. We must
now find the position of the new test point x1 and evaluate f .x1/:

x1 D 0C 0:382.15:45 � 0/ D 5:9017

f .x1/ D 23:9865

Again, f .x1/ > f .x2/, so the new interval Œa; b� is Œ0; 9:5592�. Then the new x2 D
5:9017 and f .x1/ D 23:9865. We find a new x1 and f .x1/:

x1 D 0C 0:382.9:55 � 0/ D 3:6475

f .x1/ D 39:8732

Because f .x1/ > f .x2/, we discard Œx2; b� and our new search interval is Œa; b� D
Œ0; 5:9017�. Then x2 D 3:6475, with f .x2/ D 39:8732. We find a new x1 and f .x1/:

x1 D 0C 0:382.5:9017 � 0/ D 2:2542

f .x1/ D 34:4469

Because f .x2/ > f .x1/, we discard [a, x1� and the new interval is Œa; b� D
Œ2:2542; 5:9017�. The new x1 D 3:6475, with f .x1/ D 39:8732. We find a new x2

and f .x2/:

x2 D 2:2545C .0:618/.5:9017 � 2:2542/ D 4:5085

f .x2/ D 37:4039

This process continues until the length of the interval of uncertainty, b � a, is less than the
tolerance, t D 0:25. This requires 10 iterations. The results of the Golden Section Search
Method for Example 2 are summarized in Table 7.4.

The final interval Œa; b� D Œ3:4442; 3:6475� is the first interval of our Œa; b� intervals
that is less than our 0:25 tolerance. The value of x that maximizes the given function over

Table 7.4 Golden Section Search Method results for Example 2

k a b x1 x2 f .x1/ f .x2/

0 0 25 9.5491 15.4509 �66:2972 �381:4479
1 0 15.4506 5.9017 9.5491 23.9865 �66:2972
2 0 9.5592 3.6475 5.9017 39.8732 23.9865
3 0 5.9017 2.2542 3.6475 34.4469 39.8732
4 2.2542 5.9017 3.6475 4.5085 39.8732 37.4039
5 2.2542 4.5085 3.1153 3.6475 39.1752 39.8732
6 3.1153 4.5085 3.6475 3.9763 39.8732 39.4551
7 3.1153 3.9763 3.4442 3.6475 39.8072 39.8732
8 3.4442 3.9763 3.6475 3.7731 39.8732 39.7901
9 3.4442 3.7731 3.5698 3.6475 39.8773 39.8732

10 3.4442 3.6475
© Cengage Learning
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the interval must lie within this final interval of uncertainty Œ3:4442; 3:6475�. We estimate
x� D .3:4442C 3:6475/=2D 3: 5459 and f .x�/ D 39:8712. The actual maximum, which
in this case can be found by calculus, occurs at x� D 3:60, where f .3:60/ D 39:88.J J J

As illustrated, we stopped when the interval of uncertainty was less than 0.25. Alter-
natively, we can compute the number of iterations required to attain the accuracy specified
by the tolerance. Because the interval of uncertainty is 61.8% of the length of the interval
of uncertainty at each stage, we have

length of final interval (tolerance t )
length of initial interval

D 0:618k

0:25

25
D 0:618k

k D ln 0:01

ln 0:618
D 9:57; or 10 iterations

In general, the number of iterations k required is given by

k D ln.tolerance=.b � a//

ln 0:618

EXAMPLE 3 Model-Fitting Criterion Revisited

Recall the curve-fitting procedure from Chapter 3 using the criterion

Minimize
X
jyi � y.xi/j

Let’s use the Golden Section Search Method to fit the model y D cx2 to the following data
for this criterion:

x 1 2 3

y 2 5 8

The function to be minimized is

f .c/ D j2 � cj C j5 � 4cj C j8 � 9cj

and we will search for an optimal value of c in the closed interval Œ0; 3�. We choose
a tolerance t D 0:2. We apply the Golden Section Search Method until an interval of
uncertainty is less than 0.2. The results are summarized in Table 7.5.

The length of the final interval is less than 0:2.We can estimate c� D .0:8115C 0:9787/=
2 D 0:8951, with f .0:8951/ D 2:5804. In the problem set, we ask you to show analytically
that the optimal value for c is c D 8

9
� 0:8889. J J J
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Table 7.5 Find the best c to minimize the sum of the absolute deviations for
the model y D cx 2.

Iteration k a b c1 c2 f .c1/ f .c2/

1 0 3 1.1459 1.8541 3.5836 11.2492
2 0 1.8541 0.7082 1.1459 5.0851 3.5836
3 0.7082 1.8541 1.1459 1.4164 3.5836 5.9969
4 0.7082 1.4164 0.9787 1.1459 2.9149 3.5836
5 0.7082 1.1459 0.8754 0.9787 2.7446 2.9149
6 0.7082 0.9787 0.8115 0.8754 3.6386 2.7446

0.8115 0.9787
© Cengage Learning

EXAMPLE 4 Optimizing Industrial Flow

Figure 7.26 represents a physical system engineers might need to consider for an industrial
flow process. As shown, let x represent the flow rate of dye into the coloring process of
cotton fabric. Based on this rate, the reaction differs with the other substances in the process
as evidenced by the step function shown in Figure 7.26. The step function is defined as

f .x/ D




2C 2x � x2 for 0 < x � 3

2

�x C 17

4
for

3

2
< x � 4

The function defining the process is unimodal. The company wants to find the flow rate
x that maximizes the reaction of the other substances f .x/. Through experimentation the
engineers have found that the process is sensitive to within about 0:020 of the actual value
of x. They have also found that the flow is either off (x D 0) or on (x > 0). The process
will not allow for turbulent flow that occurs above x D 4 for this process. Thus, x � 4 and
we use a tolerance of 0:20 to maximize f .x/ over Œ0; 4�. Using the Golden Section Search

J Figure 7.26
Industrial flow process
function

f (x)

f (x) = 2 + 2x − x2

f (x) =  − x +

x

3

2

1

1 3
–
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Method, we locate the first two test points,

x1 D 0C 4.0:382/ D 1:5279

x2 D 0C 4.0:618/ D 2:4721

and evaluate the function at the test points,

f .x1/ D 2:7221

f .x2/ D 1:7779

The results of the search are given in Table 7.6.

Table 7.6 Results of Golden Section Search Method
for Example 4

a b x1 x2 f .x1/ f .x2/

0 4 1.5279 2.4721 2.7221 1.7779
0 2.4721 0.9443 1.5279 2.9969 2.7221
0 1.5279 0.5836 0.9443 2.8266 2.9969
0.5836 1.5279 0.9443 1.1672 2.9969 2.9720
0.5836 1.1672 0.8065 0.9443 2.9626 2.9969
0.8065 1.1672 0.9443 1.0294 2.9969 2.9991
0.9443 1.1672 1.0294 1.0820 2.9991 2.9933
0.9443 1.0820
© Cengage Learning

We stop because .1:0820 � 0:9443/ < 0:20. The midpoint of the interval is 1:0132,
where the value of the function is 2:9998. In the problem set, you are asked to show
analytically that a maximum value of f .x�/ D 3 occurs at x D 1. J J J

7.67.6 PROBLEMS

1. Use the Dichotomous Search Method with a tolerance of t D 0:2 and " D 0:01.
a. Minimize f .x/ D x2 C 2x, �3 � x � 6

b. Maximize f .x/ D �4x2 C 3:2x C 3, �2 � x � 2

2. Use the Golden Section Search Method with a tolerance of t D 0:2.
a. Minimize f .x/ D x2 C 2x, �3 � x � 6

b. Maximize f .x/ D �4x2 C 3:2x C 3, �2 � x � 2

3. Use the curve-fitting criterion to minimize the sum of the absolute deviations for the
following models and data set:
a. y D ax

b. y D ax2

c. y D ax3
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x 7 14 21 28 35 42

y 8 41 133 250 280 297

4. For Example 2, show that the optimal value of c is c� D 8

9
. Hint: Apply the definition

of the absolute value to obtain a piecewise continuous function. Then find the minimum
value of the function over the interval Œ0; 3�.

5. For Example 3, show that the optimal value of x is x� D 1.

7.67.6 PROJECTS

1. Fibonacci Search—One of the more interesting search techniques uses the Fibonacci
sequence. This searchmethod can be employed even if the function is not continuous. The
method uses the Fibonacci numbers to place test points for the search. These Fibonacci
numbers are defined as follows:F0DF1D1 andFnDFn�1CFn�2, for nD2; 3; 4; : : : ;
yielding the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 510, 887, 1397,
and so forth.
a. Find the ratio between successive Fibonacci numbers using the preceding sequences.

Then find the numerical limit as n gets large. How is this limiting ratio related to the
Golden Section Search Method?

b. Research and make a short presentation on the Fibonacci Search Method. Present
your results to the class.

2. Methods Using Derivatives: Newton’s Method—One of the best-known interpolation
methods is Newton’s Method, which exploits a quadratic approximation to the function
f .x/ at a given point x1. The quadratic approximation q is given by

q.x/ D f .x1/C f 0.x1/.x � x1/C 1

2
f 00.x1/.x � x1/2

The point x2 will be the point where q0 equals zero. Continuing this procedure,

xkC1 D xk � Œf 0.xk/=f 00.xk/�

for k D 1; 2; 3; : : : : This procedure is terminated when either jxkC1 � xkj < " or
jf 0.xk/j < ", where " is some small number. This procedure can be applied to twice-
differentiable functions only if f 00.x/ never equals zero.
a. Starting with x D 4 and a tolerance of " D 0:01, use Newton’s Method to minimize

f .x/ D x2 C 2x, over �3 � x � 6.
b. Use Newton’s Method to minimize

f .x/ D
�

4x3 � 3x4 for x > 0
4x3 C 3x4 for x < 0

Let the tolerance be " D 0:01 and start with x D 0:4.
c. Repeat part (b), starting at x D 0:6. Discuss what happens when you apply the

method.
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Introduction

Themanager of a recreational softball team has 15 players on her roster: Al, Bo, Che, Doug,
Ella, Fay, Gene, Hal, Ian, John, Kit, Leo, Moe, Ned, and Paul. She has to pick a starting
team, which consists of 11 players to fill 11 positions: pitcher (1), catcher (2), first base (3),
second base (4), third base (5), shortstop (6), left field (7), left center (8), right center (9),
right field (10) and additional hitter (11). Table 8.1 summarizes the positions each player
can play.

Table 8.1 Positions players can play

Al Bo Che Doug Ella Fay Gene Hal Ian John Kit Leo Moe Ned Paul

2; 8 1; 5; 7 2; 3 1; 4; 5; 6; 7 3; 8 10; 11 3; 8; 11 2; 4; 9 8; 9; 10 1; 5; 6; 7 8; 9 3; 9; 11 1; 4; 6; 7 9; 10

© Cengage Learning

Can you find an assignment where all of the 11 starters are in a position they can play?
If so, is it the only possible assignment? Can you determine the ‘‘best" assignment? Suppose
players’ talents were as summarized in Table 8.2 instead of Table 8.1. Table 8.2 is the same
as Table 8.1, except that now Hal can’t play second base (position 4). Now can you find a
feasible assignment?

Table 8.2 Positions players can play (updated)

Al Bo Che Doug Ella Fay Gene Hal Ian John Kit Leo Moe Ned Paul

2; 8 1; 5; 7 2; 3 1; 4; 5; 6; 7 3; 8 10; 11 3; 8; 11 2; 9 8; 9; 10 1; 5; 6; 7 8; 9 3; 9; 11 1; 4; 6; 7 9; 10

© Cengage Learning

This is just one of an almost unlimited number of real-world situations that can be
modeled using a graph. A graph is a mathematical object that we will learn how to leverage
in this chapter in order to solve relevant problems.

We won’t attempt to be comprehensive in our coverage of graphs. In fact, we’re going
to consider only a few ideas from the branch of mathematics known as graph theory.

298
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8.18.1 Graphs as Models

So far in this book we have seen a variety of mathematical models. Graphs are mathematical
models too. In this section, we will look at two examples.

The Seven Bridges of Königsberg
In his 1736 paper Solutio problematic ad geometriam situs pertinenis (‘‘The solution to a
problem pertinent to the geometry of places"), the famous Swiss mathematician Leonhard
Euler (pronounced ‘‘Oiler") addressed a problem of interest to the citizens of Königsberg,
Prussia. At the time, there were seven bridges crossing various branches of the river Pregel,
which runs through the city. Figure 8.1 is based on the diagram that appeared in Euler’s
paper. The citizens ofKönigsberg enjoyedwalking through the city—and specifically across
the bridges. They wanted to start at some location in the city, cross each bridge exactly once,
and end at the same (starting) location. Do you think this can be done? Euler developed a
representation, or mathematical model, of the problem by using a graph. With the help of
this model, he was able to answer the walkers’ question.

J Figure 8.1
The seven bridges
of Königsberg
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Euler’s Problem Can the seven bridges be traversed exactly once starting and ending at
the same place? Try to answer this question yourself before reading on.

There are really two problems to solve here. One is transforming the map in Figure 8.1
into a graph. In this sense of the word, a graph is a mathematical way of describing
relationships between things. In this case, we have a set of bridges and a set of land masses.
We also have a relationship between these things; that is, each bridge joins exactly two
specific land masses. The graph in Figure 8.2 is a mathematical model of the situation in
Königsberg in 1736 with respect to what we can call the bridge-walking problem.

But Figure 8.2 doesn’t answer our original question directly. That brings us to the
second problem. Given a graph that models the bridges and land masses, how can you tell
whether it is possible to start on some land mass, cross every bridge exactly once, and end
up where you started? Does it matter where you started? Euler answered these questions in
1736, and if you think about it for a while, you might be able to answer them too.

Euler actually showed that it was impossible to walk through Königsberg in the stated
manner, regardless of where the walker started. Euler’s solution answered the bridge-
walking question not only for Königsberg but also for every other city on Earth! In fact, in a
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J Figure 8.2
Graph model of
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sense he answered it for every possible city that might ever be built that has land masses and
bridges that connect them. That’s because he chose to solve the following problem instead.

Euler’s Problem (restated) Given a graph, under what conditions is it possible to find a
closed walk that traverses every edge exactly once?We will call graphs for which this kind
of walk is possible Eulerian.

Which graphs are Eulerian? If you think for a moment, it is pretty clear that the graph
has to be connected—that is, there must be a path between every pair of vertices. Another
observation you might make is that whenever you walk over bridges between land masses
and return to the starting point, the number of times you enter a land mass is the same as
the number of times you leave it. If you add the number of times you enter a specific land
mass to the number of times you leave it, you therefore get an even number. This means,
in terms of the graph that represents the bridges and land masses, that an even number of
edges incident with each vertex is needed. In the language of graph theory, we say that
every vertex has even degree or that the graph has even degree.

Thus we have reasoned that Eulerian graphs must be connected and must have even
degree. In other words, for a graph to be Eulerian, it is necessary that it both be connected
and have even degree. But it is also true that for a graph to be Eulerian, it is sufficient
that it be connected with even degree. Establishing necessary and sufficient conditions
between two concepts—in this case, ‘‘all Eulerian graphs’’ and ‘‘all connected graphs with
even degree’’—is an important idea in mathematics with practical consequences. Once we
establish that being connected with even degree is necessary and sufficient for a graph to
be Eulerian, we need only model a situation with a graph, and then check to see whether
the graph is connected and each vertex of the graph has even degree. Almost any textbook
on graph theory will contain a proof of Euler’s result; see 8.2 Further Reading.

Graph Coloring
Our second example is also easy to describe.

Four-Color Problem Given a geographic map, is it possible to color it with four colors
so that any two regions that share a common border (of length greater than 0) are assigned
different colors? Figure 8.3 illustrates this problem.
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J Figure 8.3
United States map

The four-color problem can be modeled with a graph. Figure 8.4 shows a map with a
vertex representing each state in the continental United States and an edge between every
pair of vertices corresponding to states that share a common (land) border. Note that Utah
and New Mexico, for example, are not considered adjacent because their common border
is only a point.
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J Figure 8.4
United States map with graph superimposed
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J Figure 8.5
Graph-coloring problem

Next, Figure 8.5 shows the graph only. Now the original question we posed about the
map of the United States has been transformed into a question about a graph.

Four-Color Problem (restated) Using only four colors, can you color the vertices of a
graph drawn without edges crossing so that no vertex gets the same color as an adjacent
vertex? Try it on the graph in Figure 8.5. We’ll call a coloring proper if no two adjacent
vertices share the same color. Assuming you can find a proper four coloring of the graph,
it is very easy to color the map accordingly.

It is easy to see that a graph drawn without edges crossing (we’ll call such a graph a
plane graph) can be properly vertex colored with at most six colors. To see this, we will
suppose instead that there is a plane graph that requires more than six colors to properly
color its vertices. Now consider a smallest (in terms of number of vertices) of all such
graphs; we’ll call it G. We need to make use of the fact that every plane graph has a vertex
with five or fewer incident edges (you can read about this fact in almost any graph theory
textbook).

Let’s let x be a vertex with five or fewer incident edges in G. Consider a new graph H

that is formed by deleting x and all of its (at most five) incident edges. The new graph H

is strictly smaller than G, so by hypothesis it must be possible to properly color its vertices
with six colors. But now observe what this means for G. Apply the coloring used in H to
color all of the vertices of G except for x. Since x has at most five neighbors in G, there are
at most five colors used by the neighbors of x. This leaves the sixth color free to be used
on x itself. This means we have properly colored the vertices of G using six colors. But
in the previous paragraph we said G was a graph that required more than six colors. This
contradiction means that our hypothesized plane graph G that requires more than six colors
to properly color its vertices cannot exist. This establishes the fact that all plane graphs can
be properly vertex colored using six (or fewer) colors.

The result of the previous paragraph has been known for over 100 years. Cartographers
and others knew that maps that arose in practice (i.e., maps of actual places on the earth)
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could all be properly colored with only four colors, but there was no mathematical proof
that every plane graph could be colored in this way. In 1879, the English mathematician
Alfred Kempe published a proof of the so-called Four Color Theorem, but an error in his
proof was discovered in 1890 that invalidated Kempe’s theorem.

It wasn’t until the dawn of the information age that a valid proof of the Four Color
Theorem was published by Appel, Haken, and Koch in 1977. There was a good reason for
the timing—the proof actually uses a computer! It relies on computer analysis of a very
large number of possible cases called ‘‘configurations.’’ So from 1890 until the 1970s Four
Color Theorem was known as the Four Color Conjecture; in fact it was one of the most
important and well-known mathematical conjectures of the 20th century.

Figure 8.6 shows a solution to the four-color problem on the graph in Figure 8.5.

J Figure 8.6
Graph-coloring solution
(colors represented by
shapes)
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The four-color problem is really a special case of a more general graph-coloring prob-
lem: Given a graph, find the smallest number of colors needed to color the vertices properly.
Graph coloring turns out to be a good model for a large variety of real-world problems. We
explore a few of these below.

Applications of Graph Coloring One problem typically modeled with graph coloring
is final exam scheduling. Suppose that a university has n courses in which a final exam will
be given and that it desires to minimize the number of exam periods used, while avoiding
‘‘conflicts.’’ A conflict happens when a student is scheduled for two exams at the same time.
We can model this problem using a graph as follows. We start by creating a vertex for each
course. Then we draw an edge between two vertices whenever there is a student enrolled in
both courses corresponding to those vertices. Now we solve the graph-coloring problem;
that is, we properly color the vertices of the resulting graph in a way that minimizes the
number of colors used. The color classes are the time periods. If some vertices are colored
blue in a proper coloring, then there can be no edges between any pair of them. This means
that no student is enrolled in more than one of the classes corresponding to these vertices.
Then each color class can be given its own time slot.
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8.18.1 PROBLEMS

1. Solve the softball manager’s problem (both versions) from the Introduction to this
chapter.

2. The bridges and land masses of a certain city can be modeled with graphG in Figure 8.7.

J Figure 8.7
Graph G
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a. Is G Eulerian? Why or why not?
b. Suppose we relax the requirement of the walk so that the walker need not start and

end at the same land mass but still must traverse every bridge exactly once. Is this
type of walk possible in a city modeled by the graph in Figure 8.7? If so, how? If not,
why not?

3. Find a political map of Australia. Create a graph model where there is a vertex for
each of the six mainland states (Victoria, South Australia, Western Australia, Northern
Territory, Queensland, and New South Wales) and an edge between two vertices if
the corresponding states have a common border. Is the resulting graph Eulerian? Now
suppose you add a seventh state (Tasmania) that is deemed to be adjacent (by boat)
to South Australia, Northern Territory, Queensland, and New South Wales. Is the new
graph Eulerian? If so, find a ‘‘walkabout" (a list of states) that shows this.

4. Can you think of other real-world problems that can be solved using techniques from
the section about the bridges of Königsberg?

5. Consider the two political maps of Australia described in Problem 3.What is the smallest
number of colors needed to color these maps?

6. Consider the graph of Figure 8.8.

J Figure 8.8
Graph for Problem 6
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a. Color the graph with three colors.
b. Now suppose that vertices 1 and 6 must be colored red. Can you still color the graph

with three colors (including red)?
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7. TheMathematics Department at a small college plans to schedule final exams. The class
rosters for all the upper-class math courses are listed in Table 8.3. Find an exam schedule
that minimizes the number of time periods used.

Table 8.3 Mathematics course rosters at Sunnyvale State

Course Students

math 350 Jimi B. B. Eric
math 365 Ry Jimmy P. Carlos
math 385 Jimi Chrissie Bonnie Brian
math 420 Bonnie Robin Carlos
math 430 Ry B. B. Buddy Robin
math 445 Brian Buddy
math 460 Jimi Ry Brian Mark
© Cengage Learning

8.18.1 PROJECT

1. Following a major storm, an inspector must walk down every street in a region to check
for damaged power lines. Suppose the inspector’s region can be modeled with the fol-
lowing graph. Vertices represent intersections, and edges represent streets. The numbers
on the edges are called edge weights; they represent the distance the inspector must
travel to inspect the corresponding street. How can the inspector check all the streets in
a way that minimizes the total distance traveled? Hint: This has something to do with
the Seven Bridges of Königsberg.

J Figure 8.9
Graph for Project 1
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8.1 Further Reading
Appel, K., W. Haken, & J. Koch. ‘‘Every planar map is four-colorable.’’ Illinois J. Math., 21(1977);

429–567.
Chartrand, G., & P. Zhang. Introduction to Graph Theory. New York: McGraw-Hill, 2005.
The Four Color Theorem (website). http://people.math.gatech.edu/�thomas/FC/fourcolor.html.
Robertson, N., D. Sanders, P. Seymour, & R. Thomas. ‘‘The four colour theorem.’’ J. Combin. Theory

Ser. B., 70 (1997): 2–44.

8.28.2 Describing Graphs

Before we proceed, we need to develop some basic notation and terminolgy that we can use
to describe graphs. Our intent is to present just enough information to begin our discussion
about modeling with graphs.

As we have noted, a graph is a mathematical way of describing relationships between
things. A graph G consists of two sets: a vertex set V.G/ and an edge set E.G/. Each ele-
ment ofE.G/ is a pair of elements ofV.G/. Figure 8.10 shows an example.Whenwe refer to
the vertices of a graph, we oftenwrite them using set notation. In our examplewewouldwrite
V.G/ D fa; b; c; d; e; f; g; h; ig. The edge set is often described as a set of pairs of vertices;
for our example we could write E.G/ D fac; ad; af; bd; bg; ch; d i; ef; ei; fg; gh; hig.
Vertices don’t have to be labeled with letters. They can instead be labeled with numbers,
or the names of things they represent, and so forth. Note that when we draw a graph, we
might decide to draw it so that edges cross (or we might be forced to do so by the nature of
the graph). Places on the paper where edges cross are not necessarily vertices; the example
of Figure 8.10 shows a crossing point where there is no vertex.

When an edge ij has a vertex j as one of its endpoints, we say edge ij is incidentwith
vertex j . For example, in the graph of Figure 8.10, edge bd is incident with vertex b but
not with vertex a. When there is an edge ij between two vertices, we say vertices i and j

are adjacent. In our example, vertices c and h are adjacent but a and b are not. The degree
of a vertex j , deg.j /, is the number of incidences between j and an edge. In our example,
deg.b/ D 2 and deg.a/ D 3. As we saw in the previous section, a vertex v is said to have

J Figure 8.10
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even degree if deg.v/ is an even number (a number divisible by 2). Similarly, a graph is
said to have even degree if every vertex in the graph has even degree.

Because graphs are often described using sets, we need to introduce some set notation.
If S is a set, then jS j denotes the number of elements in S . In our example, jV.G/j D 9 and
jE.G/j D 12. We use the symbol 2 as shorthand for ‘‘is an element of’’ and … for ‘‘is not
an element of.’’ In our example, c 2 V.G/ and bd 2 E.G/, but m … V.G/ and b … E.G/

(because b is a vertex and not an edge).
We will also use summation notation. The Greek letter

P
(that’s a capital letter sigma)

is used to represent the idea of adding things up. For example, suppose we have a set
Q D fq1; q2; q3; q4g D f1; 3; 5; 7g. We can succinctly express the idea of adding up the
elements of Q using the summation symbol like this:

X

qi 2Q

qi D 1C 3C 5C 7 D 16

If we were reading the previous line aloud, we would say, ‘‘The sum of q sub i , for all q

sub i in the set Q, equals 1 plus 3 plus 5 plus 7, which equals 16.’’ Another way to express
the same idea is

4X

iD1

qi D 1C 3C 5C 7 D 16

In this case, we say, ‘‘The sum, for i equals 1 to 4, of q sub i , equals 1 plus 3 plus 5 plus 7,
which equals 16.’’ We can also perform the summation operation on other functions of q.
For example,

4X

iD1

�
q

2
i C 4

�
D .1

2 C 4/C .3
2 C 4/C .5

2 C 4/C .7
2 C 4/ D 100

8.28.2 PROBLEMS

1. Consider the graph in Figure 8.11.
a. Write down the set of edges E.G/.
b. Which edges are incident with vertex b?
c. Which vertices are adjacent to vertex c?
d. Compute deg.a/.
e. Compute jE.G/j.

2. Suppose r1 D 4, r2 D 3, and r3 D 7.

a. Compute
3P

iD1

ri .

b. Compute
3P

iD1

r
2
i .

c. Compute
3P

iD1

iri .
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J Figure 8.11
Graph for Problem 1
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3. At a large meeting of business executives, lots of people shake hands. Everyone at the
meeting is asked to keep track of the number of times she or he shook hands, and as the
meeting ends, these data are collected. Explain why you will obtain an even number if
you add up all the individual handshake numbers collected. What does this have to do
with graphs? Express this idea using the notation introduced in this section.

8.2 Further Reading
Buckley, F., & M. Lewinter. A Friendly Introduction to Graph Theory. Upper Saddle River, NJ:

Pearson Education, 2003.
Chartrand, G., & P. Zhang. Introduction to Graph Theory. New York: McGraw Hill, 2005.
Chung, F., & R. Graham. Erdös on Graphs. Wellesley, MA: A. K. Peters, 1998.
Diestel, R. Graph Theory. Springer Verlag, 1992.
Goodaire, E., & M. Parmenter. Discrete Mathematics with Graph Theory, 2nd ed. Upper Saddle

River, NJ: Prentice Hall, 2002.
West, D. Introduction to Graph Theory, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2001.

8.38.3 Graph Models

Bacon Numbers
Youmay have heard of the popular trivia game ‘‘Six Degrees of Kevin Bacon.’’ In this game,
players attempt to connect an actor to Kevin Bacon quickly by using a small number of
connections. A connection in this context is a movie in which two actors you are connecting
both appeared. The Bacon number of an actor is the smallest number of connections needed
to connect him or her with Kevin Bacon. The Bacon number problem is the problem of
computing Bacon numbers. An instance of the Bacon number problem is computing the
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Bacon number for a specific actor. For example, consider Elvis Presley. Elvis was in the
movieChange of Habitwith Ed Asner in 1969, and Ed Asner was in JFKwith Kevin Bacon
in 1991. This means that Elvis Presley’s Bacon number is at most 2. Because Elvis never
appeared in a movie with Kevin Bacon, his Bacon number can’t be 1, so we know Elvis
Presley’s Bacon number is 2.

For another example, consider Babe Ruth, the New York Yankees baseball star of the
1930s. ‘‘The Babe’’ actually had a few acting parts, and he has a Bacon number of 3. He was
in The Pride of the Yankees in 1942 with Teresa Wright; Teresa Wright was in Somewhere
in Time (1980) with JoBe Cerny; and JoBe Cerny was in Novocaine (2001) with Kevin
Bacon. How can we determine the Bacon numbers of other actors? By now, you won’t be
surprised to hear that the problem can be modeled using a graph.

Tomodel the problem of determining an actor’s Bacon number, letG D .V .G/; E.G//

be a graph with one vertex for each actor who ever played in a movie (here we use the
word actor in the modern sense to include both sexes). There is an edge between vertices
representing two actors if they appeared together in a movie.

We should pause for amoment to consider some practical aspects of the resulting graph.
For one thing, it is enormous! The Internet Movie Database (www.imdb.com) lists over a
million actors—meaning there are over a million vertices in the graph—and over 300,000
movies. There is a potential new edge for every distinct pair of actors in a movie. For
example, consider a small movie with 10 actors. Assuming these actors have not worked
together on another movie, the first actor’s vertex has 9 new edges going to the other
9 actors’ vertices. The second actor’s vertex will have 8 new edges, since we don’t want to
double-count the connection between the first and second actors. The pattern continues, so
this single movie creates 9C 8C 7C � � �C 1 D 45 new edges. In general, a movie with
n actors has the potential to add n.n�1/

2
edges to the graph.We say ‘‘potential’’ to acknowledge

the possibility that some of the n actors have appeared together in another movie. Of course,
the total number of vertices in the graph grows too, because the list of actors who have
appeared in a movie grows over time.

Despite the size of the associated graph, solving the Bacon number problem for a given
actor is simple in concept. You just need to find the length of a shortest path in the graph
from the vertex corresponding to your actor to the vertex corresponding to Kevin Bacon.
Note that we said a shortest path, not the shortest path. The graph might have several paths
that are ‘‘tied’’ for being the shortest. We consider the question of finding a shortest path
between two vertices in Section 8.4.

The Bacon number graph is just one of a broader class ofmodels called social networks.
A social network consists of a set of individuals, groups, or organizations and certain social
relationships between them. These networks can be modeled with a graph. For example, a
friendship network is a graph where the vertices are people and there is an edge between
two people if they are friends. Once a social network model is constructed, a variety of
mathematical techniques can be applied to gain insight into the situation under study. For
example, a recent HarvardMedical School study used friendship networks to investigate the
prevelance of obesity in people. The investigators found that having fat friends is a strong
predictor of obesity. That is, people with obese friends aremore likely to be obese themselves
than are people without obese friends. There are many other social relationships that could
be modeled and then analyzed in this way. Powerful computational tools have recently been
developed to keep track of and analyze huge social networks. This sort of analysis is a part
of an emerging field called network science that may shed new light onmany old problems.
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Fitting a Piecewise Linear Function to Data
Suppose you have a collection of data p1; p2; : : : ; pn; where each pi is an ordered pair
.xi ; yi/. Further suppose that the data are ordered so that x1 � x2 � � � � � xn. You could
plot these data by thinking of each pi as a point in the xy-plane. A small example with the
data set S D f.0; 0/; .2; 5/; .3; 1/; .6; 4/; .8; 10/; .10; 13/; .13; 11/g is given in Figure 8.12.

J Figure 8.12
Data example
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There are many applications where a piecewise linear function that goes through some
of the points is desired. On the one hand, we could build our model to go through just the
first and last points. To do this, we simply draw a line from the first point p1 D .x1; y1/ to
the last point pn D .xn; yn/, obtaining the model

y D yn � y1

xn � x1

.x � x1/C y1 (8.1)

Figure 8.13 shows Model (8.1) displayed on the data.

J Figure 8.13
Data with Model (8.1)
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On the other hand, we could draw a line segment from .x1; y1/ to .x2; y2/, another from
.x2; y2/ to .x3; y3/, and so forth, all the way to .xn; yn/. There are n � 1 line segments in
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all, and they can be described as follows:

y D yiC1 � yi

xiC1 � xi

.x � xi/C yi for xi � x � xiC1 (8.2)

where i D 1; 2; : : : ; n � 1. Figure 8.14 shows the data with Model (8.2).

J Figure 8.14
Data with Model (8.2)
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There is a trade-off between these two extreme choices. Model (8.1) is simple to obtain
and simple to use, but it might miss some of the points by a great amount. Model (8.2)
doesn’t miss any points, but it is complicated, especially if the data set contains many
points—that is, when n is large.

One option is to build a model that uses more than the one line segment present in
Model (8.1), but fewer than the n � 1 line segments used in Model (8.2). Suppose we
assume that the model at least goes through the first point and the last point (in this case
p1 and p7, respectively). One possible model for the specific data set given is to choose to
go through points p1 D .0; 0/; p4 D .6; 4/; p5 D .8; 10/; and p7 D .13; 11/. Here is an
algebraic description of this idea:

y D



2

3
x for 0 � x < 6

3.x � 6/C 4 for 6 � x < 8
1

5
.x � 8/C 10 for 8 � x � 13

(8.3)

A graphical interpretation of the same idea appears in Figure 8.15.
Now which model is best? There isn’t a universal answer to that question; the situation

and context must dictate which choice is best. We can, however, develop a framework for
analyzing how good a given model is. Suppose there is a cost associated with having the
model not go through a given point. In this case, we say the model ‘‘misses" that point.
There are many ways to formalize this idea, but one natural way is to use the least-squares
criteria discussed in Chapter 3. To capture the idea of a trade-off, there also needs to be a
cost associated with each line segment that we use in our model. Thus Model (8.1) has a
relatively high cost for missing points, but a minimum cost for using line segments. Model
(8.2) has a minimum cost for missing points (in fact that cost is 0!) but has the largest
reasonable cost for line segments.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_08_ch08_p298-338 January 23, 2013 19:40 312

312 Chapter 8 Modeling Using Graph Theory

J Figure 8.15
Data with Model (8.3)
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Let’s be a little more specific and see how we can find the best possible model. First
recall that we always go through p1 and pn. So we must decide which of the other points
p2; p3; : : : ; pn�1 we will visit. Suppose we are considering going directly from p1 to p4,
as we did in Model (8.3). What is the cost of this decision? We have to pay the fixed cost
of adding a line segment to our model. Let’s use ˛ to represent that cost parameter. We also
have to pay for all the points wemiss along theway.Wewill use the notationfi;j to represent
the line segment from pi to pj . In Model (8.3), f1;4.x/D 2

3
x and f4;5.x/D3.x � 6/C 4,

because those are the algebraic descriptions of the line segments going from p1 to p4 and
from p4 to p5, respectively. Accordingly, we can use f to compute the y value associated
with a specific part of the model. For example, f1;4.x4/ D 2

3
x4 D 2

3
.6/ D 4: This isn’t

surprising. Recall that p4 D .x4; y4/ D .6; 4/, so we expect f1;4.x4/ to equal 4 because we
have chosen amodel that goes throughp4. On the other hand, f1;4.x3/ D 2

3
x3 D 2

3
.3/ D 2,

but y3 D 1, so our line drawn from p1 to p4 misses p3. In fact, the amount it misses by, or
the error, is the absolute difference between f1;4.x3/ and y3, which is j2�1j D 1. To avoid
some of the complexities of dealing with the absolute value function, we will square these
errors, as we did in Chapter 3. When we chose to skip points p2 and p3 in Model (8.3), we
did so believing that it was reasonable to pay the price of missing these points in exchange
for using only one line segment on the interval from x1 to x4. The standard least-squares
measure of the extent to which we missed points on this interval is

4X

kD1

.f1;4.xk/ � yk/
2 (8.4)

The expression 8.4 simply adds up the squared vertical distances, which are the squared
errors, between the line segment f1;4 and the original data points. It does this for each point
p1; p2; p3, and p4. Table 8.4 shows how the sum of squared errors is used to compute the
value of (8.4).
Thus

4X

kD1

.f1;4.xk/ � yk/
2 D 0C 121

9
C 1C 0 D 130

9
� 14:4444
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Table 8.4 Computing the sum of squared errors for (8.4)

k xk f1;4.xk/ yk .f1;4.xk/ � yk/
2

1 0 0 0 0

2 2
4
3 5

121
9

3 3 2 1 1

4 6 4 4 0

© Cengage Learning

Verbally, it means that the line that goes from p1 D .0; 0/ to p4 D .6; 4/ (we call that line
f1;4) doesn’t miss p1 at all, misses p2 by 11

3
units (note that

�
11
3

�2D 121
9

), misses p3 by
1 unit (as we saw in the previous paragraph), and doesn’t missp4. The total of 130

9
� 14:4444

is a measure of the extent to which f1;4 fails to accurately model the behavior of the data we
have between the first and fourth points.

Although the sum of the squared errors may not describe the ‘‘cost’’ of missing the
points along the way, we can scale the sum so that it does. We will use ˇ to represent the
cost per unit of summed squared errors. The modeler can choose a value of ˇ that reflects
his or her aversion to missing points, also considering the extent to which they are missed.
Similarly, we can let ˛ be the fixed cost associated with each line segment. A model with
only one line segment will pay the cost ˛ once, and a model with, say, five line segments
will pay ˛ five times. Then the total cost of the portion of the model going from p1 to p4 is

˛ C ˇ

4X

kD1

.f1;4.xk/ � yk/
2 (8.5)

If we choose parameter values ˛ D 10 and ˇ D 1, then the total cost of the model over
the interval from p1 to p4 is

˛ C ˇ

4X

kD1

.f1;4.xk/ � yk/
2 D 10C 1

130

9
� 24:4444 (8.6)

It is easy, though somewhat tedious, to employ this same procedure for the other
possible choices for our model. Building on what we have already done, we could easily
compute the cost associated with the portion of our model that goes from p4 to p5. It is 10

because all we are paying for is the line segment cost (no points are missed in this case,
on this interval). Finally, we could compute the cost of the remaining portion of the model.
So we just compute

˛ C ˇ

7X

kD5

.f5;7.xk/ � yk/
2 D 10C 1

169

25
D 16:76 (8.7)

The details of this computation are left to the reader. Thus the total cost of Model (8.3) is
about 24:4444C 10C 16:76 D 51:2044.

We could also compute the cost of choices we did not make in Model (8.3). In fact, if
we compute the cost of each possible choice we can make in creating a similar model, we
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can compare options to see which model is best, given the data and our selected values of
˛ and ˇ. Table 8.5 shows the computed costs of all possible segments of a piecewise linear
model for our data and parameter values.

Table 8.5 Cost for each line segment

2 3 4 5 6 7

1 10 28:7778 24:4444 36:0625 38:77 55:503

2 10 24:0625 52:1389 61 56:9917

3 10 15:76 14:7755 51

4 10 12:25 51

5 10 16:76

6 10

© Cengage Learning

Now we can use Table 8.5 to compute the total cost of any peicewise linear model we want
to consider in the following way. Let ci;j be the cost of a line segment from point pi to point
pj . In other words, ci;j is the entry in row i and column j in Table 8.5. Recall our first
model, (8.1). Because thismodel had one line segment going fromp1 top7, we can compute
its cost by looking at the entry in row 1 and column 7 of Table 8.5, which is c1;7 D 55:503.
Our next model, (8.2), included six line segments; from p1 to p2, from p2 to p3, and so on,
up to p6 to p7. These correspond to the lowest entry in each column of Table 8.5, so the
total cost of this model is c1;2 C c2;3 C � � �C c6;7 D 10C 10C 10C 10C 10C 10 D 60.
Other models can be considered as well. For example, suppose we decided to go from p1

top3 top6 top7. This model costs c1;3Cc3;6Cc6;7 D 28:7778C14:7755C10 D 53:5533.
It is natural at this point to ask which model is best of all the possible models. We are

looking for a piecewise linear model that starts at p1 and ends at p7 and has the smallest
possible cost. We just have to decide which points we will visit. We can visit or not visit
each ofp2,p3,p4,p5, andp6, because the conditions of the problem force us to visitp1 and
p7. You can think of this as looking for a path that goes from p1 to p7, visiting any number
of the five intermediate points. Of all those paths we want to find the best (cheapest) one.

One way to find the best model is to look at every possible model and pick the best one.
For our example, this isn’t a bad idea. Because each of the five points p2, p3, p4, p5, and p6

is either visited or not visited, there are 2
5 D 32 possible paths from p1 to p7. It would not

be too hard to check all 32 of these and pick the best one. But think about what we would be
up against if the original data set contained, say, 100 points instead of 7. In this case there
would be 2

98 D 316;912;650;057;350;374;175;801;244 possible models. Even if we could
test a million models every second, it would take more than 10,000,000,000,000,000 years
to check them all. This is almost a million times longer than the time since the big bang!
Fortunately, there is a better way to solve this kind of problem.

It turns out that we can also find the best model by solving a simple graph problem.
Consider Figure 8.16. This represents the paths from p1 to p7 as a directed graph. Each
path described in the paragraphs above is represented by a path from vertex 1 to vertex 7 in
Figure 8.16. Look again at Table 8.5. If we use the data from this table as edge weights for
the graph in Figure 8.16, we can solve our data-fitting problem of finding the best-fitting
piecewise linear function by finding a shortest path in the graph.
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J Figure 8.16
Graph model for data fitting
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Wewill learn how to solve shortest-path problems later in this chapter. Once the shortest-
path problem on the graph in Figure 8.16 using the cost data in Table 8.5 is solved, it will
be clear that the best solution for this particular instance is the path from p1 to p2 to p3 to
p6 top7. Themodel has a total cost of c1;2Cc2;3Cc3;6Cc6;7 D 10C 10C 14:7755C 10 D
44:7755. It turns out that this is the best possible model for our chosen parameter values
˛ D 10 and ˇ D 1. This optimal model appears in Figure 8.17.

J Figure 8.17
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Recall that in Section 8.3 we found that the Bacon number problem can be solved by
finding the distance between two vertices in a graph. Finding the distance between two
vertices is really a great deal like finding the shortest path between two vertices—we’ll
state this fact with more precision at the beginning of Section 8.4. One remarkable aspect
of mathematics is that technical procedures you can learn in the classroom (such as solving
shortest-path problems) can be directly applied in many settings (such as finding Bacon
numbers and fitting linear models to data). It is also interesting to observe that mathematics
can link two situations that seem vastly different. The data-fitting problem and the Bacon
number problem are very similar; they both reduce to a shortest-path problem. In Section 8.4
we will learn about a procedure to solve shortest-path problems on graphs.
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The Softball Example Revisited
Recall the softball example from the Introduction to this chapter. Each player can play only
in the positions specified in Table 8.6.

Table 8.6 Positions players can play

Al Bo Che Doug Ella Fay Gene Hal Ian John Kit Leo Moe Ned Paul

2;8 1;5;7 2;3 1;4;5;6;7 3;8 10;11 3;8;11 2;4;9 8;9;10 1;5;6;7 8;9 3;9;11 1;4;6;7 9;10

© Cengage Learning

This problem can be modeled using a graph. We’ll construct a graph from Table 8.6 as
follows. For each player, we’ll create a vertex. We’ll call these vertices player vertices. We
will also create a vertex for each position and call these position vertices. If we letA represent
the player vertices and B represent the position vertices, we can write V.G/ D hA; Bi to
represent the idea that the vertex set for our graph has two distinct types of vertices. Now
we can create an edge in our graph for every entry in Table 8.6. That is, there is an edge
between a specific player vertex and a specific position vertex whenever that player can
play that position according to our table. For example, our graph has an edge from the vertex
representing Che to the vertex representing position 3 (first base), but there is no edge from
Che to, say, position 6.

The graph for the softball problem is shown in Figure 8.18. Note that the A vertices are
on the left and theB vertices are on the right. Also note that all of the edges in the graph have
one end in A and the other end in B . Graphs with this special property are called bipartite.
The name comes from the fact that the vertex set can be partitioned (-partite) into two (bi-)
sets (A and B) so that all of the edges have one end in A and one end in B . As we will see
in Section 8.4, we can solve some kinds of problems particlarly easily on bipartite graphs.

Let’s return to the problem of solving the softball manager’s problem. We’d like an
assignment of players to positions (or positions to players) that covers every position. Think

J Figure 8.18
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about this in terms of Figure 8.18. You can think of the edge from, say, Che to position 3
as having the option of assigning Che to position 3. Note that once you decide to put Che
at position 3, Che cannot be assigned a different position, and no other player can play in
position 3. In terms of the graph, we can think of choosing some of the edges so that no
two of the chosen edges are incident with the same vertex. If we can choose enough of the
edges (in this case, 11 of them), we have solved the softball manager’s problem.

Given any graph G D .V .G/; E.G//, a subset M � E.G/ is called a matching if
no two members of M are incident with the same vertex. A set of edges with this property
are said to be independent. A maximum matching is a matching of the largest possible
size. When G is bipartite with bipartition hA; Bi, it is clear that no matching can be bigger
than jAj, and no matching can be bigger than jBj. Therefore, if we can find a matching
in the graph for the softball problem that has 11 edges, then there is a feasible solution
to the softball manager’s problem. Furthermore, if the largest matching in the graph has
fewer than 11 edges, no feasible solution to the softball manager’s problem is possible.
That is, the graph has a matching of size eleven if and only if there is a feasible solution to
the softball manager’s problem.

We have shown the relationship between the softball manager’s problem and a match-
ing problem in a bipartite graph. In Section 8.4, wewill see how to findmaximummatchings
in bipartite graphs.

A 0–1 Matrix Problem
Informally, a matrix is an array or table with rows and columns. A matrix usually has an
entry for each possible row and column pair. The entries themselves are ordinarily numbers.
An ‘‘m by n 0–1 matrix" is a matrix that has m rows and n columns, where each entry is
either 0 or 1. Using 0’s and 1’s in a mathematical model is a common way of expressing
ideas such as ‘‘yes" or ‘‘no,’’ ‘‘true" or ‘‘false,’’ ‘‘on’’ or ‘‘off,’’ and so forth. In this section,
we analyze a problem related to 0–1 matrices.

Consider an m by n 0–1 matrix. Let ri for i 2 f1; 2; : : : ; mg be the row sum of the ith
row, or, equivalently, the number of 1’s in the ith row. Similarly, let si for i 2 f1; 2; : : : ; ng
be the column sum of the ith column, or, equivalently, the number of 1’s in the ith column.
Below is an example with m D 4, n D 6, r1 D 3, r2 D 2, r3 D 3, r4 D 4, s1 D 3, s2 D 2,
s3 D 2, s4 D 3, s5 D 1, s6 D 1.

0

BB@

1 0 0 1 1 0

1 1 0 0 0 0

1 0 1 1 0 0

0 1 1 1 0 1

1

CCA

Now consider the following problem.

The 0–1 Matrix Problem Given values for m and n along with r1; r2; : : : ; rm and
s1; s2; : : : ; sn, does there exist a 0–1 matrix with those properties? If you were given

m D 4; n D 6

r1 D 3; r2 D 2; r3 D 3; r4 D 4 (8.8)
s1 D 3; s2 D 2; s3 D 2; s4 D 3; s5 D 1; s6 D 1

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_08_ch08_p298-338 January 23, 2013 19:40 318

318 Chapter 8 Modeling Using Graph Theory

the answer is clearly ‘‘yes,’’ as the matrix above demonstrates. It’s easy to say ‘‘no’’ if
r1C r2C � � �C rm 6D s1C s2C � � �C sn because the sum of the row sum values must equal
the sum of the column sum values (why?). But if you were given values of m and n and
r1; r2; : : : ; rm and s1; s2; : : : ; sn, where r1Cr2C � � �Crm D s1Cs2C � � �Csn, it might not
be so easy to decide whether such a matrix is possible.

Let’s pause for a moment to consider why we might care about this matrix problem.
Some real-world problems can bemodeled this way. For example, suppose a supply network
has suppliers who supply widgets and has demanders who demand them. Each supplier can
send at most one widget to each demander.

The 0–1 Matrix Problem (restated) Is there a way to determine which demander each
supplier sends widgets to in a way that satisfies constraints on how many widgets each
supplier produces and on how many widgets each demander demands?

We can model this situation with some kind of graph. First draw m ‘‘row’’ vertices and
n ‘‘column’’ vertices, alongwith two additional vertices: one called s and one called t . From
s, draw an arc with capacity ri to the ith row vertex. From the ith column vertex, draw an
arc with capacity si to t . Then, from every row vertex, draw an arc with capacity 1 to every
column vertex.

To decide whether there is a 0–1 matrix with the specified properties, we find the
maximum flow from s to t in the directed graph, see Figure 8.19. If there’s a flow of magni-
tude r1Cr2C� � �Crm, then the answer to the original matrix question is ‘‘yes.’’ Furthermore,
the arcs that go from row vertices to column vertices that have a flow of 1 on them in the
solution to the maximum-flow problem correspond to the places to put the 1’s in the matrix
to achieve the desired property. If the maximum flow you find is less than r1Cr2C � � �Crm,
we can say ‘‘no’’ to the original matrix question. Figure 8.19 shows the graph constructed
in accordance with this transformation with the data specified in (8.8).

Policing a City
Suppose you are the commander of a company of military police soldiers and you are
charged with policing all the roads in a section of a city. The section of the city in question

J Figure 8.19
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can be modeled with the graph in Figure 8.20, where the road intersections in the city are
vertices and the roads between the intersections are edges. Suppose the roads in the city are
straight enough and short enough so a soldier stationed at an intersection can effectively po-
lice all roads immediately incident with that intersection. For example, a soldier stationed
at vertex (intersection) 7 can police the road between 4 and 7, the road between 6 and 7,
and the road between 7 and 8.

J Figure 8.20
Vertex cover example graph
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Vertex Cover Problem What is the smallest number of military police soldiers needed
to accomplish the mission of policing all the roads?

It is easy to see that all roads can be policed by placing a soldier at every vertex.
This requires 8 soldiers but this may not be the smallest number of soldiers required.
A better solution places soldiers at intersections 3, 4, 5, 6, and 8—using only 5 soldiers.
Note that you can’t improve on this solution simply by removing a soldier (and not moving
another one). An even better solution is to locate soldiers at intersections 1, 2, 6, and 7. It
turns out that using only 4 soldiers is the best you can do for this graph.

Let’s describe this problem in mathematical terms.

Vertex Cover Problem (restated) Given a graph G D .V .G/; E.G//, the vertex cover
problem seeks a subset S � V.G/ of smallest number of elements such that every edge in
the graph is incident with at least one element in S .

An edge e is said to be incidentwith a vertex v if one of the endpoints of e is v. If G is
a graph, we denote the minimum size of a vertex cover as ˇ.G/. Another way of expressing
this is ˇ.G/ D minfjS j W S is a vertex coverg:

8.38.3 PROBLEMS

1. Suppose you are an actor and your Bacon number is 3. Can future events ever cause
your Bacon number to rise above 3? What, in general, can you say about an actor’s
Bacon number in terms of how it can change over time?

2. Just as actors have their Bacon numbers, there is a relation defined between authors of
scholarly papers and the prolific Hungarian mathematician Paul Erdös. Use the Internet
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to find out what you can about Paul Erdös and Erdös numbers. Consider your favorite
mathematics professor (no jokes here, please!). Can you determine his or her Erdös
number?

3. Can you think of other relations that one could consider?

4. For the example in the text above, explain why, in Table 8.5, the entries in row 3, col-
umn 7, and row 4, column 7 are the same. Hint: Plot the data and draw a line segment
from point 3 to point 7, and another from point 4 to point 7.

5. Using the same data set from the example in the text,

S D f.0; 0/; .2; 5/; .3; 1/; .6; 4/; .8; 10/; .10; 13/; .13; 11/g

recompute Table 8.5 with ˛ D 2 and ˇ D 1.

6. Consider the data set S D f.0; 0/; .2; 9/; .4; 7/; .6; 10/; .8; 20/g. Using ˛ D 5 and
ˇ D 1, determine the best piecewise linear function for S .

7. Write computer software that finds the best piecewise linear function given a data set
S along with ˛ and ˇ.

8. In the text for this section, there is the sentence ‘‘When G is bipartite with bipartition
hA; Bi, it is clear that no matching can be bigger than jAj, and no matching can be
bigger than jBj.’’ Explain why this is true.

9. Find a maximum matching in the graph in Figure 8.21. How many edges are in the
maximum matching? Now suppose we add the edge bh to the graph. Can you find a
larger matching?

J Figure 8.21
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10. A basketball coach needs to find a starting lineup for her team. There are five positions
that must be filled: point guard (1), shooting guard (2), swing (3), power forward (4),
and center (5). Given the data in Table 8.7, create a graph model and use it to find a
feasible starting lineup. What changes if the coach decides she can’t play Hermione in
position 3?

11. Will graphs formed with the procedure used to make the one in Figure 8.18 always be
bipartite, regardless of the data? Why or why not?
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Table 8.7 Positions players can play

Alice Bonnie Courtney Deb Ellen Fay Gladys Hermione

1; 2 1 1; 2 3; 4; 5 2 1 3; 4 2; 3

© Cengage Learning

12. Considering the values below, determine whether there is a 0–1 matrix with m rows
and n columns, with row sums ri and column sums sj . If there is such a matrix, write
it down.

m D 3; n D 6

r1 D 4; r2 D 2; r3 D 3 (8.9)
s1 D 2; s2 D 2; s3 D 1; s4 D 0; s5 D 3; s6 D 1

13. Considering the following values, determine whether there is a 0–1 matrix with m rows
and n columns, with row sums ri and column sums sj . If there is such a matrix, write
it down.

m D 3; n D 5

r1 D 4; r2 D 2; r3 D 3 (8.10)
s1 D 3; s2 D 0; s3 D 3; s4 D 0; s5 D 3

14. Explain, in your own words, why a maximum-flow algorithm can solve the matrix
problem from this section.

15. A path on n vertices, Pn, is a graph with vertices that can be labeled v1; v2; v3; : : : ; vn,
so that there is an edge between v1 and v2, between v2 and v3, between v3 and v4, . . . ,
and between vn�1 and vn. For example, the graph P5 appears in Figure 8.22. Compute
ˇ.P5/. Compute ˇ.P6/. Compute ˇ.Pn/ (your answer should be a function of n).
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J Figure 8.22
P5

16. Here we consider the weighted vertex cover problem. Suppose the graph in Figure 8.23
represents an instance of vertex cover in which the cost of having vertex i in S is
w.i/ D .i � 2/

2 C 1 for i D 1; 2; 3; 4; 5. For example, if v4 is in S , we must use
w.4/ D .4 � 2/

2 C 1 D 5 units of our resource. Now, rather than minimizing the
number of vertices in S , we seek a solution that minimizes the total amount of resource
used

P
i2S w.i/. Using our analogy of soldiers guarding intersections, you can think of

w.i/ as a description of the number of soldiers needed to guard intersection i . Given
the graph in Figure 8.23 and the weighting function w.i/ D .i � 2/

2 C 1, find a
minimum-cost weighted vertex cover.
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J Figure 8.23
Graph for Problem 16

1

3

2
5

4

©
 C

en
ga

ge
 Le

ar
ni

ng

8.38.3 PROJECTS

1. Investigate a social network that is of interest to you. Carefully define what the vertices
represent and what the edges represent. Are there any newmodeling techniques that you
had to employ?

2. Write a computer program that takes integersm, n, ri for 1 � i � m and sj for 1 � j � n

as input and that either outputs a 0–1 matrix with m rows and n columns with row sums ri

and column sums sj , or says that no suchmatrix can exist (some programming experience
required).

3. Given a graph G D .V .G/; E.G//, consider the following strategy for finding a mini-
mum vertex cover in a graph.
Step 0: Start with S D ;.
Step 1: Find a vertex v ofmaximumdegree (one that has a greatest number of incident

edges). Add this vertex to S .
Step 2: Delete v and all its incident edges from G. If G is now edgeless, stop. Oth-

erwise, repeat Steps 1 and 2.
Either show that this strategy always finds a minimum vertex cover for G or find a graph
for which it fails to do so.

4. Consider a modification of the softball manager’s problem where we are interested in
the best starting lineup. How can our mathematical model be modified to solve this
problem? What new techniques are needed to solve models of this type?

8.3 Further Reading
Ahuja, R., T.Magnanti, & J. Orlin.Network Flows: Theory, Algorithms, and Applications. Englewood

Cliffs, NJ: Prentice Hall, 1993.
Huber, M., & S. Horton. ‘‘How Ken Griffey, Jr. is like Kevin Bacon or, degrees of separation in

baseball.’’ Journal of Recreational Mathematics, 33 (2006): 194–203.
Wilf, H. Algorithms and Complexity, 2nd ed. Natick, MA: A. K. Peters, 2002.
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8.48.4 Using Graph Models to Solve Problems

In Section 8.3 we saw several real-world problems that can be expressed as problems on
graphs. For example, we can solve instances of the Bacon number problem by finding the
distance between two vertices in a graph.We also saw that the data-fitting problem could be
transformed into a shortest-path problem. We learned that the softball manager’s problem
and a 0–1 matrix problem could be solved using maximum flows. Finally, we established a
relationship between a problem about stationing police on street corners and finding vertex
covers in graphs.

In this section we will learn about some simple ways to solve instances of some of these
graph problems. This is part of an approach to problem solving similar to our approach in
Chapter 2.We start with a real problem, often expressed in nonmathematical terms. Using the
insight that comes from practice, experience, and creativity, we recognize that the problem
can be expressed in mathematical terms—in these cases, using graphs. Often the resulting
graph problem is familiar to us. If so, we solve the problem and then translate the solution
back to the language and setting of our original problem.

Solving Shortest-Path Problems
Given a graph G D .V .G/; E.G// and a pair of vertices u and v in V.G/, we can define
the distance from u to v as the smallest number of edges in a path from u to v. We use the
notation d.u; v/ to denote this distance. The distance problem, then, is to compute d.u; v/

given a graph G and two specific vertices u and v.
Rather than considering methods to solve the distance problem, we will consider a

generalization of the problem. Let cij denote the length of the edge ij . Now we can define
the length of a shortest path from u to v in a graph to be the minimum (over all possible
paths) of the sum of the lengths of the edges in a path from u to v. Given a graph G, edge
lengths cij for each edge ij 2 E.G/, and two specific vertices u and v, the shortest-path
problem is to compute the length of a shortest path from u to v in G. It is easy to observe
that the distance problem from the previous paragraph is a special case of the shortest-path
problem—namely, the case where each cij D 1. Accordingly, we will focus on a technique
to solve shortest-path problems, because such a technique will also solve distance problems.

For example, consider the graph in Figure 8.24. Ignoring the edge lengths printed on
the figure, it is easy to see that d.u; y/ D 2 because there is a path of two edges from vertex
u to vertex y. However, when the edge lengths are considered, the shortest path from u to
y in G goes through vertices v and w and has total length 1 C 2 C 3 D 6. Thus d.i; j /

J Figure 8.24
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considers only the number of edges between i and j , whereas shortest paths consider edge
lengths.

Shortest-path problems have a simple structure that enables us to solve them with very
intuitive methods. Consider the following physical analogy. We are given a graph with two
specific vertices u and v, as well as edge lengths for each edge. We seek a shortest path
from vertex u to vertex v. We’ll make our model entirely out of string. We tie the string
together with knots that don’t slip. The knots correspond to the vertices, and the strings are
the edges. Each string is equal in length to the weight (distance) on the edge it represents
(plus enough extra length to tie the knots). Of course, if the distances represented in the
graph are in miles, we might build our string model scaling, say, miles to inches. Now, to
find the length of a shortest path, we hold the two knots representing u and v and pull them
apart until some of the strings are tight. Now the length of a shortest path in our original
graph corresponds to the distance between the two knots. Furthermore, this model shows
which path(s) are shortest (those whose strings are tight). The loose strings are said to have
‘‘slack,’’ which means that even if they were slightly shorter, the length of a shortest path
would not change.

The intuition of this analogy underlies the algorithm we will use to solve shortest-path
problems. Note that the procedure we will present here works to find a shortest path in any
graph satisfying cij � 0 for all ij 2 E.G/. The following procedure will find the length of
a shortest path in a graph G from vertex s to vertex t , given nonnegative edge lengths cij .

Dijkstra’s Shortest-Path Algorithm

Input A graph G D .V .G/; E.G// with a source vertex s and a sink vertex t and nonnegative
edge lengths cij for each edge ij 2 E.G/.

Output The length of a shortest path from s to t in G.
Step 0 Start with temporary labels L on each vertex as follows: L.s/ D 0 and L.i/ D 1 for all

vertices except s.
Step 1 Find the vertex with the smallest temporary label (if there’s a tie, pick one at random). Make

that label permanent meaning it will never change.
Step 2 For every vertex j without a permanent label that is adjacent to a vertex with a permanent

label, compute a new temporary label as follows: L.j / D minfL.i/ C cij g, where we
minimize over all vertices i with a permanent label. Repeat Steps 1 and 2 until all vertices
have permanent labels.

This algorithmwas formulated by the Dutch computer scientist Edsger Dijkstra (1930–
2002). When Dijkstra’s Algorithm stops, all vertices have permament labels, and each label
L.j / is the length of a shortest path from s to j . We now demonstrate Dijkstra’s Algorithm
on the graph in Figure 8.24.

Let’s start with some notation. Let L.V / D .L.u/; L.v/; L.w/; L.x/; L.y/; L.z//

be the current labels on the vertices of the graph in Figure 8.24, listed in the specified
order. We will also add an asterisk to any label we have made permanent. Thus L.V / D
.0

�
; 1

�
; 3

�
; 6; 6;1/ would mean the labels on vertices u; v; w; x; y; and z are 0; 1; 3; 6; 6;

and1, respectively, and that the labels on u; v; and w are permanent.
Now we are ready to execute Dijkstra’s Algorithm to find the shortest distances

in G from u to every other vertex. First, in Step 0 we initialize the labels L.V / D
.0;1;1;1;1;1/. Next, in Step 1 we make the smallest label permanent, so
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L.V / D .0
�
;1;1;1;1;1/. In Step 2 we compute a new temporary label for each

vertex without a permanent label that is adjacent to one with a permanent label. The only
vertex with a permanent label is u, and it is adjacent to v, w, and x. Now we can compute
L.v/ D minfL.i/C civg D L.u/ C cuv D 0 C 1 D 1. Similarly, L.w/ D minfL.i/C
ciwg D L.u/Ccuw D 0C7 D 7 andL.x/ D minfL.i/Ccixg D L.u/Ccux D 0C6 D 6.
Accordingly, our new label list is L.V / D .0

�
; 1; 7; 6;1;1/.

Now we repeat Steps 1 and 2. First we examine the current L.V / and note that the
smallest temporary label isL.v/ D 1. Therefore, wemake labelL.v/ permanent and update
our label list accordingly: L.V / D .0

�
; 1

�
; 7; 6;1;1/. In Step 2, there are two vertices

with permanent labels to consider: u and v. The situation at x will not change; L.x/ will
remain at 6. However, there are now two cases to consider as we recompute the label at w:
L.w/ D minfL.i/ C ciwg D minfL.u/ C cuw; L.v/ C cvwg D minf0 C 7; 1 C 2g D
minf7; 3g D 3. Our new label list is L.V / D .0

�
; 1

�
; 3; 6;1;1/.

We continue repeating Steps 1 and 2. A computer scientist would say that we are now
on ‘‘iteration three’’ of the main step of the algorithm. First, we add a permanent label
to our list, obtaining L.V / D .0

�
; 1

�
; 3

�
; 6;1;1/. After Step 2 we arrive at L.V / D

.0
�
; 1

�
; 3

�
; 6; 6;1/. In iteration four, we pick one of the vertices with L.i/ D 6; our

algorithm says to break ties at random, so say we pick y to get the permanent label. This
results in the label listL.V / D .0

�
; 1

�
; 3

�
; 6; 6

�
;1/. After the next step, we obtainL.V / D

.0
�
; 1

�
; 3

�
; 6; 6

�
; 10/, followed (in iteration five) by L.V / D .0

�
; 1

�
; 3

�
; 6

�
; 6

�
; 10/ and

then L.V / D .0
�
; 1

�
; 3

�
; 6

�
; 6

�
; 10/. Note that Step 2 of iteration five resulted in no

change to L.V / because the path uxz doesn’t improve on the other path uvwyz from
u to z that we identified in the previous iteration. Finally, in iteration six, we make the last
temporary label permanent. After that, there’s nothing left to do, and the algorithm stops
with L.V / D .0

�
; 1

�
; 3

�
; 6

�
; 6

�
; 10

�
/. This list gives the lengths of shortest paths from u

to every vertex in the graph.

Solving Maximum-Flow Problems
We saw in Section 8.3 that both the data-fitting problem and the 0–1 matrix problem can
be solved by finding a maximum flow in a related graph. We will see in Section 8.4 that the
softball manager’s problem can also be solved this way. In fact, many practical problems
can be modified as maximum flows in graphs. In this section we present a simple technique
for finding a maximum flow in a graph.

So far, all of the graphs we have considered have vertices and edges, but the edges
don’t have any notion of direction. That is, an edge goes between some pair of vertices
rather than specifically from one vertex to another. In this section, we will consider directed
graphs instead. Directed graphs are just like their undirected siblings, except that each edge
has a specific direction associated with it. We will use the term arc to refer to a directed
edge. More formally, we can define a directed graph G D .V .G/; A.G// as two sets:
a vertex set V.G/ and an arc set A.G/. Each element of A.G/ is an ordered pair of
elements of V.G/. We will use the notation .i; j / to represent an arc oriented from i to j .
Note that undirected graphs can be transformed into directed graphs in many ways. Given
an undirected graph, an orientation for each edge in E.G/ can be selected. Alternatively,
each edge ij 2 E.G/ can be transformed into two arcs; one from i to j and one from j to i .

Nowwe return to the problem of solvingmaximum-flow problems in (directed) graphs.
Just as in shortest-path problems, there are many algorithms for finding maximum flows
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in graphs. These procedures go from very simple and intuitive algorithms to much more
detailed methods that can have theoretical or computational advantages over other ap-
proaches. Here we will focus on the former. This chapter concludes with references where
the interested reader can explore more sophisticated algorithms.

Given a directed graph G D .V .G/; A.G//, two specific vertices s and t , and a finite
flow capacity uij for each arc .i; j /, we can use a very simple technique for finding a
maximum flow from s to t in G. We’ll demonstrate the technique with an example first,
and then we’ll describe in more general terms what we did.

Before we start, we need to define the concept of a directed path. A directed path is
a path that respects the orientation of arcs in the path. For example, consider the graph in
Figure 8.25. This directed graph has vertex set V.G/ D fs; a; b; c; d; tg and arc setA.G/ D
fsa; sb; ab; ac; bc; bd; ct; dc; dtg. Note that ab 2 A.G/ but ba … A.G/. Accordingly,
s � a � b � d � t is a directed path from s to t , but s � b � a � c � t is not (because
ba … A.G/). The graph also has arc flow capacities annotated by each arc.

J Figure 8.25
Example graph for
maximum flow
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Now we are ready to begin our example. Consider again the graph in Figure 8.25. We
start by finding a directed path from s to t . There are several choices, but let’s say we pick
the path s � a � c � t . We observe that the lowest-capacity arc on this path is ac, which
has capacity uac D 2. Accordingly, we create a new graph that represents the remaining
capacity, or residual capacity of the network after 2 units of flow are pushed along the path
s � a � c � t . All we do is account for the flow by reducing the remaining capacity by 2
for each arc in the path. Note that this reduces the residual flow on arc ac to zero, so we
delete that arc from the next graph. Also note that three new arcs appear; these represent our
ability at some future iteration to ‘‘back up" or ‘‘reverse" flow. The result of these changes
appears in Figure 8.26. At this point we have managed to get 2 units of flow from s to t .
This completes the first iteration of our maximum-flow algorithm.

J Figure 8.26
Example graph for
maximum flow, after
Iteration 1

s 3 1 2

c

d

a

b

6

2

2
2

2

5

5

3

t

©
 C

en
ga

ge
 Le

ar
ni

ng
 2

01
3

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_08_ch08_p298-338 January 23, 2013 19:40 327

8.4 Using Graph Models to Solve Problems 327

Now we are ready to start the second iteration. Again, we look for a directed path from
s to t in the residual graph from the previous iteration (Figure 8.26). The directed path
s� b�d � t is one possiblility. The smallest arc capacity in the residual graph is udt D 3,
so we create another residual graph by reducing all of the capacities along the path. In this
iteration we pushed 3 more units of flow from s to t , which brings our total so far to 5 units.
The result appears in Figure 8.27, and we have finished iteration 2.

J Figure 8.27
Example graph for
maximum flow, after
Iteration 2
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Iteration 3 proceeds like the others. The residual graph in Figure 8.27 has the directed
path s � b � d � c � t with a minimum capacity of 2 units of flow. We have now delivered
7 units of flow from s to t . The appropriate modification leads us to Figure 8.28.

J Figure 8.28
Example graph for
maximum flow, after
Iteration 3
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At this point there is only one directed path from s to t ; it is s�a� b� c� t . Because
ubc D 1 in Figure 8.28, we add the 1 unit of flow to our previous total, bringing us to 8.
After reducing the capacity on each arc in the directed path by 1, we obtain the graph in
Figure 8.29.

J Figure 8.29
Example graph for
maximum flow, final
residual graph
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We continue by looking for a directed path from s to t in Figure 8.29, but there is no
such path. Accordingly, we stop and claim that the maximumflow from s to t in our original
graph of Figure 8.25 is 8.

Finally, we can generalize our maximum-flow algorithm. But first, we need to be a
little more precise in describing our problem.

Maximum-Flow Problem Given a directed graph G D .V .G/; A.G// with a source
vertex s and a sink vertex t and a finite flow capacity uij for each arc ij 2 A.G/, find the
maximum flow in the graph from vertex s to vertex t .

The algorithm we used above is more formally and more generally described below.

Maximum-Flow Algorithm

Input A directed graph G D .V .G/; A.G// with a source vertex s and a sink vertex t and a finite
flow capacity uij for each arc ij 2 A.G/. Let uij D 0 for all ij … A.G/.

Output The maximum flow from s to t in G.

Step 0 Set the current flow to zero: fc  0.

Step 1 Find a directed path from s to t in the current graph. If there is no such path, stop. The
maximum flow from s to t in G is fc .

Step 2 Compute umin, the minimum capacity in the current graph of all the arcs in the directed
path.

Step 3 For each arc ij in the directed path, update the residual capacity in the current graph:
uij  uij � umin. Also update ‘‘reverse’’ arc capacities: uji  uji C umin.

Step 4 Set fc  fc C umin and return to Step 1.

Now we turn our attention to using the Maximum-Flow Algorithm to solve other
problems.

Solving Bipartite Matching Problems Using Maximum Flows In Section 8.3 we
learned that the softball manager’s problem can be solved by finding a maximum matching
in a bipartite graph derived from the problem instance. In this section, we will find that
the Maximum-Flow Algorithm from the previous section can be used to find maximum
matchings in bipartite graphs. By combining these two, we will be able to solve the softball
manager’s problem using our maximum-flow algorithm. This is an exciting aspect of math-
ematical modeling: by looking at problems the right way, we can often solve them using
techniques that at first glance seem unrelated.

Recall that a matching in a graph G is a subset S � E.G/ such that no two edges in
S end at a common vertex. In other words, the edges in S are independent. A maximum
matching is a matching of largest size. If the graph G is bipartite, the maximum-matching
problem can be solved using a maximum-flow algorithm. Recall that a graph is bipartite
if the vertex set can be partitioned into two sets X and Y such that all of the edges have
one end in X and the other end in Y . Figure 8.30 is an example of a bipartite graph. Which
edges should we put in S to make jS j as large as possible?

We might start by including x1y1 in S . This choice eliminates all other edges incident
with x1 or y1 from further consideration. Accordingly, we can also include x2y3 in S . Now
we have two edges in S . Unfortunately, we cannot add more edges to S , at least not without
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J Figure 8.30
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removing some edges that are already in. Can you find a matching larger than size 2 in G?
It seems that the initial choices we made were poor in the sense that they blocked too many
other options. For this small problem, it was probably easy for you to see how to get a
larger matching. In fact you can probably find a maximum matching just by looking at the
problem; recall from Problem 8 in Section 8.3 that no matching in this graph can have more
than minfjX j; jY jg D 4 edges.

A larger instance of this problem (that is, a larger graph) might be more difficult to
solve by inspection. As the title of this section suggests, there is a way to solve bipartite
matching problems using a maximum-flow algorithm. Here’s how. From the (undirected)
instance bipartite graph with bipartition V.G/ D hX; Y i, we orient each edge so that it goes
from X to Y . We allow each of these arcs to have an unlimited capacity. Then we create
two new vertices s and t . Finally, we create arcs from s to every vertex in X , and arcs from
every vertex in Y to t . Each of these arcs has a capacity of 1. Figure 8.31 demonstrates the
idea. Now we find the maximum flow in the resulting directed graph from s to t , and that
maximum flow will equal the size of a maximum matching in the original graph.

J Figure 8.31
Matching problem
expressed as a
maximum-flow problem
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One important feature that shortest paths and maximum flows have in common is that
they can be found efficiently by a computer. Unfortunately, not all graph problems have
this property. We now consider some problems that can be described just as easily but seem
to be much harder to solve by algorithmic means. In Section 8.3, we learned about one

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_08_ch08_p298-338 January 23, 2013 19:40 330

330 Chapter 8 Modeling Using Graph Theory

such problem: vertex cover. Here we introduce one more, and then we make a surprising
observation about these two problems.

Consider a department store that delivers goods to customers. Every day, a delivery
crew loads a truck at the company’s warehouse with the day’s orders. Then the truck is
driven to each customer and returned to the warehouse at the end of the day. The delivery
crew supervisor needs to decide on a route that visits each customer once and then returns
to the starting point. The set of customers who require a delivery changes each day, so the
supervisor has a new instance to solve every day. We can state this problem as follows.

Traveling Salesman Problem A salesman must visit every location in a list and return
to the starting location. In what order should the salesman visit the locations in the list to
minimize the distance traveled?

It is easy to see that this problem can be modeled with a graph. First we note that
this problem is usually modeled with a graph that is complete. A complete graph has an
edge between every pair of vertices. We also need a cost cij for every edge. This number
represents the cost of traveling on the edge between vertex i and vertex j . You can think of
this cost as distance, or as time, or as an actual monetary cost. A list of all of the locations,
in any order, defines a tour. The cost of a tour is the sum of the edge costs on that tour.
For example, consider the graph in Figure 8.32. Let’s say we start at vertex a (it turns out
not to matter where we start). It seems reasonable to go first to vertex b, because the cost
of doing so is small; only 1 unit. From there, the edge to c looks attractive. So far we have
paid 1C 2 D 3 units to get this far. From c, we can go to d , and then to e (the only vertex
we have not yet visited). Now our cumulative cost is 1C 2C 4C 8 D 15. Finally, we have
to return to the starting point, which adds 3 to our cost, bringing the total to 18.

J Figure 8.32
Example graph for traveling
salesman problem
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It turns out that this is not the optimal tour. The tour a�d � c�b� e�a has a cost of
17 (the reader should verify this). Notice that this improved tour does not use the edge from
a to b that seemed so attractive. This example shows that the greedy choice of picking the
cheapest edge (a � b in this case) isn’t always the best thing when looking for an optimal
solution. Problems (like the Traveling Salesman Problem) that exhibit this ‘‘greedy choice
might be bad’’ property are often problems for which good algorithms are hard to find or
unknown. Now we can restate the problem in graph theoretic terms.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_08_ch08_p298-338 January 23, 2013 19:40 331

8.4 Using Graph Models to Solve Problems 331

Traveling Salesman Problem (restated) Given a complete graph G D .V .G/; E.G//

and a cost cij for each edge in E.G/, find a tour of minimum cost.
Finally, it is important to understand that this problem is different from the shortest-path

problems that we have considered. It may seem as though some of the same techniques can
be used, but it turns out that this isn’t the case. Instances of the shortest-path problem can
always be solved efficiently, whereas the Traveling Salesman Problem (and the vertex cover
problem) are not so easy to deal with. In fact, this section is about describing algorithms
to solve various graph problems. It might come as a suprise to learn that there is no known
efficient algorithm for solving either the Traveling Salesman Problem or the vertex cover
problem. For smaller instances, it is often possible to enumerate—that is, to check all of
the possible solutions. Unfortunately, that strategy is doomed to take too long for large
instances. We will elaborate on this idea in the next section.

8.48.4 PROBLEMS

1. Find a shortest path from node a to node j in the graph in Figure 8.33 with edge weights
shown on the graph.

J Figure 8.33
Graph for Problem 1
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2. A small suburban city is experimenting with a newway to keep its main park clean. From
May through October, a crew is needed every day to pick up and remove trash. Rather
than contracting with one company for the entire period, the city manager takes bids
from firms on its website. Firms submit bids with dates of work and the fee for which
the firm is willing to do the clean-up work. On some published date, the city manager
reviews all of the bids submitted and decides which ones to accept. For example, a firm
might make a bid to perform the work June 7–20 for $1200. Another firm might bid to
work June 5–15 for $1000. Because the bids overlap, they cannot both be accepted. How
can the city manager use Dijkstra’s Algorithm to choose what bids to accept to minimize
costs? What assumptions do you need to make?

3. Use our maximum-flow algorithm to find the maximum flow from s to t in the graph of
Figure 8.31.
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4. Explain why the procedure for using a maximum-flow algorithm to find the size of
a maximum matching in a bipartite graph works. Can it be used to find a maximum
matching (as opposed to the size of one)? Can it be used for graphs that are not bipartite?
Why or why not?

5. In the sport of orienteering, contestants (‘‘orienteers’’) are given a list of locations on a
map (‘‘points’’) that they need to visit. Orienteering courses are typically set up in natural
areas such as forests or parks. The goal is to visit each point and return to the starting
location as quickly as possible. Suppose that an orienteer’s estimates of the time it will
take her between each pair of points are given in Table 8.8. Find the tour that minimizes
the orienteer’s time to negotiate the course.

Table 8.8 Orienteer’s time estimates
between points (in minutes)

start a b c d

start — 15 17 21 31
a 14 — 19 14 17
b 27 22 — 18 19
c 16 19 26 — 15
d 18 22 23 29 —

© Cengage Learning

6. Does Dijkstra’s Algorithm work when there might be arcs with negative weights?

8.4 Further Reading
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Winston, W., & M. Venkataramanan. Introduction to Mathematical Programming: Applications and

Algorithms, Volume 1, 4th ed. Belmont, CA: Brooks-Cole, 2003.

8.58.5 Connections to Mathematical Programming

In the previous chapter, we learned about modeling decision problems with linear programs
and then using the Simplex Method to solve the associated linear program. In this section,
we will consider how linear programming and integer programming can be used to model
some of the problems presented in the previous section.
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J Figure 8.34
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Vertex Cover
Recall the vertex cover problem discussed in Section 8.3. In words, we are looking for a
set S that is a subset of V.G/ such that every edge in the graph is incident with a member
of S , and we want jS j to be as small as possible. We have learned that this can be a hard
problem to solve, but sometimes integer programming can help.

Consider the graph in Figure 8.34. Let’s try to find a minimum vertex cover. Each
vertex we put in S in a sense reduces the number of edges that are still uncovered. Perhaps
we should start by being greedy—that is, by looking for a vertex of highest degree (the
degree of a vertex is the number of edges that are incident with it). This is a greedy choice
because it gives us the biggest possible return for our ‘‘investment’’ of adding one vertex
to S . Vertex 9 is the only vertex that allows us to cover four edges with one vertex, so this
seems like a great start. Unfortunately it turns out that this choice isn’t optimal; the only
minimum vertex cover for this graph is S D f1; 3; 5; 7g, and our initial choice, vertex 9, is
conspicuously absent.

Our small example could certainly be solved by trial and error, but we will see shortly
that trial and error can quickly become a completely useless solution strategy for larger
graphs: there are simply too many possible solutions to check. Integer programming can
sometimes provide an alternative.

An Integer Programming Model of the Vertex Cover Problem The key to modeling
with integer programs is the same as the key to other kinds of modeling. One of the most
important steps in any modeling problem is to define your variables. Let’s do that now. We
can let

xi D
�

1 if i 2 S

0 otherwise (8.11)

The variable xi is sometimes called a decision variable because each feasible value you
choose to assign to xi represents a decision you might make regarding the vertices of the
graph in Figure 8.34 vis-à-vis their membership in S . For example, setting x5D1 represents
including vertex 5 in S , and x7 D 0 represents excluding vertex 7 from S . If we define the
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vector x D hx1; x2; : : : ; x9i, we see that any binary string of length 9 can be thought of as
a choice of vertices to include in a vertex cover S .

As an aside, you might think of how many possible decisions there are at this point.
Each xi must take on one of two possible values. Thus there are 2

9 D 512 possibilities.
This isn’t too bad, but if we try this problem on a somewhat larger graph of 100 verticies,
we would have to consider 2

100D 1;267;650;600;228;229;401;496;703;205;376 different
possible choices for which vertices go in S ! Clearly, any solution strategy that checks all
of these possibilities individually, even with a very fast computer, is doomed to take too
much time to be useful. (You might enjoy doing a little computation to check this out. See
Problem 3 at the end of this section.)

Of course, some choices are better than others! In fact, there are two big issues to
consider when we make our choice. First, our choice must be feasible. That is, it must
satisfy the requirement that every edge be incident with a vertex that is in S . We really have
to check all of the edges to make sure this requirement, which is also called a constraint,
is satisfied. Just saying it this way helps us understand how to write the constraint in the
language of integer programming. Consider the edge incident with vertex 4 and vertex 5.
The presence of this edge requires that either x4 or x5 (or both) equal 1. One way to write
this algebraically is

.1 � x4/.1 � x5/ D 0 (8.12)

You should take a moment to convince yourself that this equality is exactly equivalent to
the previous sentence. In other words, verify that (8.12) is satisfied if and only if x4 D 1 or
x5 D 1 (or both).

Unfortunately, it turns out that (8.12) isn’t the best way to write this idea down. In
general, software that solves integer programs will perform better if constraints are written
as linear inequalities (equalities are okay, too). The expression (8.12) isn’t linear because
we end up multiplying two decision variables. A much better formulation is to express
(8.12) this way:

x4 C x5 � 1 (8.13)

Again you can verify that (8.13) is satisfied exactly when x4 D 1 or x5 D 1 (or both).
Certainly the same line of reasoning applies to all 12 edges in the graph. The following

is a complete list of these constraints

x1 C x2 � 1

x2 C x3 � 1

x3 C x4 � 1

x4 C x5 � 1

x5 C x6 � 1

x6 C x7 � 1 (8.14)
x7 C x8 � 1

x8 C x1 � 1

x1 C x9 � 1
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x3 C x9 � 1

x5 C x9 � 1

x7 C x9 � 1

Rather than write down this long list, we can write a single, more general expression that
means the same thing:

xi C xj � 1 8ij 2 E.G/ (8.15)

The inequality (8.15) captures exactly the 12 inequalities in (8.14).
Because we defined the decision variables so that they always take values of 0 or 1, we

need a constraint in the integer program to account for that. We can write it this way:

xi 2 f0; 1g 8i 2 V.G/ (8.16)

This forces each xi to be either 0 or 1, as specified by our model.
Now we have taken care of all of the constraints. A choice of x D hx1; x2; : : : ; x9i that

satisfies all of the constraints in (8.15) and (8.16) is called feasible or a feasible point. Now
we simply seek, from all of the feasible points, the best one (or perhaps a best one). We
need some measure of ‘‘goodness’’ to decide which choice for x is best. In this case, as we
already said, we want the solution that minimizes jS j. In terms of our integer programming
formulation, we want to minimize

P
i2V.G/ xi . This is called the objective function.

Finally, we can collect our objective function and our constraints (8.15) and (8.16) in
one place to obtain a general way to write down any vertex cover problem as an integer
program

Minimize z D
X

i2V.G/

xi

subject to (8.17)
xi C xj � 1 8ij 2 E.G/

xi 2 f0; 1g 8i 2 V.G/

Note that (8.17), without the last line xi 2 f0; 1g 8i 2 V.G/, is a linear program
instead of an integer program. It turns out that solving integer programs often involves
first solving the linear program obtained by dropping the integrality requirement. There
is an extensive body of knowledge about how to formulate and solve linear and integer
programming problems, and about how to interpret solution results. The list of readings at
the end of the chapter can provide the interested reader with a few places to start.

There is one more point to consider about using integer programming to solve large
instances of the vertex cover problem. The formulation 8.17 shows that we can at least
formulate any vertex cover problem as an integer program. Unfortunately, it is not known
whether there is a fast procedure for solving all integer programs. Computational complex-
ity is the branch of theoretical computer science that considers issues such as this. The
references at the end of the chapter provide additional information.
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Maximum Flows
Now we reconsider the maximum-flow problem on directed graphs. This problem was
defined in the previous section. We are given a directed graph G D .V .G/; A.G//, a source
vertex s, a sink vertex t , and a flow capacity uij for every arc ij 2 A.G/. We start by
defining variables to represent flow. We let xij represent the flow from vertex i to vertex j .

There are several types of constraints to consider. First, we will allow only nonnegative
flows, so

xij � 0 8ij 2 A.G/ (8.18)

Recall that the symbol 8means ‘‘for all’’; thus, the constraint xij � 0 applies for every arc
ij in the graph’s arc set A.G/.

We also know that flow on each arc is limited to the capacity, or upper bound, on that
arc. The following constraint captures that idea

xij � uij 8ij 2 A.G/ (8.19)

Before we consider the last type of constraint, we need to make a key observation. At
every vertex in the graph except for s and t , flow is conserved. That is, the flow in is equal
to the flow out at every vertex (except s and t ). Now we are ready to write down the flow
balance constraint

X

i

xij D
X

k

xjk 8j 2 V.G/ � fs; tg (8.20)

The set V.G/ � fs; tg is just V.G/ with s and t removed; in this case, V.G/ � fs; tg D
fa; b; c; dg.

Now we turn our attention to the objective function. We seek to maximize flow from
s to t . Because flow is conserved everywhere except at s and t , we observe that any flow
going out of s must eventually find its way to t . That is, the quantity we want to maximize
is the sum of all the flow out of s (we could instead maximize the sum of all the flow to
t—the result would be the same). Therefore, our objective function is

Maximize
X

j

xsj (8.21)

Combining (8.18), (8.19), (8.20), and (8.21), we can write anymaximum-flow problem
as a linear program as follows:

Maximize z D
X

j

xsj

subject to X

i

xij D
X

k

xjk 8j 2 V.G/ � fs; tg

xij � uij 8ij 2 A.G/

xij � 0 8ij 2 A.G/

(8.22)

When the linear program (8.22) is solved, the resulting flow x is a maximum flow in G, and
the largest amount of flow that can go from s to t is

P
j xsj .
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Recall our maximum-flow example problem from the previous section (repeated in
Figure 8.35 below for convenience).

J Figure 8.35
Example graph for
maximum flow
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First note that constraints of type (8.18) require flow to be nonnegative on each arc.
Thus, xac � 0 is one (of nine) such constraints for this instance. Constraints of type (8.19)
require that flow satisfy the upper bound given. The nine constraints of this type for this
example include xac � 2 and xct � 7. Constraints of type (8.20) are for flow balance. There
are four such constraints because there are four vertices, not including s and t . At vertex c,
the flow balance constraint is xacCxbcCxdcDxct . The objective function for this instance
is to maximize xsa C xsb .

8.58.5 PROBLEMS

1. Consider the graph shown in Figure 8.36.

J Figure 8.36
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a. Find a minimum vertex cover in the graph in Figure 8.36.
b. Formulate an integer program to find a minimum vertex cover in the graph in Fig-

ure 8.36.
c. Solve the integer program in part (b) with computer software.

2. Consider again the graph in Figure 8.36. Now suppose that the cost of placing a vertex
in S varies. Suppose the cost of placing vertex i in S is g.i/ D .�i

2 C 6i � 5/
3 for

i 2 f1; 2; 3; 4; 5g. Repeat parts (a), (b), and (c) of the previous problem for this new
version of the problem. This is an instance of weighted vertex cover.

3. Suppose a computer procedure needs to check all of 2
100 possibilities to solve a problem.

Assume the computer can check 1;000;000 possibilities each second.
a. How long will it take the computer to solve this problem this way?
b. Suppose that the computer company comes out with a new computer that operates
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1000 times faster than the old model. How does that change the answer to question a?
What is the practical impact of the new computer on solving the problem this way?

4. Write down the linear program associated with solving maximum flow from s to t in the
graph in Figure 8.37.

J Figure 8.37
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8.58.5 PROJECT

1. Express the softball manager’s problem as a linear or integer program, and solve it with
computer software.

8.5 Further Reading
Garey, M., & D. Johnson. Computers and Intractability.W. H. Freeman, 1978.
Nemhauser, G., & L. Wolsey. Interger and Combinatorial Optimization. New York: Wiley, 1988.
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99
Modeling with Decision

Theory

Introduction

In the mathematical modeling process in Chapter 2, we discussed the importance of
assumptions to the models and methods that we might develop. Decision theory, which is
also called decision analysis, is a collection of mathematical models and tools developed to
assist people in choosing among alternative actions in complex situations involving chance
and risk. In many decisions, the options we have are clearly defined, and the information
is determined. For example, in Section 7.3 we analyzed the decision of a carpenter who
wants to maximize his profit by producing tables and bookcases given constraints on
lumber and labor. We assumed that tables and bookcases always took the same amount
of resources and always returned the same net profit. Such situations and assumptions are
called deterministic.

However, inmany situations chance and risk are involved, andwemaywant to develop
models to help us make decisions considering chance, risk, or both. Many of these involve
a random factor in addition to the presence of well-defined elements. The presence of the
random factormakes these situations inherently nondeterministic. Such situations are called
stochastic because their subsequent states are determined by both predictable factors and
random factors. For example, suppose you are at the fairgrounds and encounter the wheel
in Figure 9.1. It costs $4 to spin. You can play as many games as you like. Assuming the
wheel is ‘‘fair,’’ should you play the game? If so, how much do you expect to win or lose
over the course of the evening?

If the wheel is fair, we would expect to spin a $0 half the time and $10 the other half
and average $5 per spin. Since it costs $4 to play the game and the outcome is either $0 or
$10, we either lose $4 or win $6. That is, our average net value, or expectation E, is

E D .0 � $4/0:5 C .$10 � $4/0:5 D $1:

J Figure 9.1
Wheel with two outcomes
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Thus, if we played the game 100 times we would expect to make about $100. We
considered the chance of either outcome occurring. There is risk involved. For example,
you could begin by spinning a sequence of $0’s that exceed your available funds.

An important distinction in decision theory is whether the decision is implemented
once or repeated many times as just discussed. For example, in the game Deal or No
Deal (http://www.nbc.com/Deal_or_No_Deal/game/flash.shtml), there are 26 boxes, each
containing an amount of money between $0.01 and $1,000,000 (see website for details).
The contestant begins by choosing a box to set aside as his. He then identifies 6 of the
remaining 25 boxes to be opened to reveal the amount of money each contains. These 6
boxes are then removed from the game. After each round of opening a specified number of
boxes, the host proposes a ‘‘deal’’ by offering the contestant the opportunity to stop and take
an offer or continue to play by opening more of the remaining boxes. Let’s suppose there
are now only 2 boxes remaining, either the $0.01 or $1,000,000, and you are equally likely
to have either amount in ‘‘your’’ box. The host offers you $400,000. Should you make the
deal or continue playing? The average, or expectation, if you continue playing is

E D .$0:01/0:5 C .$1,000,000/0:5 � $500,000

The average exceeds the offer of $400,000. If you were playing the game many times,
you would average an advantage of about $100,000 by not making the deal. But if you play
only once and refuse the offer, the difference between accepting the offer and playing the
game is either

A W $0:01 � $400,000 � �$400,000 or
B W $1,000,000 � $400,000 D $600,000

Thus, you risk $400,000 to make an additional $600,000. Would you refuse the offer or
continue to play? We will study decision criteria that may be more appropriate for one-time
decisions than maximizing the average value.

Another important distinction is whether the probabilities of each event are known or
unknown. For example, consider the following decision among possible business ventures:

Hardware & Lumber is a large company that runs a very profitable business. The
management staff thinks that expanding the business to manufacture and market a new
product is a good idea. The new product line under consideration is small outdoor wooden
storage sheds. The following alternatives can be considered: (1) build a large plant to build
the storage sheds; (2) build a small plant to build the storage sheds; or (3) do not build any
plant and do not expand the company. Among the key assumptions to be considered are
that the demand for sheds could be high, moderate, or low depending on the economy. We
summarize the outcomes in the following table:

Outcomes

Alternatives High demand Moderate demand Low demand

Build large plant $200,000 $100,000 �$120,000
Build small plant $90,000 $50,000 �$20,000
No plant $0 $0 $0
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What decision should the company make if it cannot estimate demand probabilities?
How will our decision change if the marketing department is able to estimate future
demand as 25% high, 40% moderate, and 35% low? How accurate are these estimates of
the probabilities? Are they based on relative frequency, or are they subjective evaluations
of an expert? How sensitive is the decision to the probability estimates and estimates of
the possible outcomes? Where are the break points where your decision would switch to
a different alternative? Would the decision be different if the company were a ‘‘start-up’’
with very little capital versus a well-established company with lots of capital? Decisions
such as these are discussed in further sections. Let’s begin with a discussion of probability
and expected value.

9.19.1 Probability and Expected Value

Let’s first consider games of chance. Suppose you are rolling a pair of dice once. If you roll
a sum of 7 you win. If you roll anything else, you lose. It costs you $1 to play the game. If
you win, you get your $1 back and an additional $5. Otherwise, you lose $1. If you make
this bet 100 times over the course of the evening, how much do you expect to win? Or lose?
To answer such questions, we need two concepts: the probability of an event and expected
value.

We will use the frequency definition of the probability of an event. The probability
of event 7 is the number of ways we can roll a 7 divided by the total number of possible
outcomes. That is,

probability of an event D favorable outcomes
total outcomes

Of course, the probability of an event (rolling a 7) must be equal to or greater than zero
and equal to or less than 1. And, the sum of the probabilities of all possible events (rolling
2; 3; : : : ; 12) must equal 1. That is,

0 � pi � 1 and

p2 C p3 C p4 C � � � C p10 C p11 C p12 D 1 or

12X

iD2

pi D 1; i D 2; 3; : : : ; 12

So, we need to compute all of the possible outcomes of rolling two dice and then
determine how many result in a total of 7. A tree is useful for visualizing the outcomes.
On the first die, the possible numbers are 1, 2, 3, 4, 5, and 6, and on the second the same is
true, with each number equally likely on a fair die. Drawing part of the tree, we have what
is shown in Figure 9.2.
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J Figure 9.2
Rolling a pair of dice
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We can summarize the possible outcomes in a table.

Die 2 outcomes

1 2 3 4 5 6

Die 1 outcomes 1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

We see that there is a total of 36 equally likely outcomes. Of these outcomes, there are
6 that result in a total of 7. The probability of rolling a 7 is

probability D favorable
total

D 6
36

D 1
6

So, over the long haul, you would expect about 1/6 of the rolls to result in a total of 7.
Before we can determine whether we expect to win or lose with our bet, we need to
understand the concept of expected value.

Weighted Average
If you had 2 quiz grades, an 80 and a 100, almost intuitively you would add the two numbers
and divide by 2, giving an average of 90. If after 5 quizzes you had three 80’s and two 100’s,
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you would add them and divide by 5.

Average D 80 C 80 C 80 C 100 C 100
5

D 3.80/ C 2.100/

5

Rearranging, we have

Weighted Average D 3
5

.80/ C 2
5

.100/

In this form, we have two payoffs, 80 and 100, each multiplied by theweights, 3/5 and
2/5. This is analogous to the definition of expected value.

Suppose a game has outcomes a1; a2; : : : ; an each with a payoff w1; w2; : : : ; wn and a
corresponding probabilityp1; p2; : : : ; pn wherep1Cp2C� � �Cpn D 1 and 0 � pi � 1,
then the quantity

E D w1p1 C w1p2 C � � � C w1pn

is the expected value of the game.

Note that expected value is analogous to weighted average, but the weights must be
probabilities (0 � pi � 1), and the weights must sum to 1.

EXAMPLE 1 Rolling the Dice

Let’s return to our dice game. We are interested in the outcomes winning and losing.
Winning has a payoff of $5, while losing has a payoff of�$1, the cost of the game.Winning
(rolling a total of 7) has a probability of 1/6, as we computed previously. Losing (rolling
anything other than a 7) has a probability of 5/6. That is, (1 � 1=6 D 5=6), or computing
from the definition, there are 30 ways of losing and 36 possibilities, so the probability of
losing is 30=36 D 5=6. Our expected value then is

E D .$5/
1

6
C .�$1/

5

6
D 0

The interpretation of the result zero is that if over the long haul, you break even, the
game is fair. If you were charged $2, then the expected value is

E D .$5/
1

6
C .�$2/

5

6
D

�
�$

5

6

�
;

and you would expect to lose about $0.83 on average. So, if you played 100 times, you
would expect to lose about $83. The game is unfair to the player. A game is fair if the
expected value is 0. J J J
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EXAMPLE 2 Life Insurance

A term life insurance policy will pay a beneficiary a certain sum of money on the death of
the policyholder. These policies have premiums that must be paid annually. Suppose a life
insurance company is considering selling a $250,000 one-year term life insurance policy to
a 49-year-old female for $550. According to the National Vital Statistics Report (Vol. 47,
No. 28), the probability the female will survive the year is 0.99791. Compute the expected
value of this policy to the insurance company.

Solution
We compute the expected value knowing that all policy holders will pay the premium of
$550 and estimating that (1 � 99:791)% of the policy holders will collect $250,000, giving
the expected value:

E D .$550/0:99791 C .$550 � $250; 000/.1 � 0:99791/ D $25:201

The life insurance company expects tomake a little over $25 per policy sold. If the company
sells 1000 policies, then it would expect to make $25,000. Since the expected value is
positive, selling the policy would be profitable. A negative expected value would indicate
a loss. J J J

EXAMPLE 3 Roulette

A common application of expected value is gambling. For example, an American roulette
wheel has 38 equally likely outcomes. The numbers are 0, 00, 1, 2, 3,. . . , 34, 35, 36. A
winning bet placed on a single number pays 35 to 1. This means that you are paid 35 times
your bet and your bet is returned, so you get 36 times your bet after your bet is collected.
So, considering all 38 possible outcomes, find the expected value resulting from a $1 bet
on a single number.

Solution
If a player bets on a single number in the American roulette game, there is a probability of
1/38 that the player wins. If he wins, he wins $36 minus the $1 cost of the bet. He loses
with probability 37/38, and he loses $1. The expected value is

E D .�$1/
37

38
C .$36 � $1/

1

38
D �$0:0526

Therefore one expects, on average, to lose over five cents for every dollar bet, and the
expected value of a one dollar bet is ($1 � $0:0526) or $0.9474. In this case, since the
expected value (�$0:0526) is negative, the game is unfair, and the house advantage, or
‘‘house edge,’’ is 5.26%. J J J
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EXAMPLE 4 Remodeling Existing Golf Courses or Constructing New Golf Courses

Consider a construction firm that is deciding whether to specialize in remodeling existing
golf courses or constructing new golf courses. If both ventures are profitable over the long
haul, the firmwill choose themost profitable. If neither is profitable, the firmwill do neither.
The construction firm must submit a bid, which costs money, and they may or may not be
awarded the contract. If it bids on building a new golf course, the company has a 20% chance
of winning the contract and expects to make $50,000 net profit if awarded the contract.
However, if the company fails to get the contract, it will lose $1000, the cost of preparing
the bid. The corresponding data for remodeling golf courses is given in the following table:

New construction (NC) Remodeling (R)

Win contract: $50,000 net profit Win contract: $40,000 net profit
Lose contract: �$1000 Lose contract: �$500
Probability of award of contract: 20% Probability of award of contract: 25%

For the new construction, the outcomes are winning and losing the contract, with
corresponding payoffs of $50,000 and �$1000. The corresponding probabilities are 0.20
and 0.80. The expected value is

E.NC / D .$50,000/0:2 C .�$1,000/0:8 D $9,200

Thus, over the long haul, bidding on the new construction is profitable. On average,
the firm would make $9200 each time it submitted a bid. What about remodeling existing
golf courses? The outcomewinning has a payoff of $40,000 with probability 0.25, and the
outcome losing, a payoff of �$500 with probability 0.75. Computing the expected value,
we have

E.R/ D .$40,000/0:25 C .�$500/0:75 D $9,625

Over the long haul, rebuilding the existing golf courses is the more lucrative venture.J J J

Sensitivity Analysis
We see that a typical decision model depends on many assumptions. For instance, in
Example 4, the probabilities of an award of a contract for constructing new golf courses or
remodeling existing golf courses are most likely estimates based on past experiences. The
probabilities are likely to change as more or fewer construction companies make bids or
the number of opportunities to bid change. How sensitive to the estimate of the probability
of the award of a contract is the decision to remodel existing golf courses? To the net profit,
if awarded the contract?
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EXAMPLE 5 Remodeling Existing Golf Courses or Constructing New Golf
Courses Revisited

First, let’s consider the estimate of the probability of an award of a contract for constructing
a new golf course. The current estimate is 20%. How much would the probability have to
increase for the constructing of a new golf course venture to be equal to the remodeling of an
existing golf course venture? Letting p represent the probability of success for constructing
a new golf course and (1�p) the probability of failure, we can represent the expected value
of constructing a new golf course as follows:

E.NC / D .$50,000/p C .�$1,000/.1 � p/

For the constructing new golf courses venture to be competitive, its expected value
must be equal to the expected value of remodeling existing golf courses, currently $9625.

E.NC / D .$50,000/p C .�$1,000/.1 � p/ D $9,625

Solving for p, we get p D 0:2083 or 20.83%. Thus, a small change in the current
estimate of success of constructing new golf courses could change our decision. This allows
the decision maker to consider 20.83% as the break point. If he thinks the probability is
higher, he should construct new golf courses.

What about the sensitivity of the decision to the net profit if awarded a contract for
constructing new golf courses? Letting x represent the size of the award and using the
probabilities of award given in Example 4, we have, for constructing new golf courses,

E.NC / D .x/0:2 C .�$1,000/0:8

To be competitive, the expected value must equal that of remodeling existing golf
courses.

E.NC / D .x/0:2 C .�$1,000/0:8 D $9,625

Solving for x, we find x D $52,125, an increase of 4.25%. Again, this is the break
point of the decision. Now, let’s get some practice with the concept of probability of an
event and expected value. J J J

9.19.1 PROBLEMS

1. Let’s assume you have the following numerical grades in a course: 100, 90, 80, 95, and
100. Compute your average grade.

2. Let’s assume in a class there were 8 scores of 100, 5 scores of 95, 3 scores of 90, 2 scores
of 80, and 1 score of 75. Compute the average grade.

3. The number of attempts to use an ATM per person per month and their probabilities
are listed in the following table. Compute the expected value and interpret that value.
Discuss how similar calculations could be used to determine the number of ATMs
needed.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_09_ch09_p339-377 January 23, 2013 19:40 347

9.1 Probability and Expected Value 347

Attempts 1 2 3 4
Probability 0.5 0.33 0.10 0.07

4. We have engaged in a business venture. Assume the probability of success is
P.s/ D 2=5; further assume that if we are successful we make $55,000, and if we
are unsuccessful we lose $1750. Find the expected value of the business venture.

5. A term life insurance policy will pay a beneficiary a certain sum of money on the death
of the policyholder. These policies have premiums that must be paid annually. Suppose
the company is considering selling 1-year term life insurance for $550,000 with a cost of
$1050 to either a 59-year-old male or a 59-year-old female. According to the National
Vital Statistics Report (Vol. 58, No. 21), the probability that a male will survive 1 year
at that age is 0.989418 and that a female will survive the year is 0.993506. Compute the
expected values of the male and female policies to the insurance company. (What is the
expected profit or loss of each policy?) What is the expected value if the company offers
the policy to both the male and the female if 51% of the customers who would purchase
a policy are female?

6. Consider a firm handling concessions for a sporting event. The firm’s manager needs
to know whether to stock up with coffee or cola and is formulating policies for specific
weather predictions. A local agreement restricts the firm to selling only one type of
beverage. The firm estimates a $1500 profit selling cola if the weather is cold and a
$5000 profit selling cola if the weather is warm. The firm also estimates a $4000 profit
selling coffee if it is cold and a $1000 profit selling coffee if the weather is warm. The
weather forecast says that there is a 30% of a cold front; otherwise, the weather will be
warm. Build a decision tree to assist with the decision. What should the firm handling
concessions do?

7. For the firm handling concessions in Exercise 6, find and interpret the break point of the
decision based on the weather probability. Discuss under what probabilistic conditions
for weather the concession firm should sell cola or coffee.

8. Refer to the rolling of a pair of dice example. Determine the probability of rolling a 7 or
an 11. If you roll a 7 or 11, you win $5, but if you roll any other number, you lose $1.
Determine the expected value of the game.

9. Consider a construction firm that is deciding to specialize in building high schools
or elementary schools or a combination of both over the long haul. The construction
company must submit a bid proposal, which costs money to prepare, and there are no
guarantees that it will be awarded the contract. If the company bids on the high school,
it has a 35% chance of getting the contract, and it expects to make $162,000 net profit.
However, if the company does not get the contract, it loses $11,500. If the company bids
on the elementary school, there is a 25% chance of getting the contract, and it would
net $140,000 in profit. However, if the company does not get the contract, it will lose
$5750. What should the construction company do?

10. Consider the scenario in Exercise 9. Under what probabilities would the construction
firm be indifferent to the type of contract it could receive?
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9.29.2 Decision Trees

A decision tree is often used to display and analyze the options available to the decision
maker. Decision trees are especially informative when a sequence of decisions must be
made. The notation we will use is shown in Figures 9.3–9.5.

J Figure 9.3
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J Figure 9.5
A terminal node with a consequence branch showing the payoff for that outcome

EXAMPLE 1 Constructing New Golf Courses or Remodeling Existing Golf Courses

Let’s build a decision tree for Example 4 of Section 9.1. The decision to be made is whether
to construct new golf courses or remodel existing golf courses. The decision criterion is
to maximize total profit over the long haul by maximizing the expected value. Recall the
following data:

New construction (NC) Remodel (R)

Win contract: $50,000 net profit Win contract: $40,000 net profit
Lose contract: �$1000 Lose contract: �$500
Probability of award of contract: 20% Probability of award of contract: 25%

We begin with a decision node with two branches, one for each alternative course of
action (Figure 9.6).

Now, we add the uncertainty nodes, each with an outcome branch for each possible
outcome depending on chance, and the associated probability for each outcome branch
(Figure 9.7).

Finally, we add terminal nodes with a consequence branch and the payoff for each
outcome (Figure 9.8).
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In this case, we have only one decision, and our decision criterion is to compute the
expected value of each alternative course of action as we did in Example 2 and choose the
larger. That is, we compute the expected value of each uncertainty node and then make
the decision based on the higher expected value (Figure 9.9).

Our decision then is to renovate golf courses.
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As in the example, our procedure to solve a decision tree is to start at the end and
replace each uncertainty node with an expected value. Then, we make the decision prior to
the uncertainty nodes by choosing the larger expected value. This is often referred to as the
fold-back method, which we illustrate in Figure 9.10. J J J

EXAMPLE 2 Hardware & Lumber Company Decision (Revisited)

Recall the decision whether to manufacture and market outdoor wooden sheds presented
in the chapter introduction. The three alternatives under consideration with their respective
demand revenues or losses accompanied by the estimated demand probabilities are as
follows:

Outcomes

High demand Moderate demand Low demand
Alternatives (p D 0:25) (p D 0:40) (p D 0:35)

Build large plant $200,000 $100,000 �$120,000
Build small plant $90,000 $50,000 �$20,000
No plant $0 $0 $0

Our decision criterion is to choose the venture with the highest expected value if
profitable. We will construct a tree diagram and work the tree backward to obtain a
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J Figure 9.11
Hardware & Lumber tree diagram

decision. As seen in Figure 9.11, our expected value of $48,000 for building a large plant
is better than the $35,500 for a small plant and $0 for no plant. Our decision is to go with
building a large plant. J J J

EXAMPLE 3 A Local TV Station

A local TV station that broadcasts its programming statewide has $1.5 million available for
investments and wants to decide whether to market a new schedule. The company has three
alternatives:

Alternative 1. Test the new schedule locally with a market survey. Use the results of the
local survey to decide whether to implement the new schedule statewide or drop the idea
of a new schedule.

Alternative 2. Without any test markets, market the new schedule statewide.
Alternative 3. Without testing, decide not to market the new strategy.
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Completed Tree Diagram for Example 3

In the absence of a market survey, the TV station estimates that the new schedule has
a 55% chance of being a statewide success and a 45% chance of being a statewide failure.
If it is a statewide success, the profit will be an additional $1.5 million, and if a failure, the
station will lose $1 million.

If the TV station performs a market study (at a cost of $300,000), there is a 60% chance
that the study will predict an optimistic outcome (a local success) and a 40% chance of a
pessimistic prediction (a local failure). If a local success is predicted, there is an 85% chance
of statewide success. If a local failure is predicted, then there is a 10% chance of statewide
success (Figure 9.12). If the TV station wants to maximize its expected value, what strategy
should it follow?

Interpretation
The highest expected value is $2.7 million by not accomplishing a market survey and
marketing the new schedule statewide directly.
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Often, decisions are sequential; that is, some decisions depend on one or more previous
decisions. We examine sequential decisions using decision trees in Section 9.3. J J J

9.29.2 PROBLEMS

For the following two problems from Section 9.1, complete a tree diagram and solve each
problem.

1. Problem 6, Section 9.1.

2. Problem 9, Section 9.1.

3. The financial success of a ski resort in Squaw Valley is dependent on the amount of
early snowfall in the fall and winter months. If the snowfall is greater than 40 inches,
the resort always has a successful ski season. If the snow is between 30 and 40 inches,
the resort has a moderate season, and if the snowfall is less than 30 inches, the season is
poor, and the resort will lose money. The seasonal snow probabilities from the weather
service are displayed in the following table with the expected revenue for the previous
10 seasons. A hotel chain has offered to lease the resort during the winter for $100,000.
You must decide whether to operate yourself or lease the resort. Build a decision tree
to assist in the decision.

States of Nature

Snow � 40’’ Snow 30’’ to 40’’ Snow � 30’’
p1 D 0:40 p2 D 0:20 p3 D 0:40

Financial return if we operate $280,000 $100,000 �$40,000
Lease $100,000 $100,000 $100,000

4. Consider Problem 3. List some considerations that would cause the decision maker not
to choose the larger expected value.

5. A new energy company, All Green, has developed a new line of energy products.
Top management is attempting to decide on both marketing and production strategies.
Three strategies are considered and are referred to as A (aggressive), B (basic), and
C (cautious). The conditions under which the study will be conducted are S (strong)
and W (weak) conditions. Management’s best estimates for net profits (in millions of
dollars) are given in the following table. Build a decision tree to assist the company
determine its best strategy.

Decision Strong (with probability 45%) Weak (with probability 55%)

A 30 �8
B 20 7
C 5 15
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6. Assume the following probability distribution of daily demand for bushels of
strawberries:

Daily demand 0 1 2 3
Probability 0.2 0.3 0.3 0.2

Further assume that unit cost is $3 per bushel, selling price is $5 per bushel, and
salvage value on unsold units is $2. We can stock 0, 1, 2, or 3 units. Assume that units
from any single day cannot be sold on the next day. Build a decision tree and determine
how many units should be stocked each day to maximize net profit over the long haul.

7. An oil company is considering making a bid on a new alternative energy contract to
be awarded by the government. The company has decided to bid $2.10 billion. The oil
company has a good reputation, and it estimates that it has a 70% chance of winning
the contract bid. If the oil company wins the contract, the oil company management
has decided to pursue one of two options: either design an electric car or develop a new
fuel substitute. The development cost of the new design for the electric car is estimated
at $300 million. The estimated revenue and probabilities of success associated with
developing and marketing the electric car are as follows:

Event Probability of developing Estimated revenue
and marketing (in millions)

Extremely successful 0.7 $4500
Moderately successful 0.2 $2000
Weakly successful 0.1 $90

The fuel substitute development cost is estimated at $170 million. The estimated
revenue and probabilities for success are given next:

Event Probability of developing Estimated revenue
and marketing (in millions)

Extremely successful 0.6 $3000
Moderately successful 0.2 $2000
Weakly successful 0.2 $100

Construct a decision tree and determine the oil company’s best strategy.

8. The local TV station has $150,000 available for research and wants to decide whether
to market a new advertising strategy for the station. The station is located in the city,
but its viewers are statewide. The station management has developed three alternatives
that need to be analyzed:
Alternative 1. Test locally with a small test group, then use the results of the local

study to determine whether to implement across the state.
Alternative 2. Immediately market with no studies.
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Alternative 3. Immediately decide not to use the new advertising strategy (stay with
the status quo advertising strategy).

In the absence of a study, the station believes the new advertising strategy has a 65%
chance of success and a 35% chance of failure at the state level. If successful, the
new advertising strategy will bring $300,000 additional assets, and if the advertising
strategy is a failure, the station will lose $100,000 in assets. If the station does the study
(which costs $30,000), there is a 60% chance of favorable outcome (local success) and
a 40% chance of an unfavorable outcome (local failure). If the study shows that it is a
local success, then there is an 85% chance that it will be successful across the state. If
the study yields a local failure, there is only a 10% chance that it will be a state success.
Build a tree diagram to assist and determine the decision for the local TV station.

9.39.3 Sequential Decisions and Conditional

Probabilities

In many cases, decisions must be made sequentially. Let’s consider an example.

EXAMPLE 1 Las Vegas Casino Spinning Wheel

You are in a Las Vegas Casino and have encountered the following game board, which is
to be spun randomly (electronically):

$10

$6 $0

$4

Assuming that each outcome is equally likely, you compute the possible payoffs and
probabilities as

Payoff Probability

$0 1 in 4 (25%)
$4 1 in 4 (25%)
$6 1 in 4 (25%)
$10 1 in 4 (25%)

You have a maximum of 3 spins but may stop after either the first or the second spin
and take the result of that spin. You have decided to play the game 100 times. Clearly, after
the first spin, you would take $10 and stop, and you would spin again if you had $0. But,
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what about $4 and $6? And what is your criterion after the second spin? Clearly, after the
third spin, if you get that far, you are stuck with whatever occurs. What you seek is an
optimal decision strategy. That is,

After spin 1, take?
After spin 2, take?
After spin 3, take anything.

If your goal is to maximize profit over the 100 games, what should you do? If you do
want to make a profit, what is the maximum amount you should pay to play?

To solve this problem, we start at the final spin and work our way backward. That is,
if we know the monetary value of spin 3, we can decide what to do after spin 2. Of course
if we get to spin 3, we must take anything. Computing the expected value of spin 3, take
anything, we have

E.Spin3/ D .$10/0:25 C .$6/0:25 C .$4/0:25 C .$0/0:25 D $5:00:

Interpreting
If we arrive at spin 3, we will average $5.00 on that final spin. Consequently, after spin 2
we should take any result greater than $5.00.

After spin 2, take $10 or $6. Otherwise, go to spin 3:

Now, we compute the expected value at the beginning of spin 2. We are going to take
$10 or $6; otherwise, if we spin a $4 or $0, we will go to spin 3, which we now know is
worth $5.00. Computing, we have

E.Spin2/ D .$10/0:25 C .$6/0:25 C .$5:00/0:50 D $6:50

If we expect to make $6.50 with spins 2 and 3 in front of us, then after spin 1 we should
take only the $10. Summarizing, we have our optimal decision process that maximizes the
expected value:

After spin 1, take $10 only.
After spin 2, take $10 or $6.
After spin 3, take anything.

While we have an optimal decision process, we still have not determined the value of
the game. To do that, we must compute the expected value at spin 1, that is, with 3 spins
in front of us. Since we take only the $10 outcome and otherwise go to spin 2, where we
expect to make $6.50, we have

E.Spin1/ D .$10/0:25 C .$6:50/0:75 � $7:375

If we play optimally, we will average $7.375. If we play the game a large number of times,
say 100, we expect to make about $737.50 on average. If we pay more than $7.375 to play
each game, we will lose money. Now, let’s consider this process using a decision tree.J J J
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EXAMPLE 2 Las Vegas Casino Spinning Wheel Revisited

First, we diagram the entire decision process, assuming we will take $10 anytime, and if
we spin a $0 at spins 1 and 2, we will go to the next spin (Figure 9.13).

Next, we compute the expected value of the final uncertainty node as E(Spin 3) D
$5:00 and make the decision that after spin 2 to take $10 or $6; otherwise, go to spin 3
(Figure 9.14).
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Next, we compute the expected value of the uncertainty node spin 2 as E(Spin 2) D
$6:50. Now, we make the decision after spin 1 to take only $10.

Finally, we can compute the value of the uncertainty node spin 1, E.Spin 1/ D $7:375.
Note that once we diagrammed the decision tree, we solved for the optimal decisions by

evaluating the expected value of each uncertainty node beginning at the end of the decision
tree and working our way back to the front of the tree. J J J

EXAMPLE 3 Hardware & Lumber Company Decision with Sequential Decisions
(Revisited)

Recall the Hardware & Lumber Company presented as Example 2 in Section 9.2. Let’s
assume that before making a decision, the company has an option to hire a market research
firm for $4000. This market research firm will survey the selling markets that are serviced
by the Hardware & Lumber Company to determine the attractiveness of the new outdoor
wooden shed. The Hardware & Lumber Company knows that the market research firm
does not provide perfect information. The Hardware & Lumber Company has to decide
whether to hire the market research firm. If the market research firm study is conducted,
the assumed probability of an optimistic prediction (go ahead with the new outdoor shed)
is 0.57, and a pessimistic prediction (do not go ahead with the new outdoor shed) is 0.43.
Further, since we have gained more information, our probabilities for the demand of our
product will change. Given an optimistic survey prediction, the probability for high demand
is 0.509, for moderate demand is 0.468, and for low demand is 0.023. Given a pessimistic
survey prediction, the probability of high demand is 0.023, for moderate demand is 0.543,
and for low demand is 0.434. We will use a decision tree to help us in the decision making
for the Hardware & Lumber Company (see Figure 9.15). We conclude that the Hardware
& Lumber Company should hire the market research firm and have it conduct the market
survey to obtain the expected value of $87,961. J J J

Conditional Probabilities Using Decision Trees
Quite often, the probability of an event depends on a prior condition. For example, in many
types of medical testing, the accuracy of the test differs depending on whether the patient
has the disease.

Consider a population for which we know that 4.7% use steroids. The test for steroids
is 59.5% accurate if the patient uses steroids, and 99.5% accurate if the patient does not use
steroids. Building a tree, we have Figure 9.16.

There are four outcomes. From top to bottom, we label ‘‘true positive’’ if the patient
is a user and the test correctly indicates that he is. ‘‘False negative’’ is a user but the test
incorrectly identifies him as drug free. ‘‘True negative’’ is a patient who does not use the
drug and is correctly identified by the test. ‘‘False positive’’ is a patient who is drug free
but identified as a user by the test. Thus, ‘‘True’’ or ‘‘False’’ refers to whether the test
is correct or not, respectively, and ‘‘Positive’’ or ‘‘Negative’’ refers to the conclusion of
the test.
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Sequential decision tree for the Hardware & Lumber Company
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Conditional probabilities tree diagram for steroid testing.

We can compute the probabilities for each of the four categories. For example, 4.7% of
the population are drug users, and 59.5% of them are correctly identified as drug users, or
.:047/ � .:595/ D :027965 or 2.8% of the population are correctly identified as drug users.
As labeled in our tree diagram, our test results divide the population into four categories
with percentages as follows:

Category Probability and percentage

True positive (actual users) 0.027965 or 2.7965%
False negative (users but not identified) 0.019035 or 1.9035%
True negative (truly drug free) 0.948235 or 94.8235%
False positive (drug free but identified as a user) 0.004765 or 0.4765%

Now, suppose our population consists of 1000 people. We can use these probabilities
to compute how many would be in each category (on average).

Category Probability and percentage

True positive (actual users) 0:027965.1000/ D 27:965 � 28
False negative (users but not identified) 0:019035.1000/ D 19:035 � 19
True negative (truly drug free) 0:948235.1000/ D 948:235 � 948
False positive (drug free but identified as a user) 0:004765.1000/ D 4:765 � 5
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Now suppose a patient is identified as a user. What is the probability that the patient
actually is a drug user? To answer the question, we can use the relative frequency definition
of probability:

probability D favorable
total

We are focusing on those patients who received a ‘‘positive’’ test result. The numerator
is the number of patients who are correctly identified as a user, 27.965, and the denominator
is all the positives, that is, all the patients the test identified as users, 27.965 plus 4.765.

probability D 27:965
27:965 C 4:765

D 0:854415

Of course, we could have computed the result directly from the respective probabilities:

probability D .0:47/.:595/

.0:47/.:595/ C .0:953/.:005/
D 0:854415

Now, let’s interpret the result. If a patient is tested and told he is a steroid user, there is an
85.4% chance that he actually is a user. Thus, about 14.6% of the patients the test identifies
as users are actually drug free. In many cases, this approximately 15% error could cause
great anxiety (testing for a serious illness). Or, in the exercises you are asked to consider the
decision faced by the commissioner of a sport, on whether to require 100% of the population
to take a drug test given the dilemma of falsely accusing an innocent player, whomust suffer
damage to his reputation, when we know a number of players will be falsely identified as
users. How accurate must the test be for you to require it for all players?

In this example, we began with the probabilities and built a tree. We then computed
the probabilities of each of the possible categories. We then used these numbers to build a
table dividing a population of a given size into each of the categories. In some situations,
you may start with the number in each category.

9.39.3 PROBLEMS

1. Consider the Las Vegas wheel problem in Example 1 where the wheel no longer has
equal probabilities but probabilities for values $10, $6, $4, $0 as follows:

Payoff Probability

$0 .23
$4 .37
$6 .15
$10 .25

Consider three spins and decide your optimal strategy.
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2. Consider the Las Vegas wheel from Example 1 with the following new payoffs and
probabilities:

Payoff Probability

$5 .25
$10 .35
$15 .28
$20 .12

Consider three spins and decide your optimal strategy.

3. A big private oil company must decide whether to drill in the Gulf of Mexico. It costs
$1 million to drill, and if oil is found its value is estimated at $6 million. At present,
the oil company believes that there is a 45% chance that oil is present. Before drilling
begins, the big private oil company can hire a geologist for $100,000 to obtain samples
and test for oil. There is only about a 60% chance that the geologist will issue a
favorable report. Given that the geologist does issue a favorable report, there is an
85% chance that there is oil. Given an unfavorable report, there is a 22% chance that
there is oil. Determine what the big private oil company should do.

4. Consider a scenario in which state colleges must actively recruit students. California
Sci has $750,000 in assets available. Its Board of Regents has to consider several
options. The board may decide to do nothing and put the $750,000 back into the college
operating budget. They may directly advertise, spending $250,000 of the assets for an
aggressive social media email campaign for both in- and out-of-state students. This
campaign has a 75% chance of being successful. The college defines successful as
‘‘bringing in’’ 100 new students at $43,500 a year in tuition. The Board of Regents was
approached by a marketing firm expert in social media advertising. For an additional
cost of $150,000, the marketing firm will create a stronger social media strategy. The
marketing firm boasts a 65% chance of favorable results. If successful, there is a 90%
chance that the advertising will raise the number of new students from 100 to about
200. If not successful, there will be only a 15% chance that it will raise the number
of new students from 100 to about 200. If the college wants to maximize its expected
asset position, then what should the Board of Regents do?

5. A nuclear power company in California is deciding on two possible locations for
constructing a new nuclear power plant. Let’s call the possible locations A and B.
The nuclear disaster in Japan has made the nuclear power company very aware of
the potential damage to nuclear power plants due to natural disasters. The cost of
building the nuclear power plant is estimated as $15 million at A and $25 million at B.
If the company builds at A and an earthquake occurs near A within the next 5 years,
construction will be terminated, and the company will lose $10 million in construction
costs. At that point, the power company will have to begin building at site B, which is
not in an earthquake zone. The company initially feels that there is a 20% chance that
a small-to-medium earthquake could occur within 5 years. For $1 million dollars, the
power company can hire a notable geologist and his firm to analyze the fault structure
at site A. The geologist’s analysis will predict that an earthquake either will or will not
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occur within 5 years. The geologist’s past record indicates he is quite accurate, having
predicted an earthquake on 95% of the occasions for which an earthquake took place
and 90% of the occasions for which an earthquake did not take place. Build a decision
tree to assist the nuclear power company make a decision among its alternatives.

6. A local TV studio is deciding on a possible new TV show. A successful TV show
earns the station about $450,000, but if it is not successful, the station loses about
$150,000. Of the previous 100 shows reviewed by the local TV station, 25 turned out
to be successful TV shows, and 75 turned out to be unsuccessful TV shows. For a cost
of $45,000, the local station can hire Buddy’s Market Research team; this team will
use a live audience in previewing the TV pilots to determine whether the viewed TV
show will be successful. Past records show that market research predicts a successful
TV show about 90% of the time that the TV show was actually successful and predicts
an unsuccessful show 80% of the time that it turned out to be unsuccessful. How should
the local TV studio maximize its profits?

7. Testing for Steroids in Baseball. Baseball has dramatically changed the penalties
associated with failing steroid drug testing. The new penalties that Commissioner Bud
Selig has proposed are an approach of ‘‘three strikes and you’re out," which goes as
follows:
The first positive test would result in a 50-game suspension.
The second positive test would result in a 100-game suspension.
Finally, the third positive test would result in a lifetime suspension from Major
League Baseball.
Let’s examine the issue and the choices using decision trees. First, let’s consider

testing a baseball player for steroids; the test result will be either positive or negative.
However, these tests are not flawless. Some baseball players who are steroid free
test positive, and some baseball players who use steroids test negative. The former
are called false positives; the latter are false negatives. We will extract data from the
baseball steroid data table for our analysis. Build a conditional probability tree and
use it to help compute all the probabilities associated with the following key issues:
If some players test positive, what are the chances that they were a steroid user?
If some players test positive, what are the chances that they were not a steroid user?
If a test was negative, what are the chances that the player was a steroid user?
If a test was negative, what are the chances that the player was not a steroid user?
What do these results suggest about this drug testing?

Baseball steroid data

Positive results Negative results Totals

Users 28 3 31
Nonusers 19 600 619
Totals 47 603 650
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8. The worst-case scenario for a baseball player is a lifetime ban. We initially assume
there are only two options: test everyone or test no one. We assume monetary assets or
costs in our analysis. We define the following:

B D benefit for correctly identifying a steroid user and banning this user from
baseball

C1 D cost of the test, including materials and labor
C2 D cost of falsely accusing a nonuser and its consequences
C3 D cost of not correctly identifying a steroid user (either by testing or by a false

negative)
C4 D cost of violating privacy
These costs and benefits are hard to measure, except C1. We will assume a

proportionality relationship between C1 and each other cost and benefit to help the
commissioner in his decision process.

Cost/Benefit Assumptions

C2 D 25 C1I C3 D 20 C1I C4 D 2C1I B D 50C1

Build a tree diagram to assist with the decision for testing.

9. Consider Problem 8. Modify the proportionality results as shown in the following and
determine the new results of the decision tree:
a. C2 D C1I C3 D C1I C4 D C1I B D C1

b. C2 D 35C1I C3 D 10C1I C4 D C1I B D 65C1

10. Consider the steroid testing in baseball of Problem 7. Assume new data for the
expanded roster has been collected, and our table now is as follows. Build a new
decision tree and interpret the results:

Positive results Negative results Totals

Users 18 5 23
Nonusers 49 828 877
Totals 67 833 900

11. Consider the All Green energy company in Problem 5, Section 9.2. All Green has
considered asking a marketing research group to perform a market research study.
Within one month, this group can report on the study whether the results were good (G)
or discouraging (D) to pursue this new line of energy products. In the past, such studies
have tended to be in the right direction.When the energy market ended up being strong,
such studies were good 60% of the time and discouraging 40% of the time. When the
energy market was weak, these studies were discouraging 70% of the time and good
30% of the time. The study would cost $500,000. Should the management request the
market research study prior to making a decision?
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9.39.3 PROJECTS

1. Consider the steroid testing in baseball scenarios.
a. Under what changes would the commissioner be able to justify his 100% testing

results?
b. Add a second drug test and now determine the results of the decision tree. Is the

baseball commissioner justified for 100% testing now after adding a second drug
test?

9.49.4 Decisions Using Alternative Criteria

In the previous sections, we used the criterion of maximizing the expected value to make
decisions. Certainly, if you are repeating the decision many times, over the long haul
maximizing your expected value is very appealing. But, even then, there may be instances
when you want to consider explicitly the risk involved. For instance, in the example
concerning the decision to construct new golf courses or remodel existing golf courses,
consider the revised data for which the net profit of constructing new golf courses increases
while its probability of award decreases and the data for remodeling golf courses remain
the same:

New construction (NC) Remodel (R)

Win contract: $100,000 net profit Win contract: $40,000 net profit
Lose contract: �$1000 Lose contract: �$500
Probability of award of contract: 12.5% Probability of award of contract: 25%

E.NC / D .$100,000/0:125 C .�$1000/0:875 D $11,625

and

E.R/ D .$40,000/0:25 C .�$500/0:75 D $9,625

as previously computed. Following the criterion of maximizing the expected value, we
would now choose constructing new golf courses, and over the long haul, we would make
considerably more total profit. But, if this is a ‘‘start-up’’ company with limited capital in
the short term, there is risk involved that the numbers representing the expected value do not
reveal—you simply compare $11,625 with $9,625. First, there is a much lower probability
of award. Can the company survive an initial run of 7–10 bids at a cost of $1000 each for
which they do not get the contracts? In the short term, is the higher probability of an award
and the lower cost of failure of remodeling existing golf courses a better option for the
start-up construction company? How do we measure risk in such cases?

What about ‘‘one-time’’ decisions? Consider the popular TV gameDeal or NoDeal. As
discussed in the introduction, there are 26 suitcases containing an amount of money varying
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from $0.01 to $1,000,000. The contestant picks one of the suitcases as hers. She then begins
opening a varying amount of suitcases. After opening the specified number of suitcases, the
host makes her an offer, which she can either accept (deal) or reject (no deal). Now, let’s
suppose the contestant stays until the end, and we are down to the final two suitcases. One
contains $0.01 and the other $1,000,000. The host offers her $400,000. Should she accept
or reject the offer? If she rejects the offer, she would open the final two suitcases to see if
she had picked the correct one. The expected value of continuing to play is

E D .1,000,000/0:5 C .$0:01/0:5 D $500,000:005 � $500,000:01

which is about 25% better than the offer of $400,000. Following the expected value
criterion, she would choose to play. But, understand this: About half the time, she would
go home with $0.01. She could explain to her family that she rejected $400,000, but that
she was ‘‘mathematically correct’’! She is playing this game once, not optimizing over the
long haul.

Now, let’s consider other decision criteria. Consider the following hypothetical table,
which reflects (in $100,000) the final amount (after 5 years) of an initial investment
of $100,000. Four different investment strategies A, B, C, and D are available. In this
simplified illustrative example, the amount of the investment varies depending on the
nature of the economy during the next 5 years. In this case, the investment is locked in for
5 years, so this is a one-time decision.

EXAMPLE 1 Investment versus Nature

In the next table are predicted values for a 5-year investment for alternative investment
strategies as a function of the nature of the economy:

Nature of the economy

E F G H

A 2 2 0 1
Your plan B 1 1 1 1

C 0 4 0 0
D 1 3 0 0

Case 1
One-Time Decisions, Probabilities Known, and Maximized Expected Outcome Desired

Maximize Expected Value Criterion Compute the expected value for each option.
Choose the largest expected value. Let’s assume an accomplished econometrician has
estimated a subjective probability. A subjective probability differs from our relative
frequency definition used previously in that it is not the ratio of favorable outcomes to
total outcomes since experimental data are not available, but rather it is the best estimate
of a qualified expert. Let’s assume the probabilities for the states of the economy E, F, G,
and H are 0.2, 0.4, 0.3, and 0.1, respectively. Then, E.A/ D 1:3, E.B/ D 1:0, E.C/ D 1:6,
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E.D/ D 1:4. We would choose C. While the expected value does not reflect the risk
involved, there may be instances when it is an appropriate criterion for a one-time decision.
For example, suppose Joe were given a one-time chance to win $1000 on a single roll of
a pair of dice; he might elect to bet on the number 7 since it has the highest probability of
occurring and therefore the highest expected value. Others may choose differently.

Case 2
One-Time Decisions, Probabilities Unknown

Laplace Criterion This decision criterion assumes that the unknown probabilities are
equal. Therefore, we can simply average the payoffs (expected value) for each investment
or, equivalently, choose the investment strategy with the highest sum since the weights are
equal. In the preceding example, the sums for each strategy are A D 5, B D 4, C D 4, and
D D 4. So, following the Laplace criterion, we would chooseA (the weighted average 5

4
>

4

4
). The Laplace method is simply the same as maximizing the expected value assuming

the states of nature are equally likely. Thus, it has the same advantages and disadvantages
as the expected value criterion.

Maximin Criterion This is an extremely important criterion that we will use repetitively
while studying game theory. Here, we want to compute the worst that can happen if we
choose each strategy. You can think of this as establishing the floor for the strategy and
choosing the strategy that has the highest floor. We compute the minimum for each strategy
and then choose the maximum of those minima; hence, the term maximum (minima) or
maximin. In the preceding example, write down the minimum entry in each row. Choose the
largest. Minimums are 0, 1, 0, and 0. So, we would choose Strategy B. Note that we have
chosen the strategy for which the ‘‘worst case’’ of that strategy is as good as possible. Also,
note that this is a conservative strategy. A start-up company might consider a maximin
strategy if the most conservative strategy was sufficient to keep the company in business
over the short term to build capital sufficient to ride it through the tough spots inherent
in a more aggressive strategy that over the long haul was more profitable, but subject to
serious risks over the short term. The maximin strategy is pessimistic in that it chooses the
strategy based only on the worst case for each strategy under consideration, completely
neglecting the better cases that could result. When considering an investment that you wish
to be conservative, such as investing funds for the college education of your children, and
a maximin strategy gets the job done, it may be the decision criterion for which you are
looking.

Maximax Criterion There may be instances when we want to ‘‘shoot for the moon.’’
Then, this optimistic criterion may be your cup of tea. From the preceding example, write
down the largest entry in each row. Choose the largest. That is, you are choosing the
maximum (maxima) or maximax. In the preceding table, the maximums are 2, 1, 4, and 3.
And, we would choose the maximum of those, 4, corresponding to Strategy C. Obviously,
this strategy is optimistic since it considers only the best case while neglecting the risk of
each strategy. If all your investment needs were taken care of, and you wanted to invest
some ‘‘extra money,’’ and are willing to suffer the risk involved for the possibility of a big
gain, the optimistic maximax criterion may be of interest to you.
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Coefficient of Optimism Criterion This is a very subjective criterion that combines the
pessimistic maximin criterion with the optimistic maximax criterion. You simply choose a
coefficient of optimism 0 < x < 1. For each strategy, you then compute

x.row maximum/ C .1 � x/.row minimum/

Then, you choose the row with the highest weighted value. For example, letting x D 3

4

in our example, we have

A D 3

4
.2/ C 1

4
.0/ D 1:5

B D 3

4
.1/ C 1

4
.1/ D 1:0

C D 3

4
.4/ C 1

4
.0/ D 3:0

D D 3

4
.3/ C 1

4
.0/ D 2:25

Thus, we would choose Strategy C. Note, when x D 0, the coefficient of optimism
criterion becomes the maximin criterion, and when x D 1, it becomes the maximax
criterion.

Case 3 Minimizing a ‘‘Cost’’
In the previous cases, the objective was to maximize a quantity, such as profit. In many
cases, the objective is to minimize a quantity, such as cost. We consider two criteria for
such cases.

Minimax Criterion This is a decision criterion that we will use repetitively in game
theory. Suppose the table in Example 1 instead represents the costs to a company for
accomplishing a contract in various economic conditions. For example, Strategy A would
cost the company $100,000 if the economy turned out to be H. The minimax criterion
establishes a ceiling on each strategy (the maximum cost of each strategy), then chooses
the minimum of the ceilings. That is, it chooses the minimum(maxima) or minimax. In
the preceding example, the maxima for each strategy are 2, 1, 4, and 3 for A, B, C, and D,
respectively. Applying the minimax criterion, we would choose B and be ensured a cost of
no greater than 1 regardless of the state of the economy. Note that the minimax criterion
for minimizing the largest cost is analogous to the maximin method for maximizing the
smallest profit. Minimax works with costs; maximin works with profits.

Minimax Regret Criterion In the preceding discussion, suppose I choose C and the state
of nature turns out to be E, I would receive 0. Had I chosen A, I would have gotten 2. That, is
my regret (or ‘‘opportunity’’ cost) is 2. The minimax regret criterion makes your largest
regret as small as possible. In this sense, the regrets are costs, and we want to make our
largest cost as small as possible. First, compute a regret matrix by subtracting each entry
from the largest entry in each column (the best you could have done had you known the
state of nature). In our example, we have
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Regret Matrix

Nature

E F G H Maximum regret

A 0 2 1 0 2
You B 1 3 0 0 3

C 2 0 1 1 2
D 1 1 1 1 1

Next, as shown, for each strategy we compute the maximum regret that could result.
Finally, we choose strategy D to minimize the maximum regret. Obviously, this is a very
subjective criterion but may be of interest to the person avoiding the Monday morning
quarterbacking of ‘‘should have, could have’’!

Summary Note that for the investment strategies in Example 1, for the given economic
conditions presented, we chose A, B, C, and D by one of the methods.

Conclusions There is no universally optimal method for situations with probabilities
unknown for a one-time decision that has the rigor that expected value has for long-term
decisions with probabilities known. Each situation requires a careful examination of
objectives, chance, and risk. J J J

EXAMPLE 2 Investment Strategy

Assume we have $100,000 to invest (one time). We have three alternatives: stocks, bonds,
or savings. We place the estimated returns in a payoff matrix.

Alternatives Conditions

Investments Fast growth Normal growth Slow growth

Stocks $10,000 $6500 �$4000
Bonds $8000 $6000 $1000
Savings $5000 $5000 $5000

The Laplace criterion assumes equal probabilities. Since there are three conditions, the
chance of each is 1/3. We compute the expected value.

E.Stocks/ D .10,000/
1

3
C .6500/

1

3
C .�4000/

1

3
� $4167

E.Bonds/ D .8000/
1

3
C .6000/

1

3
.1000/

1

3
D $5000

E.Savings/ D .5000/
1

3
C .5000/

1

3
C .5000/

1

3
D $5000
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We have a tie, so we can do either bonds or savings under the Laplace criterion.
The maximin criterion assumes the decision maker is pessimistic about the future.

According to this criterion, the minimum returns for each alternative are compared, and
we choose the maximum of these minimums.

Stocks �$4000
Bonds $1000
Savings $5000
The maximum of these is savings at $5000.

The maximax criterion assumes an optimistic decision maker. We take the maximum
of each alternative and then the maximum of those.

Stocks $10,000
Bonds $8000
Savings $5000
The maximum of these is $10,000 with stocks.

The coefficient of optimism criterion is a compromise of the maximin and the
maximax. It requires a coefficient of optimism, called x, that is between 0 and 1. In this
example, we assume the coefficient of optimism is 0.6.

Row Maximum Row Minimum

Stocks $10,000 �$4000
Bonds $8000 $1000
Savings $5000 $5000

We compute the expected values using:

(Row Maximum)x C (Row Minimum).1 � x/

E.Stocks/ D .10,000/0:6 C .�4000/0:4 D $4400

E.Bonds/ D .8000/0:6 C .1000/0:4 D $5200

E.Savings/ D .5000/0:6 C .5000/0:4 D $5000

Here, $5200 is the best answer, so with our choice of x D 0:6, we pick bonds.
The minimax regret criterion minimizes the opportunity loss. We build a table of

opportunity loss. We take the base as the maximum regret in each state of nature. The
following is our regret matrix for this example:
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Regret Matrix

Alternatives
Conditions

Investments Fast growth Normal growth Slow growth

Stocks $10,000 � $10,000 = $0 $6500 � $6500 = $0 $5000 � (�$4000) = $9000
Bonds $10,000 � $8000 = $2000 $6500 � $6000 = $500 $5000 � $1000 = $4000
Savings $10,000 � $5000 = $5000 $6500 � $5000 = $1500 $5000 � $5000 = $0

The maximum regret of each decision:

Stocks $9000
Bonds $4000
Savings $5000

The least regret is bonds.
Let’s summarize our decisions using each criterion:

Laplace: Savings or bonds
Maximin: Savings
Maximax: Stocks
Coefficient of optimism: Bonds (with x D 0:6)
Minimax regret: Bonds

Thus, since there is not a unanimous decision, we must consider the objectives for the
investment by the decision maker. J J J

9.49.4 PROBLEMS

1. Given the following payoff matrix, show all work to answer parts (a) and (b).

States of Nature

p D 0:35 p D 0:3 p D 0:25 p D 0:1
Alternatives 1 2 3 4

A 1100 900 400 300
B 850 1500 1000 500
C 700 1200 500 900

a. Which alternative do we choose if our criterion is to maximize the expected value?
b. Find the opportunity loss (regret) table and compute the expected opportunity loss

(regret) for each alternative. What decision do you make if your criterion is to
minimize expected regret?

2. We are considering one of three alternatives A, B, or C under uncertain conditions. The
payoff matrix is as follows:
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Conditions

Alternative 1 2 3

A 3000 4500 6000
B 1000 9000 2000
C 4500 4000 3500

Determine the best plan by each of the following criteria and show your work:
a. Laplace
b. Maximin
c. Maximax
d. Coefficient of optimism (assume that x D 0:65)
e. Regret (minimax)

3. We have a choice of two investment strategies: stocks and bonds. The returns for each
under two possible economic conditions are as follows:

Alternative Condition 1 Condition 2

Stocks $10,000 �$4000
Bonds $7000 $2000

a. If we assume the probability of Condition 1 is p1 D 0:75 and Condition 2 is p2 D
0:25, compute the expected values and select the best alternative.

b. What probabilities for Conditions 1 and 2 would have to exist to be indifferent
toward stocks and bonds?

c. What other decision criteria would you consider? Explain your rationale.

4. Given the following payoff matrix:

Conditions

Alternative 1 2 3

A $1000 $2000 $500
B $800 $1200 $900
C $700 $700 $700

Determine the best plan by each of the following criteria and show your work:
a. Laplace
b. Maximin
c. Maximax
d. Coefficient of optimism (assume that x D 0:55)
e. Regret (minimax)
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5. For a new development area, a local investor is considering three alternative real
estate investments: a hotel, a restaurant, and a convenience store. The hotel and the
convenience store will be adversely or favorably affected depending on their closeness
to the location of gasoline stations, which will be built in the near future. The restaurant
will be assumed to be relatively stable. The payoffs for the investment are as follows:

Conditions

Alternative 1: Gas close 2: Gas medium distance 3: Gas far away

Hotel $25,000 $10,000 �$8000
Convenience store $4000 $8000 �$12,000
Restaurant $5000 $6000 $6000

Determine the best plan by each of the following criteria:
a. Laplace

b. Maximin

c. Maximax

d. Coefficient of optimism (assume that x D 0:45)

e. Regret (minimax)

6. ESPN is trying to decide which of three football games to televise in the upcoming
season in the southern region of the United States: Alabama versus Auburn, Florida
versus Florida State, or Texas A&M versus LSU. The estimated viewers (in millions
of homes) of the games differ according to the national rankings of the teams as shown
in the following table. Use the different criteria to determine what decisions could be
made. Make and justify a recommendation to ESPN.

Conditions

1: Both teams 2: One team has 3: Neither team
have top 5 a top 5 has a top 5

Alternative national rankings national ranking national ranking

Alabama vs. Auburn 10.2 7.3 5.4
Florida vs. Florida State 9.6 8.1 4.8
Texas A&M vs. LSU 12.5 6.5 3.2

a. Laplace

b. Maximin

c. Maximax

7. Golf Smart sells a particular brand of driver for $200 each. During the next year, it
estimates that it will sell 15, 25, 35, or 45 drivers with respective probabilities of 0.35,
0.25, 0.20, and 0.20. They can buy drivers only in lots of 10 from the manufacturer.
Batches of 10, 20, 30, 40, and 50 drivers cost $160, $156, $148, $144, and $136
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per driver, respectively. Each year, the manufacturer designs a new ‘‘hot’’ driver that
depreciates the value of last year’s driver. Consequently, at the end of every year, Golf
Smart has a clearance sale and is able to sell any unsold drivers for $96 each. Assume
that any customer who comes in during the year to buy a driver but is unable due to lack
of inventory costs Golf Smart $24 in lost goodwill. Determine what decision should be
made under each of the following criteria:
a. Expected value

b. Laplace

c. Maximin

d. Maximax

e. Minimax regret

9.49.4 PROJECTS

1. Many colleges face the problem of drug testing for their athletes. Assume we are
concerned with the following costs:

c1 D cost if an athlete is falsely accused of using a drug
c2 D cost if an athlete cannot be accurately identified as a drug user
c3 D cost due to invasion of privacy if a nonuser is tested

Suppose 5% of all athletes are drug users and that the preferred test is 90% reliable.
This means that if an athlete uses a drug there is a 90% chance that the test will detect
it, and if the athlete does not use drugs there is a 90% chance that the test will show no
drug use. Under what conditions should the college test for drugs?

2. Retirement and Social Security. Should U.S. citizens build their own retirement
through 401Ks or use the current Social Security program? Build models to be able to
compare these systems and provide decisions that can help someone to plan a better
retirement.

3. Help the President and Congress consider balancing the budget and reducing the deficit.
What variables are important?

4. TheNBCTVnetwork earns an average of $400,000 from a hit show and loses an average
of $100,000 on a flop (a show that cannot hold its rating and must be canceled). If the
network airs a show without a market review, 25% turn out to be hits, and 75% are flops.
For $40,000, a market research firm can be hired to help determine whether the show
will be a hit or a flop. If the show is actually going to be a hit, there is a 90% chance that
the market research firm will predict a hit. If the show is going to be a flop, there is an
80% chance that the market research will predict the show to be a flop. Determine how
the network can maximize its profits over the long haul.

5. Consider whether to join a social network, such as Facebook. List several decision
criteria and the variables associated with each.
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1010 Game Theory

Introduction

In the previous chapter, we discussed decision theory, for which the outcomes and payoffs
to the decision maker depend only on his decision, not the decision of one or more other
players. Chance and risk may be involved in determining the outcome, but not the decision
of another player. However, suppose two countries are locked in an arms race and wish
to disarm. If one of the players disarms, that country’s outcome depends not only on its
decision but also on the decision of the second country: did the second country also disarm,
or did it remain armed? As the tree in Figure 10.1 depicts, if the outcome depends on only
one player, we refer to those decisions as decision theory. If the outcome depends on the
decision of more than one player, we refer to those decision models as game theory.

J Figure 10.1
Game theory treats
outcomes that depend on
more than one player
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10.110.1 Game Theory: Total Conflict

Game theory then is the study of decisions where the outcome to the decision maker de-
pends not only on what the decision maker does but also on the decision of one or more
additional players. We classify the games depending on whether the conflict between the
players is total or partial. We further classify games of total conflict depending on whether
the optimal strategies are pure or mixed, as illustrated in the following examples.

EXAMPLE 1 A Total Conflict Game with Pure Strategies

Suppose Large City is located near Small City. Now suppose a local neighborhood hardware
chain such as Acewill locate a franchise in either Large City or Small City. Further, a ‘‘mega

378
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J Figure 10.2
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hardware store’’ franchise such as Home Depot is making the same decision—it will locate
either in Large City or Small City. Each store has a ‘‘competitive advantage’’: Ace offers a
smaller store with perhaps a convenient location, whereas Home Depot has a much larger
inventory. Analysts have estimated the market shares as follows:

Ace
Large City Small City

Large City 60 68
Home Depot

� �

Small City 52 60

That is, if both Ace and Home Depot locate in the same city, Large or Small, Home
Depot gets 60% of the market. If Home Depot locates in Large City while Ace locates in
Small City, Home Depot gets 68% of the market. But if Home Depot locates in Small City
while Ace is in Large City, Home Depot gets only 52% of the market. Note that the profit
that Home Depot makes depends not only on what it decides but also on Ace’s decision.
This is a game between Home Depot and Ace. Note also that the only way for Home Depot
to get an additional 1% of the market is for Ace to lose 1%. That is, the game is total conflict
since the sum of the market shares always totals 100%. J J J
Definition

A pure strategy is a course of action available to a player. The strategies chosen
by each player lead to outcomes with payoffs for each player.

If you examine the situation for HomeDepot, if Ace locates in Large City, HomeDepot
should locate in Large City (60 > 52). If Ace locates in Small City, Home Depot should

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_10_ch10_p378-457 January 23, 2013 19:40 380

380 Chapter 10 Game Theory

locate in Large City (68 > 60). Regardless of what Ace does, Home Depot should locate
in Large City as the vertical arrows indicate. It is their dominant strategy.

Definition

A strategy A dominates a strategy B if every outcome in A is at least as good as the
corresponding outcome in B and at least one outcome in A is strictly better than
the corresponding outcome in B . Dominance Principle: A rational player should
never play a dominated strategy in a total conflict game.

The corresponding table for Ace is as follows:

Ace
Large City Small City

Large City 40 � 32
Home Depot
Small City 48 � 40

We can now ask, what strategy should Ace follow?
If we place both sets of payoffs in a single game matrix, listing the row player’s payoffs

first, we have the following table:

Ace
Large City Small City

Large City 60, 40 �68, 32
Home Depot

� �

Small City 52, 48 �60, 40

Note at the outcome (Large City, Large City), all arrows point into that point, and no
arrow exits that outcome. This indicates that neither player can unilaterally improve, a stable
situation that we refer to as a Nash equilibrium.

Definition

A Nash equilibrium is an outcome where neither player can benefit by departing
unilaterally from its strategy associated with that outcome.

Also note that the sum of the payoffs for each possible outcome totals 100. The conflict
is total; the only way for HomeDepot to gain a point is for Ace to lose a point. Total conflict
games are also referred to as constant sum games. In particular, if the constant is zero, the
total conflict game is also referred to as a zero-sum game.
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Definition

If for each possible outcome, the payoffs to each player sum to the same constant
(100% in our example), the game is classified as total conflict.

The arrows that we just showed constitute the movement diagram.

Definition

For any game, we draw a vertical arrow from the smaller to the largest row value
in each column, and we draw a horizontal arrow from the smaller to the largest
column value in each row. When all arrows point to a value, we have a pure
strategy Nash equilibrium.

EXAMPLE 2 A Total Conflict Game with Mixed Strategies

A Duel between a Pitcher and a Batter
In the game of baseball, a pitcher attempts to outwit the batter. Against a certain batter,
his best strategy may be to throw all fastballs, while against a different batter, he might be
better off throwing all curves. Finally, against a third batter his best strategy might be to
mix fastballs and curves in some random fashion. But, what is the optimal mix against each
batter?

Consider the next table. A batter can either anticipate (guess) that the pitcher will throw
a fastball or a curve. If he anticipates fast, he will either hit .400 or .200 depending on
whether the pitcher throws fast or curve. If he guesses curve, he will either hit .100 or .300,
again depending on whether the pitcher throws fast or curve. In this example, the pitcher
attempts to minimize the batting average, while the batter attempts to maximize his batting
average.

Pitcher

Fastball Curve

Fastball .400 � .200
Batter

�

�

Curve .100 � .300

Note in this case that if the batter guesses fast, the pitcher should throw curve. But if
the batter guesses curve, the pitcher should throw fast, as the horizontal arrows indicate.
Unlike the previous example, the pitcher needs both strategies, fast and curve. From the
batters point of view, if the pitcher is throwing pure fast, the batter will switch to his fast
strategy, and if the pitcher is throwing all curves, the batter will switch to his curve strategy.
The batter needs both strategies, as the vertical arrows indicate. Note that an arrow exits
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from each outcome: a player can always improve by unilaterally changing strategies. But,
what is the optimal mix for the batter and for the pitcher? We learn to model and formulate
total conflict models with mixed or pure strategies in Section 10.2. J J J

Definition

Amixed strategy is a particular randomization over a players pure strategies. Each
of the players pure strategies is assigned some probability indicating the relative
frequency with which the pure strategy will be played.

Game Theory: Partial Conflict
In the previous two examples, the conflict between the decision makers was total in the
sense that neither player could improve without hurting the other player. If that is not the
case, we classify the game as partial conflict, as illustrated in the next example.

EXAMPLE 3 A Partial Conflict Game: The Prisoner’s Dilemma

Consider two countries locked in an arms race, Country A and Country B. Let’s begin by
considering Country A, which can either remain armed or disarm. The outcome depends
on whether Country B disarms or arms. Let’s rank the outcomes 4, 3, 2, and 1, with 4 being
the best and 1 the worst.

Country B

Disarm Arm

Disarm 3 1
Country A

Arm 4 2

Country A’s best outcome (4) is if it is armed while Country B is disarmed. Its worst
outcome (1) is if it is disarmed while Country B is armed. Now, we must compare the
situations with both countries armed and both disarmed. Arguably, both being disarmed is
better than both being armed as there is less chance of an accident, and it is less expensive.
So, we give both being disarmed the 3 and both being armed the 2. The situation for Country
B is similar, as illustrated in the following table:

Country B

Disarm Arm

Disarm 3 4
Country A

Arm 1 2
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We now put the payoffs for both countries in a single matrix with Country A’s payoffs
listed first. That is, if Country A is disarmed and Country B is armed, the payoff (1, 4)
indicates that Country A’s payoff is a 1, while Country B’s payoff is a 4.

Country B

Disarm Arm

Disarm 3,3 � 1,4
Country A

� �
Arm 4,1 � 2,2

If both countries are armed, the payoffs are 2 for each country, their second-worst
outcomes. If both disarm, both countries can improve to (3, 3), the second-best outcome
for each country. Thus, the game is not total conflict; each country can improve without
hurting the other player. We will study what obstacles must be overcome for each country
to improve. We will see that while cooperation may be beneficial in many games, strong
incentives not to cooperate may be present. J J J

Definition

If for each possible outcome the payoffs to each player do not sum to the same
constant, the game is classified as partial conflict.

An important distinction in the study of partial conflict games is how the game is
played: without communication, with communication, or with an arbiter. Consider
Example 3, the Prisoner’s Dilemma discussed previously, can each country communicate
a promise to disarm? Can each player make the promise credible?

The communication may take the form of moving first and communicating to the other
player that you have moved, making a threat to deter the opposing player from choosing
a strategy that is adverse to you or promising to choose a particular strategy if the oppos-
ing player chooses a strategy of your liking. Finally, arbitration is a method for finding a
negotiated fair solution based on the strategic strength of each player.

Characterizing Total and Partial Conflict
In Figure 10.3a, we plot the payoffs to Home Depot on the horizontal axis and the payoffs
to Ace on the vertical axis. Note that the payoffs lie on a line since the sum of the pay-
offs is a constant. If the projected line passes through the origin, the game is zero sum. In
Figure 10.3b, we plot the payoffs to Country A on the horizontal axis and the payoffs to
Country B on the vertical axis. Note that the points do not lie on a line.

We can summarize the chapter that follows with Figure 10.3c.
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J Figure 10.3
A plot of the payoffs for (a)
total conflict and (b) partial
conflict. (c) We consider
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played without
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10.110.1 PROBLEMS

1. Using the definition provided for the movement diagram, determine whether the fol-
lowing zero-sum games have a pure strategy Nash equilibrium. If the game does have
a pure strategy Nash equilibrium, state the Nash equilibrium. Assume the row player
is maximizing his payoffs which are shown in the matrices below.
a.

Colin

C1 C2

Rose R1 10 10
R2 5 0

b.
Colin

C1 C2

Rose R1 1/2 1/2
R2 1 0

c.
Pitcher

Fastball Knuckleball

Batter Guesses fastball .400 .100
Guesses knuckleball .300 .250

d.
Colin

C1 C2

Rose R1 2 1
R2 3 4

e. A predator has two strategies for catching a prey (ambush or pursuit). The prey has
two strategies for escaping (hide or run). The payoff matrix entries, the chance of
survivability, allow the prey to maximize and the predator to minimize.

Predator

Ambush Pursue

Prey Run 0.20 0.40
Hide 0.80 0.60
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f.
Colin

C1 C2

Rose R1 5 1
R2 3 0

g.
Colin

C1 C2

Rose R1 1 3
R2 5 2

h.
Colin

C1 C2 C3

Rose R1 80 40 75
R2 70 35 30

i.
Rose/Colin C1 C2 C3 C4

R1 40 80 35 60
R2 65 90 55 70
R3 55 40 45 75
R4 45 25 50 50

2. Use the definition provided in Section 10.1 for dominance to determine if any row or
column strategies should be eliminated in the games described in problem 1a–i. State
the row and columns that can be eliminated.

3. For each game in this problem, plot the payoffs and use the plot to determine if the
game is a total conflict or partial conflict game.
a.

Colin

C1 C2

Rose R1 .2; �2/ .1; �1/
R2 .3; �3/ .4; �4/

b.
Colin

C1 C2

Rose R1 (2, 2) (4, 1)
R2 (1, 4) (1, 1)
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c.
Pitcher

Fastball Knuckleball

Batter Guesses fastball (.400, �:400) (.100, �:100)
Guesses knuckleball (.300, �:300) (.250, �:250)

d.
Predator

Ambush Pursue

Prey Hide (0.3, �0:3) (0.4, �0:4)
Run (0.5, �0:5) (0.6, �0:6)

e.
Colin

C1 C2

Rose R1 (3, 5) (0, 1)
R2 (6, 2) (�1, 4)

4. Consider the following game, called the Prisoner’s Dilemma. The game goes as fol-
lows: We assume that the police have arrested two suspects for a crime. Two prisoners
have the option to confess or not to confess to a crime they committed. The prosecutor
has only enough evidence to convict both criminals of a minor charge and is relying on
obtaining a confession. The minor offense carries a maximum sentence of only 1 year
whereas the crime committed nets a maximum of 20 years. The prisoners are ques-
tioned in different interrogation rooms without the ability to communicate with one
another. They are told that if one of them confesses while the other remains silent, the
one confessing individual will go free, and the other will be arrested and charged with
the crime for the 20-year sentence. If both prisoners confess, then the reduced sentence
will be only 5 years each. The game table is as follows:

Prisoner 2

Confess Not Confess

Prisoner 1 Confess (�5; �5) (0, �20)
Not Confess (�20, 0) .�1; �1/

a. Identify any dominant strategies for Prisoner 1.
b. Identify any dominant strategies for Prisoner 2.
c. Using the movement diagram, find the Nash equilibrium.
d. Do you think that the Nash equilibrium is the best solution for both prisoners?
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10.210.2 Total Conflict as a Linear Program Model: Pure

and Mixed Strategies

In this section, we model each player’s decision and learn that the model is a linear program
whose optimal solution is either a pure strategy or a mixed strategy for each player. In the
previous section, we learned that the following duel between a batter and a pitcher did not
have a pure strategy solution. That is, neither player has a dominant strategy.

EXAMPLE 1 Batter-Pitcher Duel

Pitcher

Fastball Curve

Fast .400 � .200
Batter

�

�

Curve .100 � .300

We must now solve for the optimal mix of strategies with which each player should
play each strategy. First, lets view the game tree (Figure 10.4).

J Figure 10.4
A game tree with decision
nodes for both the pitcher
and the batter
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Note that computing the batting average is an expected value if we know the proba-
bilities with which each player plays his two strategies. For example, if the pitcher mixes
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J Figure 10.5
The average EV D .:400/ 38 C .:100/ 18 C .:200/ 38 C .:300/ 18 D :275

his strategies with a mix of 1/2 fast and 1/2 curve, and the batter uses the mix 3/4 fast and
1/4 curve, the batting average would be .275, as indicated in Figure 10.5.

Modeling the Batter’s Decision
First, let’s consider the batter’s decision. He wants to choose the mix of guessing fast and
curve to maximize the batting average. Let’s define our variables as follows:

A Batting average
x Portion for the batter to guess fast
.1 � x/ Portion for the batter to guess curve

Objective Function
The batter’s objective is to

Maximize A

Constraints
What constrains the batter’s ability to maximize his batting average? The pitcher is free to
throw all fastballs or all curves. That is, the pitcher can employ one of his pure strategies
against the batter’s mixed strategy. These two pure strategies represent an upper limit on
the batter’s ability to maximize his batting average. First, if the pitcher employs a pure fast
strategy (labeled PF ), we have what is shown in Figure 10.6.
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J Figure 10.6
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Since the batting average cannot exceed the expected value of the pitcher’s pure fast
strategy, we have the constraint

A � :400x C :100.1 � x/

Next, if the pitcher employs a pure curve strategy (labeled PC), we have what is shown
in Figure 10.7.

J Figure 10.7
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Since the batting average cannot exceed the expected value of the pitcher’s pure curve
strategy, we have the constraint

A � :200x C :300.1 � x/

Finally, the portion for the batter to guess fast and guess curve are probabilities, so we
have

x � 0

x � 1
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Consolidating, we have the following optimization problem for the batter:

Maximize A

subject to

A � :400x C :100.1 � x/ Pitcher Fast Strategy
A � :200x C :300.1 � x/ Pitcher Curve Strategy
x � 0
x � 1

which is a linear program that we now solve. J J J

Solving the Batter’s Decision Model Geometrically
We begin by graphing the constraints x � 0 and x � 1.

J Figure 10.8
The constraints x � 0 and
x � 1
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As indicated in Figure 10.8, if x D 0 the batter is employing his pure curve strategy,
and when x D 1, the batter is employing his pure fast strategy.

Now let’s consider the constraint represented by the pitcher’s pure fast strategy.

A � :300x C :100.1 � x/ Pitcher Fast Strategy

From our study of linear programming, we would like to know all the intersection points of
the constraints. Consequently, we compute the intersection of the equation A D :400x C
:100.1 � x/ with the constraints x D 0 and x D 1.

x A

0 .100
1 .400

We now plot the points (0, .100) and (1, .400) and connect them to graph the line
A D :400x C :100.1 � x/ representing the pitcher’s pure fast strategy (Figure 10.9).
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J Figure 10.9
The constraint represented
by the pitcher’s pure fast
strategy intersects the
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Note that the pitcher pure fast constraint intersects the batter pure curve strategy at
A D :100 and intersects the batter pure fast strategy at A D :400 as it should.

Now let’s consider the constraint represented by the pitcher’s pure curve strategy:

A � :200x C :300.1 � x/ Pitcher Curve Strategy

As before, we compute the intersection of the equation A D 0:200x C 0:300.1 � x/
with the constraints x D 0 and x D 1.

x A

0 .300
1 .200

We now plot the points (0, .300) and (1, .200) and graph the line A D :200x C
:300.1 � x/ (Figure 10.10).

J Figure 10.10
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Note that the pitcher’s pure curve constraint intersects the batter pure curve strategy at
A D :300 and intersects the batter pure fast strategy at A D :200 as it should.

In Figure 10.11, we indicate the binding constraints in bold. Since the batter is max-
imizing, we see that the unique optimal solution occurs at the interior intersection point,
and we estimate the intersection point as (0.5, .250).

Interpreting, we have
A D :250 Batting average
x D 0:5 Portion for the batter to guess fast
.1 � x/ D 0:5 Portion for the batter to guess curve
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J Figure 10.11
The optimal solution occurs
when x D 0:5 and A D :250
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Thus the batter should guess fast 50% of the time and guess curve 50% of the time,
and he is guaranteed a batting average of .250. Note from Figure 10.11 that if the batter
guesses fast 50% of the time, he will hit .250 against either the pitcher’s pure fast strategy
or the pitcher’s pure curve strategy. What if the pitcher mixes his strategy while the batter
uses his 50% fast strategy? Let’s say the pitcher throws fast with probability y and throws
curve with probability (1 � y). The outcome whether the pitcher is throwing fast or curve
is .250, so we have the expected value for the batting average:

A D :250y C :250.1 � y/ D :250.y C 1 � y/ D :250

By following his optimal strategy, the batter will hit .250 regardless of the strategy that the
pitcher follows. The batter’s outcome no longer depends on the pitcher’s strategy—he has
guaranteed his outcome regardless of the pitcher’s strategy.

Sensitivity Analysis
Figure 10.11 contains important information not only for the batter but also for the pitcher.
Suppose the pitcher observes the batter is guessing fast less than 50% of the time, say 25%
of the time as indicated by A in Figure 10.12. The pitcher can punish the batter for not
playing optimally by switching to a pure fast strategy as indicated by point B , where the
batting average falls below .200. That makes common sense: if the batter is not guessing
fastballs frequently enough, the pitcher will throw himmore fastballs. Similarly, if the batter
is guessing fast more than 50% of the time as indicated by point C , the pitcher can punish
him by switching to a pure curve strategy as indicated by point D, or at least enriching
his mix of curves. The important point to note is that even if the opposing player is not

J Figure 10.12
The pitcher can take
advantage of a batter who
is not playing his optimal
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reasoning to his optimal solution, you want to know what his optimal mix is so that you can
maximally take advantage of his sloppy play. Thus, only one of the players needs to be a
reasoning player, and the reasoning player gains an advantage over the nonreasoning player.

Also note from Figure 10.11 that the interior intersection points depend on the four in-
tercepts with the batter’s pure strategies against the pitcher’s pure strategies. What happens
if the batter improves his performance against one or both of the pitcher’s pure strategies?
Which improvement will give the batter the greatest marginal return in his batting average?
Should he work on hitting the curve or hitting the fastball?

Implementation
We note that secrecy is important. The batter must use a 50%mix of guessing fast and curve
ball pitches by the pitcher, but the pitcher must not detect a pattern to the batter’s mix. The
batter may use a clock or a random device to determine when to guess fast. For example,
if he uses the second hand of a clock, he may decide to guess fast if the hand is between 0
and 30 seconds.

Maintenance
In practice, each player’s performance surely will change. For example, if all pitcher’s have
an optimal mix against a particular batter that is to throw curve balls predominantly, then
that particular batter is likely to improve his ability to hit curve balls. This will change the
location of the pitcher’s optimal mix against that batter and the batting average the pitcher
can guarantee against him.

Solving the Batter’s Decision Model Algebraically
Recall from our study of linear programming that a rudimentary method for solving linear
programs algebraically is to

1. Determine all intersection points.
2. Determine which intersection points are feasible.
3. Determine which feasible intersection point has the best value when substituted in the

objective function.

In the batter’s problem, there are four constraints. There are six possible ways of in-
tersecting four distinct constraints two at a time. In this case, the constraint boundaries for
x � 0 and x � 1 are parallel. Therefore, we are left with five intersection points. As previ-
ously, substituting x D 0 and x D 1 in each of the two constraints representing the pitcher’s
pure strategies determines four of the intersection points.

x A

0 .100
1 .400
0 .300
1 .200
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The fifth intersection point is the intersection between the equations

A D :400x C :100.1 � x/ Pitcher Fast Strategy
A D :200x C :300.1 � x/ Pitcher Curve Strategy

Solving the two equations simultaneously, we obtain x D 0:5 and A D :250 for the fifth
intersection point. Testing each intersection point to determine which are feasible and eval-
uating the objective function at each feasible intersection point, we have

x A Feasible

0 .100 Yes
1 .400 No
0 .300 No
1 .200 Yes
0.5 .250 Yes

Note that in this case the objective function value is simply the value A. Choosing the
feasible point with the best value for the objective function, we have x D 0:5 andA D :250.

Modeling the Pitcher’s Decision
Now let’s consider the pitcher’s decision. He wants to choose the mix of throwing fast and
curve to minimize the batting average. Let’s define our variables as follows:

A Batting average
y Portion for the pitcher to throw fast
.1 � y/ Portion for the pitcher to throw curve

Objective Function
The pitcher’s objective is to

Minimize A

Constraints
What constrains the pitcher’s ability to minimize the batting average? The batter is free to
guess all fastballs or all curves. That is, the batter can employ one of his pure strategies
against the pitcher’s mixed strategy. These two pure strategies represent a lower limit on
the pitcher’s ability to minimize the batting average. First, if the batter employs a pure fast
strategy (labeled BF ), we have what is shown in Figure 10.13.

Since the batting average cannot be below the expected value of the batter’s pure fast
strategy, we have the constraint

A � :400y C :200.1 � y/

Next, if the batter employs a pure curve strategy (labeled BC ), we have what is shown in
Figure 10.14.
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J Figure 10.13
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J Figure 10.14
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Since the batting average cannot go below the expected value of the batter’s pure curve
strategy, we have the constraint

A � .:100/y C .:300/.1 � y/

Finally, the portion for the pitcher to throw fast and throw curve are probabilities, so we
have

y � 0

y � 1

Consolidating, we have the following optimization problem for the pitcher:

Minimize A

subject to

A � .:400/y C .:200/.1 � y/ Batter Fast Strategy
A � .:100/y C .:300/.1 � y/ Batter Curve Strategy
y � 0

y � 1

which is a linear program.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_10_ch10_p378-457 January 23, 2013 19:40 397

10.2 Total Conflict as a Linear Program Model: Pure and Mixed Strategies 397

Solving the Pitcher’s Decision Model Geometrically
We begin by graphing the constraints y � 0 and y � 1 (Figure 10.15).

J Figure 10.15
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As indicated in Figure 10.15, if y D 0 the pitcher is employing his pure curve
strategy, and when y D 1, the pitcher is employing his pure fast strategy.

Now let’s consider the constraint represented by the batter’s pure fast strategy:

A � .:400/y C .:200/.1 � y/ Bat ter Fast St rategy

We compute the intersection of the equation A D .:400/y C .:200/.1 � y/ with the con-
straints y D 0 and y D 1.

y A

0 .200
1 .400

In Figure 10.16, we plot the points (0; :200) and (1; :400) and graph the line
A D .:400/y C .:200/.1 � y/.

J Figure 10.16
The constraint represented
by the batter’s pure fast
strategy intersects the
pitcher’s pure curve and
pure fast strategies
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Note that the batter’s pure fast constraint intersects the pitcher’s pure curve strategy at
A D :200 and intersects the pitcher’s pure fast strategy at A D :400 as it should.
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Now let’s consider the constraint represented by the batter’s pure curve strategy:

A � .:100/y C .:300/.1 � y/ Batter Curve Strategy

As before, we compute the intersection of the equation A D .:100/y C .:300/.1 � y/
with the constraints y D 0 and y D 1.

y A

0 .300
1 .100

We now plot the points (0, .300) and (1, .100) (Figure 10.17).

J Figure 10.17
The constraint represented
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Note that the batter pure curve constraint intersects the pitcher’s pure curve strategy at
A D :300 and intersects the pitcher’s pure fast strategy at A D :100, as it should.

In Figure 10.18, we indicate the binding constraints in bold. Since the pitcher is mini-
mizing A, we see that the optimal solution occurs at the interior intersection point, and we
estimate the intersection point as (0.25, .250).

J Figure 10.18
The optimal solution occurs
when y D 0:25 and A D :250
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Interpreting, we have
A D :250 Batting average
y D 0:25 Portion for the pitcher to throw fast
.1 � y/ D 0:75 Portion for the pitcher to throw curve
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Thus, the pitcher should throw fast 25% of the time and throw curve 75% of the time,
and he is guaranteed a batting average of .250. Note from Figure 10.18 that if the pitcher
throws fast 25% of the time, the batting average will be .250 against the batter’s pure fast
strategy and the batter’s pure curve strategy. What if the batter mixes his strategy while the
batter uses his 25% fast strategy? Let’s say the batter guesses fast with probability x and
guesses curve with probability (1 � x). The outcome whether the batter is guessing fast or
guessing curve is .250, so we have the expected value for the batting average

A D .:250/x C .:250/.1 � x/ D :250.x C 1 � x/ D :250

By following his optimal strategy, the pitcher will achieve .250 regardless of the strategy
that the batter follows! The pitcher’s outcome no longer depends on the batter’s strategy—
he has guaranteed his outcome regardless of the batter’s strategy.

Sensitivity Analysis
Figure 10.18 contains important information not only for the pitcher but also for the batter.
Suppose the batter observes the pitcher is throwing fast less than 25% of the time, say 10%
of the time as indicated by A in Figure 10.19. That is, he is throwing curve more often
than optimal. The batter can punish the pitcher for not playing optimally by switching to a
pure curve strategy, as indicated by point B. Similarly, if the pitcher is throwing fast more
than 25% of the time as indicated by point C, the batter can punish him by switching to a
pure fast strategy as indicated by point D, or at least increasing his mix of guessing fast.
Again, the important point to note is that even if the opposing player is not reasoning to
his optimal solution, you want to know what his optimal mix is so that you can maximally
take advantage of his suboptimal play. Again, the ideas on implementation andmaintenance
apply to the pitcher as well.

J Figure 10.19
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Solving the Pitcher’s Decision Model Algebraically
As in the batter’s problem, there are five intersection points, four of them obtained
previously:
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y A

0 .200
1 .400
0 .300
1 .100

The fifth intersection point is the intersection between the equations:

A D .:400/y C .:200/.1 � y/ Batter Fast Strategy
A D .:100/y C .:300/.1 � y/ Batter Curve Strategy

Solving the two equations simultaneously, we obtain y D 0:25 and A D :250 for the
fifth intersection point. Testing each intersection point to determine which are feasible and
evaluating the objective function at each feasible intersection point, we have

y A Feasible

0 .200 No
1 .400 Yes
0 .300 Yes
1 .100 No

0.25 .250 Yes

Choosing the feasible point with the minimal value for the objective function, we have
y D 0:25 and A D :250.

Geometrical Interpretation of the Solution
If we consider the batter’s decision and the pitcher’s decision simultaneously, we have the
game tree shown in Figure 10.20.

The expected value isA D :400xyC:100x.1�y/C:200.1�x/yC:300.1�x/.1�y/,
where x is the proportion with which the batter guesses fast and y the proportion the pitcher
throws fast. Allowing x to vary in increments of 0.05 from 0 to 1 and similarly for y, we
have Table 10.1.

From Table 10.1, note that if x D 0:5, the batter will hit .250 regardless of whether the
pitcher throws pure fast, pure curve, or any mix of fast and curve. Similarly, if the pitcher
throws 25% fast and 75% curve, the batter will hit .250 regardless of what strategy the batter
employs. Also note that either player can take advantage of an opposing player who is not
playing his optimal strategy.

We graph the data in Table 10.1 in Figure 10.21. Note that a saddle point for the function
A D :400xyC:100x.1�y/C:200.1�x/C:300.1�x/.1�y/ occurs at x D 0:5; y D 0:25.
The saddle point represents an equilibriumwhere the pitcher is unable to reduce the average
any further unilaterally, and the batter is unable to increase the average unilaterally.
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J Figure 10.20
A game tree with the pitcher’s and batter’s decisions

Table 10.1 Expected values for the batter-pitcher duel at 0.05 increments

x

0 0.05 0.1 : : : 0.2 0.25 0.3 : : : 0.5 0.55 : : : 0.95 1
0 .300 .295 .29 : : : .28 .275 .27 : : : .25 .245 : : : .205 .2

0.05 .290 .286 .282 : : : .274 .270 .266 : : : .25 .246 : : : .214 .21
y 0.1 .280 .277 .274 : : : .268 .265 .262 : : : .25 .247 : : : .223 .22

: : : : : : : : : : : : : : : : : : : : : : : : : : : .25 : : : : : : : : : : : :
0.2 .260 .259 .258 : : : .256 .255 .254 : : : .25 .249 : : : .241 .24
0.25 .250 .25 .25 : : : .25 .25 .25 : : : .25 .25 : : : .25 .25
: : : : : : : : : : : : : : : : : : : : : : : : : : : .25 : : : : : : : : : : : :
0.95 .110 .124 .138 : : : .166 .180 .194 : : : .25 .264 : : : .376 .390
1 .100 .115 .130 : : : .160 .175 .190 : : : .25 .265 : : : .385 .400

© Cengage Learning 2013

Pure Strategies with Linear Programming Model
Note that in the model for the batter’s strategy, the decision variable x for the batter is
constrained to the interval 0 � x � 1. Thus, if we solve the linear program and x D 1
is the optimal solution, then the batter should always guess fast. Similarly, if the optimal
solution is x D 0, the batter should always guess curve. The solution to the linear program
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J Figure 10.21
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will tell us directly if the batter should use one of his pure strategies rather than a mixed
strategy. Let’s consider an example.

EXAMPLE 2 Home Depot and Ace Hardware Store Location (Revisited)

Again consider Example 1 from Section 10.1. The following matrix represents the market
share in percentages; the first number in each cell is Home Depot’s share, and the second
is Ace’s share.

Ace
Large City Small City

Large City 60, 40 68, 32
Home Depot
Small City 52, 48 60, 40

Home Depot wants to maximize its market share, as does Ace. The game is total con-
flict since the sum of the numbers in each cell is the constant 100. Thus to maximize its
share, Ace must minimize Home Depot’s share—the only way for Ace to gain 1% is for
Home Depot to lose 1%. For simplicity, we will consider only Home Depot’s market share,
with Home Depot maximizing its share and Ace minimizing Home Depot’s share, much
like the batter maximizing the average while the pitcher attempts to minimize the batter’s
average. When using a single set of values, we will use the row player’s outcome values
with the row player maximizing those values and the column player minimizing the row
player’s outcome values. Thus, we have the following game:
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Ace
Large City Small City

Large City 60 68
Home Depot
Small City 52 60

For Home Depot, we define the following variables:
S Percentage of market share
x Portion of the time to locate in a Large City
.1 � x/ Portion of the time to locate in a Small City

If Ace plays a pure Large City (ALC ) strategy, the expected value is

EV.ALC / D 60x C 52.1 � x/

Similarly, if Ace plays a pure Small City strategy (ASC ), the expected value is

EV.ASC / D 68x C 60.1 � x/

Since Ace’s pure strategies represent upper limits on Home Depot’s market share, we
have the following linear program for Home Depot:

Maximize S

S � 60x C 52.1 � x/

S � 68x C 60.1 � x/

x � 0

x � 1

The linear program is solved geometrically in Figure 10.22, and the optimal solution
is x D 1, which means Home Depot should always play its Large City strategy, and its
market share is 60%.

J Figure 10.22
The geometrical solution to
Home Depot’s game
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For the algebraic solution, there are only four intersection points in the interval 0 �
x � 1 as follows:
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x S Feasible

0 52 Yes
1 60 Yes
0 60 No
1 68 No

The analysis for Ace is similar and results in a pure strategy of Large City. J J J

10.210.2 PROBLEMS

1. Consider Example 2. Build a model for Ace’s decision and solve it both geometrically
and algebraically.

2. For problems a–g build a linear programming model for each player’s decisions and
solve it both geometrically and algebraically. Assume the row player is maximizing his
payoffs which are shown in the matrices below.
a.

Colin

C1 C2

Rose R1 10 10
R2 5 0

b.
Colin

C1 C2

Rose R1 1
2

1
2

R2 1 0

c.
Pitcher

Fastball Knuckleball

Batter Guesses fastball .400 .100
Guesses knuckleball .300 .250

d.
Colin

C1 C2

Rose R1 2 1
R2 3 4
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e. A predator has two strategies for catching a prey (ambush or pursuit). The prey has
two strategies for escaping (hide or run).

Predator

Ambush Pursue

Prey Run 0.20 0.40
Hide 0.80 0.60

f.
Colin

C1 C2

Rose R1 5 1
R2 3 0

g.
Colin

C1 C2

Rose R1 1 3
R2 5 2

3. For problems a–g build a linear programming model for each player’s decisions and
solve it both geometrically and algebraically. Assume the row player is maximizing his
payoffs which are show in the matrices below.
a.

Colin

C1 C2

Rose R1 2 3
R2 5 2

b.
Colin

C1 C2

Rose R1 �2 2
R2 3 0

c.
Colin

C1 C2

Rose R1 0.5 0.3
R2 0.6 1
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d.
Colin

C1 C2

Rose R1 2 �3
R2 0 4

e.
Colin

C1 C2

Rose R1 �2 5
R2 3 �3

f.
Colin

C1 C2

Rose R1 4 �4
R2 �2 �1

g.
Colin

C1 C2

Rose R1 17.3 11.5
R2 �4:6 20:1

10.210.2 PROJECTS

1. Suppose the payoff matrix of prey survival probabilities is as follows:

Predator: Ambush Pursue

Prey: Hide 0.3 0.6
Run 0.5 0.4

Analyze this game and present the results. Which predators and prey might fit this
scenario? Research two predator-prey species and find data to create a payoff matrix and
solve the game.

2. Take your favorite baseball batter and pitcher from the same league and era. Find batting
and pitching statistics for each player. Determine the best strategy for each in a head-to-
head competition.
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3. In tennis, statistics are kept for percentages of successful return of first serves by fore-
hand and backhand. Choose two tennis players and determine the best strategy for each
player.

10.310.3 Decision Theory Revisited: Games against Nature

In the previous section, we saw that the batter gained useful information from his opti-
mization problem: how to find a strategy that guaranteed him an outcome regardless of the
strategy of the pitcher he was facing. The idea of a ‘‘guaranteed outcome’’ is an important
idea in economic situations as well as other applications. But, we saw that perhaps even
more useful information was available to the batter by examining the pitcher’s optimiza-
tion problem of minimizing the batter’s batting average. The batter determines the optimal
solution for the pitcher. If the pitcher plays optimally, the batter can do no better than the
batting average the batter can guarantee himself by playing his optimal strategy, an average
of .250 in our example. But if the pitcher is not playing optimally, the batter could increase
his average by switching to one of his pure strategies to maximally take advantage of the
pitcher’s sloppy play. In this sense, the pitcher’s optimal strategy represents a breakpoint for
the batter. If the pitcher is not playing optimally, the batter can switch from his optimal mix
to a strategy that increases the batting average above the .250 he can guarantee himself. An
important point is that the pitcher does not need to be a rational player. The batter can take
advantage of a pitcher who is not reasoning to a solution and playing an optimal strategy.

Now let’s consider the decision theory scenarios we examined in Chapter 9. The deci-
sion maker is a single player whose outcomes do not depend on a second decision maker.
For example, supposewe have a business firm that has various strategies that return different
profits depending on the nature of the economy. We can consider the economy as a second
player. Our objective in doing this is first to examine the business firm’s game of maximiz-
ing the profit to determine a strategy that guarantees the firm an outcome regardless of the
economy. We will call this the firm’s ‘‘conservative’’ strategy. Next, the firm examines the
economy’s game of minimizing the firm’s profit to determine what strategy the economy
should be playing to minimize the firm’s profit. Now, the firm has several choices. It can
play its conservative strategy and guarantee an outcome regardless of the economy. Or, the
firm can determine (observe or predict) whether the economy will be better or worse than
its optimal strategy. In either case, the firm can switch from its conservative strategy to a
more optimistic strategy that returns a higher profit than the conservative strategy the firm
derived from examining its game, much like the batter could switch to his pure fast or pure
curve strategies. We call such games where the second player is not necessarily a reasoning
player games against nature. Let’s first consider a simple example of a firm that has two
strategies and the economy also has two strategies.

EXAMPLE 1 A Manufacturing Firm and the Economy

Let’s consider the following scenario. A manufacturing firm is considering whether to gear
for a small production or a large production. The firm plans to implement a decision that
will be executed for a period of the next several years. The economy (nature) may be poor
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or good during the period being studied. Let’s assume that the net profits in hundreds of
thousands of dollars have been projected by the firm’s economists as follows:

Nature: Economy

Poor Good

Small $500 $300
Firm

Large $100 $900

We could consider this as a one-player decision as we did in Chapter 9 using a decision
tree and make assumptions concerning the probability or a poor economy y and a good
economy, (1 � y). This is shown in Figure 10.23.

For example, if the probability of a poor economy is y D 0:4, then the expected value
of Firm Small (FS) is

EV.FS/ D .$500/0:4 C .$300/0:6 D $380

and the expected value of Firm Large (FL) is

EV.FL/ D .$100/0:4 C .$900/0:6 D $580

Under these assumptions, the firm should implement the Firm Large strategy and
average $580,000.

Now let’s consider the firm’s decision as a game against nature, the economy. First,
let’s find a strategy for the firm that guarantees an outcome regardless of what the economy
does.

J Figure 10.23
The decision tree for the
firm’s decision
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The Firm’s Game
We define

V Net profit in hundreds of thousands of dollars
x Portion of the time that the firm should play Firm Small (FS)
.1 � x/ Portion the firm should play Firm Large (FL)
First, the Economy could play a pure Economy Poor (EP ) strategy against the firm’s

mixed strategy, giving an expected value that represents an upper limit on the profit the firm
can make.

V � EV.EP / D $500x C $100.1 � x/

Next, the Economy could play a pure Economy Good (EG) strategy against the firm’s
mixed strategy, giving an expected value that again represents an upper limit on the profit
the firm can make.

V � EV.EG/ D $300x C $900.1 � x/

Since x is a probability, x is constrained to the interval 0 � x � 1, giving the linear
program for the firm’s decision:

Maximize V

subject to

V � $500x C $100.1 � x/ Economy Poor Strategy
V � $300x C $900.1 � x/ Economy Good Strategy
x � 0

x � 0

The geometric solution to the linear program is given in Figure 10.24.

J Figure 10.24
The optimal solution for the
firm
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We estimate the solution as (0.8, $420), giving the strategy for the firm as 80% Firm
Small, 20% Firm Large. Thus, if the firm plays a mixed strategy of 80% Small, 20% Large,
its net profit will be $420,000 regardless of whether the economy is always poor, always
good, or any mix of poor and good. At this point, the firm has a conservative strategy that
guarantees $420,000. Now let’s consider the game from the economy’s perspective.

The Economy’s Game
What is the worst that the economy could do to the manufacturer? We define the following
variables:

V D Net profit in hundreds of thousands of dollars
y D Portion of the time that the economy should play Economy Poor (EP )
.1 � y/ D Portion of the time that the economy should play Economy Good (EG)
First, the Firm could play a pure Firm Small (FS) strategy against the economy’s

mixed strategy, giving an expected value that represents a lower limit on the ability of the
economy to limit the firm.

V � EV.FS/ D $500y C $300.1 � y/

Next, the Firm could play a pure Firm Large (FL) strategy against the economy’s
mixed strategy, giving an expected value that again represents a lower limit on the ability
of the economy to limit the firm’s profit.

V � EV.FL/ D $100y C $900.1 � y/

Since y is a probability, y is constrained to the interval 0 � y � 1, giving the linear program
for the economy’s decision:

Minimize V

subject to

V � $500y C $300.1 � y/ Firm Small Strategy
V � $100y C $900.1 � y/ Firm Large Strategy
y � 0

y � 1

The geometric solution to the linear program is given in Figure 10.25.
We estimate the solution as (0.6, $420), giving the strategy for the economy as 60%

Poor, 40% Good. To minimize the firm’s profit, the economy should be poor 60% of the
time. If so, the economy could limit the firm to a profit of $420,000.

Now, the firm can use both the firm’s game and the economy’s game to define several
options. If the firm were uncertain about the economy, the firm could play its conservative
strategy of 80%Small and 20%Large to guarantee $420,000. However, from the economy’s
game, if the firm thought the economy would be poor more than 60% of the time, the firm
should employ its Small strategy and make more than $420,000. If the firm believes the
economy will be poor less than 60% of the time, it should employ its Large strategy to
again make more than the $420,000 as Figure 10.24 suggests.
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J Figure 10.25
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Summarizing, the combination of the analyses from both the firm’s perspective and
the economy’s perspective allows the firm to make a conservative decision to play a mixed
strategy and be guaranteed a net profit of $420,000 ormake a speculative decision by betting
on whether the economy will be poor more or less than 60% of the time and playing the
appropriate pure strategy, Firm Small or Firm Large. While the economy is not a reasoning
player, it is advantageous to know what its optimal strategy is.

In the exercises, you are asked to derive the solutions for both the firm and the economy
algebraically.While we considered only two strategies for the firm and two for the economy,
larger problems are easily formulated and solved using linear programming, as suggested
in the exercises. J J J

EXAMPLE 2 Investment Strategy (Revisited)

Let’s again consider Example 2 from Section 9.4. Assume that we have $100,000 to invest.
We have three alternatives: stocks, bonds, and savings. We place the estimated profits over
a period of time in a payoff matrix.

Alternatives Conditions

Investments Fast growth (risk) Normal growth Slow growth

Stocks $10,000 $6500 �$4000
Bonds $8000 $6000 $1000
Savings $5000 $5000 $5000

Now, instead of making assumptions about economic growth conditions as we did in
Section 9.4, let’s consider the decision as a game against Nature and ask two questions:

1. What profit can you guarantee yourself regardless of the economic conditions, and what
strategies should you play to do so?
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2. What economic conditions represent the worst situations for your investments?

We first formulate the investment decision and define the following variables:
V D Profit in thousands dollars
x1 D Portion to place in stocks
x2 D Portion to place in bonds
1 � x1 � x2 D Portion to place in savings

We will require that V > 0 to ensure only profitable options. If there is no feasible
solution, then no combination of the investments is profitable. We now formulate the linear
program that models our decision.

Maximize V

subject to

V � $10x1 C $8x2 C $5.1 � x1 � x2/ Economy Fast Growth

V � $6:5x1 C $6x2 C $5.1 � x1 � x2/ Economy Normal Strategy

V � $ � 4x1 C $1x2 C $5.1 � x1 � x2/ Economy Slow Growth

x1; x2; .1 � x1 � x2/ � 0

x1; x2; .1 � x1 � x2/ � 1

V � 0

We put this formulation in standard form for use with technology:

Maximize V

subject to

$10x1 C $8x2 C $5.1 � x1 � x2/ � V � 0 Economy Fast Growth

$6:5x1 C $6x2 C $5.1 � x1 � x2/ � V � 0 Economy Normal Strategy

$ � 4x1 C $1x2 C $5.1 � x1 � x2/ � V � 0 Economy Slow Growth

x1; x2; .1 � x1 � x2/ � 0

x1; x2; .1 � x1 � x2/ � 1

V � 0

We use technology and find that our optimal strategy is to put nothing in bonds and
stocks and 100% into savings yielding a profit of $5000.

Nature’s Game
We first formulate Nature’s decision to minimize the profits from investments and define
the following variables:

V D Profit in thousands dollars
y1 D Portion for fast growth
y2 D Portion for normal growth
1 � y1 � y2 D Portion for slow growth
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We now formulate a linear program to model the economy’s decision:

Minimize V

subject to

$10y1 C $6:5y2 � $4.1 � y1 � y2/ � V � 0 Stocks

$8y1 C $6y2 C $1.1 � y1 � y2/ � V � 0 Bonds

$5y1 C $5y2 C $5.1 � y1 � y2/ � V � 0 Savings

y1; y2; .1 � y1 � y2/ � 0

y1; y2; .1 � y1 � y2/ � 1

V � 0

The solution is V D $5000 as before and indicates Nature should have no Fast Growth,
no Normal Growth, and 100% Slow Growth. If Nature plays a different strategy, our invest-
ment can increase above $5000. J J J

10.310.3 PROBLEMS

1. Refer to Example 1; formulate and then solve both the firm’s game and the economy’s
game algebraically.

2. Given the following payoff matrix for alternatives A, B, and C under states of nature #1,
#2, #3, and #4, set up and solve both the investor’s and nature’s game:

States of Nature

Investor’s choices
Alternatives Condition #1 Condition #2 Condition #3 Condition #4

A 1100 900 400 300
B 850 1500 1000 500
C 700 1200 500 900

3. We are considering three alternatives A, B, or C or a mix of the three alternatives under
uncertain conditions of the economy. The payoff matrix is as follows:

Conditions

Alternative #1 #2 #3

A 3000 4500 6000
B 1000 9000 2000
C 4500 4000 3500

Set up and solve both the investor’s and the economy’s game.
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4. Given the following payoff matrix for building at possible sites A, B, and C under
varying environmental conditions {#1, #2, #3}, set up and then solve the games for
the builder and environmental conditions:

Conditions

Alternative #1 #2 #3

Build at A $1000 $2000 $500
Build at B $800 $1200 $900
Build at C $700 $700 $700

5. A local investor is considering three alternative real estate investments—a hotel, a restau-
rant, and a convenience store—for a new development area. The hotel and the conve-
nience store will be adversely or favorably affected depending on their closeness to the
location of gasoline stations, which will be built in the near future. The restaurant will
be assumed to be relatively stable. The profits for the investment are as follows:

Conditions

Alternative #1 Gas close #2 Gas medium #3 Gas far away

Hotel $25,000 $10,000 �$8000
Convenience store $4000 $8000 �$12; 000
Restaurant $5000 $6000 $6000

Set up and solve the game for the local investor and nature’s conditions.

6. We are considering one of three alternatives A, B, or C under uncertain conditions. The
payoff matrix is as follows:

Conditions

Alternative #1 #2 #3

A 3000 4500 6000
B 1000 9000 2000
C 4500 4000 3500

Determine the best alternative.

7. We have a choice of two investment strategies, stocks and bonds. The returns for each
under two possible economic conditions are as follows:

Alternative Condition 1 Condition 2

Stocks $10,000 �$4000
Bonds �$7000 �$2000

What decision would you choose? Explain your rationale using game theory.
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8. Golf Smart sells a particular brand of drivers for $200 each. During the next year, it
estimates that it will sell 15, 25, 35, or 45 drivers with respective probabilities of 0.35,
0.25, 0.20, and 0.20. It can buy drivers only in lots of 10 from the manufacturer. Batches
of 10, 20, 30, 40, and 50 drivers cost $160, $156, $148, $144, and $136 per driver,
respectively. Each year, the manufacturer designs a new ‘‘hot’’ driver that depreciates
the value of last year’s driver. Consequently, at the end of every year, Golf Smart has
a clearance sale and is able to sell any unsold drivers for $96 each. Assume that any
customer who comes in during the year to buy a driver but is unable due to lack of
inventory costs Golf Smart $24 in lost goodwill. Determine what decision should be
made using game theory.

10.410.4 Alternative Methods for Determining

Pure Strategy Solutions

In the previous section we saw that solving the linear program model of a total conflict
game determines directly the solution, a solution for which the players use either one of
their pure strategies or a mixed strategy. In this section, we consider alternative methods
for determining whether the solution is in pure strategies or mixed strategies. If a pure
strategy solution exists, the methods will tell us directly what the pure strategy solution is
and the value of the game. We first consider the Maximin-Minimax Method.

Maximin-Minimax Method
In Chapter 9, we studied the maximin criterion and learned that it is appropriate when max-
imizing outcomes, such as profits. To apply the criterion, we choose the minimum value
in each row and then choose the largest, or maximum, of those minima to determine a
maximin value. The corresponding strategy is themaximin strategy. Let’s again consider
Example 1 from Section 10.1; the row player is Home Depot, the column player is Ace
Hardware, and the values are the market share of Home Depot. Thus, Home Depot is max-
imizing and Ace is minimizing the values of the outcomes.

Ace Row minimum

Large City Small City

Large City 60 68 60
Home Depot
Small City 52 60 52

The maximum of the row minimums is 60 and represents Home Depot’s maximin
value. The corresponding strategy, the Large City strategy, is Home Depot’s maximin strat-
egy. Note that the value of the game to Home Depot, its market share S , must be equal to
or greater than 60 if Home Depot plays its maximin strategy. That is,

S � 60:
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In Chapter 9, we also studied the minimax criterion and found that it is appropriate
when minimizing outcomes, such as costs. To apply the criterion, we choose the maxi-
mum value corresponding to each strategy and then choose the smallest, or minimum, of
those maxima to determine a minimax value. The corresponding strategy is the minimax
strategy. In the previous example, Ace is the column player and is minimizing. To deter-
mine the worst outcome for each of Ace’s strategies, we choose the largest value in each
column since a column represents one of Ace’s strategies.

Ace

Large City Small City

Large City 60 68
Home Depot
Small City 52 60
Column maximum 60 68

The minimum of the maxima is 60 and represents the minimax value. The correspond-
ing strategy for Ace is the Large City strategy. If Ace plays its minimax strategy, Ace is
guaranteed that Home Depot’s share S will be no greater than 60. That is,

S � 60:

Note that in this case, the maximin value and the minimax value are equal. If S � 60
and S � 60, then S D 60. The value of the game is 60: Home Depot should play its
maximin strategy (Large City), and Ace should play its minimax strategy (Large City). Note
that the value 60 in the upper left corner is a maximum in the column. If Ace chooses Large
City, 60 is the maximum in that column for Home Depot. Also note that 60 in the upper left
column is aminimum in the first row. If HomeDepot chooses Large City, 60 is theminimum
that Ace can obtain if restricted to the first row. Thus, the value 60 is simultaneously a row
minimum and a column maximum.

Definition

When the maximin and the minimax values are the same, the resulting outcome
is called a saddle point. If a game has a saddle point (60 in the example), it gives
the value of the game. Players can guarantee at least this value by choosing their
maximin and minimax strategies.

Let’s consider a second example. The following game represents a duel or encounter
between a prey and a predator, each of which has three strategies as indicated. The value
of each of the nine possible outcomes represents the prey’s probability of surviving the
encounter. The prey is the row player and wants to maximize the value of the outcome. The
predator is the column player and wishes to minimize the prey’s chance of success.
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Predator

Ambush Pursue Retreat

Prey Hide 0.2 0.4 0.5
Run 0.8 0.6 0.9
Fight 0.5 0.5 0

We compute the row minima to determine the maximin value of 0.6 and a maximin
strategy of run for the prey. We compute the column maxima to determine the minimax
value of 0.6 and the corresponding minimax strategy of pursue for the predator. Since the
maximin and minimax values are equal, there is a saddle point, and the value of the game
is 0.6. The prey should always run, the predator should always pursue, and the prey has a
60% chance of survival if both players play optimally.

Predator Row minimum

Ambush Pursue Retreat

Prey Hide 0.2 0.4 0.5 0.2
Run 0.8 0.6 0.9 0.6
Fight 0.5 0.5 0 0

Column maximum 0.8 0.6 0.9

In Figure 10.26, we graph the value of the outcomes (in tenths) on the vertical or z axis
and the strategies of the prey and predator on the horizontal, x and y, axes.
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J Figure 10.26
A saddle point value of six-tenths occurs at the intersection of the prey run
(maximin) and predator pursue (minimax) strategies

Now, let’s again consider the duel between the batter and pitcher. We compute the
maximin value and strategy for the batter, who is attempting to maximize his batting aver-
age, and the minimax value and strategy for the pitcher, who is the column player trying to
minimize the batter’s batting average.
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Pitcher Row minimum

Fast Curve

Fast .400 .200 .200
Batter

Curve .100 .300 .100
Column maximum .400 .300

In this case, the maximin value for the batter is .200. If he plays his maximin strategy,
the fast strategy, he is guaranteed a batting average A � :200. The minimax value for the
pitcher is .300. If the pitcher plays his minimax strategy, the curve strategy, he is guaranteed
an average ofA � :300. In this case, the maximin andminimax values are not equal, and we
do not have a saddle point in pure strategies as :200 � A � :300. Recall from Figure 10.21
that a saddle point exists in mixed strategies with a value of A D :250, with the batter
optimally playing half fast, half curve, and the pitcher optimally playing a quarter fast,
three-quarters curve.

The Movement Diagram
An alternative method for determining if a saddle point exists in pure strategies is the move-
ment diagram. Suppose we have a single set of values for the outcomes for the row player
with the row player maximizing those values and the column player minimizing the values.
For each column, the row player draws an arrow from each outcome value to the maximum
value in the column, his best outcome for that column, which represents a column player
strategy. We illustrate for the Home Depot:

Ace

Large City Small City

Large City 60 68
Home Depot

� �

Small City 52 60

We note that in this case both arrows point to the values in the Large City strategy.
Home Depot’s Large City strategy dominates its Small City strategy.

Definition

A strategy A dominates a strategy B if every outcome in A is at least as good as the
corresponding outcome in B and at least one outcome in A is strictly better than
the corresponding outcome in B. In a total conflict game, a player should never
play a dominated strategy.
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Similarly, for each row, the column player draws an arrow from each outcome value
to the minimum value in that row, his best outcome for that row, which represents a row
player strategy. Illustrating for Ace, we have

Ace

Large City Small City

Large City 60 � 68
Home Depot
Small City 52 � 60

We note that for Ace, the Large City strategy dominates the Small City strategy. We
now illustrate the arrows for both Home Depot and Ace:

Ace

Large City Small City

Large City 60 � 68
Home Depot

� �

Small City 52 � 60

We note that the value 60 in the upper left corner has no arrow exiting. This means
that, from that position, neither player can unilaterally improve. It is an equilibrium point.

We now illustrate the movement diagram for the prey and predator:

Predator

Ambush Pursue Retreat

Prey Hide 0.2 0.4 0.5

� � �

Run 0.8 � 0.6 � 0.9

� � �

Fight 0.5 “ 0.5 � 0

We note that there is a single equilibrium at the intersection of the prey run and predator
pursue strategies with a value of 0.6. We also note that run dominates hide and fight and is
the preys dominant strategy.

In the exercise set, you will see that it is possible to have more than one saddle point;
however, in a total conflict game, the saddle points will have equal values, as you are asked
to show in the exercises.

Definition

Any two saddle points in a total conflict game have the same value. If the row
player and column player both play strategies containing a saddle point outcome,
the result will always be a saddle point.
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As we have seen, a total conflict game may not have a saddle point in pure strategies.
Illustrating the movement diagram for the batter-pitcher duel, we have

Pitcher

Fast Curve

Batter Fast .400 � .200

�

�

Curve .100 � .300

As the arrows indicate, there is no equilibrium in pure strategies. If the batter guesses
purely fast, the pitcher will switch to curve. If the pitcher throws purely curve, the batter
will switch to curve. The pitcher will then switch to his pure fast strategy. Finally, the batter
switches to his pure fast strategy, and we see there is no equilibrium in pure strategies—the
players must play a mixed strategy to play optimally.

10.410.4 PROBLEMS

In the following problems, use the maximin and minimax method and the movement dia-
gram to determine if any pure strategy solutions exist. Assume the row player is maximizing
his payoffs which are shown in the matrices below.
1.

Colin

C1 C2

Rose R1 10 10
R2 5 0

2.
Colin

C1 C2

Rose R1 1
2

1
2

R2 1 0

3.
Pitcher

Fastball Knuckleball

Batter Guesses fastball .400 .100
Guesses knuckleball .300 .250

4.
Colin

C1 C2

Rose R1 .2; �2/ .1; �1/
R2 .3; �3/ .4; �4/
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5. A predator has two strategies for catching a prey (ambush or pursuit). The prey has two
strategies for escaping (hide or run). The payoff matrix entries, the chance of survivabil-
ity, allow the prey to maximize and the predator to minimize

Predator

Ambush Pursue

Prey Run 0.20 0.40
Hide 0.80 0.60

6.
Colin

C1 C2

Rose R1 5 1
R2 3 0

7.
Colin

C1 C2

Rose R1 1 3
R2 5 2

8. Find all pure strategy solutions to the following game:

Colin

C1 C2 C3 C4

Rose R1 4 3 1 5
R2 �8 2 0 �1
R3 7 5 1 3
R4 0 8 �3 �6

9. Find all pure strategy solutions to the following games:
a.

Colin

C1 C2 C3 C4

Rose R1 3 1 4 1
R2 2 1 3 0
R3 0 0 0 0
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b.
Colin

C1 C2 C3 C4

Rose R1 3 2 4 2
R2 2 1 3 0
R3 2 2 2 2

c.
Colin

C1 C2 C3

Rose R1 �2 0 4
R2 2 1 3
R3 3 �1 �3

10.510.5 Alternative Shortcut Solution Methods for

the 2 � 2 Total Conflict Game

If a total conflict game has two players, each with two strategies, several shortcut methods
are possible. These methods apply only if there is no saddle point in pure strategies. We
will consider two shortcuts:

1. Equate the expected values of the opposing players strategies.
2. The Method of Oddments, also known as William’s Method.

Equating the Expected Values of the Opposing
Player’s Strategies
In Section 10.2, we formulated the batter and pitcher’s total conflict game as a linear pro-
gram and considered the following elementary procedure for solving the linear programs:

1. Determine all intersection points.
2. Determine which intersection points are feasible.
3. Determine which feasible intersection point has the best value when substituted in the

objective function.

Let’s again consider the batter’s problem:

Maximize A

subject to

A � :400x C :100.1 � x/ Pitcher Fast Strategy
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A � :200x C :300.1 � x/ Pitcher Curve Strategy
x � 0

x � 1

Find all intersection points. There are four constraints and therefore six possible intersec-
tion points. Since q D 0 and q D 1 do not intersect, we expect at most five intersection
points. Four of the intersection points correspond to intersections of the pitcher fast strat-
egy and the pitcher curve strategy, with x D 0 (batter curve strategy) and x D 1 (batter
fast strategy). These four intersection points correspond to pure strategy solutions. If
we first determine that no pure strategy solution exists, we know that none of these four
intersection points can be optimal. The Minimax Theorem guarantees that there is a
solution to the total conflict game.

Theorem

The Minimax Theorem states that every m � n two-person, total conflict game
has a solution that is a unique number V , and there are optimal (pure or mixed)
strategies for the two players such that (i) if Rose plays her optimal strategy, Rose’s
expected payoff will be �V no matter what Colin does, and (ii) if Colin plays his
optimal strategy, Rose’s expected payoff will be �V no matter what Rose does.

Therefore, the fifth intersection point, the intersection of the pitcher fast strategy
with the pitcher curve strategy exists and is optimal. For two players, each with two
strategies, the method is as follows:
1. Check for pure strategy solutions.
2. If none exists, then equate the expected values of the opposing player’s two strategies.

EXAMPLE 1 Equating Expected Values for the Batter-Pitcher Duel

First, check for a pure strategy saddle point.

Pitcher

Fast Curve Row min Maximin

Fast .400 � .200 .200 .200
Batter

�

�

Curve .100 �.300 .100
Column max .400 .300

Minimax .300

Since the maximin does not equal the minimax, no pure strategy saddle point exists,
as can also be seen from the movement diagram. We now equate the expected value of the
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opposing player’s strategies. Letting x be the portion for the batter to guess fast and .1�x/
the portion to guess curve, we have

EV.PF / D .:400/x C .:100/.1 � x/ Pitcher fast strategy; and
EV.P C / D .:200/x C .:300/.1 � x/ Pitcher curve strategy

Equating and solving, we have

.:400/x C .:100/.1 � x/ D .:200/x C .:300/.1 � x/

x D 0:5

Thus, the batter should guess fast 50% and curve 50%. We can determine the value of
the game, or batting average, by computing the expected value of either the pitcher fast or
the pitcher curve strategies:

EV.PF / D .:400/x C .:100/.1 � x/ D .:400/0:5 C .:100/.0:5/ D :250

For the pitcher, we let y be the portion for the pitcher to throw fast and (1 � y) the
portion to throw curve. We formulate the expected value of the opposing players or batter’s
strategies:

EV.BF / D .:400/y C .:200/.1 � y/ Batter fast strategy; and
EV.BC / D .:100/y C .:300/.1 � y/ Batter curve strategy:

Equating and solving, we have

.:400/y C .:200/.1 � y/ D .:100/y C .:300/.1 � y/

y D 0:25

Thus, the pitcher should throw 25% fast and 75% curve. The batting average will be
.250 as before, which can be verified by computing either EV.BF / or EV.BC /.

EV.BF / D .:400/y C .:200/.1 � y/ D .:400/0:25 C .:200/0:75 D :250

J J J

Method of Oddments (William’s Method): A Geometric
Approach
For the total conflict game with two players, each with two strategies, that does not have a
saddle point in pure strategies, the Method of Oddments presents another shortcut method
for determining the optimal intersection point. Consider Figure 10.27 for the pitcher’s
problem.

As indicated in Figure 10.27, triangle ABC is similar to triangle CED, thus

d1

d2

D y

1 � y
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J Figure 10.27
The pitcher’s problem
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Substituting, we have

d1

d2

D :100

:300
D 1

3
D y

1 � y

Solving, we get y D 1=4 and 1 � y D 3=4, or a ratio of 3 curves for 1 fastball. Note
that the numerator for the ratio of pitcher fast to pitcher curve ratio is the distance of the
differences of the intercepts on the pitcher curve strategy. We now consider an algebraic
interpretation.

Method of Oddments (William’s Method): An
Algebraic Approach
There are two cases, shown in Figure 10.28, where the total conflict game with two players,
each with two strategies, does not have a saddle point in pure strategies:

J Figure 10.28
Cases when no pure
strategy solution exists

Rose
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Let’s consider Case 1. Let x be the proportion for Rose to play strategy A and (1 � x)
the proportion to play strategy B. Since no saddle point exists in pure strategies, we equate
the expected values of Colin’s C and D strategies.

EV.C / D EV.D/

ax C b.1 � x/ D cx C d.1 � x/

x D d � b

.a � c/ C .d � b/
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1 � x D .a � c/ C .d � b/

.a � c/ C .d � b/
� d � b

.a � c/ C .d � b/
D a � c

.a � c/ C .d � b/

The value of the game can be obtained by computing EV.C / or EV.D/.

EV.C / D ax C b.1 � x/ D a

�
d � b

.a � c/ C .d � b/

�
C b

�
a � c

.a � c/ C .d � b/

�

D ad � bc

.a � c/ C .d � b/

In the exercises, you are asked to show that the solution for Case 2 is

x D b � d

.c � a/ C .b � d/

1 � x D c � a

.c � a/ C .b � d/

EV.C / D bc � ad

.c � a/ C .b � d/

Comparing the solutions to Cases 1 and 2, we see that we can consider both cases as
follows:

x D jb � d j
ja � cj C jb � d j

1 � x D ja � cj
ja � cj C jb � d j

EV.C / D jad � bcj
ja � cj C jb � d j

Letting j�j represent the absolute value of the differences in the intercepts, we
can conveniently represent these values for Rose in the matrix representing the game
(Figure 10.29).

J Figure 10.29
Format for Rose’s mixed
strategy using Method of
Oddments
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In the exercises, you are asked to calculate the corresponding equations for Colin.

EXAMPLE 2 The Method of Oddments for the Batter-Pitcher

To use the Method of Oddments, we must first show that there is no saddle point in pure
strategies as we do with the movement diagram for the batter in Figure 10.30. Then, we do
the same for the pitcher in Figure 10.31.
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The Batter

J Figure 10.30
The batter should guess 1/2
fast and 1/2 curve, and the
value of the game is .250 Batter
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The Pitcher

J Figure 10.31
The pitcher should throw
1/4 fast and 3/4 curve, and
the value of the game is
.250
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Summary
It is important to realize that the two methods presented in this section apply only to the
2 � 2 total conflict games and can be used only if no saddle point in pure strategies exists.
If you were to attempt to find the interior intersection point between x D 0 and x D 1
without first checking for a saddle point in pure strategies, you may encounter the situations
in Figure 10.32. J J J
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J Figure 10.32
Each graph corresponds to a pure strategy saddle point where the fifth intersection
point (a) may be negative; (b) may be greater than 1; or (c) may not exist.
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10.510.5 PROBLEMS

Use the alternative methods (a) equating expected value and (b) methods of oddments to
find the solution to the following games. Assume the row player is maximizing his payoffs
which are shown in the matrices below.

1.
Colin

C1 C2

Rose R1 2 3
R2 5 2

2.
Colin

C1 C2

Rose R1 �2 2
R2 3 0

3.
Colin

C1 C2

Rose R1 0.5 0.3
R2 0.6 1

4.
Colin

C1 C2

Rose R1 2 �3
R2 0 4

5.
Colin

C1 C2

Rose R1 �2 5
R2 3 �3

6.
Colin

C1 C2

Rose R1 4 �4
R2 �2 �1
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7.
Colin

C1 C2

Rose R1 17.3 11.5
R2 �4:6 20.1

8. What assumptions have to be true for there not to be a saddle point solution? Show that
the two largest entries must be diagonally opposite each other.

Colin

Payoffs C1 C2

Rose R1 a c
R2 b d

9. Given

Colin

Payoffs C1 C2

Rose R1 a c
R2 b d

where a > d > b > c. Show that if Colin plays C1 and C2 with probabilities y and
(1 � y) that

y D d � b

.a � c/ C .d � b/
:

10. In the game in Problem 9, show the value of the game is

v D ad � bc

.a � c/ C .d � b/
:

In Problems 11–14, solve the games.
11.

Colin

Payoffs C1 C2

Rose R1 6 4
R2 4 2

12.
Colin

Payoffs C1 C2

Rose R1 �2 3
R2 2 �2
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13.
Colin

Payoffs C1 C2

Rose R1 3 7
R2 8 5

14. Solve the batter-pitcher duel for the following players:

Roy Haliday

Payoffs Fastball C1 Split fingered C2

Derek Jeter Guess fastball R1 .330 .250
Guess split fingered R2 .180 .410

10.610.6 Partial Conflict Games: The Classical

Two-Player Games

The Prisoner’s Dilemma
In Section 10.1, we formulated the game known as the Prisoner’s Dilemma, modeling an
example where Country A and Country B could either arm or disarm:

Country B

Disarm Arm

Disarm (3, 3) (1, 4)
Country A
Arm (4, 1) (2, 2)

In Figure 10.33, we note that a plot of the payoffs to each player do not lie on a line,
indicating that the game is not total conflict. We can also note that the sum of the payoffs
if both players arm is 2 C 2 D 4, while the sum of the payoffs if both disarm is 3 C 3 D 6,
not a constant sum. Note that if the players can move from (2, 2) to (3, 3), both players
improve, which is not possible in total conflict.

What are the objectives of the players in a partial conflict game? In total conflict,
each player attempts to maximize his or her payoffs and necessarily minimizes the other
player in the process. But in a partial conflict game, a player may have any of the following
objectives:

1. Maximize his or her payoffs.Each player chooses a strategy in an attempt tomaximize
his or her payoff. While the player reasons what the other player’s response will be, the

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_10_ch10_p378-457 January 23, 2013 19:40 431

10.6 Partial Conflict Games: The Classical Two-Player Games 431

J Figure 10.33
Payoffs in a partial conflict
game do not lie on a line

0.5

0
10

1

1.5

2

2.5

3

3.5

4

4.5

2 3 54 ©
 C

en
ga

ge
 Le

ar
ni

ng
 2

01
3

player does not have the objective of ensuring the other player gets a ‘‘fair’’ outcome.
Instead, the player ‘‘selfishly’’ maximizes his or her payoff.

2. Find a stable outcome. Quite often, players have an interest in finding a stable out-
come. A Nash equilibrium outcome is an outcome from which neither player can uni-
laterally improve and therefore represents a stable situation. For example, we may be
interested in determining whether two species in a habitat will find equilibrium and co-
exist, or will one species dominate and drive the other to extinction? The Nash equilib-
rium is named in honor of John Nash, who proved (Nash, 1950) that every two-person
game has at least one equilibrium in either pure strategies or mixed strategies.

3. Minimize the opposing player. Suppose we have two corporations whose marketing
of products interact with each other, but not in total conflict. Each may begin with the
objective of maximizing its payoffs. But, if dissatisfied with the outcome, one or both
corporations may turn hostile and choose the objective of minimizing the other player.
That is, a player may forgo its long-term goal of maximizing its own profits and choose
the short-term goal of minimizing the opposing player’s profits. For example, consider
a large, successful corporation attempting to bankrupt a start-up venture to drive the
venture out of business or perhaps motivate it to agree to an arbitrated ‘‘fair’’ solution.

4. Find a ‘‘mutually fair’’ outcome, perhaps with the aid of an arbiter. Both play-
ers may be dissatisfied with the current situation. Perhaps both have a poor outcome
as a result of minimizing each other. Or perhaps one has executed a ‘‘threat’’ as we
study in the following, causing both players to suffer. In such cases, the players may
agree to abide by the decision of an arbiter, who must then determine a fair solution
(Nash, 1950).

In this introduction to partial conflict games, we will assume that both players have
the objective of maximizing their payoffs. Next, we must determine if the game is played
without communication or with communication.Without communication indicates that the
players must choose their strategies without knowing the choice of the opposing player. For
example, perhaps they choose their strategies simultaneously. The termwith communication
indicates that perhaps one player can move first and make his or her move known to the
other player, or that the players can talk to one another before they move. As we shall see,
the communication may take the form of moving first, committing to moving first, a threat,
or a promise by one or both players. We begin with the Prisoner’s Dilemma.
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EXAMPLE 1 Prisoner’s Dilemma without Communication

We will assume that without communication each player will play ‘‘conservatively’’. That
is, each player will play its maximin strategy. Country A’s payoffs are listed first, with the
ranking of 4 being best.

Country B Player A: row minimum

Disarm Arm

Disarm (3, 3) � (1, 4) 1
Country A

� �
Arm (4, 1) � (2, 2) 2
Player B: Column minimum 1 2

We see that Country A’s maximin strategy is arm since it is guaranteed at least a 2 if
it plays arm. Similarly, Country B’s maximin strategy is arm. If both players play conser-
vatively without communication, we would expect the result to be (arm, arm) with payoff
(2, 2). Also note from the movement diagram that (2, 2) is an equilibrium outcome, so
neither player unilaterally can improve. Also note from the movement diagram that both
players have a dominant strategy, arm. The dilemma is that (3, 3) is better for both players.
In the problem set, you are asked to show that only a promise by either player will yield
(3, 3). We can generalize the Prisoner’s Dilemma game by considering the strategies to be
defect and cooperate. In the application, arm is defect, and disarm is cooperate. The term
Prisoner’s Dilemma was coined by Princeton mathematician Albert Tucker in 1950 to de-
scribe a situation faced by two prisoners held in isolation, and both can squeal (defect) or
not squeal (cooperate with the fellow prisoner). The situation is described in Problem 4,
Section 10.1. The following summarizes the dilemma:

Definition

Prisoner’s Dilemma is a two-person partial conflict game in which each player
has two strategies, defect or cooperate; defect dominates cooperate for both players
even though the mutual defection outcome, which is the unique Nash equilibrium
in the game, is worse for both players than the mutual cooperation outcome.

The Prisoner’s Dilemma is widely used to model applications such as global warm-
ing, cigarette advertising, drug addiction, evolutionary biology, and oil company pricing
strategies. J J J
The Game of Chicken
Two cars drive straight at each other. The first driver to swerve loses the duel. Each player
has two options, swerve and not swerve. The worst outcome is if both players choose not
swerve, causing a crash. The best outcome for each player is to win the game; that is, the
player executes not swerve and the opposing player chooses swerve. The next-best outcome
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for each player is if both players swerve, resulting in a tie. With the ranking of 4 being best
and 1 worst, we have

Colin

Swerve Not swerve

Swerve (3, 3) (2, 4)
Rose
Not swerve (4, 2) (1, 1)

The Game of Chicken without Communication
We again assume without communication each player will play his or her maximin strategy:

Colin Rose: row minimum

Swerve Not Swerve

Swerve (3, 3) � (2, 4) 2
Rose

�

�

Not swerve (4, 2) � (1, 1) 1
Colin: column minimum 2 1

We see that Rose’s maximin strategy is swerve since she is guaranteed at least a 2 if
she plays swerve. Similarly, Colin’s maximin strategy is swerve. If both players play con-
servatively without communication, we would expect the result to be (swerve, swerve) with
payoff (3, 3). Note from the movement diagram that neither player has a dominant strat-
egy. Also note from the movement diagram that (3, 3) is not a Nash equilibrium, and either
player can improve unilaterally by switching to her or his not swerve strategy. However, if
both players switch, then the result is the disaster outcome (not swerve, not swerve) with
payoff (1, 1). There are two Nash equilibria with payoffs (4, 2) and (2, 4). Now imagine a
confrontation between two nations, such as the Cuban missile crisis, which is discussed in
Section 10.7. Both countries are sitting on swerve but have the motivation to switch to not
swerve at the last minute. If both switch, a catastrophe occurs.

Summarizing the game of Chicken:

Definition

Chicken is a two-person partial conflict game in which each player has two strate-
gies: swerve to avoid a crash or not swerve to attempt to win the game. Neither
player has a dominant strategy. If both players choose swerve, the outcome is not
a Nash equilibrium and therefore unstable. There are two Nash equilibria where
one of the two players chooses swerve and the second player chooses not swerve.

The game of Chicken is used to model such topics as the confrontations between
countries or species.
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The Game of Chicken with Communication
Moving First or Committing to Move First
We now assume both players can communicate their plans or their moves to the second
player. If Rose can move first, she can choose swerve or not swerve. Examining the move-
ment diagram, she should expect Colin’s responses as follows:

If Rose plays swerve, Colin plays not swerve, resulting in the outcome (2, 4).
If Rose plays not swerve, Colin plays swerve, resulting in the outcome (4, 2).

Since Rose’s objective is to maximize her outcome, she should choose to move first
and communicate that she has selected not swerve. Colin’s best response then is to swerve,
resulting in (4, 2). She wins the duel. Of course, we must have a situation where Rose can
move first. Or, she can communicate a commitment to the strategy not swerve, which, if
made credible, again yields (4, 2), her best outcome.

Issuing a Threat
If Colin has the opportunity to move first or is committed to (or possibly considering) not
swerve, Rose may have a threat to deter Colin from playing not swerve. A threat must
satisfy three conditions:

Conditions for a threat by Rose

1. Rose communicates that she will play a certain strategy contingent on a previous action
of Colin.

2. Rose’s action is harmful to Rose.
3. Rose’s action is harmful to Colin.

In the game of Chicken, Rose wants Colin to play the strategy ‘‘swerve’’. Therefore,
she makes the threat to Colin that if he plays ‘‘not swerve’’, she will also play ‘‘not swerve’’
to deter him from choosing ‘‘not swerve’’.

Normally, if Colin plays not swerve, Rose plays swerve, yielding (2, 4).

To harm herself, Rose must play not swerve. Thus the potential threat must take the
form

If Colin plays not swerve, then Rose plays not swerve yielding (1, 1).

Is it a threat? It is contingent on Colin choosing not swerve. Comparing (2, 4) and
(1, 1), we see that the threat is harmful to Rose and is harmful to Colin. It is a threat and
effectively eliminates the outcome (2, 4), making the game

Colin

Swerve Not swerve

Swerve (3, 3) Eliminated by threat
Rose

�

Not swerve (4, 2) � (1, 1)
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Colin still has a choice of choosing swerve or not swerve. Using the movement dia-
gram, he analyzes his choices as follows:

If Colin selects swerve, Rose chooses not swerve, yielding (4, 2).
If Colin chooses not swerve, Rose chooses not swerve, yielding (1, 1) (because of Rose’s
threat).

Thus Colin’s choice is between a payoff of 2 and 1. He should choose swerve, yielding
(4, 2). If Rose can make her threat credible, she can secure her best outcome.

Issuing a Promise
Again, if Colin has the opportunity tomove first or is committed to (or possibly considering)
not swerve, Rose may have a promise to encourage Colin to play swerve instead. A promise
must satisfy three conditions:

Conditions for a promise by Rose

1. Rose communicates that she will play a certain strategy contingent on a previous action
of Colin.

2. Rose’s action is harmful to Rose.
3. Rose’s action is beneficial to Colin.

In the game of Chicken, Rose wants Colin to play swerve. Therefore, she makes the
promise to Colin to get Colin to choose to swerve to sweeten the pot so he will choose
swerve.

Normally, if Colin plays swerve, Rose plays not swerve, yielding (4, 2).

To harm herself, she must play swerve. Thus the promise takes the form

If Colin plays swerve, then Rose plays swerve, yielding (3, 3)

Is it a promise? It is contingent on Colin choosing swerve. Comparing the normal
(4, 2) with the promised (3, 3), we see that the promise is harmful to Rose and is beneficial
to Colin. It is a promise and effectively eliminates the outcome (4, 2), making the game

Colin

Swerve Not swerve

Swerve (3, 3) � (2, 4)
Rose

�

Not swerve Eliminated by promise (1, 1)

Colin still has a choice of choosing swerve or not swerve. Using themovement diagram,
he analyzes his choices as follows:

If Colin selects swerve, Rose chooses swerve, yielding (3, 3) as promised.
If Colin chooses not swerve, Rose chooses swerve, yielding (2, 4).

Thus, Colin’s choice is between payoffs of 3 and 4. He should choose not swerve,
yielding (2, 4). Rose does have a promise. But her goal is for Colin to choose swerve. Even
with the promise eliminating an outcome, Colin chooses not swerve. The promise does not
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work. In the exercises, you are asked to show that if Rose and Colin both make a promise,
then (3, 3) is the outcome.

In summary, the game of Chicken offers many options. If the players choose conserva-
tively without communication, the maximin strategies yield (3, 3), which is unstable: both
players unilaterally can improve their outcomes. If either player moves first or commits
to move first, he or she can obtain his or her best outcome. For example, Rose can obtain
(4, 2), which is a Nash equilibrium. If Rose issues a threat, she can eliminate (2, 4) and ob-
tain (4, 2). A promise by Rose eliminates (4, 2) but results in (2, 4), which does not improve
the (3, 3) likely outcome without communication.

EXAMPLE 2 A Combination Threat and Promise

Consider the following game:

Colin

C1 C2

R1 (2, 4) � (3, 3)
Rose

�

�

R2 (1, 2) � (4, 1)

In the exercises, you are asked to show that without communication, if both players
play their maximin strategies, the outcome is (2, 4), a Nash equilibrium, and that Colin has
a dominant strategy C1.Without communication, Colin gets his best outcome, but can Rose
do better than (2, 4) with a strategic move?

Rose First
If Rose moves R1, Colin should respond with C1, yielding (2, 4). If Rose moves R2, Colin
responds with C1, yielding (1, 2). Rose’s best choice is (2, 4), no better than the likely
conservative outcome without communication.

Rose Threat
Rose wants Colin to play C2. Normally, if Colin plays C1, Rose plays R1, yielding (2, 4).
To hurt herself, she must play R2, yielding (1, 2). Comparing the normal (2, 4) and (1, 2),
the threat is contingent on Colin playing C1, hurts Rose and hurts Colin. It is a threat and
effectively eliminates (2, 4), yielding

Colin

C1 C2

R1 Eliminated (3, 3)
Rose

�

R2 (1, 2) � (4, 1)
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Does the threat deter Colin from playing C1? Examining the movement diagram, if
Colin plays C1, the outcome is (1, 2). If Colin plays C2, the outcome is (4, 1). Colin’s best
choice is still C1. Thus, there is a threat, but it does not work. Does Rose have a promise
that works by itself?

Rose Promise
Rose wants Colin to play C2. Normally, if Colin plays C2, Rose plays R2, yielding (4, 1).
To hurt herself, she must play R1, yielding (3, 3). Comparing the normal (4, 1) with the
promised (3, 3), the move is contingent on Colin playing C2, hurts Rose and is beneficial
to Colin. It is a promise and effectively eliminates (4, 1), yielding

Colin

C1 C2

R1 (2, 4) � (3, 3)
Rose

�

R2 (1, 2) Eliminated

Does the promise motivate Colin to play C2? Examining the movement diagram, if
Colin plays C1, the outcome is (2, 4). If Colin plays C2, the outcome is (3, 3). Colin’s
best choice is still C1 for (2, 4). Thus, there is a promise, but it does not work. What about
combining both the threat and the promise?

Combination Threat and Promise
We see that Rose does have a threat that eliminates an outcome but does not work by itself.
She also has a promise that eliminates an outcome but does not work by itself. In such situ-
ations, we can examine issuing both the threat and the promise to eliminate two outcomes
to determine if a better outcome results. Rose’s threat eliminates (2, 4), and Rose’s promise
eliminates (4, 1). If she issues both the threat and the promise, the following outcomes are
available:

Colin

C1 C2

R1 Eliminated (3, 3)
Rose

R2 (1, 2) Eliminated

If Colin plays C1 the result is (1, 2), and choosing C2 yields (3, 3). He should choose
C2, and (3, 3) represents an improvement for Rose over the likely outcome without
communication (2, 4).

Credibility
Of course, commitments to first moves, threats, and promises must be made credible. If
Rose issues a threat and Colin chooses to not swerve anyway, will Rose carry out her

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_10_ch10_p378-457 January 23, 2013 19:40 438

438 Chapter 10 Game Theory

threat and crash (1, 1) even though that action no longer promises to get her the outcome
(4, 2)? If Colin believes that she will not carry through on her threat, he will ignore the
threat. In the game of Chicken, if Rose and Colin both promise to swerve and Colin be-
lieves Rose’s promise and executes swerve, will Rose carry out her promise to swerve and
accept (3, 3) even though (4, 2) is still available to her? One method for Rose to gain cred-
ibility is to lower one or more of her payoffs so that it is obvious to Colin that she will
execute the stated move. Or, if possible, she may make a side payment to Colin to increase
his selected payoffs to entice him to a strategy that is favorable to her and is now favorable
to him because of the side payment. These ideas are pursued further in the exercises.

An inventory of the strategic moves available to each player is an important part of
determining how a player should act. Each player wants to know what strategic moves
are available to each of them. For example, if Rose has a first move and Colin has a threat,
Rose will want to execute her first move before Colin issues his threat. The analysis requires
knowing the rank order of the possible outcomes for both players. Once a player has decided
which strategy he or she wants the opposing player to execute, the player can then determine
how the other player will react to any of his or her moves. You may find Table 10.2 useful
in learning how to organize the questions and responses that are necessary to determine the
strategic moves available to each player.

The Battle of the Sexes
The third classical two-person partial conflict game is known as the Battle of the Sexes. The
scenario is that he prefers to go to boxing, and she prefers to go to ballet. They do prefer to
go to the same event rather than go to an event alone. His ranking from best to worst is that
(4) they both go to boxing, (3) they both go to ballet, (2) he goes to boxing and she goes to
ballet, and (1) he goes to ballet and she goes to boxing.

Boxing She Ballet

C1 C2

Boxing (4, 3) � (2, 2)

He

�

�

Ballet (1, 1) � (3, 4)

In the exercises, you are asked to show that if this game is played conservativelywithout
communication, he is likely to go to boxing and she to ballet with payoffs (2, 2). Each has a
first move that gets him or her the best outcome. (He calls and says that his phone is about
dead and he is headed to boxing. This move works once and is not good for repeated play.)
Neither has a threat or a promise. Obviously, arbitration that mixes the (boxing, boxing)
and (ballet, ballet) outcomes is needed!

In this section, we introduced the classical two-person games of partial conflict. Each
of the games has many applications. For that reason, it is important to know how the games
should be played. Would you prefer to play without communication? If communication is
appropriate, what strategic moves do you and the opposing player have? J J J
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Table 10.2 Analysis for strategic moves

� Simultaneous without communication
� If both players play their maximin strategy, the likely outcome is (__, __).

� With communication (strategic moves) from Rose’s perspective
� First moves

� Should Rose move first:

If Rose does R1, then Colin does __ implies outcome ( __, __ ).

If Rose does R2, then Colin does __ implies outcome ( __, __ ).

So Rose would choose outcome ( __ ,__ ).

� Should Rose force Colin to move first:

If Colin does C1, then Rose does __ implies ( __, __ ).

If Colin does C2, then Rose does __ implies ( __, __ ).

So Colin would choose ( __, __ ).

Conclusions:
Rose moving first would result in outcome ( __, __ ).

Forcing Colin to move first would result in outcome ( __, __ ).

� Threats: Example: Suppose Rose wants Colin to play C2:
If Colin does C1 and Rose does the opposite of what she logically should do (to hurt
herself), then Rose does __ with outcome (__,__ ).

Does it also hurt Colin? If so, it is a threat and eliminates outcome (__, __ ).

With the threat implemented, Colin chooses __, and the outcome is ( __, __ ).

Does the threat work alone? (Does she in fact get Colin to play C2?)

� Promises: Example: Suppose Rose wants Colin to play C2:
If Colin does C2 and Rose hurts herself, Rose does __ with outcome (__, __ ).

Does it help Colin? If so, it is a promise and eliminates (__, __ ).

With the promise implemented, the outcome is ( __, __ ).

Does the promise work alone? (Does she in fact get Colin to play C2?)

� Combination threat and promise
Threat eliminates ( __ . __ ) AND the Promise eliminates ( __ . __ ).

Logical outcome is ( __ . __ ).

� Summary of strategic moves available to Rose (and to Colin)
© Cengage Learning 2013

10.610.6 PROBLEMS

Use movement diagrams to find all the stable outcomes in Problems 1 through 5. Then use
strategic moves (using Table 10.2 ) to determine if Rose can get a better outcome.
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1.
Colin

C1 C2

Rose R1 (2, 3) (3, 1)
R2 (1, 4) (4, 2)

2.
Colin

C1 C2

Rose R1 (1, 2) (3, 1)
R2 (2, 4) (4, 3)

3.
Colin

C1 C2

Rose R1 (2, 2) (4, 1)
R2 (1, 4) (3, 3)

4.
Colin

C1 C2

Rose R1 (2, 6) (10, 5)
R2 (4, 8) (0, 0)

5. Consider the following 2 � 2 non-zero sum game, find the Nash equilibrium

Colin

C1 C2

Rose R1 (2, 4) (1, 0)
R2 (3, 1) (0, 0)

6. Given the payoff matrix below from the Battle of the Sexes:

Colin

C1 C2

Rose R1 (4, 3) (2, 2)
R2 (1, 1) (3, 4)

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_10_ch10_p378-457 January 23, 2013 19:40 441

10.7 Illustrative Modeling Examples 441

If there is no communication between Rose and Colin, find the Nash equilibria. De-
termine if we have communications and employ strategic moves to find what possible out-
comes are available.

10.610.6 PROJECTS

1. Consider the following 2 � 2 non-zero-sum game

Colin

C1 C2

Rose R1 (3, 5) (0, 1)
R2 (6, 2) .�1; 4/

a. Find the solution if both players play their maximin strategies.
b. Apply strategic moves to see if either player can improve his outcome.

2. Create your own scenario that follows the format of the game of Battle of the Sexes,
Chicken, or the Prisoner’s Dilemma. Identify all strategies; use ordinal ranking to give
them value. Completely solve your game.

10.710.7 Illustrative Modeling Examples

In this section, we present some illustrative examples of game theory. We present the sce-
nario, discuss the outcomes used in the payoff matrix, and present a possible solution for
the game. In most game theory problems, the solution suggests insights in how to play the
game rather than a definite methodology for ‘‘winning’’ the game.

We present both total conflict and partial conflict illustrative examples in this section.

EXAMPLE 1 The Battle of the Bismarck Sea

The Battle of the Bismarck Sea is set in the South Pacific in 1943 (Figure 10.34). The
historical facts are that General Imamura had been ordered to transport Japanese troops
across the Bismarck Sea to New Guinea, and General Kenney, the U.S. commander in
the region, wanted to bomb the troop transports prior to their arrival at their destination.
Imamura has two options to choose from as routes to New Guinea: a shorter northern route
or a longer southern route. Kenneymust decidewhere to send his search planes and bombers
to find the Japanese fleet. If Kenney sends his planes to the wrong route, he can recall them
later, but the number of bombing days is reduced.
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J Figure 10.34
The Battle of the Bismarck Sea region. Japanese troops were being taken from
Rabaul to Lae

We assume that both commanders, Imamura and Kenney, are rational players, each
trying to obtain their best outcome. Further, we assume that there is no communication or
cooperation that may be inferred since the two are enemies engaging in war. Further, each
is aware of the intelligence assets that are available to each side and of what the intelligence
assets are producing. We assume that the number of days that U.S. planes can bomb as well
as the number of days to sail to New Guinea are accurate estimates.

The players, Kenney and Imamura, both have the same set of strategies for routes:
{North, South} and their payoffs, given as the numbers of exposed days for bombing, are
shown in Table 10.3. Imamura loses exactly what Kenney gains. This is a total conflict, as
seen in Figure 10.35.

Table 10.3 The Battle of the Bismarck
Sea with payoffs to (Kenney, Imamura)

Imamura

North South

Kenney North .2; �2/ .2; �2/
South .1; �1/ .3; �3/

As a total conflict game, we might list only the outcomes to Kenney in order to find
our solution. The payoffs are provided in Table 10.4.
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J Figure 10.35
Plot of payoffs for the Battle
of the Bismarck Sea
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Table 10.4 The Battle of the Bismarck
Sea as a zero-sum game

Imamura

North South

Kenney North 2 2
South 1 3

© Cengage Learning 2013

There is a dominant column strategy for Imamura, to sail North since the values in the
column are correspondingly less than or equal to the values for sailing South. This would
eliminate the column for South. Seeing that as an option, Kenney would search North as
that option provides a greater outcome than searching South, 2 > 1. We could also apply
the minimax theorem from Section 10.3 to find a Nash equilibrium as Kenney searches
North and Imamura takes the northern route as shown in Table 10.5.

Table 10.5 Minimax method (saddle point method)

Imamura

North South Row min Max

Kenney North 2 2 2 2
South 1 3 1
Column max 2 3
Min 2

© Cengage Learning 2013

Applied to the Battle of the Bismarck Sea, this Nash equilibrium of (North, North)
implies that no player can do unilaterally better by changing strategy. The solution is for
the Japanese to sail North and for Kenney to search North, yielding 2 bombing days. This
result (North, North) was indeed the real outcome in 1943.
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Next, let’s assume that communications is allowed. We will consider first moves by
each player. If Kenney moved first, (North, North) would remain the outcome. However,
(North, South) also becomes a valid response, also with value 2.

If Imamura moved first, (North, North) would be the outcome.What is important about
moving first in a zero-sum game is that although it gives more information, neither player
can be better than the Nash equilibrium in the original zero-sum game. We conclude from
our brief analysis that moving first does not alter the equilibrium of the game. It is true
that in zero-sum games moving first does not alter the equilibrium strategies of the game.J J J

EXAMPLE 2 Penalty Kicks in Soccer

This example is adapted from a 2002 article by Chiappori, Levitt, and Groseclose (see
Further Reading). Let’s consider a penalty kick in soccer between two players, the kicker
and the opponent’s goalie. The kicker basically has two alternatives or strategies that we
will consider: The kicker might kick the ball left or kick it right. The goalie will also have
two strategies: The goalie can prepare to dive left or right to block the kick. We will start
very simply in the payoff matrix by awarding a 1 to the successful player and a �1 to the
unsuccessful player. The payoff matrix would be as follows:

Goalie

Dive left Dive right

Kicker Kick left .�1; 1/ .1; �1/
Kick right .1; �1/ .�1; 1/

Or, from the kicker’s prospective:

Goalie

Dive left Dive right

Kicker Kick left �1 1
Kick right 1 �1

There is no pure strategy. We find a mixed strategy to the zero-sum game using either
linear programming or the method of oddments. The mixed strategy results are that the
kicker randomly kicks 50% left and 50% right, while the goalie randomly dives 50% left
and 50% right. The value of the game to each player is 0.

Let’s refine the game using real data. A study was done in the Italian Football League
in 2002 by Ignacio Palacios-Huerta. As he observed, the kicker can aim the ball to the left
or to the right of the goalie, and the goalie can dive either left or right as well. The ball is
kicked with enough speed that the decisions of the kicker and goalie are effectively made
simultaneously. Based on these decisions, the kicker is likely to score or not score. The
structure of the game is remarkably similar to our simplified game. If the goalie dives in
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the direction that the ball is kicked, then the goalie has a good chance of stopping the goal,
and if the goalie dives in the wrong direction, then the kicker is likely to get a goal.

Based on an analysis of roughly 1400 penalty kicks, Palacios-Huerta determined the
empirical probabilities of scoring for each of four outcomes: the kicker kicks left or right
and the goalie dives left or right. His results led to the following payoff matrix:

Goalie

Dive left Dive right

Kicker Kick left 0.58, �0:58 0:95; �0:95
Kick right 0:93; �0:93 0:70; �0:70

There is no pure strategy equilibrium as expected. The kicker and the goalie must use a
mixture of strategies since the game is played over and over. Neither player wants to reveal
a pattern to his or her decision. We apply the method of oddments to determine the mixed
strategies for each player based on these data.

Goalie Oddments Probabilities

Dive left Dive right

Kicker Kick left 0.58 0.95 0.37 0:23=0:60 D 0:383
Kick right 0.93 0.70 0.23 0:37=0:60 D 0:6166

Oddments 0.35 0.25
Probabilities 0:25=0:60D0:416 0:35=0:60D0:5833

Wefind the mixed strategy for the kicker is 38.3% kicking left and 61.7% kicking right,
while the goalie dives right 58.3% and dives left 41.7%. If we merely count percentages
from the data collected by Palacios-Huerta in his study from 459 penalty kicks over 5 years
of data, we find the kicker did 40% kicking left and 60% kicking right, while the goalie dove
left 42% and right 58%. It is very interesting that our game theory models result closely
approximates the analysis of the penalty kicks. J J J

EXAMPLE 3 Batter-Pitcher Duel (Revisited)

We return to the concept of the batter-pitcher duel from Section 10.1. First in this example,
we extend the strategies for each player in our model. We consider a batter-pitcher duel be-
tween RyanHoward of the Philadelphia Phillies and various pitcher’s in the national league;
the pitcher will throw a fastball, a split-fingered fastball, a curve ball, and a changeup. The
batter, aware of these pitches, must prepare appropriately for the pitch. Data are available
frommany websites that we might use. In this example, we obtained the data from the Inter-
net (www.STATS.com). We consider both a right-handed pitcher (RHP) and a left-handed
pitcher (LHP) separately in this analysis.

For a National League RHP versus Ryan Howard, we have compiled the following
data: let FB D fastball, CB D curveball, CH D change up, and SF D split-fingered
fastball.
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Howard/RHP FB CB CH SF

FB .337 .246 .220 .200
CB .283 .571 .339 .303
CH .188 .347 .714 .227
SF .200 .227 .154 .500

Both the batter and pitcher want the best possible result. We set this up as a linear
programming problem.

Our decision variables are x1; x2; x3; x4 as the percentages to guess FB, CB, CH, SF,
respectively, and V represents Howard’s batting average.

Max V

subject to

:337x1 C :283x2 C :188x3 C :200x4 � V � 0

:246x1 C :571x2 C :347x3 C :227x4 � V � 0

:220x1 C :339x2 C :714x3 C :154x4 � V � 0

:200x1 C :303x2 C :227x3 C :500x4 � V � 0

x1 C x2 C x3 C x4 D 1

x1; x2; x3; x4; V � 0

We solve this linear programming problem and find the optimal solution (strategy) is
to guess the FB 27.49%, guess the CB 64.23%, never guess CH, and guess SF 8.27% of the
time to obtain a .291 batting average.

The pitcher then wants to keep the batting average as low as possible. We can set up
the linear program for the pitcher as follows:

Our decision variables are y1; y2; y3; y4 as the percentages to throw the FB, CB, CH,
SF, respectively, and V represents Howard’s batting average.

Min V

subject to

:337y1 C :246y2 C :220y3 C :200y4 � V � 0

:283y1 C :571y2 C :339y3 C :303y4 � V � 0

:188y1 C :347y2 C :714y3 C :227y4 � V � 0

:200y1 C :227y2 C :154y3 C :500y4 � V � 0

y1 C y2 C y3 C y4 D 1

x1; y2; y3; y4; V � 0

We find the RHP should randomly throw 65.93% FB, no CB, 3.25% CH, and 30.82%
SF for Howard to keep only that .291 batting average.
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Now, we also have statistics for Howard versus a LHP.

Howard/LHP FB CB CH SF

FB .353 .185 .220 .244
CB .143 .333 .333 .253
CH .071 .333 .353 .247
SF .300 .240 .254 .450

We set up as before and solve as a linear programming problem.

Max V

subject to

:353x1 C :143x2 C :071x3 C :300x4 � V � 0

:185x1 C :333x2 C :333x3 C :240x4 � V � 0

:220x1 C :333x2 C :353x3 C :254x4 � V � 0

:244x1 C :253x2 C :247x3 C :450x4 � V � 0

x1 C x2 C x3 C x4 D 1

x1; x2; x3; x4; V � 0

We find the optimal solution for Howard versus an LHP. Howard should guess as fol-
lows: never guess FB, guess CB 24%, never guess CH, and guess SF 76% for a batting
average of .262. For the LHP pitcher’s facing Howard, we set the following linear program:

Min V

subject to

:353y1 C :185y2 C :220y3 C :244y4 � V � 0

:143y1 C :333y2 C :333y3 C :253y4 � V � 0

:071y1 C :333y2 C :353y3 C :247y4 � V � 0

:300y1 C :240y2 C :254y3 C :450y4 � V � 0

y1 C y2 C y3 C y4 D 1

x1; y2; y3; y4; V � 0

The pitcher should randomly throw 37.2% FB, 62.8% CB, 0% CH, and 0% SF so that
Howard’s batting average remains at .262.

So, you are manager of the opposing team, and you are in the middle of a close game.
There are two outs and runners in scoring position with Ryan Howard coming to bat. Do
you keep your LHP in the game or switch to a RHP? The percentages say to switch to the
RHP since :262 < :291. You tell the catcher and pitcher to randomly select the pitches to
be thrown to Howard.

Did the N.Y. Yankees conduct in-depth analysis to get an optimal strategy and type
pitcher against Howard in the World Series? We have gathered some statistical data on
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Howard based on facing a RHP and a LHP seeing just FB and CB. These are provided in
the following table:

Howard versus RHP

Year Total FB Percentage FB Batting Average (BA) Total CB Percentage CB BA

2005 620 85.87 .336 102 14.13 .217
2006 880 82.47 .399 187 17.53 .297
2007 767 81.16 .386 178 18.84 .074
2008 875 81.10 .286 205 18.90 .270
2009 802 75.66 .337 258 24.34 .283

Versus LHP
2005 117 78.52 .172 32 21.48 .250
2006 437 77.89 .323 124 22.11 .276
2007 517 83.11 .264 105 16.89 .133
2008 512 83.11 .266 104 16.89 .160
2009 465 72.77 .225 174 27.23 .143

Examination clearly shows that Howard batted poorly against RHP CB and against
LHPs. The N.Y. Yankees took advantage of this by using more LHPs to pitch to Howard
and more CB, resulting in only a .174 batting average.

As Ryan Howard’s manager, you want to improve his batting ability against both CB
and LHPs. Only by improving against these strategies can he effect change. J J J

EXAMPLE 4 Cuban Missile Crisis

‘‘We’re eyeball to eyeball, and I think the other fellow just blinked’’ were the eerie words of
Secretary of State Dean Rusk at the height of the Cuban missile crisis in October 1962. He
was referring to signals by the former Soviet Union that it desired to defuse the most dan-
gerous nuclear confrontation ever to occur between the superpowers, which many analysts
have interpreted as a classic instance of nuclear ‘‘Chicken.’’

We will highlight the scenario from 1962. The Cuban missile crisis was precipitated by
a Soviet attempt in October 1962 to install medium-range and intermediate-range nuclear-
armed ballistic missiles in Cuba that were capable of hitting a large portion of the United
States. The goal of the United States was immediate removal of the Soviet missiles, and
U.S. policy makers seriously considered two strategies to achieve this end: naval blockade
or air strikes.

As seen in the maps in Figures 10.36 and 10.37, the proximity of Cuba to Florida made
the situation dire.

The range of the missiles from Cuba allowed for major political, population, and eco-
nomic centers to become targets.

In President Kennedy’s speech to the nation, he explained the situation as well as the
goals for the United States. He set several initial steps. First, to halt the offensive buildup,
a strict quarantine on all offensive military equipment under shipment to Cuba was being
initiated. He went on to say that any launch of missiles from Cuba at anyone would be
considered an act of war by the Soviet Union against the United States, resulting in a full
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J Figure 10.36
Missile sites in Cuba
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J Figure 10.37
Missile ranges from Cuba covering most of North and South America

retaliatory nuclear strike against the Soviet Union. He called on Khrushchev to end this
threat to the world and restore world peace.

We will use the Cuban missile crisis to illustrate parts of the theory, which is not just
an abstract mathematical model but one that mirrors the real-life choices, and underlying
thinking, of flesh-and-blood decision makers. Indeed, Theodore Sorensen, special counsel
to President John Kennedy, used the language of ‘‘moves’’ to describe the deliberations of
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EXCOM, the executive committee of key advisors to Kennedy during the Cuban missile
crisis:

We discussed what the Soviet reaction would be to any possible move by the United
States, what our reaction with them would have to be to that Soviet action, and so on,
trying to follow each of those roads to their ultimate conclusion.

Problem Identification Statement: Build a mathematical model that allows for consid-
eration of alternative decisions by the two opponents.

Assumptions: We assume the two opponents are rational players.
Model Building: The goal of the United States was the immediate removal of the Soviet

missiles, and U.S. policy makers seriously considered two strategies to achieve this end:

1. A naval blockade (B), or ‘‘quarantine’’ as it was euphemistically called, to prevent
shipment of more missiles, possibly followed by stronger action to induce the Soviet
Union to withdraw the missiles already installed.

2. A ‘‘surgical’’ air strike (A) to wipe out the missiles already installed, insofar as possi-
ble, perhaps followed by an invasion of the island.

The alternatives open to Soviet policy makers were
Withdrawal (W) of their missiles.
Maintenance (M) of their missiles.

We list the payoffs (x; y) as payoffs to the United States, payoffs to the Soviet Union
where 4 is the best result, 3 is next best, 2 is next worst, and 1 is the worst.

Soviet Union

Withdraw missiles (W) Maintain missiles (M)

United States Blockade (B) (3, 3) (2, 4)
Air strike (A) (4, 2) (1, 1)

We show the movement diagram is Figure 10.38, where we have two equilibria, at
(4, 2) and (2, 4).

Withdraw missiles (W) Maintain missiles (M)

United States Blockade (B) (3, 3) � (2, 4)

�

�

Air strike (A) (4, 2) � (1, 1)
© Cengage Learning 2013

J Figure 10.38
Cuban missile crisis as a game of Chicken

The Nash equilibria are circled. Note there are two equilibria (4, 2) and (2, 4) that can
be found by our arrow diagram.

As in Chicken, if both players attempt to get to their equilibrium, the outcome of the
games ends up at (1, 1). This is disastrous for both countries and their leaders. The best
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solution is the (3, 3) compromise position. However, (3, 3) is not stable. This will eventually
put us back at (1, 1). In this situation, one way to avoid this Chicken dilemma is to try
strategic moves.

Both sides did not choose their strategies simultaneously or independently. Soviets re-
sponded to the US blockade after it was imposed. The United States held out the chance of
an air strike as a viable choice even after the blockade. If the Soviet Union would agree to
remove the weapons from Cuba, the United States would agree (a) to remove the quarantine
and (b) not to invade Cuba. If the Soviets maintained their missiles, the United States pre-
ferred the air strike to the blockade. Attorney General Robert Kennedy said, ‘‘If they do not
remove the missiles, then we will’’. The United States used a combination of promises and
threats. The Soviets knew our credibility in both areas were high (strong resolve). There-
fore, they withdrew the missiles, and the crisis ended. Khrushchev and Kennedy were wise.

Needless to say, the strategy choices, probable outcomes, and associated payoffs shown
in Figure 10.38 provide only a skeletal picture of the crisis as it developed over a period
of 13 days. Both sides considered more than the two alternatives listed, as well as several
variations on each. The Soviets, for example, demanded withdrawal of American missiles
from Turkey as a quid pro quo for withdrawal of their own missiles from Cuba, a demand
publicly ignored by the United States.

Nevertheless, most observers of this crisis believe that the two superpowers were on a
collision course, which is actually the title of one book describing this nuclear confrontation.
They also agree that neither side was eager to take any irreversible step, such as one of the
drivers in Chicken might do by defiantly ripping off the steering wheel in full view of the
other driver, thereby foreclosing the option of swerving.

Although in one sense the United States ‘‘won’’ by getting the Soviets to withdraw its
missiles, Premier Nikita Khrushchev of the Soviet Union at the same time extracted from
President Kennedy a promise not to invade Cuba, which seems to indicate that the eventual
outcome was a compromise of sorts. But, this is not game theory’s prediction for Chicken
because the strategies associated with compromise do not constitute a Nash equilibrium.

To see this, assume play is at the compromise position (3, 3), that is, the United States
blockades Cuba, and the Soviet Union withdraws its missiles. This strategy is not stable
because both players would have an incentive to defect to their more belligerent strategy. If
the United States were to defect by changing its strategy to air strike, play would move to
(4, 2), improving the payoff the United States received; if the Soviet Union were to defect
by changing its strategy to maintenance, play would move to (2, 4), giving the Soviet Union
a payoff of 4. (This classic game theory setup gives us no information about which outcome
would be chosen because the table of payoffs is symmetric for the two players. This is a
frequent problem in interpreting the results of a game theoretic analysis, where more than
one equilibrium position can arise.) Finally, should the players be at the mutually worst
outcome of (1, 1), that is, nuclear war, both would obviously desire to move away from it,
making the strategies associated with it, like those with (3, 3), unstable. J J J

EXAMPLE 5 Writers Guild Strike 2007–2008

The 2007–2008 Writers Guild of America strike was a strike by the Writers Guild of
America, East (WGAE) and the Writers Guild of America, West (WGAW) that started
on November 5, 2007. The WGAE and WGAW were two labor unions representing film,
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television, and radio writers working in the United States. Over 12,000 writers joined the
strike. These entities will be referred to in the model as the Writers Guild.

The strike was against the Alliance of Motion Picture and Television Producers
(AMPTP), a trade organization representing the interests of 397 American film and tele-
vision producers. The most influential of these are eight corporations: CBS Corporation,
Metro-Goldwyn-Mayer, NBC Universal, News Corp/Fox, Paramount Pictures, Sony Pic-
tures Entertainment , the Walt Disney Company, and Warner Brothers. We refer to this
group as Management.

The Writers Guild indicated their industrial action would be a ‘‘marathon.’’ AMPTP
negotiator Nick Counter indicated negotiations would not resume as long as strike action
continued, stating, ‘‘We’re not going to negotiate with a gun to our heads–that’s just stupid.’’

The last such strike in 1988 lasted 21 weeks and 6 days, costing the American enter-
tainment industry an estimated $500 million ($870 million in 2007 dollars). According to
a report on the January 13, 2008, edition of NBC Nightly News, if one takes into account
everyone affected by the current strike, the strike had cost the industry $1 billion so far; this
is a combination of lost wages to cast and crew members of television and film productions
and payments for services provided by janitorial services, caterers, prop and costume rental
companies, and the like.

The TV and movie companies stockpiled ‘‘output’’ so that they could possibly outlast
the strike rather than work to meet the demands of the writers and avoid the strike.

Game Theory Approach
Let us begin by stating strategies for each side. Our two rational players will be the Writers
Guild and Management. We develop strategies for each player.

Strategies

� Writers Guild: Its strategies are to strike (S) or not to strike (NS).
� Management: Its strategies are salary increase and revenue sharing (IN) or status quo
(SQ).

First, we rank order the outcomes for each side in order of preference. (These rank
orderings are ordinal utilities.)

Writer’s Alternatives and Rankings

� Strike-status quo S SQ: writers’ worst case (1)
� No strike-status quo NS SQ: writers’ next-to-worst case (2)
� Strike-salary increase and revenue sharing S IN: writers’ next-to-best case (3)
� No strike-salary increase and revenue sharing NS IN: writers’ best case (4)

Management’s Alternatives and Rankings

� Strike-status quo: Management’s next-to-best case (3)
� No strike-status quo: Management’s best case (4)
� Strike-salary increase and revenue sharing: Management’s next-to-worst case (2)
� No strike-salary increase and revenue sharing: Management’s worst case (1)
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This provides us with a payoff matrix consisting of ordinal values (see Figure 10.39).
We will refer to the Writers Guild as Rose and Management as Colin.

Management (Colin)

SQ IN

Writers Guild (Rose) S (1, 3) (3, 2)
NS (2, 4) (4, 1)

© Cengage Learning 2013

J Figure 10.39
Payoff matrix for Writers Guild strike

We use the movement diagram (see Figure 10.40) to find (2, 4) as the likely outcome.

Management

SQ IN

Writers Guild S (1, 3) � (3, 2)

� �

NS (2, 4) � (4, 1)

© Cengage Learning 2013

J Figure 10.40
Movement diagram for Writers Guild strike

We notice that the movement arrows point toward (2, 4) as the pure Nash equilibrium.
We also note that this result is not satisfying to the Writers Guild, and that it would like
to have a better outcome. Both (3, 2) and (4, 1) within the payoff matrix provide better
outcomes to the Writers Guild.

We can employ several options to try to secure a better outcome for the Writers Guild.
We can first try strategic moves, and if that fails to produce a better outcome then we can
move on to Nash arbitration. Both of these methods employ communications in the game.
In strategic moves, we examine the game to see if ‘‘moving first’’ changes the outcome, if
threatening our opponent changes the outcome, if making promises to our opponent changes
our outcome, or if a combination of threats and promises is needed to change the outcome.

We examine strategic moves. The Writers Guild moves first, and its best result is again
(2, 4). If management moves first, the best result is (2, 4). First moves keep us at the Nash
equilibrium. The Writers Guild considers a threat and tells Management that if it chooses
SQ that it will strike, putting the players at (1, 3). This result is indeed a threat as it is worse
for both the Writers Guild and Management. However, the options for Management under
IN are both worse than (1, 3), so Management does not accept the threat. The guild does
not have a promise. At this point, we might involve an arbiter. J J J
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10.710.7 PROBLEMS

1. Consider a ‘‘duel’’ between two players. Let’s call these players H and D. Now, we have
historical information on each because this is not their first duel. H will kill at long range
with probability 0.3 and at short range with probability 0.8. D will kill at long range
with probability 0.4 and at short range with probability 0.6. Let’s consider a system
that awards 10 points for a kill for each player. Build a payoff matrix by computing the
expected values as the payoff for each player. Solve the game.

2. Colin must defend two cities with one indivisible regiment of soldiers. His enemy, Rose,
plans to attack one city with her indivisible regiment. City I has a value of 10 units, while
City II has a value of 5 units. If Rose attacks a defended city, Rose loses the battle and
obtains nothing. If Rose attacks an undefended city, she obtains the value of the city,
while Colin loses the value of the city. Neither player knows what the other plans to do.
Build the payoff matrix and solve the game.

3. Doc Holliday versus Ike Clanton (2-person, 3-strategy game) are used in this problem.
On October 26, 1881, the bad blood between the Earps, Clantons, and McLaurys came
to a head at the O.K. Corral. Billy Clanton, Frank McLaury, and Tom McLaury were
killed. Doc Holliday, Virgil and Morgan Earp were injured. Miraculously, Wyatt Earp
was unharmed, while the unarmed Isaac ‘‘Ike’’ Clanton survived by running away.Many
people believed that Doc Holliday shotgunned an unarmed Tom McLaury in the back
as he was attempting to flee the scene.

Ike Clanton and his friends and associates, known as the ‘‘cowboys,’’ swore to get
their revenge on the Earps and Holliday. In the ensuing months, Morgan Earp was mur-
dered and Virgil Earp seriously wounded in an ambush. A few days later, Wyatt Earp
apparently shot and killed Frank Stillwell, a Clanton associate, and another man believed
to be involved in the ambush. Over the next few years, many more of the cowboys were
killed.

Although close to death from tuberculosis, in 1887 Doc Holliday decided to look
up Ike Clanton and to settle their differences once and for all. On June 1, 1887, Doc
Holliday and J. V. Brighton cornered Ike Clanton near Springerville, Arizona. Doc told
J.V. to stay out of it for the time being.

Ike and Doc each had a pistol and shotgun. Ike and Doc, spurning their pistols in
favor of their shotguns, pressed forward toward each other. At long range, Ike—with his
cowboy background—was a better shot than Doc. At middle range, Doc—the seasoned
gunfighter—could outgun Ike. Both desperadoes were deadly at close range. The prob-
abilities that either rogue would kill the other with a blast from his single-shot shotgun
appear in the following table:

Kill probability

Long range Middle range Close range

Ike Clanton 0.5 0.6 1.0
Doc Holliday 0.3 0.8 1.0
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In this problem, the payoff to Doc is 10 units if Doc survives and Ike is killed, �10
units if Doc is killed and Ike survives. Doc and Ike’s strategies are as follows:

L Blast at long range.

M If enemy has not shot, blast at middle range; otherwise, blast at close range.
C Blast enemy at close range.

Compute the payoff matrix for Doc Holiday and solve the game.

4. Golf (give the putt or not) involving a professional golf match is the topic of this problem.
In matches, like the President’s Cup, the Ryder Cup, and other match play events, it is
common to see players concede a putt to another player. The issue sometimes is do we
concede under 4 feet or between 4 and 8 feet? What is the better strategy for each team?
Should there be any agreement before each match regarding whether players should
concede or not concede putts? We will use a 10-point scale for each side as well as the
following probabilities:

U.S. team European team

P (making the putt within 4 feet) 95% 94%
P (making the putt between 4 and 8 feet) 59% 61%

Fill in the payoff matrix and then solve the game.

Match play outcomes Europe team

Concede the
putt under 4
feet C1

Do not concede
the putt under 4
feet C2

Concede putts
between 4 and
8 feet

Do not concede
putts between 4
and 8 feet

U.S. team Concede the putt
under 4 feet R1

Do not concede
the putt under 4
feet R2

Concede the putt
between 4 and
8 feet

Do not concede
the putt between
4 and 8 feet

5. Guerillas plan on attacking a police compound. Assume the size of the guerilla force is
m, and the size of the police force is n. Further assume they are using the sameweaponry.
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If the size of the guerilla force is larger than the police force, the guerillas win (m > n).
The police win if the police are greater in numbers than or equal to twice the guerilla
force (n � 2m). We need to see what happens when the police force is between the size
of the guerilla force and twice the size of the guerrilla force (m � n < 2m). Build the
payoff matrices and discuss.

6. Assume we have two countries at war, Red and Blue. Assume Red wants to destroy
Blue’s base, and Red has four missiles, two with real warheads and two with dummy
warheads. Blue defends its base and has only two antimissiles. We desire to know how
Red should sequence its live and dummy missiles and how Blue should fire its two
missiles. Let winning be assigned a value of 1 and losing be assigned a value of 0.

7. Consider the Battle of the Bismarck Sea and assume the intelligence estimates for the
number of days available were incorrect due to possible bad weather in the region. If the
updated estimates were as follows, what should each side do?

Imamura

North South

North 2.5, �2:5 2.75, �2:75
Kenney

South 3, �3 3.5, �3:5
Payoffs to (Kenney, Imamura)

8. Consider the Writers Guild strike example. Let the Writers Guild reconsider its posi-
tion after 6 months, and the payoffs become as shown in the following payoff matrix.
Determine the best strategies to play.

Writers Guild/Management payoff matrix

Management (Colin)

SQ IN

Writers Guild (Rose) S (4, 5) (8, 2)
NS (�4, 10) (12, 0)

10.710.7 PROJECTS

1. Pick a scenario of interest that fits into a game theory model. Decide the players, the
strategies, and the values for the payoff matrix and then use the techniques in this chapter
to find the solution to the game.

2. Research the Cuban missile crisis of 1962. Determine the possible strategies of the
United States and the Soviet Union. Provide values to your payoff matrix. Determine
what each side should do.

3. Prepare a report on the ‘‘Geometry of the Arms Race,’’ UMAP 311.
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4. From the Further Reading, read Straffin, pages 104–110, on Nash arbitration. The math-
ematics of Nash arbitration is to find Point N inside the convex payoff polygon that
maximizes .x � x�/.y � y�/ subject to x � x�; y � y� where (x�; y�) is known
as the status quo point. Apply the Nash arbitration scheme to the Writer Guild problem
assuming the payoffs are interval scale values, Example 5, to show that when the status
quo point is (2, 3) that the Nash arbitration solution is (2.3333, 3.5).
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1111 Modeling with a Differential

Equation

Introduction

Quite often we have information relating a rate of change of a dependent variable with
respect to one or more independent variables and are interested in discovering the function
relating the variables. For example, ifP represents the number of people in a large population
at some time t , then it is reasonable to assume that the rate of change of the population with
respect to time depends on the current size of P as well as other factors that are discussed
in Section 11.1. For ecological, economical, and other important reasons, it is desirable
to determine a relationship between P and t to make predictions about P . If the present
population size is denoted by P.t/ and the population size at time t C �t is P.t C �t /,
then the change in population �P during that time period �t is given by

�P D P.t C �t / � P.t/ (11.1)

The factors affecting the population growth are developed in detail in Section 11.1. For now,
let’s assume a simple proportionality: �P / P . For example, if immigration, emigration,
age, and gender are all neglected, we can assume that during a unit time period, a certain per-
centage of the population reproduces while a certain percentage dies. Suppose the constant
of proportionality k is expressed as a percentage per unit time. Then our proportionality
assumption gives

�P D P.t C �t / � P.t/ D kP�t (11.2)

Equation (11.2) is a difference equation in which we are treating a discrete set of time
periods rather than allowing t to vary continuously over some interval. In this situation the
discrete set of times may give the population in future years at those distinct times (perhaps
after the spring spawn in a fish population). Referring to Figure 11.1, observe that the
horizontal distance between the points .t0; P.t0// and .t0 C �t; P.t0 C �t // is �t , which
may represent the time between spawning periods in a fish population growth problem or
the length of a fiscal period in a budget growth problem. The time t0 refers to a particular
time. The vertical distance,�P in this case, represents the change in the dependent variable.

Assume that t does vary continuously so that we can take advantage of the calculus.
Division of Equation (11.2) by �t gives

�P

�t
D P.t C �t / � P.t/

�t
D kP

458
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J Figure 11.1
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We can interpret �P=�t physically as the average rate of change in P during the time
period �t . For example, �P=�t may represent the average daily growth of the budget.
In other scenarios, however, it may have no physical interpretation: If fish spawn only in
the spring, it is somewhat meaningless to talk about the average daily growth in the fish
population. Again in Figure 11.1, �P=�t can be interpreted geometrically as the slope of
the line segment connecting the points .t0; P.t0// and .t0 C �t; P.t0 C �t //. Next, allow
�t to approach zero. The definition of the derivative gives the differential equation

lim
�t!0

�P

�t
D dP

dt
D kP (11.3)

where dP=dt represents the instantaneous rate of change. In many situations, the instanta-
neous rate of change has an identifiable physical interpretation, such as in the flow of heat
from a space capsule after entering the ocean or the reading of a car speedometer as the car
accelerates. However, in the case of a fish population that has a discrete spawning period or
the budget process that has a discrete fiscal period, the instantaneous change may be some-
what meaningless. These latter scenarios are more appropriately modeled using difference
equations, but it is occasionally advantageous to approximate a difference equation with a
differential equation.

The derivative is used in two distinct roles:

1. To represent the instantaneous rate of change in continuous problems.
2. To approximate an average rate of change in discrete problems.

The advantage of approximating an average rate of change by a derivative is that the
calculus often helps in uncovering a functional relationship between the variables under
investigation. For instance, the solution to the Model (11.3) is P D P0e

kt , where P0 is
the population at time t D 0. However, many differential equations cannot be solved so
easily using analytic techniques. In such cases the solutions are approximated using discrete
methods. An introduction to numerical techniques is presented in Section 11.5. In cases in
which the solution being approximated is a differential equation that is an approximation to
a difference equation, the modeler should consider using a discrete method with the finite
difference equation directly (see Chapter 1).

The interpretation of the derivative as an instantaneous rate of change is useful in many
modeling applications. The geometric interpretation of the derivative as the slope of the
line tangent to the curve is useful for constructing numerical solutions. Let’s briefly review
these important concepts from the calculus.
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The Derivative as a Rate of Change
The origins of the derivative lie in humankind’s curiosity about motion and our need to
develop a deeper understanding of motion. The search for the laws governing planetary
motion, the study of the pendulum and its application to clock building, and the laws
governing the flight of a cannonball were the kinds of problems stimulating the minds of
mathematicians and scientists in the sixteenth and seventeenth centuries. Such problems
motivated the development of the calculus.

To remind ourselves of one interpretation of the derivative, consider a particle whose
distance s from a fixed position depends on time t . Let the graph in Figure 11.2 represent
the distance s as a function of time t , and let .t1; s1/ and .t2; s2/ denote two points on the
graph.

J Figure 11.2
Graph of distance s as a
function of time t
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Define �t D t2 � t1 and �s D s2 � s1, and form the ratio �s=�t . Note that this ratio
represents a rate: an increment of distance traveled �s over some increment of time �t .
That is, the ratio �s=�t represents the average velocity during the time period in question.
Now remember how the derivative ds=dt evaluated at t D t1 is defined:

ds

dt

ˇ̌
ˇ̌
tDt1

D lim
�t!0

�s

�t
(11.4)

Physically, what occurs as �t ! 0? Using the interpretation of average velocity, we
can see that at each state of using a smaller �t , we are computing the average velocity
over smaller and smaller intervals with left endpoint at t1 until, in the limit, we have the
instantaneous velocity at t D t1. If we think of the motion of a moving vehicle, this
instantaneous velocity would correspond to the exact reading of its (perfect) speedometer
at the instant t1.

More generally, if y D f .x/ is a differentiable function, then the derivative dy=dx

at any given point can be interpreted as the instantaneous rate of change of y with respect
to x at that point. Interpreting the derivative as an instantaneous rate of change is useful in
many modeling applications.

The Derivative as the Slope of the Tangent Line
Let’s consider another interpretation of the derivative. As scholars sought knowledge about
the laws of planetary motion, their chief need was to observe and measure the heavenly
bodies. However, the construction of lenses for use in telescopes was a difficult task. To
grind a lens to the correct curvature to achieve the desired light refraction requires knowing
the tangent to the curve describing the lens surface.
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J Figure 11.3
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Let’s examine the geometrical implications of the limit in Equation (11.4). We consider
s.t/ simply as a curve. Let’s examine a set of secant lines each emanating from the point
AD.t1; s.t1// on the curve. To each secant there corresponds a pair of increments .�ti ; �si /

as shown in Figure 11.3. The lines AB , AC , and AD are secant lines. As �t ! 0, these
secant lines approach the line tangent to the curve at the point A. Because the slope of each
secant is �s=�t , we may interpret the derivative as the slope of the line tangent to the curve
s.t/ at the point A. The interpretation of the derivative evaluated at a point as the slope of the
line tangent to the curve at that point is useful in constructing numerical approximations to
solutions of differential equations. Numerical approximations are discussed in Section 11.5.

11.111.1 Population Growth

Interest in how populations tend to grow was stimulated in the late eighteenth century when
Thomas Malthus (1766–1834) published An Essay on the Principle of Population as It
Affects the Future Improvement of Society. In his book, Malthus put forth an exponential
growth model for human population and concluded that eventually the population would
exceed the capacity to grow an adequate food supply. Although the assumptions of the
Malthusianmodel leave out factors important to population growth (so themodel has proven
to be inaccurate for technologically developed countries), it is instructive to examine this
model as a basis for later refinement.

Problem Identification Suppose we know the population at some given time, for exam-
ple, P0 at time t D t0, and we are interested in predicting the population P at some future
time t D t1. In other words, we want to find a population function P.t/ for t0 � t � t1

satisfying P.t0/ D P0.

Assumptions Consider some factors that pertain to population growth. Two obvious ones
are the birthrate and the death rate. The birthrate and death rate are determined by different
factors. The birthrate is influenced by infant mortality rate, attitudes toward and availability
of contraceptives, attitudes toward abortion, health care during pregnancy, and so forth.
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The death rate is affected by sanitation and public health, wars, pollution, medicines, diet,
psychological stress and anxiety, and so forth. Other factors that influence population growth
in a given region are immigration and emigration, living space restrictions, availability of
food and water, and epidemics. For our model, let’s neglect all these latter factors. (If we
are dissatisfied with our results, we can include these factors later in a more refined model,
possibly in a simulation model.) Now we’ll consider only the birthrate and death rate.
Because knowledge and technology have helped humankind diminish the death rate below
the birthrate, human populations have tended to grow.

Let’s begin by assuming that during a small unit time period, a percentage b (given
as a decimal equivalent) of the population is newly born. Similarly, a percentage c of
the population dies. In other words, the new population P.t C �t / is the old population
P.t/ plus the number of births minus the number of deaths during the time period �t .
Symbolically,

P.t C �t / D P.t/ C bP.t/�t � cP.t/�t

or
�P

�t
D bP � cP D kP

From our assumptions the average rate of change of the population over an interval of
time is proportional to the size of the population. Using the instantaneous rate of change to
approximate the average rate of change, we have the following differential equation model:

dP

dt
D kP; P.t0/ D P0; t0 � t � t1 (11.5)

where (for growth) k is a positive constant.

Solving theModel We can separate the variables and rewrite Equation (11.5) by moving
all terms involving P and dP to one side of the equation and all terms in t and dt to the
other. This gives

dP

P
D k dt

Integration of both sides of this last equation yields

lnP D kt C C (11.6)

for some constantC . Applying the conditionP.t0/DP0 to Equation (11.6) to findC results
in

lnP0 D kt0 C C

or

C D lnP0 � kt0

Then, substitution for C into Equation (11.6) gives

lnP D kt C lnP0 � kt0
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or, simplifying algebraically,

ln
P

P0

D k.t � t0/

Finally, by exponentiating both sides of the preceding equation and multiplying the result
by P0, we obtain the solution

P.t/ D P0e
k.t�t0/ (11.7)

Equation (11.7), known as theMalthusian model of population growth, predicts that
population grows exponentially with time.

Verifying the Model Because ln.P=P0/ D k.t � t0/, our model predicts that if we plot
lnP=P0 versus t � t0, a straight line passing through the origin with slope k should result.
However, if we plot the population data for the United States for several years, the model
does not fit very well, especially in the later years. In fact, the 1990 census for the population
of the United States was 248,710,000, and in 1970 it was 203,211,926. Substituting these
values into Equation (11.7) and dividing the first result by the second gives

248;710;000

203;211;926
D e

k.1990�1970/

Thus,

k D
�

1

20

�
ln

248;710;000

203;211;926
� 0:01

That is, during the 20-year period from 1970 to 1990, population in the United States
was increasing at the average rate of 1.0% per year. We can use this information together
with Equation (11.7) to predict the population for 2000. In this case, t0 D 1990, P0 D
248;710;000, and k D 0:01 yields

P.2000/ D 248;710;000e
0:01.2000�1990/ D 303;775;080

The 2000 census for the population of the United States was 281,400,000 (rounded to the
nearest hundred thousand). Thus our prediction is off the mark by approximately 8%. We
can probably live with that magnitude of error, but let’s look into the distant future. Our
model predicts that the population of the United States will be 55,209 billion in the year
2300, a population that far exceeds current estimates of themaximum sustainable population
of the entire planet! We are forced to conclude that our model is unreasonable over the long
term.

Some populations do grow exponentially, provided that the population is not too large.
In most populations, however, individual members eventually compete with one another
for food, living space, and other natural resources. Let’s refine our Malthusian model of
population growth to reflect this competition.

Refining the Model to Reflect Limited Growth Let’s consider that the proportionality
factor k, measuring the rate of population growth in Equation (11.5), is now no longer
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constant but a function of the population. As the population increases and gets closer to the
maximum population M , the rate k decreases. One simple submodel for k is the linear one

k D r.M � P /; r > 0

where r is a constant. Substitution into Equation (11.5) leads to

dP

dt
D r.M � P /P (11.8)

or

dP

P.M � P /
D r dt (11.9)

Again we assume the initial condition P.t0/ D P0. (Model (11.8) was first introduced by
the Dutch mathematical biologist Pierre-Francois Verhulst, 1804–1849, and is referred to
as logistic growth.) It follows from elementary algebra that

1

P.M � P /
D 1

M

�
1

P
C 1

M � P

�

Thus, Equation (11.9) can be rewritten as

dP

P
C dP

M � P
D rM dt

which integrates to

lnP � ln j M � P j D rM t C C (11.10)

for some arbitrary constantC . Using the initial condition, we evaluateC in the case P < M :

C D ln
P0

M � P0

� rM t0

Substituting into Equation (11.10) and simplifying gives

ln
P

M � P
� ln

P0

M � P0

D rM.t � t0/

or

ln
P.M � P0/

P0.M � P /
D rM.t � t0/

Exponentiating both sides of this equation gives

P.M � P0/

P0.M � P /
D e

rM.t�t0/

or

P0.M � P /e
rM.t�t0/ D P.M � P0/

Then,

P0Me
rM.t�t0/ D P.M � P0/ C P0P e

rM.t�t0/
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so solving for the population P gives

P.t/ D P0Me
rM.t�t0/

M � P0 C P0erM.t�t0/

To estimate P as t ! 1, we rewrite this last equation as

P.t/ D MP0

ŒP0 C .M � P0/e�rM.t�t0/�
(11.11)

Notice from Equation (11.11) that P.t/ approaches M as t tends to infinity. Moreover,
from Equation (11.8) we calculate the second derivative

P
00 D rMP

0 � 2rPP
0 D rP

0
.M � 2P /

so that P
00 D 0 when P D M=2. This means that when the population P reaches half the

limiting population M , the growth dP=dt is most rapid and then starts to diminish toward
zero. One advantage of recognizing that the maximum rate of growth occurs at P D M=2

is that the information can be used to estimate M . In a situation in which the modeler is
satisfied that the growth involved is essentially logistic, if the point of maximum rate of
growth has been reached, then M=2 can be estimated. The graph of the limited growth
Equation (11.11) is depicted in Figure 11.4 for the case P < M (see Problem 2 for the case
P > M/. Such a curve is called a logistic curve.

J Figure 11.4
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Verifying the Limited Growth Model Let’s test our model (11.11) against some real-
world data. Equation (11.10) suggests a straight-line relationship of lnŒP=.M�P /� versus t .
Let’s test this model using the data given in Table 11.1 for the growth of yeast in a culture.
To plot lnŒP=.M � P /� versus t , we need an estimate for the limiting population M .
From the data in Table 11.1 we see that the population never exceeds 661.8. We estimate
M � 665 and plot lnŒP=.665 � P /� versus t . The graph is shown in Figure 11.5 and does
approximate a straight line. Thus, we accept the assumptions of logistic growth for bacteria.
Now Equation (11.10) gives

ln
P

M � P
D rM t C C

and from the graph in Figure 11.5 we can estimate the slope rM � 0:55 so that r �
0:0008271 from our estimate for M � 665.
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Table 11.1 Growth of yeast in a culture

Observed yeast Biomass calculated from Percent
Time (hr) biomass logistic equation (11.13) error

0 9.6 8.9 �7:3

1 18.3 15.3 �16:4

2 29.0 26.0 �10:3

3 47.2 43.8 �7:2

4 71.1 72.5 2.0
5 119.1 116.3 �2:4

6 174.6 178.7 2.3
7 257.3 258.7 0.5
8 350.7 348.9 �0:5

9 441.0 436.7 �1:0

10 513.3 510.9 �4:7

11 559.7 566.4 1.2
12 594.8 604.3 1.6
13 629.4 628.6 �0:1

14 640.8 643.5 0.4
15 651.1 652.4 0.2
16 655.9 657.7 0.3
17 659.6 660.8 0.2
18 661.8 662.5 0.1

© Cengage Learning

Data from R. Pearl, ‘‘The Growth of Population,’’ Quart. Rev. Biol. 2 (1927): 532–548.

J Figure 11.5
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It is often convenient to express the logistic equation (11.11) in another form. To this
end, let t

� denote the time when the population P reaches half the limiting value; that is,
P.t

�
/ D M=2. It follows from Equation (11.11) that

t
� D t0 � 1

rM
ln

P0

M � P0
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(see Problem 1a at the end of this section). Solving this last equation for t0, substituting the
result into Equation (11.11), and simplifying algebraically give

P.t/ D M

1 C e�rM.t�t�/
(11.12)

(see Problem 1b at the end of this section).
We can estimate t* for the yeast culture data presented in Table 11.1 using Equa-

tion (11.10) and our graph in Figure 11.5:

t
� D � C

rM
� 4:3

0:55
� 7:82

This calculation gives the logistic equation

P.t/ D 665

1 C 73:8e�0:55t
(11.13)

by substituting M D 665, r D 0:0008271, and t
� D 7:82 in Equation (11.12).

The logistic model is known to agree quite well for populations of organisms that have
very simple life histories—for instance, yeast growing in a culture where space is limited.
Table 11.1 shows the calculations for the logistic equation (11.13), and we can see from
the calculated error that there is very good agreement with the original data. A plot of the
curve is shown in Figure 11.6.

J Figure 11.6
Logistic curve showing the
growth of yeast in a culture
based on the data from
Table 11.1 and Model (11.13);
the small dots indicate the
observed values.
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Next let’s consider some data for human populations. A logistic equation for the pop-
ulation growth of the United States was formulated by Pearl and Reed in 1920. One form
of their logistic curve is given by

P.t/ D 197;273;522

1 C e�0:03134.t�1914:32/
(11.14)

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_11_ch11_p458-523 January 23, 2013 19:40 468

468 Chapter 11 Modeling with a Differential Equation

where M D 197;273;522, r D 1:5887 � 10
�10, and t

� D 1914:32 were determined using
the census figures for the years 1790, 1850, and 1910 (we ask you to estimate M , r , and t

�

in Problem 4 at the end of this section).
Table 11.2 compares the values predicted in 1920 by the logistic equation (11.14) with

the observed values of the population of the United States. The predicted values agree quite
well with the observations up to the year 1950, but the predicted values are much too small
for the years 1970, 1980, 1990, and 2000. This should not be too surprising because our
model fails to take into account such factors as immigration into the United States, wars,
and advances in medical technology. In populations of higher plants and animals, which
have complicated life histories and long periods of individual development, there are likely
to be numerous responses that greatly modify the population growth.

Table 11.2 Population of the United States from 1790 to
2010, with predictions from Equation (11.14)

Observed Predicted Percent
Year population population error

1790 3,929,000 3,929,000 0.0
1800 5,308,000 5,336,000 0.5
1810 7,240,000 7,227,000 �0:2

1820 9,638,000 9,756,000 1.2
1830 12,866,000 13,108,000 1.9
1840 17,069,000 17,505,000 2.6
1850 23,192,000 23,191,000 �0:0

1860 31,443,000 30,410,000 �3:3

1870 38,558,000 39,370,000 2.1
1880 50,156,000 50,175,000 0.0
1890 62,948,000 62,767,000 �0:3

1900 75,995,000 76,867,000 1.1
1910 91,972,000 91,970,000 �0:0

1920 105,711,000 107,393,000 1.6
1930 122,755,000 122,396,000 �0:3

1940 131,669,000 136,317,000 3.5
1950 150,697,000 148,677,000 �1:3

1960 179,323,000 159,230,000 �11:2

1970 203,212,000 167,943,000 �17:4

1980 226,505,000 174,941,000 �22:8

1990 248,710,000 180,440,000 �27:5

2000 281,416,000 184,677,000 �34:4

2010 308,746,000 187,905,000 �39:1

© Cengage Learning

11.111.1 PROBLEMS

1. a. Show that the population P in the logistic equation reaches half the maximum pop-
ulation M at time t

� given by

t
� D t0 � .1=rM / lnŒP0=.M � P0/�
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b. Derive the form given by Equation (11.12) for population growth according to the
logistic law.

c. Derive the equation lnŒP=.M � P /� D rM t � rM t
� from Equation (11.12).

2. Consider the solution of Equation (11.8). Evaluate the constant C in Equation (11.10)
in the case that P > M for all t . Sketch the solutions in this case. Also sketch a solution
curve for the case that M=2 < P < M .

3. The following data were obtained for the growth of a sheep population introduced into a
new environment on the island of Tasmania (adapted from J. Davidson, ‘‘On the Growth
of the Sheep Population in Tasmania,’’ Trans. R. Soc. S. Australia 62(1938): 342–346).

t (year) 1814 1824 1834 1844 1854 1864

P.t/ 125 275 830 1200 1750 1650

a. Make an estimate of M by graphing P.t/.
b. Plot lnŒP=.M � P /� against t . If a logistic curve seems reasonable, estimate rM

and t
�.

4. Using the data for the U.S. population in Table 11.2, estimate M , r , and t
� using the

same technique as in the text. Assume you are making the prediction in 1951 using a
previous census. Use the data from 1960 to 2000 to check your model.

5. The modern philosopher Jean-Jacques Rousseau formulated a simple model of popula-
tion growth for eighteenth-century England based on the following assumptions:

The birthrate in London is less than that in rural England.
The death rate in London is greater than that in rural England.
As England industrializes, more and more people migrate from the countryside to
London.
Rousseau then reasoned that because London’s birthrate was lower and its death

rate higher and rural people tend to migrate there, the population of England would
eventually decline to zero. Criticize Rousseau’s conclusion.

6. Consider the spreading of a highly communicable disease on an isolated island with
population size N . A portion of the population travels abroad and returns to the island
infected with the disease. You would like to predict the number of people X who will
have been infected by some time t . Consider the following model, where k > 0 is
constant:

dX

dt
D kX.N � X/

a. List twomajor assumptions implicit in the precedingmodel. How reasonable are your
assumptions?

b. Graph dX=dt versus X .
c. Graph X versus t if the initial number of infections is X1 < N=2. Graph X versus t

if the initial number of infections is X2 > N=2.
d. Solve the model given earlier for X as a function of t .
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e. From part (d), find the limit of X as t approaches infinity.
f. Consider an island with a population of 5000. At various times during the epidemic

the number of people infected was recorded as follows:

t (days) 2 6 10

X (people infected) 1887 4087 4853

ln.X=.N � X// �:5 1:5 3:5

Do the collected data support the given model?
g. Use the results in part (f) to estimate the constants in the model, and predict the

number of people who will be infected by t D 12 days.

7. Assume we are considering the survival of whales and that if the number of whales falls
below a minimum survival level m, the species will become extinct. Assume also that
the population is limited by the carrying capacity M of the environment. That is, if the
whale population is above M , then it will experience a decline because the environment
cannot sustain that high a population level.
a. Discuss the following model for the whale population

dP

dt
D k.M � P /.P � m/

where P.t/ denotes the whale population at time t and k is a positive constant.
b. Graph dP=dt versus P and P versus t . Consider the cases in which the initial

population P.0/ D P0 satisfies P0 < m, m < P0 < M , and M < P0.
c. Solve the model in part (a), assuming that m < P < M for all time. Show that the

limit of P as t approaches infinity is M .
d. Discuss how you would test the model in part (a). How would you determine M

and m?
e. Assuming that the model reasonably estimates the whale population, what implica-

tions are suggested for fishing? What controls would you suggest?

8. Sociologists recognize a phenomenon called social diffusion, which is the spreading of
a piece of information, a technological innovation, or a cultural fad among a population.
The members of the population can be divided into two classes: those who have the
information and those who do not. In a fixed population whose size is known, it is
reasonable to assume that the rate of diffusion is proportional to the number who have
the information times the number yet to receive it. IfX denotes the number of individuals
who have the information in a population of N people, then a mathematical model for
social diffusion is given by dX=dt D kX.N � X/, where t represents time and k is a
positive constant.
a. Solve the model and show that it leads to a logistic curve.
b. At what time is the information spreading fastest?
c. How many people will eventually receive the information?
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11.111.1 PROJECTS (See enclosed CD for UMAP modules.)
1. Complete the requirements of theUMAPmodule ‘‘TheCobb–Douglas Production Func-

tion,’’ by Robert Geitz, UMAP 509. Amathematical model relating the output of an eco-
nomic system to labor and capital is constructed from the assumptions that (a) marginal
productivity of labor is proportional to the amount of production per unit of labor, (b)
marginal productivity of capital is proportional to the amount of production per unit of
capital, and (c) if either labor or capital tends to zero, then so does production.

2. Complete the UMAP module ‘‘The Diffusion of Innovation in Family Planning,’’ by
Kathryn N. Harmon, UMAP 303. This module gives an interesting application of finite
difference equations to study the process through which public policies are diffused to
understand how national governments might adopt family planning policies.

3. Complete the UMAP module ‘‘Difference Equations with Applications,’’ by Donald
R. Sherbert, UMAP 322. This module presents a good introduction to solving first-
and second-order linear difference equations, including the method of undetermined
coefficients for nonhomogeneous equations. Applications to problems in population and
economic modeling are included.

11.1 Further Reading
Frauenthal, James C. Introduction to Population Modeling. Lexington, MA: COMAP, 1979.
Hutchinson, G. Evelyn. An Introduction to Population Ecology. New Haven, CT: Yale University

Press, 1978.
Levins, R. ‘‘The Strategy of Model Building in Population Biology.’’ American Scientist 54 (1966):

421–431.
Pearl, R., & L. J. Reed. ‘‘On the Rate of Growth of the Population of the United States since 1790.’’

Proceedings of the National Academy of Science 6 (1920): 275–288.

11.211.2 Prescribing Drug Dosage
1

The problem of howmuch of a drug dosage to prescribe and how often the dosage should be
administered is an important one in pharmacology. For most drugs there is a concentration
below which the drug is ineffective and a concentration above which the drug is dangerous.

Problem Identification How can the doses and the time between doses be adjusted to
maintain a safe but effective concentration of the drug in the blood?

The concentration in the blood resulting from a single dose of a drug normally decreases
with time as the drug is eliminated from the body (Figure 11.7). We are interested in what
happens to the concentration of the drug in the blood as doses are given at regular intervals.

1This section is adapted from UMAP Unit 72, based on the work of Brindell Horelick and Sinan Koont. The
adaptation is presented with the permission of COMAP, 57 Bedford St., Lexington, MA 02173.
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J Figure 11.7
The concentration of a
drug in the bloodstream
decreases with time.
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If H denotes the highest safe level of the drug and L its lowest effective level, it would be
desirable to prescribe a dosage C0 with time T between doses so that the concentration of
the drug in the bloodstream remains between L and H over each dose period.
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J Figure 11.8
Residual buildup depends on the time interval between administration of drug doses.

Let’s consider several ways in which the drugs might be administered. In Figure 11.8a
the time between doses is such that effectively there is no buildup of the drug in the system.
In other words, the residual concentration from previous doses is approximately zero. On the
other hand, in Figure 11.8b the interval between doses relative to the amount administered
and the decay rate of the concentration is such that a residual concentration exists at each
time the drug is taken (after the first dose). Furthermore, as depicted in the graph, this
residual level seems to be approaching a limit. We will be concerned with determining
whether this is indeed the case and, if so, what that limit must be. Our ultimate goal in
prescribing drugs is to determine dose amounts and intervals between doses such that the
lowest effective level L is reached quickly and thereafter the concentration is maintained
between the lowest effective levelL and the highest safe levelH , as depicted in Figure 11.9.
We begin by determining the limiting residual level, which depends on our assumptions for
the rate of assimilation of the drug in the bloodstream and the rate of decay after assimilation.

J Figure 11.9
Safe but effective levels of
the drug in the blood; C0 is
the change in concentration
produced by one dose, and
T is the time interval
between doses.
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Assumptions To solve the problem we have identified, let’s consider the factors that
determine the concentrationC.t/ of the drug in the bloodstream at any time t .We beginwith

C.t/ D f .decay rate, assimilation rate, dosage amount, dosage interval, . . . /

and various other factors, including bodyweight and blood volume. To simplify our assump-
tions, let’s assume that body weight and blood volume are constants (e.g., an average over
some specific age group) and that concentration level is the critical factor in determining
the effect of a drug. Next we determine submodels for decay rate and assimilation rate.

Submodel for Decay Rate Consider the elimination of the drug from the bloodstream.
This is probably a discrete phenomenon, but let’s approximate it by a continuous function.
Clinical experiments have revealed that the decrease in the concentration of a drug in
the bloodstream will be proportional to the concentration. Mathematically, this assumption
means that if we assume the concentration of the drug in the blood at time t is a differentiable
function C.t/, then

C
0
.t/ D �kC.t/ (11.15)

In this formula k is a positive constant called the elimination constant of the drug. Note
that C

0
.t/ is negative, as it should be if it is to describe a decreasing concentration. Usually

the quantities in Equation (11.15) are measured as follows: the time t is given in hours,C.t/

is milligrams per milliliter of blood (mg/ml), C
0
.t/ is mg ml�1hr�1, and k is hr�1.

Assume that the concentrations H and L can be determined experimentally for a given
population, such as an age group. (We will say more about this assumption in the ensuing
discussion.) Then set the drug concentration for a single dose at the level

C0 D H � L (11.16)

If we assume that C0 is the concentration at t D 0, then we have the model

dC

dt
D �kC; C.0/ D C0 (11.17)

The variables can be separated in Equation (11.17) and the model solved in the same
way as the Malthusian model of population growth presented in the preceding section.
Solution of the model gives

C.t/ D C0e
�kt (11.18)

To obtain the concentration at time t > 0, multiply the initial concentration C0 by e
�kt .

The graph of C.t/ looks like the one in Figure 11.10.

J Figure 11.10
Exponential model for
decay of drug concentration
with time
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Submodel for Assimilation Rate Having made an assumption about how drug concen-
trations decrease with time, let’s consider how they increase again when drugs are
administered. Our initial assumption is that when a drug is taken, it is diffused so rapidly
throughout the blood that the graph of the concentration for the absorption period is, for
all practical purposes, vertical. That is, we assume an instantaneous rise in concentration
whenever a drug is administered. This assumption may not be as reasonable for a drug taken
by mouth as it is for a drug that is injected directly into the bloodstream. Now let’s see how
the drug accumulates in the bloodstream with repeated doses.

DrugAccumulationwithRepeatedDoses Consider what happens to the concentration
C.t/ when a dose that is capable of raising the concentration by C0 mg/ml each time it is
given is administered regularly at fixed time intervals of length T .

Suppose the first dose is administered at time t D 0. According to Model (11.18),
after T hours have elapsed, the residual R1 D C0e

�kT remains in the blood, and then the
second dose is administered. Because of our assumption concerning the increase in drug
concentration as previously discussed, the level of concentration instantaneously jumps
to C1 D C0 C C0e

�kT . Then after T hours elapse again, the residual R2 D C1e
�kT D

C0e
�kT CC0e

�2kT remains in the blood. This possibility of accumulation of the drug in the
blood is depicted in Figure 11.11.

J Figure 11.11
One possible effect of
repeating equal doses
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Next, we determine a formula for thenth residualRn. If we letCi�1 be the concentration
at the beginning of the i th interval and Ri the residual concentration at the end of it, we can
easily obtain Table 11.3.

Table 11.3 Calculation of residual concentration of drug

i Ci�1 Ri

1 C0 � C0e
�kT—— multiply by e

�kT

➤

add C0

2 C0 C C0e
�kT

C0e
�kT C C0e

�2kT

3 C0 C C0e
�kT C C0e

�2kT
C0e

�kT C C0e
�2kT C C0e

�3kT

:
:
:

:
:
:

:
:
:

n C0e
�kT C � � � C C0e

�nkT
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From the table,

Rn D C0e
�kT C C0e

�2kT C � � � C C0e
�nkT (11.19)

D C0e
�kT

.1 C r C r
2 C � � � C r

n�1
/

where r D e
�kT . Algebraically, it is easy to verify that

1 C r C r
2 C � � � C r

n�1 D 1 � r
n

1 � r

so substitution for r in Equation (11.19) gives the result

Rn D C0e
�kT

.1 � e
�nkT

/

1 � e�kT
(11.20)

Notice that the number e
�nkT is close to 0when n is large. In fact, the larger n becomes,

the closer e
�nkT gets to 0. As a result, the sequence of Rn’s has a limiting value, which we

call R:

R D lim
n!1

Rn D C0e
�kT

1 � e�kT

or

R D C0

ekT � 1
(11.21)

In summary, if a dose that is capable of raising the concentration by C0 mg/ml is repeated
at intervals of T hours, then the limiting value R of the residual concentrations is given by
Equation (11.21). The number k in the formula is the elimination constant of the drug.

Determining the Dose Schedule From Table 11.3 the concentration Cn�1 at the be-
ginning of the nth interval is given by

Cn�1 D C0 C Rn�1 (11.22)

If the desired dosage level is required to approach the highest safe level H as depicted in
Figure 11.9, then we want Cn�1 to approach H as n becomes large. That is,

H D lim
n!1

Cn�1 D lim
n!1

.C0 C Rn�1/ D C0 C R

Combining this last result with C0 D H � L yields

R D L (11.23)

A meaningful way to examine what happens to the residual concentration R for dif-
ferent intervals T between doses is to examine R in comparison with C0, the change in
concentration due to each dose. To make this comparison, we form the dimensionless ratio

R

C0

D 1

ekT � 1
(11.24)

Equation (11.24) states that R=C0 will be close to 0 whenever the time T between
doses is long enough to make e

kT � 1 sufficiently large. As for the intermediate values of
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Rn, we can see from Table 11.3 that each Rn is obtained from the previous Rn�1 by adding
a positive quantityC0e

�nkT . Thismeans that all theRn’s are positive becauseR1 is positive.
It also means that R is larger than each of the Rn’s. In symbols,

0 < Rn < R; for all n

The implication of this for drug dosage is that whenever R is small, the Rn’s are even
smaller. In particular, whenever T is long enough to make e

kT � 1 significantly large, the
residual concentration from each dose is almost nil. The various administrations of the
drug are then essentially independent, and the graph of C.t/ looks like the one depicted in
Figure 11.12.

J Figure 11.12
Drug concentration for long
intervals between doses
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On the other hand, suppose the length of time T between doses is so short that e
kT is

not much larger than 1 so that R=C0 is significantly greater than 1. As Rn becomes larger,
the concentration Cn after each dose becomes larger. The loss during the time period after
each dose increases with largerCn from Equation (11.17). Finally, the drop in concentration
after each dose becomes imperceptibly close to the rise in concentration C0 resulting from
each dose. When this condition prevails (the loss in concentration equaling the gain), the
concentration will oscillate between R at the end of each period and R C C0 at the start of
each period. This situation is depicted in Figure 11.13.

J Figure 11.13
Buildup of drug
concentration when the
interval between doses is
short
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Suppose a drug is ineffective below the concentration L and harmful above some
higher concentration H , as discussed previously. Assume that L and H are safe guidelines,
so that if the drug concentration rises above H , a person will not suffer a severe overdose.
Also, assume that if the concentration falls slightly below L, it is not necessary to begin the
buildup process all over again. Then, for patient convenience we might opt for the strategy
of maximizing the time between drug doses by setting R D L and C0 D H �L, as we have
indicated previously. Then substitution of R D L and C0 D H � L in Equation (11.21)
yields

L D H � L

ekT � 1
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We then solve the preceding equation for e
kT to obtain

e
kT D H=L

Taking the logarithm of both sides of this last equation and dividing the result by k gives
the desired dose schedule:

T D 1

k
ln

H

L
(11.25)

To reach an effective level rapidly, administer a dose, often called a loading dose, that
will immediately produce a blood concentration of H mg/ml. (For example, this loading
dose might equal 2C0.) This medication can be followed every T D .1=k/ ln.H=L/ hours
by a dose that raises the concentration by C0 D H � L mg/ml.

Verifying the Model Our model for prescribing a safe and effective dosage of drug
concentration appears to be a good one. It is in accord with the common medical practice
of prescribing an initial dose several times larger than the succeeding periodic doses. Also,
the model is based on the assumption that the decrease in the concentration of the drug
in the bloodstream is proportional to the concentration, which has been verified clinically.
Moreover, the elimination constant k, which is the positive constant of proportionality in
that relationship, is an easily measured parameter (see Problem 1 in the 11.2 problem set).
Equation (11.21) permits the prediction of concentration levels under varying conditions for
dose rates. Thus, the drug may be tested to determine experimentally the lowest effective
levelL and the highest safe levelH with appropriate safety factors to allow for inaccuracies
in the modeling process. Then, Equations (11.16) and (11.25) can be used to prescribe a
safe and effective dosage of the drug (assuming the loading dose is several times larger than
C0). Thus, our model is useful.

One deficiency in the model is the assumption of an instantaneous rise in concentration
whenever a drug is administered. A drug, such as aspirin, taken orally requires a finite time
to diffuse into the bloodstream; therefore, the assumption is not realistic for such a drug.
For such cases, the graph of concentration versus time for a single dose might resemble
Figure 11.14.

J Figure 11.14
The concentration of a drug
in the bloodstream for a
single dose taken orally
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11.211.2 PROBLEMS

1. Discuss how the elimination constant k in Equation .11:15/ could be obtained experi-
mentally for a given drug.
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2. a. If k D 0:05 hr�1 and the highest safe concentration is e times the lowest effective
concentration, find the length of time between repeated doses that will ensure safe
but effective concentrations.

b. Does part (a) give enough information to determine the size of each dose?

3. Suppose k D 0:01 hr�1and T D 10 hr. Find the smallest n such that Rn > 0:5R.

4. Given H D2 mg/ml, LD0:5 mg/ml, and k D 0:02 hr�1, suppose concentrations below
L are not only ineffective but also harmful. Determine a scheme for administering this
drug (in terms of concentration and times of dosage).

5. Suppose that k D 0:2 hr�1 and that the smallest effective concentration is 0:03mg/ml. A
single dose that produces a concentration of 0:1 mg/ml is administered. Approximately
how many hours will the drug remain effective?

6. Suggest other phenomena for which the model described in the text might be used.

7. Sketch how a series of doses might accumulate based on the concentration curve given
in Figure 11.14.

8. A patient is given a dosage Q of a drug at regular intervals of time T . The concentration
of the drug in the blood has been shown experimentally to obey the law

dC

dt
D �ke

C

a. If the first dose is administered at t D 0 hr, show that after T hr have elapsed, the
residual

R1 D �ln .kT C e
�Q

/

remains in the blood.
b. Assuming an instantaneous rise in concentration whenever the drug is administered,

show that after the second dose and T hr have elapsed again, the residual

R2 D � ln
�
kT .1 C e

�Q
/ C e

�2Q
�

remains in the blood.
c. Show that the limiting value R of the residual concentrations for doses of Q mg/ml

repeated at intervals of T hr is given by the formula

R D � ln
kT

1 � e�Q

d. Assuming the drug is ineffective below a concentration L and harmful above some
higher concentration H , show that the dose schedule T for a safe and effective
concentration of the drug in the blood satisfies the formula

T D 1

k
.e

�L � e
�H

/

where k is a positive constant.
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11.211.2 PROJECTS

1. Write a summary report on the article ‘‘Case Studies in Cancer and Its Treatment by
Radiotherapy,’’ by J. R. Usher and D. A. Abercrombie, International Journal of Math-
ematics Education in Science and Technology 12, no. 6 (1981), pp. 661–682. Present
your report to the class.

In Projects 2–5, complete the requirements of the designated UMAP module (see enclosed
CD for UMAP modules).

2. ‘‘Selection in Genetics,’’ by Brindell Horelick and Sinan Koont, UMAP 70. This module
introduces genetic terminology and basic results about genotype distribution in succes-
sive generations. A recurrence relationship is obtained from which the nth-generation
frequency of a recessive gene can be determined. Calculus is used to derive a technique
for approximating the number of generations required for this frequency to fall below
any given positive value.

3. ‘‘Epidemics,’’ by Brindell Horelick and Sinan Koont, UMAP 73. This unit poses two
problems: (1) At what rate must infected persons be removed from a population to keep
an epidemic under control? (2) What portion of a community will become infected
during an epidemic? Threshold removal rate is discussed, and the extent of an epidemic
is discussed when the removal rate is slightly below threshold.

4. ‘‘Tracer Methods in Permeability,’’ by Brindell Horelick and Sinan Koont, UMAP 74.
This module describes a technique for measuring the permeability of red corpuscle
surfaces to K

42 ions, using radioactive tracers. Students learn how radioactive tracers
can be used to monitor substances in the body and learn some of the limitations and
strengths of the model described in this unit.

5. ‘‘Modeling the Nervous System: Reaction Time and the Central Nervous System,’’ by
Brindell Horelick and SinanKoont, UMAP 67. Themodulemodels the process bywhich
the central nervous system reacts to a stimulus, and it compares the predictions of the
model with experimental data. Students learn what conclusions can be drawn from the
model about reaction time and are given an opportunity to discuss the merits of various
assumptions about the relation between intensity of excitation and stimulus intensity.

11.311.3 Braking Distance Revisited

In our model for vehicular total stopping distance (see Section 2.2), one of the submodels
is braking distance:

braking distance D h(weight, speed)

Using an argument based on the result that the work done by the braking system must
equal the change in kinetic energy, we found that the braking distance db is proportional to
the square of the velocity. We now use an argument based on the derivative to establish that
same result.
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Let’s assume that the braking system is designed in such a way that the maximum
braking force increases in proportion to the mass of the car. Basically, this means that if the
force per unit area applied by the braking hydraulic system remains constant, the surface
area in contact with the brakes would have to increase in proportion to the mass of the car.
From an engineering standpoint, this assumption seems reasonable.

The implication of the assumption is that the deceleration felt by the passengers is
constant, which is probably a plausible design criterion. If it is further assumed that under
a panic stop the maximum braking force F is applied continuously, then we obtain

F D �km

for some positive proportionality constant k. Because F is the only force acting on the car
under our assumptions, this gives

ma D m
dv

dt
D �km

(the negative sign signals deceleration). Thus,

dv

dt
D �k

which integrates to

v D �kt C C1

If v0 denotes the velocity at t D 0 when the brakes are initially applied, substitution gives
C1 D v0 so that

v D �kt C v0 (11.26)

If ts denotes the time it takes for the car to stop after the brakes have been applied, then
v D 0 when t D ts , substituted into Equation (11.26) gives

ts D v0

k
(11.27)

If x represents the distance traveled by the car after the brakes are applied, then x is the
integral of v D dx=dt . Thus, from Equation (11.26),

x D �0:5kt
2 C v0t C C2

When t D 0, x D 0, which implies C2 D 0, so

x D �0:5kt
2 C v0t (11.28)

Next, let db denote the braking distance; that is, x D db when t D ts . Substitution of these
results into Equation (11.28) yields

db D �0:5kt
2

s
C v0ts

Using Equation (11.27) in this last equation, we have

db D �v
2

0

2k
C v

2

0

k
D v

2

0

2k
(11.29)
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Therefore, db is proportional to the square of the velocity, in accordance with the submodel
obtained in Section 2.2.

In Chapter 2 we tested the submodel db / v
2 against some data and found reasonable

agreement. The constant of proportionality was estimated to be 0:054 ft�hr2/mi2, which
corresponds to a value of k in Equation (11.29) of approximately 19.9 ft/sec2 (see Problem
1 in the problem set). If we interpret k as the deceleration felt by a passenger in the vehicle
(because F D �km by assumption), we will find it useful to interpret this constant as 0.6g

(where g is the acceleration of gravity).

11.311.3 PROBLEMS

1. a. Using the estimate that db D 0:054v
2, where 0:054 has dimension ft�hr2/mi2, show

that the constant k in Equation .11:29/ has the value 19:9 ft/sec2.
b. Using the data in Table 4.4, plot db in ft versus v

2
=2 in ft2/sec2 to estimate 1=k directly.

2. Consider launching a satellite into orbit using a single-stage rocket. The rocket is con-
tinuously losing mass, which is being propelled away from it at significant speeds. We
are interested in predicting the maximum speed the rocket can attain.2

a. Assume the rocket of mass m is moving with speed v. In a small increment of time
�t it loses a small mass �mp, which leaves the rocket with speed u in a direction
opposite to v. Here, �mp is the small propellant mass. The resulting speed of the
rocket is v C �v. Neglect all external forces (gravity, atmospheric drag, etc.) and
assume Newton’s second law of motion:

force D d

dt
.momentum of system/

where momentum is mass times velocity. Derive the model

dv

dt
D

��c

m

�
dm

dt

where c D u C v is the relative exhaust speed (the speed of the burnt gases relative
to the rocket).

b. Assume that initially, at time t D 0, the velocity v D 0 and the mass of the rocket is
m D M CP , where P is the mass of the payload satellite and M D �M C .1��/M

.0 < � < 1/ is the initial fuel mass �M plus the mass (1 � �/M of the rocket casings
and instruments. Solve the model in part (a) to obtain the speed

v D �c ln
m

M C P

2This problem was suggested by D. N. Burghes and M. S. Borrie, Modelling with Differential Equations. West
Sussex, UK: Horwood, 1981.
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c. Show that when all the fuel is burned, the speed of the rocket is given by

vf D �c ln
�
1 � �

1 C ˇ

�

where ˇ D P=M is the ratio of the payload mass to the rocket mass.
d. Find vf if c D 3 km/sec, � D 0:8, and ˇ D 1=100. (These are typical values in

satellite launchings.)
e. Suppose scientists plan to launch a satellite in circular orbit h km above the earth’s

surface. Assume that the gravitational pull toward the center of the earth is given by
Newton’s inverse square law of attraction:

�mMe

.h C Re/2

where � is the universal gravitational constant,m is the mass of the satellite,Me is the
earth’smass, andRe is the radius of the earth. Assume that this forcemust be balanced
by the centrifugal force mv

2
=.h C Re/, where v is the speed of the satellite. What

speed must be attained by a rocket to launch a satellite into an orbit 100 km above the
earth’s surface? From your computation in part (d), can a single-stage rocket launch
a satellite into an orbit of that height?

3. The gross national product (GNP) represents the sum of consumption purchases of goods
and services, government purchases of goods and services, and gross private investment
(which is the increase in inventories plus buildings constructed and equipment acquired).
Assume that the GNP is increasing at the rate of 3% per year and that the national debt
is increasing at a rate proportional to the GNP.
a. Construct a system for two ordinary differential equations modeling the GNP and

national debt.
b. Solve the system in part (a), assuming the GNP is M0 and the national debt is N0 at

year 0.
c. Does the national debt eventually outstrip the GNP? Consider the ratio of the national

debt to the GNP.

11.311.3 PROJECTS

Complete the requirements of the indicated UMAP module. (See enclosed CD for UMAP
modules.)

1. ‘‘Kinetics of Single Reactant Reactions,’’ by Brindell Horelick and Sinan Koont, UMAP
232. The unit discusses reaction orders of irreversible single reactant reactions. The
equation a

0
.t/ D �k.a.t//

n is solved for selected values of n; reaction orders of vari-
ous reactions are found from experimental data, and the notion of half-life is discussed.
Some background knowledge of chemistry is required.

2. ‘‘Radioactive Chains: Parents and Daughters,’’ by Brindell Horelick and Sinan Koont,
UMAP 234. When a radioactive substance A decays into a substance B , A and B are
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called parent and daughter. It may happen that B is radioactive and is the parent of a new
daughter C , and so on. There are three radioactive chains that together account for all
naturally occurring radioactive substances beyond thallium on the periodic table. This
unit develops models for calculating the amounts of the substances in radioactive chains
and discusses transient and secular states of equilibrium between parent and daughter.

3. ‘‘The Relationship between Directional Heading of an Automobile and Steering Wheel
Deflection,’’ by John E. Prussing, UMAP 506. This unit develops a model relating the
compass heading and the steering wheel deflection using basic geometric and kinematic
principles.

11.411.4 Graphical Solutions of Autonomous

Differential Equations

The models developed in this chapter are first-order differential equations of the form

dy

dx
D g.x; y/

relating the derivative dy=dx to some functiong of the independent and dependent variables.
In some cases, either of the variables x or y may not appear explicitly.

Slope Fields: Viewing Solution Curves
Each time we specify an initial condition y.x0/ D y0 for the solution of a differential
equation y

0 D g.x; y/, the solution curve (graph of the solution) is required to pass through
the point .x0; y0/ and to have slope g.x0; y0/ there. We can picture these slopes graphically
by drawing short line segments of slope g.x; y/ at selected points .x; y/ in the region of the
xy-plane that constitutes the domain of g. Each segment has the same slope as the solution
curve through .x; y/ and thus is tangent to the curve there. We see how the curves behave
by following these tangents (Figure 11.15).

Constructing a slope field with pencil and paper can be quite tedious. All our examples
were generated by a computer. Let’s build on our knowledge from calculus of how derivatives
determine the shape of a graph to solve differential equations graphically.

Equilibrium Values and Phase Lines
Critical points play an important role in determining how a function behaves and in finding
extreme points. For more information, see Chapter 15. Let’s investigate what happens when
the derivative of a function is zero from a slightly different point of view. In this case,
the derivative dy=dx will be a function of y only (the dependent variable). For example,
differentiating the equation

y
2 D x C 1
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a.  y' = y – x2 c.  y' = (1 – x)y +b.  y' = 
  2xy

– –––––
  1 + x2

x
––
2
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J Figure 11.15
Slope fields (top row) and selected solution curves (bottom row). In computer
renditions, slope segments are sometimes portrayed with arrows, as they are here.
This is not to be taken as an indication that slopes have directions, however, for they
do not.

implicitly gives

2y
dy

dx
D 1 or

dy

dx
D 1

2y

Adifferential equation for which dy=dx is a function ofy only is called an autonomous
differential equation.

Definition

If dy=dx D g.y/ is an autonomous differential equation, then the values of y for
which dy=dx D 0 are called equilibrium values or rest points.

Thus, equilibrium values are those at which no change occurs in the dependent variable,
so y is at rest. The emphasis is on the value of y where dy=dx D 0, not on the value of x, as
in the preceding section. For example, the equilibrium values for dy=dx D .y C 1/.y � 2/

are y D �1 and y D 2.
To construct a graphical solution to an autonomous differential equation, we first make a

phase line for the equation, which is a plot on they axis that shows the equation’s equilibrium
values along with the intervals where dy=dx and d

2
y=dx

2 are positive and negative. Then
we know where the solutions are increasing and decreasing and the concavity of the solution
curves. These are the essential features needed to determine the shapes of the solution curves
without having to find formulas for them.
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EXAMPLE 1 Drawing a Phase Line and Sketching Solution Curves

Draw a phase line for the equation

dy

dx
D .y C 1/.y � 2/

and use it to sketch solutions to the equation.

Solution

STEP 1 DRAW A NUMBER LINE FOR y AND MARK THE EQUILIBRIUM VALUES y D �1 AND y D 2, WHERE
dy=dx D 0.

–1 2

y

STEP 2 IDENTIFY AND LABEL THE INTERVALS WHERE y 0 > 0 AND y 0 < 0. This step resembles what
we do in calculus, only now we are marking the y axis instead of the x axis.

y' > 0 y' < 0 y' > 0

–1 2

y

We can encapsulate the information about the sign of y
0 on the phase line. Because

y
0

> 0 on the interval to the left of y D �1, a solution of the differential equation with a
y value less than �1 will increase from there toward y D �1. We display this information
by drawing an arrow on the interval pointing to �1.

–1 2

y

Similarly, y
0

< 0 between y D �1 and y D 2, so any solution with a value in this
interval will decrease toward y D �1.

For y > 2, we have y
0

> 0, so a solution with a y value greater than 2 will increase
from there without bound.

In short, solution curves below the horizontal line y D �1 in the xy-plane rise toward
y D�1. Solution curves between the lines y D�1 and y D2 fall away from y D2 toward
y D �1. Solution curves above y D 2 rise away from y D 2 and keep rising.

STEP 3 CALCULATE y 00 AND MARK THE INTERVALS WHERE y 00 > 0 AND y 00 < 0. To find y
00, we

differentiate y
0 with respect to x using implicit differentiation.

y
0 D .y C 1/.y � 2/ D y

2 � y � 2

y
00 D d

dx
.y

0
/ D d

dx
.y

2 � y � 2/

D 2yy
0 � y

0

D .2y � 1/y
0

D .2y � 1/.y C 1/.y � 2/
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From this formula, we see that y
00 changes sign at y D �1, y D 1=2, and y D 2. We

add the sign information to the phase line.

y' > 0

y'' < 0

y' < 0

y'' > 0

y' < 0

y'' < 0

y' > 0

y'' > 0

–1 2

y
1
––
2

STEP 4 SKETCH AN ASSORTMENT OF SOLUTION CURVES IN THE xy-PLANE. The horizontal lines y D
�1; y D 1=2, and y D 2 partition the plane into horizontal bands in which we know the
signs of y

0 and y
00. In each band, this information tells us whether the solution curves rise

or fall and how they bend as x increases (Figure 11.16).

J Figure 11.16
Solution curves for the
autonomous differential
equation
dy=dx D (y C 1)(y � 2)

y' > 0
y'' < 0

y' < 0
y'' > 0

y' < 0
y'' < 0

y' > 0
y'' > 0

x

y

1
–
2

2

–1
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The equilibrium lines y D �1 and y D 2 are also solution curves. (The constant
functions y D �1 and y D 2 satisfy the differential equation.) Solution curves that cross
the line y D 1=2 have an inflection point there. The concavity changes form concave down
(above the line) to concave up (below the line).

As predicted in Step 2, solutions in themiddle and lower bands approach the equilibrium
value y D �1 as x increases. Solutions in the upper band rise steadily away from the value
y D 2. J J J

Stable and Unstable Equilibria
Look at Figure 11.16 once more, particularly at the behavior of the solution curves near the
equilibrium values. Once a solution curve has a value near y D �1, it tends steadily toward
that value; y D �1 is a stable equilibrium. The behavior near y D 2 is just the opposite:
All solutions except the equilibrium solution y D 2 move away from it as x increases. We
call y D 2 an unstable equilibrium. If the solution is at that value, it stays, but if it is off
by any amount, no matter how small, it moves away. (Sometimes an equilibrium value is
unstable because a solution moves away from it only on one side of the point.)

Now that we know what to look for, we can already see this behavior on the initial
phase line. The arrows lead away from y D 2 and, once to the left of y D2, toward y D�1.
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Isaac Newton postulated that the rate of change in the temperature of a cooled or heated
object is proportional to the difference in temperature between the object and its surrounding
medium. We can use this idea to describe how the object’s temperature will change over
time.

EXAMPLE 2 Cooling Soup

What happens to the temperature of a cup of hot soup when it is placed on a table in a
room? We know the soup cools down, but what does a typical temperature curve look like
as a function of time?

Solution We assume that the soup’s Celsius temperature H is a differentiable function
of time t . Choose a suitable unit for t (e.g., minutes) and start measuring time at t D 0. We
also assume that the volume of the surrounding medium is large enough so that the heat of
the soup has a negligible effect on its surrounding temperature.

Suppose that the surroundingmedium has a constant temperature of 15 ıC.We can then
express the difference in temperature as H.t/ � 15. According to Newton’s law of cooling,
there is a constant of proportionality k > 0 such that

dH

dt
D �k.H � 15/ (11.30)

(minus k to give a negative derivative when H > 15).
Because dH=dt D 0 at H D 15, the temperature 15 ıC is an equilibrium value. If

H > 15, Equation (11.30) tells us that .H �15/ > 0 and dh=dt < 0. If the object is hotter
than the room, it will get cooler. Similarly, if H < 15, then .H � 15/ < 0 and dH=dt > 0.
An object cooler than the room will warm up. Thus, the behavior described by Equation
(11.30) agrees with our intuition of how temperature should behave. These observations are
captured in the initial phase line diagram in Figure 11.17.

H
15

> 0 < 0dH–––
dt

dH–––
dt
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J Figure 11.17
First step in constructing phase line for Newton’s Law of Cooling. The temperature
tends toward the equilibrium (surrounding-medium) value in the long run.

We determine the concavity of the solution curves by differentiating both sides of
Equation (11.30) with respect to t :

d

dt

�
dH

dt

�
D d

dt
.�k.H � 15//

d
2
H

dt2
D �k

dH

dt
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Because�k is negative, we see that d 2
H=dt

2 is positivewhen dH=dt < 0 and negative
when dH=dt > 0. Figure 11.18 adds this information to the phase line.

J Figure 11.18
The complete phase line for
Newton’s Law of Cooling
model
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The completed phase line shows that if the temperature of the object is above the
equilibrium value of 15 ıC, the graph of H.t/ will be decreasing and concave upward. If
the temperature is below 15 ıC (the temperature of the surrounding medium), the graph of
H.t/ will be increasing and concave downward. We use this information to sketch typical
solution curves (Figure 11.19).

J Figure 11.19
Temperature versus time.
Regardless of initial
temperature, the object’s
temperature H.t/ tends
toward 15 ıC, the
temperature of the
surrounding medium.
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From the upper solution curve in Figure 11.19, we see that as the object cools down,
the rate at which it cools slows down because dH=dt approaches zero. This observation
is implicit in Newton’s law of cooling and contained in the differential equation, but the
flattening of the graph as time advances gives an immediate visual representation of the
phenomenon. The ability to discern physical behavior from graphs is a powerful tool in
understanding real-world systems. J J J

EXAMPLE 3 Logistic Growth Revisited

Let’s apply our phase line techniques to obtain solution curves for the logistic growth
equation

dP

dt
D r.M � P /P (11.31)

which we studied in Section 11.1.
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The equilibrium values for autonomous Equation (11.31) are P D M and P D 0, and
we can see that dP=dt > 0 if 0 < P < M and dP=dt < 0 if P > M . These observations
are recorded on the phase line in Figure 11.20.

J Figure 11.20
The initial phase line
for logistic growth
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We determine the concavity features of the population curves by differentiating the
equation

dP

dt
D r.M � P /P D rMP � rP

2

Thus,

d
2
P

dt2
D d

dt
.rMP � rP

2
/

D rM
dP

dt
� 2rP

dP

dt

D r.M � 2P /
dP

dt

IfP D M=2, then d
2
P=dt

2 D 0. IfP < M=2, then .M �2P / and dP=dt are positive and
d

2
P=dt

2
> 0. If M=2 < P < M , then .M � 2P / < 0, dP=dt > 0, and d

2
P=dt

2
< 0.

If P > M , then .M � 2P / and dP=dt are both negative and d
2
P=dt

2
> 0. We add this

information to the phase line (Figure 11.21).

J Figure 11.21
The completed phase line
for logistic growth
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The lines P D M=2 and P D M divide the first quadrant of the tP-plane into hori-
zontal bands in which we know the signs of both dP=dt and d

2
P=dt

2. In each band, we
know how the solution curves rise and fall and how they bend as time passes. The equi-
librium lines P D 0 and P D M are both population curves. Population curves crossing
the line P D M=2 have an inflection point there, giving them a sigmoid shape (curved in
two directions like a letter S). Figure 11.22 displays typical population curves. They closely
resemble the growth of yeast in a culture displayed in Figure 11.6 in Section 11.1. J J J
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J Figure 11.22
Population curves
representing logistic growth
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11.411.4 PROBLEMS

1. Construct a direction field and sketch a solution curve for the following differential
equations:
a. dy=dx D y

b. dy=dx D x

c. dy=dx D x C y

d. dy=dx D x � y

e. dy=dx D xy

f. dy=dx D 1=y

For Problems 2–5,

(a) Identify the equilibrium values. Which are stable and which are unstable?
(b) Construct a phase line. Identify the signs of y

0 and y
00.

(c) Sketch several solution curves.

2. dy=dx D .y C 2/.y � 3/

3. dy=dx D y
2 � 2y

4. dy=dx D .y � 1/.y � 2/.y � 3/

5. dy=dx D y � p
y, y > 0

The autonomous differential equations in Problems 6–9 represent models for population
growth. For each problem, use a phase line analysis to sketch solution curves for P.t/,
selecting different starting values P.0/ (as in Example 3). Which equilibria are stable, and
which are unstable?

6. dP =dt D 1 � 2P

7. dP =dt D P.1 � 2P /

8. dP =dt D 2P.P � 3/

9. dP =dt D 3P.1 � P /.P � 1

2
/
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10. Catastrophic continuation of Example 3—Suppose that a healthy population of some
species is growing in a limited environment and that the current population P0 is fairly
close to the carrying capacity M0. You might imagine a population of fish living in
a freshwater lake in a wilderness area. Suddenly, a catastrophe such as the Mount
St. Helens volcanic eruption contaminates the lake and destroys a significant part of
the food and oxygen on which the fish depend. The result is a new environment with
a carrying capacity M1 considerably less than M0 and, in fact, less than the current
populationP0. Starting at some time before the catastrophe, sketch a ‘‘before-and-after’’
curve that shows how the fish population responds to the change in the environment.

11. Controlling a population—The fish and game department in a certain state is planning
to issue hunting permits to control the deer population (one deer per permit). It is known
that if the deer population falls below a certain level m, the deer will become extinct.
It is also known that if the deer population rises above the carrying capacity M , the
population will decrease back to M through disease and malnutrition.
a. Discuss the reasonableness of the following model for the growth rate of the deer

population as a function of time:

dP

dt
D rP.M � P /.P � m/

where P is the population of the deer and r is a positive constant of proportionality.
Include a phase line.

b. Explain how this model differs from the logistic model dP=dt DrP.M � P /. Is it
better or worse than the logistic model?

c. Show that if P > M for all t , then limt!1 P.t/ D M .
d. What happens if P < M for all t?
e. Discuss the solutions to the differential equation. What are the equilibrium points

of the model? Explain the dependence of the steady-state value of P on the initial
values of P . About how many permits should be issued?

11.511.5 Numerical Approximation Methods

In the models developed in earlier sections of this chapter, we found an equation relating a
derivative to some function of the independent and dependent variables; that is,

dy

dx
D g.x; y/

where g is some function in which either x or y may not appear explicitly. Moreover, we
were given some starting value; that is, y.x0/ D y0. Finally, wewere interested in the values
of y for a specific set of x values; that is, x0 � x � b. In summary, we determined models
of the general form

dy

dx
D g.x; y/; y.x0/ D y0; x0 � x � b
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We call first-order ordinary differential equations with the preceding conditions first-order
initial value problems. As seen from our previous models, they constitute an important
class of problems. We now discuss the three parts of the model.

First-Order Initial Value Problems
The Differential Equation dy=dx D g (x; y ) As discussed in our models, we are in-
terested in finding a function y D f .x/ whose derivative satisfies an equation dy=dx D
g.x; y/. Although we do not know f , we can compute its derivative given particular values
of x and y. As a result, we can find the slope of the tangent line to the solution curve
y D f .x/ at specified points .x; y/.

The Initial Value y (x0)D y0 The initial value equation states that at the initial point
x0, we know the y value is f .x0/ D y0. Geometrically, this means that the point .x0; y0/

lies on the solution curve (Figure 11.23). Thus, we know where our solution curve begins.
Moreover, from the differential equation dy=dx D g.x; y/, we know that the slope of the
solution curve at .x0; y0/ is the number g.x0; y0/. This is also depicted in Figure 11.23.

J Figure 11.23
The solution curve passes
through the point (x0; y0)
and has slope g (x0; y0).

Slope of tangent
line is g(x0, y0)
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The Interval x0 � x � b The condition x0 � x � b gives the particular interval of the
x axis with which we are concerned. Thus, we would like to relate y with x over the interval
x0 � x � b by finding the solution function y D f .x/ passing through the point .x0; y0/

with slope g.x0; y0/ (Figure 11.24). Note that the function y D f .x/ is continuous over
x0 � x � b because its derivative exists there.

J Figure 11.24
The solution y D f.x/ to the
initial value problem is a
continuous function over
the interval from x0 to b.

Slope of tangent
line is g(x0, y0)
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Solution y = f(x)
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Approximating Solutions to Initial Value Problems
If we do not require an exact solution function to an initial value problem dy=dx D g.x; y/,
y.x0/ D y0, we can probably use a computer to generate a table of approximate numerical
values of y for values of x in an appropriate interval x0 � x � b. Such a table is called
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a numerical solution of the problem, and the method by which we generate the table is a
numerical method. One such method, called Euler’s method, is described as follows.

Given a differential equation dy=dx D g.x; y/ and an initial condition y.x0/Dy0, we
can approximate the solution by its tangent line

T .x/ D y0 C g.x0; y0/.x � x0/

The valueg.x0; y0/ is the slope of the solution curve and its tangent line at point .x0; y0/.
The function T .x/ gives a good approximation to the solution y.x/ in a short interval about
x0 (Figure 11.25). The basis of Euler’s method is to patch together a string of tangent line
approximations to the curve over a longer stretch. Here’s how the method works.

J Figure 11.25
The tangent line T (x ) is a
good approximation to the
solution curve y (x ) in a
short interval about x0.

y = T(x) = y0 + g(x0, y0)(x – x0)
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We know the point (x0; y0/ lies on the solution curve. Suppose that we specify a new
value for the independent variable to be x1 D x0 C �x. If the increment �x is small, then

y1 D T .x1/ D y0 C g.x0; y0/�x

is a good approximation to the exact solution valuey D y.x1/. Thus, from the point .x0; y0/,
which lies exactly on the solution curve, we have obtained the point (x1; y1/, which lies
very close to the point (x1; y.x1// on the solution curve (Figure 11.26).

J Figure 11.26
The first Euler step
approximates y (x1) with
the value T (x1) on the
tangent line.
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Using the point (x1; y1/ and the slope g.x1; y1/ of the solution curve through (x1; y1/,
we take a second step. Setting x2 D x1 C �x, we use the tangent linearization of the
solution curve through (x1; y1/ to calculate

y2 D y1 C g.x1; y1/�x
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This gives the next approximation (x2; y2/ to values along the solution curve y D y.x/

(Figure 11.27). Continuing in this fashion, we take a third step from the point (x2; y2/ with
slope g(x2; y2/ to obtain the third approximation

y3 D y2 C g.x2; y2/�x

and so on. We are literally building an approximation to one of the solutions by following
the direction of the slope field of the differential equation.

J Figure 11.27
Three steps in the Euler
approximation to the
solution of the initial value
problem y 0 D g (x; y ),
y (x0)D y0. As we take
more steps, the errors
involved usually
accumulate, but not in the
exaggerated way shown
here.

(x0, y0)

(x1, y1)
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EXAMPLE 1 Using Euler’s Method

Find the first three approximations y1, y2, y3 using Euler’s method for the initial value
problem

y
0 D 1 C y; y.0/ D 1

starting at x0 D 0, with �x D 0:1.

Solution We have x0 D 0, y0 D 1, x1 D x0 C �x D 0:1, x2 D x0 C 2�x D 0:2, and
x3 D x0 C 3�x D 0:3.

First: y1 D y0 C g.x0; y0/�x

D y0 C .1 C y0/�x

D 1 C .1 C 1/.0:1/ D 1:2

Second: y2 D y1 C g.x1; y1/�x

D y1 C .1 C y1/�x

D 1:2 C .1 C 1:2/.0:1/ D 1:42

Third: y3 D y2 C g.x2; y2/�x

D y2 C .1 C y2/�x

D 1:42 C .1 C 1:42/.0:1/ D 1:662 J J J
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This step-by-step process can be easily continued. Using equally spaced values for the
independent variable in the table and generating n of them, set

x1 D x0 C �x

x2 D x1 C �x

:
:
:

xn D xn�1 C �x

Then calculate the approximations to the solution

y1 D y0 C g.x0; y0/�x

y2 D y1 C g.x1; y1/�x

:
:
:

yn D yn�1 C g.xn�1; yn�1/�x

The number of steps n can be as large as we like, but errors can accumulate if n is too large.
Euler’s method is easy to program on a computer or programmable calculator. A pro-

gram generates a table of numerical solutions to an initial value problem, allowing us to input
x0 and y0, the number of steps n, and the step size �x. It then calculates the approximate
solution values y1; y2; : : : ; yn in iterative fashion, as just described.

EXAMPLE 2 A Savings Certificate Revisited

Let’s discuss again the savings certificate example investigated in Chapter 1 as a discrete
dynamical system. Here, we consider the value of a certificate initially worth $1000 that
accumulates annual interest at 12% compounded continuously (rather than 1% each month
as in Example 1 of Section 1.1).Wewould like to know the value of the certificate in 10 years.
If Q.t/ represents the value of the certificate at any time t , we have the model

dQ

dt
D 0:12Q; Q.0/ D 1000

Use Euler’s method to approximate the value in 10 years if

(a) �t D 1 year (b) �t D 1 month (c) �t D 1 week

Compare your results with the analytic solution when t D 10 years.

Solution First, let’s find the analytic solution. Then we will use Euler’s method for each
of the three cases and compare the results at each year t D 1; 2; 3; : : : ; 10. Just as we did
for the population problem in Section 11.1, we can separate the variables and integrate the
initial value problem

dQ

dt
D 0:12Q; Q.0/ D 1000; 0 � t � 10

to obtain

Q D C1e
0:12t
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We apply the initial condition Q.0/ D 1000 to evaluate C1 D 1000. The exact solution is

Q.t/ D 1000e
0:12t

Table 11.4 Euler solutions of dQ=dt D 0:12Q, Q.0/ D 1000

(a) (b) (c) Exact
Year �t D 1 �t D 1=12 �t D 1=52 solution

0 1000.00 1000.00 1000.00 1000.00
1 1120.00 1126.83 1127.34 1127.50
2 1254.40 1269.73 1270.90 1271.25
3 1404.93 1430.77 1432.74 1433.33
4 1573.52 1612.23 1615.18 1616.07
5 1762.34 1816.70 1820.86 1822.12
6 1973.82 2047.10 2052.73 2054.43
7 2210.68 2306.72 2314.13 2316.37
8 2475.96 2599.27 2608.81 2611.70
9 2773.08 2928.93 2941.02 2944.68

10 3105.85 3300.39 3315.53 3320.12
© Cengage Learning

Using a computer, we generated the Euler approximation values in Table 11.4 for the
three cases (a) �t D 1, (b) �t D 1=12, and (c) �t D 1=52. All entries are rounded to
the nearest cent. Note that the Euler approximations becomemore accurate as�t decreases.
The Euler approximation with �t D 1=52 (representing weeks) gives Q.10/ D $3315:53

for the value of the savings certificate after 10 years, an error of $4.59 from the analyti-
cal solution value. Figure 11.28 displays the Euler approximations plotted with the exact
solution curve.

J Figure 11.28
A plot of the exact solution
and Euler approximations in
Table 11.4 for the savings
certificate in Example 2
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It might be tempting to reduce the step size even further to obtain greater accuracy. How-
ever, each additional calculation not only requires additional computer time but also, more
important, introduces round-off error. Because these errors accumulate, an ideal method
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would improve the accuracy of the approximations but minimize the number of calculations.
For this reason, Euler’s method may prove unsatisfactory. More refined numerical methods
for solving the initial value problem are investigated in courses in the numerical methods of
differential equations. We will not pursue those methods here. J J J

Separation of Variables
The method of direct integration employed in this chapter works only in those cases in
which the dependent and independent variables can be algebraically separated. Any such
differential equation can be written in the form

p.y/ dy D q.x/ dx

For example, given the differential equation

u.x/v.y/ dx C q.x/p.y/ dy D 0

we can arrange the equation in the following form:

p.y/

v.y/
dy D �u.x/

q.x/
dx

Because the right-hand side is a function of x and the left-hand side is a function of y only,
the solution is obtained by simply integrating both sides directly. Remember from calculus
that even if we are successful in separating the variables, it may not be possible to find the
integrals in closed form. The method just described is called separation of variables. We
will study the method in the next section.

11.511.5 PROBLEMS

In Problems 1–4, use Euler’s method to calculate the first three approximations to the given
initial value problem for the specified increment size. Round your results to four decimal
places.

1. y
0 D x.1 � y/; y.1/ D 0; �x D 0:2

2. y
0 D 1 � y

x
; y.2/ D �1; �x D 0:5

3. y
0 D 2xy C 2y; y.0/ D 3; �x D 0:2

4. y
0 D y

2
.1 C 2x/; y.�1/ D 1; �x D 0:5

5. When interest is compounded, the interest earned is added to the principal amount so
that it may also earn interest. For a 1-year period, the principal amount Q is given by

Q D
�

1 C i

n

�n

Q.0/

where i is the annual interest rate (given as a decimal) and n is the number of times
during the year that the interest is compounded.
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To lure depositors, banks offer to compound interest at different intervals: semi-
annually, quarterly, or daily. A certain bank advertises that it compounds interest con-
tinuously. If $100 is deposited initially, formulate a mathematical model describing the
growth of the initial deposit during the first year. Assume an annual interest rate of 10%.

6. Use the differential equation model formulated in the preceding problem to answer the
following:
a. From the derivative evaluated at t D 0, determine an equation of the tangent line T

passing through the point .0; 100/.
b. EstimateQ.1/ by finding T .1/, whereQ.t/ denotes the amount of money in the bank

at time t (assuming no withdrawals).
c. Estimate Q.1/ using a step size of �t D 0:5

d. Estimate Q.1/ using a step size of �t D 0:25.
e. Plot the estimates you obtained for �t D 1:0, 0.5, and 0.25 to approximate the graph

of Q.t/.

7. For the differential equation model obtained in Problem 5, find Q.t/ by separating the
variables and integrating.
a. Evaluate Q.1/.
b. Compare your previous estimates of Q.1/ with its actual value.
c. Find the effective annual interest rate when an annual rate of 10% is compounded

continuously.
d. Compare the effective annual interest rate computed in part (c) with interest

compounded
i. Semiannually: .1 C 0:1=2/

2

ii. Quarterly: .1 C 0:1=4/
4

iii. Daily: .1 C 0:1=365/
365

iv. Estimate the limit of .1 C 0:1=n/
n as n ! 1 by evaluating the expression for

n D 1000; 10,000; 100,000.
v. What is limn!1.1 C 0:1=n)n?

11.511.5 PROJECTS

Complete the requirements of the indicated UMAP modules. (See enclosed CD for UMAP
modules.)

1. ‘‘Feldman’s Model,’’ by Brindell Horelick and Sinan Koont, UMAP 75. This unit deve-
lops a version of G. A. Feldman’s model of growth in a planned economy in which all
the means of production are owned by the state. Originally, the model was developed by
Feldman in connection with planning the economy of the former Soviet Union. Students
compute numerical values for rates of output, national income, their rates of change, and
the propensity to save, and they discuss the effects of changes in the parameters of the
model and in the units of measurement.
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2. ‘‘The Digestive Process of Sheep,’’ by Brindell Horelick and Sinan Koont, UMAP 69.
This unit introduces a differential equation model for the digestive processes of sheep.
The model is tested and fit using collected data and the least-squares criterion.

3. Consider the improved Euler’s method that averages two slopes, the slope obtained at the
beginning of the step and the slope obtained at the end of the step, to improve our accu-
racy. Assume ynC1 DynC.h=2/�Œg.tn; yn/Cg.tnC1; ynC1/�. Let y0 D0:25ty; y.0/D2,
and use the improved Euler’s method with step sizes of 1, 0.5, and 0.1.

4. When we use the average of the estimates of the derivatives at the end points, we can
improve the approximation to the solution. A class of approximation techniques that
estimates derivatives at various points within an interval and then computes a weighted
average is the Runge-Kuttamethod, named for twoGermanmathematicians. TheRunge-
Kutta methods are classified by order, where the order depends on the number of slope
estimates used at each step. A very popular method is the fourth-order Runge-Kutta
method. Let

ynC1 D yn C K1 C 2K2 C 2K3 C K4

6
; where

K1 D g.tn; yn/h

K2 D g.tn C h=2; yn C K1=2/h

K3 D g.tn C h=2; yn C K2=2/h

K4 D g.tn C h; yn C K3/h

Solve y
0 D 0:25 ty; y.0/ D 2with the fourth-order Runge-Kutta method using step

sizes of 1.0, 0.5, and 0.1.

5. The Spread of a Contagious Disease. Consider the following ordinary differential
equation model for the spread of a communicable disease:

dN

dt
D 0:25N.10 � N /; N.0/ D 2 (a)

where N is measured in 100’s. Analyze the behavior of this differential equation as
follows.
a. Since this is an autonomous differential equation, perform a qualitative graphical

analysis as discussed in Section 11.4.
(i) Plot dN=dt versus N: Find and label all rest points (equilibrium points).
(ii) Estimate the value where the rate of change of the disease is the fastest. Justify

your answer.
(iii) Plot N versus t for each of the following initial conditions:

N.0/ D 2; N.0/ D 7; and N.0/ D 14:

(iv) Describe the stability of each rest point (equilibrium point).
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b. Obtain a slope field plot of this differential equation. Briefly analyze the slope field
plot. Compare it to your qualitative plot in part (a) above.

c. Solve this differential equation using the separation of variables technique. Plot the
solution over the interval of time from [0, 10]. How does your actual solution compare
to the qualitative graphical solution?

d. Compute the time t whenN is changing the fastest using the initial conditionN.0/ D
2. Compare your answer to your qualitative estimate in part a(iii) above.

e. Use Euler’s Method with step sizes of h D 1 and then h D 0:1 to approximate the
solution to the differential equation for N.0:5/ and N.5/. Find the relative error at
these values. Obtain graphical plots of the numerical solution. How do they compare
to the plots of the actual solution?

f. Repeat part (e) using either the Improved Euler’sMethod or the Runge-KuttaMethod.

11.5 Further Reading
Fox, William P., & George Schnibben. ‘‘Using Euler’s Method in Autonomous Ordinary Differential

Equations: The Importance of Step Size.’’ COED Journal (January–March 2000): 44–50.

11.611.6 Separation of Variables

Suppose an object is dropped from a tall building. Initially the object has zero velocity
.v.0/ D 0/, but we wish to know the object’s velocity at any time t > 0. If we neglect all
resistance, Newton’s second law leads to

m
dv

dt
D mg

where m is the mass of the object and g is the acceleration due to gravity. In this formula-
tion, positive displacement is being measured downward from the top of the building. The
differential equation simply integrates directly to yield

v D gt C C

Knowing v.0/ D 0 enables us to evaluate C :

v.0/ D 0 D g � 0 C C

or

C D 0

Thus the solution function v D gt predicts the velocity of an object dropped with zero
initial velocity if gravity is the only force considered.
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This very simple falling-body example illustrates two features typical of first-order
differential equations. First, an integration process is required to obtain y from its derivative
y

0. Second, the integration process introduces a single arbitrary constant of integration,
which can then be evaluated if an initial condition is known.

We can always integrate (at least theoretically) a first-order differential equation of the
form

y
0 D f .x/

whenever f is a continuous function. However, consider the differential equation

dy

dx
D f .x; y/ (11.32)

where the derivative is a function of both the variables x and y. We may be able to factor
f .x; y/ into factors containing only x or y terms, but not both:

f .x; y/ D p.x/ q.y/

Weallow for the possibility that eitherp or q may be a constant function.When the variables
are separable in this way, differential Equation (11.32) becomes

dy

dx
D p.x/ q.y/

which can be rewritten as

dy

q.y/
D p.x/ dx (11.33)

To solve separable Equation (11.33), simply integrate both sides (with respect to the same
variable x).

Integration of both sides is permitted because we are assuming y is a function of x.
Thus the left side of Equation (11.33) is

dy

q.y/
D y

0
.x/

q.y.x//
dx

Substitution of this expression into Equation (11.33) gives

y
0
.x/

q.y.x//
dx D p.x/ dx

If we set u D y.x/ and du D y
0
.x/ dx, then integration of both sides leads to the solution

Z
du

q.u/
D

Z
p.x/ dx C C (11.34)

Of course, we have to be concerned about any values of x where q.y.x// is zero. Let us
consider several examples.
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EXAMPLE 1

Solve y
0 D 3x

2
e

�y .

Solution We separate the variables and write

e
y
dy D 3x

2
dx

Integration of each side yields

e
y D x

3 C C

Applying the natural logarithm to each side results in

y D ln.x
3 C C / (11.35)

Let’s verify that y does solve the given differential equation. Differentiating Equation
(11.35), we find

y
0 D 3x

2

x3 C C

Substitution of y and y
0 into the original equation then gives

3x
2

x3 C C
D 3x

2
e

� ln.x3CC / (11.36)

Because

e
� ln.x3CC / D e

ln.x3CC /�1

D 1

x3 C C

Equation (11.36) is valid for all values of x satisfying x
3 C C > 0, and the differential

equation is satisfied. J J J
EXAMPLE 2

Solve y
0 D 2.x C y

2
x/.

Solution The differential equation can be written as

dy

dx
D 2x.1 C y

2
/

and separating the variables gives

dy

1 C y2
D 2x dx

Integration of both sides leads to

tan�1
y D x

2 C C
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or

y D tan .x
2 C C /: (11.37)

To verify that Equation (11.37) is a solution to the given equation, we differentiate y:

y
0 D 2x sec2

.x
2 C C /

D 2xŒ1 C tan2
.x

2 C C /�

D 2x.1 C y
2
/

Substitution into the original differential equation gives the identity

2x.1 C y
2
/ D 2.x C y

2
x/ J J J

From now on, to save space, we will not always verify that the function we find by a
solution method is in fact a solution to the differential equation (as we have done in the
examples so far). However, it is good practice to do so, especially if the solution method is
fairly involved.

The Differential Form
In many cases the first-order differential equation appears in differential form as

M.x; y/ dx C N.x; y/ dy D 0 (11.38)

For example, the equations

ye
�x

dy C x dx D 0 (11.39)
sec x dy � x cot y dx D 0 and (11.40)

.xe
y � e

2y
/ dy C .e

y C x/ dx D 0 (11.41)

all have differential form. If separation of variables is to apply to Equation (11.38), first
write the equation in the form

dy

dx
D �M.x; y/

N.x; y/

Next look for cancellation of common terms in the numerator and denominator, and then
separate the variables, if possible. Finally, integrate each side as before. Observe that Equa-
tions (11.39) and (11.40) are indeed separable, whereas Equation (11.41) is not.

EXAMPLE 3

Solve sec x dy � x cot y dx D 0.

Solution After division by sec x cot y, the equation becomes

tan y dy � x cos x dx D 0
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Integration then gives

ln j cos yj C x sin x C cos x D C J J J
Using separation of variables involves no new ideas, only the ability to recognize

factors and integrate. If the correct factoring can be found, the solution technique is sim-
ply to integrate. You studied a variety of integration techniques in integral calculus and
may have forgotten some of the more important ones. Appendix D provides a brief re-
view of the main integration techniques needed for this text. These techniques are simple
u-substitution, integration by parts, and integration of rational functions requiring partial
fraction decomposition. We call your attention especially to the convenient tableau method
for integration by parts and to the Heaviside method, which is convenient for certain partial
fraction decompositions. The following examples illustrate these integration techniques in
the context of solving separable differential equations.

EXAMPLE 4

Solve e
�x

y
0 D x.

Solution Separating the variables yields (see Appendix D for a review of integration
techniques)

dy D xe
x

dx:

Integrating the right side by the tableau method, we have

Sign Derivatives Integrals

C � x

�
e

x

� � 1 � e
x

C � 0 � e
x

Thus, interpreting the tableau, we get
Z

xe
x

dx D Cxe
x � 1 � e

x C
Z

0 � e
x
dx C C

D .x � 1/e
x C C

Therefore,

y D .x � 1/e
x C C J J J

EXAMPLE 5

Solve e
xCy

y
0 D x.

Solution The equation can be written as

e
x
e

y
dy D x dx
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Separating the variables leads to

e
y

dy D xe
�x

dx

Integrating the right side by parts with e
x replaced by e

�x in the tableau in Example 4
gives us

Z
xe

�x
dx D �xe

�x � e
�x C

Z
0 � e

�x
dx

Thus the separable equation integrates to

e
y D �xe

�x � e
�x C C

D �.x C 1/e
�x C C

We now solve for y by taking the logarithm of each side to obtain

y D lnŒC � .x C 1/e
�x

� (11.42)

Let us verify that y does solve the original differential equation. Differentiating Equa-
tion (11.42) yields

y
0 D ŒC � .x C 1/e

�x
�
�1 � Œ�e

�x C .x C 1/e
�x

�

D e
�y � xe

�x

D xe
�.xCy/

Substituting this result into the differential equation yields the identity

e
.xCy/

xe
�.xCy/ D x J J J

EXAMPLE 6

Solve the differential equation dy=dx D ln x, where x > 0.

Solution Integration of the right side gives

Sign Derivatives Integrals

C � ln x � 1
� � 1=x � x

Thus,

y D
Z

ln x dx

D x ln x �
Z �

1

x

�
x dx C C

D x ln x � x C C J J J
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EXAMPLE 7

Solve the initial value problem x
2
yy

0 D e
y , where y.2/ D 0.

Solution Separating the variables and integrating each side leads to

ye
�y

dy D x
�2

dx

�.y C 1/e
�y D � 1

x
C C

To evaluate the arbitrary constant, substitute y D 0 and x D 2, to obtain

�.0 C 1/1 D �1

2
C C

or

C D �1

2

Thus

�.y C 1/e
�y D � 1

x
� 1

2

or

2x.y C 1/ D .2 C x/e
y J J J

EXAMPLE 8

Solve y
0 D x.1 � y

2
/, where �1 < y < 1.

Solution Separating the variables, we have

dy

1 � y2
D x dx:

Partial fraction decomposition yields

1

1 � y2
D 1

.1 C y/.1 � y/

D 1=2

1 C y
C 1=2

1 � y

Integration then results in

1

2
ln j1 C yj � 1

2
ln j1 � yj D x

2

2
C C

or

ln
�

1 C y

1 � y

�
D x

2 C C1
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where C1 D 2C . Exponentiating each side leads to
�

1 C y

1 � y

�
D e

x2

e
C1

Setting e
C1 D C2 and solving algebraically for y, we have

1 C y D C2e
x2 � yC2e

x2

or

y D C2e
x2 � 1

C2ex2 C 1

where C2 D e
C1 is an arbitrary constant. J J J

EXAMPLE 9 Newton’s Law of Cooling Revisited

Consider the following model for the cooling of a hot cup of soup:

dTm

dt
D �k.Tm � ˇ/; k > 0

where Tm.0/D˛. Here Tm is the temperature of the soup at any time t > 0; ˇ is the constant
temperature of the surrounding medium, ˛ is the initial temperature of the soup, and k is a
constant of proportionality depending on the thermal properties of the soup. We will solve
the above differential equation for Tm:

Solution After separating the variables, we obtain

dTm

Tm � ˇ
D �k dt

Integration yields

ln jTm � ˇj D �kt C C

Exponentiating both sides, we get

jTm � ˇj D e
�ktCC D e

�kt
e

C

Since e
C is a constant, we substitute C1 D e

C into the above equation:

jTm � ˇj D C1e
�kt

From the initial condition Tm.0/ D ˛, we evaluate C1:

j˛ � ˇj D C1

Substitution of this result into the solution produces

jTm � ˇj D j˛ � ˇje�kt

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_11_ch11_p458-523 January 23, 2013 19:40 508

508 Chapter 11 Modeling with a Differential Equation

Assuming the object is initially warmer than the surrounding medium, we have

Tm D ˇ C .˛ � ˇ/e
�kt

The graph of Tm.t/ is shown in Figure 11.29. As t ! 1, you can see that Tm ! ˇ, in
agreement with the graphical analysis presented in Section 11.4. J J J

J Figure 11.29
This graph of Tm(t )
assumes that the initial
temperature Tm(O)D ¸ is
greater than the
temperature ˛ of the
surrounding medium.

Tm (t) = b + (a + b)e –kt

Tm

t

a

b

©
 C

en
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EXAMPLE 10 Population Growth with Limited Resources Revisited

In Section 11.1 we developed the following model for population growth in a limited
environment:

dP

dt
D r.M � P /P D rMP � rP

2

where P.t0/ D P0. Here P denotes the population at any time t > 0; M is the carrying
capacity of the environment, and r is a proportionality constant. Let us solve this model.

Solution Separating the variables, we get

dP

P.M � P /
D r dt

Using partial fraction decomposition on the left side gives us

1

M

�
dP

P
C dP

M � P

�
D r dt

Multiplying by M and integrating then yield

lnP � ln jM � P j D rM t C C

for some arbitrary constant C . Note that since P > 0, the absolute value symbol in the
expression ln jP j is not necessary. Using the initial condition, we evaluate C in the case
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where 0 < P0 < M :

C D ln
�

P0

M � P0

�
� rM t0

Substitution for C into the solution and algebraic simplification give us

ln
�

P.M � P0/

P0.M � P /

�
D rM.t � t0/

Exponentiating both sides of this equation, we obtain

P.M � P0/

P0.M � P /
D e

rM.t�t0/

or

P0.M � P /e
rM.t�t0/ D P.M � P0/

Finally, solving this equation algebraically for population P yields the logistic curve

P.t/ D P0Me
rM.t�t0/

M � P0 C P0erM.t�t0/

If you divide the numerator and denominator of this last expression by e
rM.t�t0/ and then

take the limit as t ! 1, you will find that P.t/ ! M . That is, the population tends toward
the maximum sustainable population. Our analytic result agrees with our graphical analysis
for the case 0 < P0 < M , which was depicted in Figure 11.4. J J J
Uniqueness of Solutions
Often the solutions to a first-order differential equation can be expressed in the explicit
form y D f .x/; where each solution is distinguished by a different value of the arbitrary
constant of integration. For instance, if we separate the variables in the equation

dy

dx
D 2y

x
; x 6D 0; (11.43)

we obtain

dy

y
D 2

dx

x
:

Notice, however, that the algebra is not valid when y D 0. Next, integration of both sides
of this last result gives us

ln jyj D 2 ln jxj C C1 (11.44)

Exponentiating both sides of Equation (11.44) yields

jyj D C2x
2
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J Figure 11.30
The family of parabolas
y D Cx 2

y

x

C > 0

C < 0 ©
 C
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ng

where C2 D e
C1 > 0 is a constant. Finally, by applying the definition of absolute value, we

have

y D Cx
2 (11.45)

where C D ˙C2 is positive or negative according to whether y is positive or negative.
However, there are still other solutions not given by Equation (11.45). Equation (11.45)
represents a family of parabolas, each parabola distinguished by a different value of the
constantC . IfC > 0, the curves y D Cx

2 open upward, and ifC < 0, they open downward
(see Figure 11.30). Exactly one of these parabolas passes through each point in the plane
excluding the origin. Thus, by specifying an initial condition y.x0/ D y0, a unique solution
curve from the family denoted by Equation (11.45) is selected that passes through the point
.x0; y0/.

The question of whether more than one solution curve can pass through a specific point
.x0; y0/ in the plane is an important one. For uniqueness to occur, certain conditionsmust be
met by the function f .x; y/ defining the differential equation y

0 D f .x; y/. Geometrically,
the condition of uniqueness means that two solution curves cannot cross at the point in
question. In Figure 11.30 there is a unique solution parabola passing through each point in
the plane with the exception of the origin. Through the origin pass infinitely many solution
parabolas, along with other solution curves as well. For instance, notice that the constant
function y � 0 is a solution to the differential equation. This fact is readily seen when
Equation (11.43) is written in the form

xy
0 D 2y; (11.46)

which is clearly satisfied when y � 0. However, the solution y � 0 is not a member of
the family of solutions represented by Equation (11.45), since C2 is always positive. The
difficulty lies with the lack of continuity of the function f .x; y/ D 2y=x at the origin.
Nevertheless, if we let C D 0 in Equation (11.45), we do pick up the solution y � 0. Even
so, there are still other solutions not given by Equation (11.45) for any value of C .

The issue of uniqueness of solutions is rather involved for nonlinear first-order equa-
tions. However, in the very important case of the linear first-order equation the matter is
easily settled. This points up one of the significant differences between linear and nonlin-
ear differential equations. In the next section we will investigate the nature of the linear
first-order equation.
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11.611.6 PROBLEMS

In Problems 1–8, solve the separable differential equation using u-substitution.

1.
dy

dx
D y

2 � 2y C 1 2.
dy

dx
D p

y cos2
p

y

3. y
0 D 3y.x C 1/

2

y � 1

4. yy
0 D sec y

2 sec2
x

5. y cos2
x dy C sin x dx D 0 6. y

0 D
�

y

x

�2

7. y
0 D xe

y
p

x � 2 8. y
0 D xye

x2

In Problems 9–16, solve the separable differential equation using integration by parts.

9. sec x dy C x cos2
y dx D 0 10. 2x

2
dx � 3

p
y csc x dy D 0

11. y
0 D e

y

xy
12. y

0 D xe
x�ycscy

13. y
0 D e

�y ln
�

1

x

�
14. y

0 D y
2 tan�1

x

15. y
0 D y sin�1

x 16. sec .2x C 1/ dy C 2xy
�1

dx D 0

In Problems 17–24, solve the separable differential equation using partial fractions.

17. .x
2 C x � 2/ dy C 3y dx D 0 18. y

0 D .y
2 � 1/x

�1

19. x.x � 1/ dy � y dx D 0 20. y
0 D .y C 1/

2

x2 C x � 2

21. 9y dx � .x � 1/
2
.x C 2/ dy D 0 22. e

x
dy C .y

3 � y
2
/ dx D 0

23.
p

1 � y2 dx C .x
2 � 2x C 2/ dy D 0 24. .2x � x

2
/ dy C e

�y
dx D 0

In Problems 25–32, solve the separable differential equation.

25.
p

2xy
dy

dx
D 1 26. .ln x/

dx

dy
D xy

27. x
2

dy C y.x � 1/ dx D 0 28. ye
x

dy � .e
�y C e

2x�y
/ dx D 0

29. .x lny/y
0 D

�
x C 1

y

�2

30. y
0 D sin�1

x

2y lny
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31. y
0 D e

�y � xe
�y cos x

2

32. .1 C x C xy
2 C y

2
/ dy D .1 � x/

�1
dx

In Problems 33–39, solve the initial value problem.

33. y
�2

dx

dy
D e

x

e2x C 1
; y.0/ D 1

34.
dy

dx
C xy D x; y.1/ D 2

35. y
0 � 2y D 1; y.2/ D 0

36. 2.y
2 � 1/ dx C sec x csc x dy D 0; y

�
�

4

�
D 0

37.
dP

dt
C P D P te

t
; P.0/ D 1

38.
dP

dt
D .P

2 � P /t
�1

; P.1/ D 2

39. x dy � .y C p
y/ dx D 0; y.1/ D 1

11.711.7 Linear Equations

Serious problems of water pollution face the world’s industrialized nations. If the polluted
body of water is a river, it can clean itself fairly rapidly once the pollution is stopped,
provided excessive damage has not already occurred. But the problem of pollution in a lake
or reservoir is not so easily overcome. A polluted lake, such as one of the Great Lakes,
contains a large amount of water that must somehow be cleaned. Presently government
and industry still rely on natural processes for this cleanup. In this section we shall model
how long a given lakemight take to return to an acceptable level of pollution through natural
processes alone; modeling this problem will enable us to examine some characteristics of
linear equations.

Let’s make some simplifying assumptions to model the situation. Imagine the lake to
be a large container or tank holding a volume V.t/ of water at any time t . Assume that when
water enters the lake, perfect mixing occurs, so that the pollutants are uniformly distributed
throughout the lake at any time. Assume also that the pollutants are not removed from the
lake by sedimentation, decay, or any other natural mechanism except the outflow of water
from the lake. Moreover, the pollutants flow freely from the lake (unlike DDT, which tends
to concentrate in the fatty tissues of animals and thus be retained in biological systems).
Let p.t/ denote the amount of the pollutant in the lake at time t . Then the concentration
of the pollutant is the ratio c.t/ D p.t/=V .t/.

Over the time interval Œt; t C �t �, the change in the amount of pollutant �p is the
amount of pollutant that enters the lake minus the amount that leaves:

�p D amount input � amount output:
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If water enters the lake with a constant concentration of cin in grams per liter at a rate
of rin in liters per second, then

amount input � rincin �t D ˛ �t

where ˛ D rincin is constant. For example, if polluted water with a concentration of 9 g/L of
pollutant enters the lake at 10 L/sec, then ˛ D 90 g of pollutant enters the lake each second.

If water leaves the lake at a constant rate of rout L/sec, then, since the concentration of
pollutant in the lake is given by p=V , we have

amount output � rout
p

V
�t

Thus

�p �
�
˛ � prout

V

�
�t

Dividing by �t and passing to the limit as �t ! 0 result in

dp

dt
D ˛ � rout

V
p (11.47)

Suppose V.0/ D V0 is the volume of the lake initially. Then V.t/ D V0 C .rin � rout/t

represents the volume at any time t . Substituting for V in Equation (11.47) and rearranging
terms give us

dp

dt
C prout

V0 C .rin � rout/t
D ˛ (11.48)

where ˛; rout; V0, and .rin �rout/ are all constants. Equation (11.48) is an example of a linear
first-order differential equation. Note that if rin � rout D 0, Equation (11.48) is a separable
equation. However, if rin � rout ¤ 0, Equation (11.48) represents a new type of first-order
equation.

At the end of this section we will return to the pollution problem to find the amount
p.t/ of pollutant in the lake at any time t . In order to solve this model, we now take up the
general question of solving linear first-order equations.

First-Order Linear Equations
The first-order linear equation is an equation of the form

a1.x/y
0 C a0.x/y D b.x/ (11.49)

where a1.x/; a0.x/, and b.x/ depend only on the independent variable x, not on y. For
example,

2xy
0 � y D xe

�x (11.50)
.x

2 C 1/y
0 C xy D x and (11.51)

y
0 C .tan x/y D cos2

x (11.52)
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are all first-order linear equations. The equation

y
0 � x

2
e

�2y D 0 (11.53)

is not linear, although it is separable. The equation

.2x � y
2
/y

0 C 2y D x (11.54)

is neither linear nor separable.
We assume in Equation (11.49) that the functions a1.x/; a0.x/, and b.x/ are continu-

ous on an interval and that a1.x/ ¤ 0 on that interval. Division of both sides of (11.49) by
a1.x/ gives the standard form of the linear equation,

y
0 C P.x/y D Q.x/ (11.55)

where P.x/ and Q.x/ are continuous on the interval. The solution method we present for
the linear equation proceeds from the standard form.

To provide some insight into the solution form, we are going to solve Equation (11.55)
in three stages. The first stage is the case when P.x/ � constant and Q.x/ � 0. (The
symbol�means ‘‘is identically equal to.’’ ThusP.x/ � constant says thatP.x/ is constant
for all values of x.) Then the case is considered forP.x/ � constant andQ.x/ 6� 0. Finally,
we consider the general case given by Equation (11.55).

Case 1: y 0 C ky D 0, k D Constant The differential equation is separable with

dy

y
D �k dx

Then

y D Ce
�kx

is a solution for any constant C . If we write the last equation as

e
kx

y D C

and differentiate implicitly, we obtain

e
kx

y
0 C ke

kx
y D 0

or

e
kx

.y
0 C ky/ D 0

That is, multiplication of each side of the equation y
0 Cky D 0 by the exponential function

e
kx results in

d

dx
.e

kx
y/ D d

dx
.C /
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The solution is now readily obtained by integrating each side. Armed with this insight, we
consider the second case.

Case 2: y 0 C ky D Q.x/, k D Constant From our observation in Case 1, if we
multiply both sides of Equation (11.55) by e

kx , we get

e
kx

.y
0 C ky/ D e

kx
Q.x/

or

d

dx
.e

kx
y/ D e

kx
Q.x/ (11.56)

Integration then gives us

e
kx

y D
Z

e
kx

Q.x/ dx C C (11.57)

where C is an arbitrary constant.
Let us pause to reflect on this procedure. We multiplied the equation y

0 C ky D Q.x/

by a function e
kx of the independent variable. The left side was then transformed into the

derivative of a product:

e
kx

y
0 C ke

kx
y D d

dx
.e

kx
y/

Then all that was needed to arrive at a solution was to integrate resulting Equation (11.56),
obtaining Equation (11.57).

Case 3: The General Linear Equation y 0 C P.x/y D Q.x/ Let us try the same idea
as in Case 2: Multiply both sides of the equation by some function �.x/ so that the left side
is the derivative of the product �y. That is,

�.x/Œy
0 C P.x/y� D d

dx
Œ�.x/y�

D �.x/y
0 C �

0
.x/y

The function �.x/ is not yet known, but from the last equation, it must satisfy

�.x/P.x/y D �
0
.x/y

or

�
0
.x/

�.x/
D P.x/ (11.58)

We seek only one function �.x/ in our procedure, so assume that �.x/ is positive over the
interval. Then integrating Equation (11.58) gives us

ln�.x/ D
Z

P.x/ dx
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or, exponentiating both sides,

�.x/ D e

R
P.x/ dx (11.59)

That is, Equation (11.59) determines precisely a function �.x/ that will work for our
procedure. Note that �.x/ defined by Equation (11.59) is indeed positive. The function
�.x/ is called an integrating factor for linear first-order Equation (11.55).

Now, multiplying Equation (11.55) through by the integrating factor (11.59) results in

�.x/Œy
0 C P.x/y� D �.x/Q.x/

or

d

dx
Œ�.x/y� D �.x/Q.x/ (11.60)

In order to solve Equation (11.60), simply integrate both sides:

�.x/y D
Z

�.x/Q.x/ dx C C (11.61)

where �.x/ is given by Equation (11.59). We can then solve explicitly for the solution y by
dividing each side of Equation (11.61) by the integrating factor �.x/.

The method of solution presented for linear first-order equations requires two integra-
tions. The first integration in Equation (11.59) produces the integrating factor �.x/; the
second leads to the general solution y from Equation (11.61). Both integrations are pos-
sible because P.x/ and Q.x/ are assumed to be continuous over the interval. Using the
Fundamental Theorem of Calculus, we could easily verify that the function y defined by
Equation (11.61) does satisfy the original linear Equation (11.55) (see Problem 23 at the
end of this section). We will now summarize the solution method.

Solving a Linear First-Order Equation
STEP 1 Write the linear first-order equation in standard form:

y
0 C P.x/y D Q.x/ (11.62)

STEP 2 Calculate the integrating factor:

�.x/ D e

R
P.x/ dx (11.63)

STEP 3 Multiply the right-hand side of Equation (11.62) by � and integrate:
Z

�.x/Q.x/ dx C C (11.64)
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STEP 4 Write the general solution:

�.x/y D
Z

�.x/Q.x/ dx C C

" „ ƒ‚ …
integrating factor result of Step 3

from Step 2

(11.65)

Observe that in Step 2, we introduce no arbitrary constant of integration when determining
the integrating factor �. The reason for this is that only a single function is sought as an
integrating factor, not an entire family of functions. Now let us apply the method to several
examples.

EXAMPLE 1

Find the general solution of

xy
0 C y D e

x
; x > 0

Solution

STEP 1 We write the linear equation in standard form:

y
0 C

�
1

x

�
y D

�
1

x

�
e

x

Thus P.x/ D 1=x and Q.x/ D e
x
=x.

STEP 2 The integrating factor is

�.x/ D e

R
P.x/ dx D e

R
dx=x

D e
lnx D x

STEP 3 Wemultiply the right-hand side of the equation in Step 1 by � D x and integrate the results
to get

Z
�.x/Q.x/ dx D

Z
x �

�
1

x

�
e

x
dx

D
Z

e
x
dx

D e
x C C

STEP 4 The general solution is given by Equation (11.65):

xy D e
x C C

or

y D e
x C C

x
; x > 0
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Let us verify that y does indeed solve the original equation. Differentiation of y

gives us

y
0 D �1

x2
.e

x C C / C 1

x
e

x

Then

xy
0 C y D

��1

x
.e

x C C / C e
x

�
C

�
1

x

�
.e

x C C /

D e
x

so the differential equation is satisfied. J J J
EXAMPLE 2

Find the general solution of

y
0 C .tan x/y D cos2

x

over the interval ��=2 < x < �=2.

Solution

STEP 1 The equation is in standard form with P.x/ D tan x and Q.x/ D cos2
x.

STEP 2 The integrating factor is

�.x/ D e

R
P.x/ dx D e

R
tanx dx D e

� ln j cosxj D sec x

since cos x > 0 over the interval ��=2 < x < �=2.
STEP 3 Next we integrate the product �.x/Q.x/:

Z
sec x cos2

x dx D
Z

cos x dx D sin x C C

STEP 4 The general solution is given by

.sec x/y D sin x C C

or

y D sin x cos x C C cos x J J J
EXAMPLE 3

Find the solution of

3xy
0 � y D ln x C 1; x > 0

satisfying y.1/ D �2.
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Solution In this example we shall omit the designation of the steps. With x > 0, we
rewrite the equation in the standard form as

y
0 � 1

3x
y D ln x C 1

3x

Then the integrating factor is given by

� D e

R
�dx=3x D e

.�1=3/ lnx D x
�1=3

Thus

x
�1=3

y D 1

3

Z
.ln x C 1/x

�4=3
dx

Integration by parts results in the following (with the details left to you to figure out):

x
�1=3

y D �x
�1=3

.ln x C 1/ C
Z

x
�4=3

dx C C

Therefore,

x
�1=3

y D �x
�1=3

.ln x C 1/ � 3x
�1=3 C C

or

y D �.ln x C 4/ C Cx
1=3

When x D 1 and y D �2 are substituted into the general solution, the arbitrary constant C

is evaluated:

�2 D �.0 C 4/ C C

or

C D 2

Thus

y D 2x
1=3 � ln x � 4

is the particular solution we seek. J J J

EXAMPLE 4 Water Pollution

We now return to the problem of water pollution of a large lake introduced at the beginning
of this section. Suppose a large lake that was formed by damming a river holds initially
100 million gallons of water. Because a nearby agricultural field was sprayed with a pes-
ticide, the water has become contaminated. The concentration of the pesticide has been
measured and is equal to 35 ppm (parts per million), or 35 � 10

�6. The river continues
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to flow into the lake at a rate of 300 gal/min. The river is only slightly contaminated with
pesticide and has a concentration of 5 ppm. The flow ofwater over the dam can be controlled
and is set at 400 gal/min. Assume that no additional spraying causes the lake to become
even more contaminated. How long will it be before the water reaches an acceptable level
of concentration equal to 15 ppm?

Solution From the opening discussion in this section, recall that

V.t/ D V0 C .rin � rout/t

For the particular lake at hand, we are given that V0 D 100 � 10
6 and rin � rout D

300 � 400 D �100 gal/min. Thus,

V.t/ D 100 � 10
6 � 100t

represents the volume of the lake at time t . Since rin � rout D �100, note that the lake will
be empty when V.t/ D 0, or t D 10

6 min � 1:9 yr. It is hoped that the contamination in
the lake can be reduced to the acceptable level of 15=10

6 before the lake is empty.
Using the notation introduced in the opening discussion, we have ˛ D rincin D

300.5=10
6
/. Thus, from Equation (11.48), the differential equation governing the change

in pollution is given by

dp

dt
C 400p

100 � 106 � 100t
D 15 � 10

�4 (11.66)

The integrating factor for Equation (11.66) is

� D e

R
4dt=.106�t/ D e

�4 ln.106�t/ D .10
6 � t /

�4

assuming t < 10
6. Thus the solution satisfies

.10
6 � t /

�4
p.t/ D

Z
15 � 10

�4
.10

6 � t /
�4

dt

D 5 � 10
�4

.10
6 � t /

�3 C C

Therefore,

p.t/ D 5 � 10
�4

.10
6 � t / C C.10

6 � t /
4 (11.67)

From the initial condition, when t D 0 the concentration is c0 D p.0/=V0 D 35 � 10
�6.

Hence

p.0/ D .35 � 10
�6

/ � 100 � 10
6 D 3500

By substituting this result into Equation (11.67), we evaluate the constant of integration C:

3500 D 5 � 10
�4 � 10

6 C C � 10
24
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or C D 3 � 10
�21. The particular solution for the level of pollution at any time t < 10

6 is
therefore

p.t/ D 5 � 10
�4

.10
6 � t / C 3 � 10

�21
.10

6 � t /
4 (11.68)

The problem asks for the time t when the concentration level c.t/ D p.t/=V .t/ D 15 � 10
�6.

Here t is measured in minutes. Division of Equation (11.68) by V.t/ and application of this
condition yield

15 � 10
�6 D 5 � 10

�4
.10

6 � t / C 3 � 10
�21

.10
6 � t /

4

100.106 � t /

Simplifying algebraically, we get

3 � 10
�18

.10
6 � t /

3 � 1 D 0

Using a calculator or computer, we find that solving this last equation for t gives

t � 306,650 min � 7 months J J J
We end this section with a brief discussion of the initial value problem for the linear

first-order equation.

Uniqueness of Solutions
Unlike the difficulties we can encounter when solving (nonlinear) separable equations, the
linear first-order equation always has one and only one solution satisfying a specified initial
condition. This result is stated precisely in the following theorem.

Theorem 1

Suppose thatP.x/ andQ.x/ are continuous functions over the interval ˛ < x < ˇ.
Then there is one and only one function y D y.x/ satisfying the first-order linear
equation

y
0 C P.x/y D Q.x/

on the interval and the initial condition

y.x0/ D y0

at the specified point x0 in the interval.

Theorem 1 is known as the existence and uniqueness theorem for the linear first-
order equation. Any real value whatsoever may be assigned to y0 and the theorem will be
satisfied. Thus the particular solution found in Example 3 is the only function satisfying the
differential equation and the initial condition specified there. Problems 23 and 24 outline
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a proof of the existence and uniqueness theorem based on the Fundamental Theorem of
Calculus.

11.711.7 PROBLEMS

In Problems 1–15, find the general solution of the given first-order linear differential equa-
tion. State an interval over which the general solution is valid.

1. y
0 C 2xy D x 2. y

0 � 3y D e
x

3. 2y
0 � y D xe

x=2 4.
y

0

2
C y D e

�x sin x

5. xy
0 C 2y D 1 � x

�1 6. xy
0 � y D 2x ln x

7. y
0 D y � e

2x 8. y
0 D 2y

x
C x

3
e

x � 1

9. x
2

dy

dx
C xy D 2 10. .1 C x/

dy

dx
C y D

p
x

11. x
2

dy C xy dx D .x � 1/
2

dx 12. .1 C e
x
/ dy C .ye

x C e
�x

/ dx D 0

13. e
�y

dx C .e
�y

x � 4y/ dy D 0

14. .x C 3y
2
/ dy C y dx D 0

15. y dx C .3x � y
�2 cos y/ dy D 0; y > 0

In Problems 16–20, solve the initial value problem.

16. y
0 C 4y D 1; y.0/ D 1

17.
dy

dx
C 3x

2
y D x

2
; y.0/ D �1

18. x dy C .y � cos x/ dx D 0; y

�
�

2

�
D 0

19. xy
0 C .x � 2/y D 3x

3
e

�x
; y.1/ D 0

20. y dx C .3x � xy C 2/ dy D 0; y.2/ D �1; y < 0

21. Oxygen flows through one tube into a liter flask filled with air, and the mixture of
oxygen and air (considered well stirred) escapes through another tube. Assuming that
air contains 21% oxygen, what percentage of oxygen will the flask contain after 5 L
have passed through the intake tube?

22. If the average person breathes 20 times per minute, exhaling each time 100 in3 of air
containing 4% carbon dioxide. Find the percentage of carbon dioxide in the air of a
10,000-ft3 closed room 1 hr after a class of 30 students enters. Assume that the air is
fresh at the start, that the ventilators admit 1000 ft3 of fresh air per minute, and that the
fresh air contains 0.04% carbon dioxide.
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23. Existence—Assume the hypothesis of Theorem 1.
a. From the Fundamental Theorem of Calculus, we have

d

dx

�Z
�.x/Q.x/ dx

�
D �.x/Q.x/

Use this fact to show that any function y given by Equation (11.61) solves linear
first-order Equation (11.55). Hint: Differentiate both sides of Equation (11.61).

b. If the constant C is given by

C D y0�.x0/ �
Z

x

x0

�.t/Q.t/ dt

in Equation (11.61), show that the resulting function y defined by Equation (11.61)
satisfies the initial condition y.x0/ D y0.

24. Uniqueness—Assume the hypothesis of Theorem 1, and assume that y1.x/ and y2.x/

are both solutions to the linear first-order equation satisfying the initial condition
y.x0/ D y0.
a. Verify that y.x/ D y1.x/ � y2.x/ satisfies the initial value problem

y
0 C P.x/y D 0; y.x0/ D 0

b. For the integrating factor �.x/ defined by Equation (11.63), show that

d

dx
.�.x/Œy1.x/ � y2.x/�/ D 0

Conclude that �.x/Œy1.x/ � y2.x/� � constant.
c. Frompart (a), we havey1.x0/�y2.x0/D0. Since �.x/ > 0 for ˛ < x < ˇ, use part

(b) to establish that y1.x/ � y2.x/ � 0 on the interval .˛; ˇ/. Thus y1.x/ D y2.x/

for all ˛ < x < ˇ.
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1212 Modeling with Systems
of Differential Equations

Introduction
Interactive situations occur in the study of economics, ecology, electrical circuits, mechan-
ical systems, celestial mechanics, control systems, and so forth. For example, the study of
the dynamics of population growth of various plants and animals is an important ecological
application of mathematics. Different species interact in a variety of ways. One animal may
serve as the primary food source for another, commonly referred to as a predator–prey rela-
tionship. Two species may depend on one another for mutual support, such as a bee’s using
a plant’s nectar as food while simultaneously pollinating that plant; such a relationship is
referred to as mutualism. Another possibility occurs when two or more species compete
against one another for a common food source or even compete for survival. In this chapter,
we develop some elementary models to explain these interactive situations, and we analyze
the models using graphical techniques.

In modeling interactive situations involving the dynamics of population growth, we are
interested in the answers to certain questions concerning the species under investigation.
For instance, will one species eventually dominate the other and drive it to extinction?
Can the species coexist? If so, will their populations reach equilibrium levels, or will they
vary in some predictable fashion? Moreover, how sensitive are the answers to the preceding
questions relative to the initial population levels or to external perturbations (such as natural
disasters, development of chemical or biological agents used to control the populations, and
the like)?

Because we are modeling the rates of change with respect to time, the models invari-
ably involve differential equations (or, in a discrete analysis, difference equations). Even
with very simple assumptions, these equations are often nonlinear and generally cannot be
solved analytically, although numerical techniques exist. Nevertheless, qualitative informa-
tion about the behavior of the variables can often be obtained by simple graphical analysis.
We will demonstrate how graphical analysis can be used to answer questions such as those
posed in the preceding paragraph. We will also point out limitations for such an analysis
and conditions requiring a more sophisticated mathematical analysis. Our graphical anal-
ysis for systems of differential equations extends the graphical procedures we applied in
Section 11.4 to two dimensions.

524
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12.112.1 Graphical Solutions of Autonomous Systems
of First-Order Differential Equations

In Chapter 11, we solved differential equations by separating the variables and integrating.
Usually, however, it is not so easy to solve a system of differential equations; in fact, it is
rare that we can find an analytic solution when the equations are nonlinear, although numer-
ical solution methods exist. Therefore, it is worthwhile to consider a qualitative graphical
analysis for solutions to a system of differential equations analogous to our development for
single equations.We restrict our discussion to special systems involving only two first-order
differential equations.

The system

dx

dt
D f .x; y/

dy

dt
D g.x; y/

(12.1)

is called an autonomous system of differential equations. In such a system, the independent
variable t is absent (i.e., t does not appear explicitly on the right side of Equation (12.1).
To emphasize the physical significance of autonomous systems, think of the independent
variable t as denoting time and the dependent variables as giving position .x; y/ in the
Cartesian plane. Thus, autonomous systems are not time dependent. In order that the system
be suitably well behaved, we assume throughout our discussion that the functions f and
g, together with their first partial derivatives @f =@x; @f =@y; @g=@x, and @g=@y, are all
continuous over a suitable region of the xy-plane.

It is useful to think of a solution to the autonomous system (12.1) as a curve in the
xy-plane. That is, a solution to Equation (12.1) is a pair of parametric equations, x D x.t/
and y D y.t/, whose derivatives satisfy the system. The solution curve whose coordinates
are .x.t/; y.t//, as t varies over time, is called a trajectory, path, or orbit of the system.
The xy-plane is referred to as the phase plane. It is convenient to think of a trajectory as
the path of a moving particle and we appeal to this idea throughout this chapter. Note that
as the particle moves through the phase plane with increasing t , the direction it moves from
a point .x; y/ depends only on the coordinates .x; y/ and not on the time of arrival.

If .x; y/ is a point in the phase plane for which f .x; y/ D 0 and g.x; y/ D 0 simul-
taneously, then both the derivatives dx=dt and dy=dt are zero. Hence, there is no motion
in either the x or the y direction, and the particle is stationary. Such a point is called a rest
point, or equilibrium point, of the system. Notice that whenever .x0; y0/ is a rest point of
the system (12.1), the equations x D x0 and y D y0 give a solution to the system. In fact,
this constant solution is the only one passing through the point .x0; y0/ in the phase plane.
The trajectory associated with this solution is simply the rest point .x0; y0/. A trajectory
x D x.t/, y D y.t/ is said to approach the rest point .x0; y0/ if x.t/ ! x0 and y.t/ ! y0

as t ! 1. In applications it is of interest to see what happens to a trajectory when it comes
near a rest point.

The idea of stability is central to any discussion of the behavior of trajectories near
a rest point. Roughly, the rest point .x0, y0/ is stable if any trajectory that starts close to
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the point stays close to it for all future time. It is asymptotically stable if it is stable and
if any trajectory that starts close to .x0, y0/ approaches that point as t tends to infinity. If
it is not stable, the rest point is said to be unstable. These notions will be clarified when
we examine specific modeling applications later in the chapter. Our goal here is to have a
language with which to discuss qualitatively our differential equations models. It is not our
intent to study the theoretical aspects of stability, which would require greater mathematical
precision than we have presented here.

The following results are useful in investigating solutions to the autonomous system
(12.1). We offer these results without proof:

1. There is at most one trajectory through any point in the phase plane.
2. A trajectory that starts at a point other than a rest point cannot reach a rest point in a

finite amount of time.
3. No trajectory can cross itself unless it is a closed curve. If it is a closed curve, it is a

periodic solution.

The implications of these three properties are that from a starting point that is not a rest
point, the resulting motion

a. will move along the same trajectory regardless of the starting time;
b. cannot return to the starting point unless the motion is periodic;
c. can never cross another trajectory; and
d. can only approach (never reach) a rest point.

Therefore, the resulting motion of a particle along a trajectory behaves in one of three
possible ways: (1) The particle approaches a rest point; (2) the particle moves along or
approaches asymptotically a closed path; or (3) at least one of the trajectory components,
x.t/ or y.t/, becomes arbitrarily large as t tends to infinity.

EXAMPLE 1 A Linear Autonomous System

The pair of functions

x D e�t sin t

y D e�t cos t

solve the linear autonomous system

dx

dt
D �x C y

dy

dt
D �x � y

They are readily verified to be solutions by differentiating x and y and showing that the
differential equations in the system are satisfied:

dx

dt
D d

dt
.e�t sin t / D �e�t sin t C e�t cos t

D �x C y

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_12_ch12_p524-568 January 23, 2013 19:40 527

12.1 Graphical Solutions of Autonomous Systems of First-Order Differential Equations 527

and

dy

dt
D d

dt
.e�t cos t / D �e�t cos t � e�t sin t

D �y � x

If simultaneously dx=dt D 0 and dy=dt D 0, then x D y D 0. Thus, the origin .0; 0/
is the only rest point of the system. Because

x2 C y2 D e�2t sin2 t C e�2t cos2 t D e�2t

each trajectory is a circular spiral of decreasing radius around and approaching the origin as
t approaches plus infinity. Therefore, .0; 0/ is an asymptotically stable rest point. A typical
trajectory to the system, starting from the initial position x.0/ D x0 and y.0/ D y0 in the
phase plane, is shown in Figure 12.1. J J J

J Figure 12.1
The origin is an
asymptotically stable rest
point (Example 1).

x

y

(x0, y0)

A spiral around the rest point (0, 0) for the system
dx/dt = – x + y
dy/dt = – x – y ©
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EXAMPLE 2 A Nonlinear Autonomous System

For �1 < t < 1, the two function pairs

x D �a csch at (12.2)
y D �a coth at

and
x D a csch at (12.3)
y D �a coth at

satisfy the nonlinear autonomous system

dx=dt D xy (12.4)
dy=dt D x2
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These results are easily verified from the differentiation formulas

d

dt
.a csch at/ D �a2 csch at coth at

d

dt
.�a coth at/ D a2 csch 2 at

Each of the function pairs (12.2) and (12.3) satisfy the equation

y2 � x2 D a2

because of the property that

coth2 u � csch2 u D 1

Thus, function pairs (12.2) and (12.3) represent upper and lower branches of the hyperbolas
displayed in Figure 12.2. The straight half-lines y D x and y D �x, x 6D 0, are also
solutions to system (12.4).

J Figure 12.2
Several trajectories for the
nonlinear autonomous
system dx=dt D xy and
dy=dt D x 2 (Example 2)

a < 0
t > 0

a > 0
t < 0

a < 0
t < 0

a > 0
t < 0

x = a sec at

y =–a coth at
x =  a csch at

a > 0
t < 0

y = –a coth at
x = –a csch at

a < 0
t > 0

y = –a coth at
x = –a csch at

a < 0
t > 0

y =–a coth at
x =  a csch at

y = a tan at y = a tan at

a > 0
t > 0

x = a sec at

y

x
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Let us find the rest points for system (12.4). Because dx=dt D 0 and dy=dt D 0 hold
simultaneously whenever x D 0, all points along the y axis are rest points for the system.
We now classify these rest points.

Consider first the origin. If we select an initial point (a; 0/ close to the origin such
that a > 0, for instance, then as t increases, the branch of the hyperbola trajectory pass-
ing through that point is traversed upward and to the right, as indicated by the arrows in
Figure 12.2. In fact, note that as t approaches �=2a, both x and y approach plus infinity.
Therefore, the rest point .0; 0/ is unstable.

If .0; a/ is any point along the y axis for a > 0, the point .0; a/ is unstable. For
instance, whenever a particle starts along a trajectory near .0; a/, the trajectory is traversed
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upward and away from the point .0; a/, as indicated by the trajectories shown in Figure 12.2;
whether the trajectory moves to the left or to the right depends on whether the second or
first quadrant is selected for the starting point.

The rest points .0; b/, where b < 0, are of an entirely different nature. If a starting point
in the phase plane is near .0; b/, the trajectory through that point approaches some point
.0; a/ on the negative y axis as t approaches plus infinity. For instance, a particle starting
very close to and to the left of the point .0; b/ will move along some trajectory given by

y D �a csch at

y D �a coth at

where a < 0 and t > 0 (Figure 12.2). As t ! C1, we have at ! �1. Then (csch at/
! 0�, so x ! 0�. Also, .coth at/ ! �1, so y ! a. As time advances, the moving
particle gets increasingly close to but never reaches the rest point .0; a/. If .0; a/ is close
to .0; b/, then a particle that starts near .0; b/ stays near it for all future time (because the
particle will also be near the point .0; a/). Thus, the rest points along the negative y axis
are stable. They are not asymptotically stable, however, because not every trajectory that
starts near .0; b/ approaches .0; b/. Only two trajectories have that property; namely, the
left and right branches of the lower hyperbola that approach that rest point, as indicated in
Figure 12.2. It is important to observe that no trajectory can ever cross the y axis, because
every point .0; b/ along the y axis is a rest point and hence a solution to the autonomous
system. We apply the ideas discussed previously to the models we develop in the next
several sections. J J J

12.112.1 PROBLEMS

In Problems 1–4, verify that the given function pair is a solution to the first-order system.

1. x D �et ; y D et

dx

dt
D �y;

dy

dt
D �x

2. x D �1

2
C e2t

2
, y D �3

4
C 3e2t

8
C 3e�2t

8

dx

dt
D 2x C 1;

dy

dt
D 3x � 2y

3. x D e2t , y D et

dx

dt
D 2y2;

dy

dt
D y

4. x D b tanh bt , y D b sech bt , b D any real number

dx

dt
D y2,

dy

dt
D xy

In Problems 5–8, find and classify the rest points of the given autonomous system.

5.
dx

dt
D 2y,

dy

dt
D �3x

6.
dx

dt
D �.y � 1/,

dy

dt
D x � 2
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7.
dx

dt
D �y.y � 1/,

dy

dt
D .x � 1/.y � 1/

8.
dx

dt
D 1

y
,

dy

dt
D 1

x

9. Sketch a number of trajectories corresponding to the following autonomous systems,
and indicate the direction of motion for increasing t . Identify and classify any rest points
as being stable, asymptotically stable, or unstable.
a. dx=dt D x; dy=dt D y

b. dx=dt D �x, dy=dt D 2y

c. dx=dt D y, dy=dt D �2x

d. dx=dt D �x C 1, dy=dt D �2y

12.112.1 PROJECT

1. Complete the requirements of the UMAP module ‘‘Whales and Krill: A Mathematical
Model,’’ by Raymond N. Greenwell, UMAP 610. This module models a predator–prey
system involving whales and krill by a system of differential equations. Although the
equations are not solvable, information is extracted using dimensional analysis and the
study of equilibrium points. The concept ofmaximum sustainable yield is introduced and
used to draw conclusions about fishing strategies. Youwill learn to construct a differential
equations model, remove dimensions from a set of equations, find equilibrium points of
a system of differential equations and learn their significance, and practice manipulative
skills in algebra and calculus.

12.212.2 A Competitive Hunter Model1

Up to nowwe have seen how single species growth can bemodeled as theMalthusianmodel
or the limited growth model. Let’s turn our attention to how two different species might
compete for common resources.

Problem Identification Imagine a small pond that is mature enough to support wildlife.
We desire to stock the pondwith gamefish, say trout and bass. Let x.t/ denote the population
of the trout at any time t; and let y.t/ denote the bass population. Is coexistence of the two
species in the pond possible? If so, how sensitive is the final solution of population levels
to the initial stockage levels and external perturbations?

Assumptions The level of the trout population x.t/ depends onmany variables: the initial
level x0, the amount of competition for limited resources, the existence of predators, and so
forth. Initially, we assume that the environment can support an unlimited number of trout

1This section is adapted from UMAP Unit 628, based on the work of Stanley C. Leja and one of the authors. The
adaptation is presented with the permission of COMAP, Inc., 57 Bedford St., Lexington, MA 02420.
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so that in isolation

dx

dt
D ax for a > 0

(Later we may find it desirable to refine the model and use a limited growth assumption.)
Next, we modify the preceding differential equation to take into account the competition of
the trout with the bass population for living space and a common food supply. The effect of
the bass population is to decrease the growth rate of the trout population. This decrease is
approximately proportional to the number of possible interactions between the two species,
so one submodel is to assume that the decrease is proportional to the product of x and y.
These considerations are modeled by the equation

dx

dt
D ax � bxy D .a � by/x (12.5)

The intrinsic growth rate k D a � by decreases as the level of the bass population increases.
The constants a and b indicate the degrees of self-regulation of the trout population and its
competition with the bass population, respectively. These coefficients must be determined
experimentally or by analyzing historical data.

The situation for the bass population is analyzed in the same manner. Thus, we obtain
the following autonomous system of two first-order differential equations for our model:

dx

dt
D .a � by/x

dy

dt
D .m � nx/y (12.6)

where x.0/ D x0, y.0/ D y0, and a, b, m, and n are all positive constants. This model is
useful in studying the growth patterns of species exhibiting competitive behavior such as
the trout and bass.

Graphical Analysis of the Model One of our concerns is whether the trout and bass
populations reach equilibrium levels. If so, then we will know whether coexistence of the
two species in the pond is possible. The only way such a state can be achieved is for both
populations to stop growing; that is, dx=dt D 0 and dy=dt D 0. Thus, we seek the rest
points or equilibrium points of the system (12.6).

Setting the right sides of Equations (12.6) equal to zero and solving for x and y
simultaneously, we find the rest points .x; y/ D .0; 0/ and .x; y/ D .m=n, a=b/ in the
phase plane. Along the vertical line x D m=n and the x axis in the phase plane, the growth
dy=dt in the bass population is zero; along the horizontal line y D a=b and the y axis,
the growth dx=dt in the trout population is zero. If the initial stockage were at these rest
point levels, there would be no growth in either population. These features are depicted in
Figure 12.3.

Considering the approximations necessary in any model, it is inconceivable that we
would estimate precisely the values for the constants a, b, m, and n in our system (12.6).
Therefore, the pertinent behavior we need to investigate is what happens to the solution
trajectories in the vicinity of the rest points .0; 0/ and .m=n, a=b/. Specifically, are these
points stable or unstable?

To investigate this question graphically, let’s analyze the signs of dx=dt and dy=dt in the
phase plane. (Although x.t/ and y.t/ represent the trout and bass populations, respectively,
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J Figure 12.3
Rest points of the competitive hunter model given by the System (12.6)

it is helpful to think of the trajectories as paths of a moving particle, in accord with our
discussion in the preceding section.)Whenever dx=dt is positive, the horizontal component
x.t/ of the trajectory is increasing and the particle is moving toward the right; whenever
dx=dt is negative, the particle is moving to the left. Likewise, if dy=dt is positive, the
component y.t/ is increasing and the particle is moving upward; if dy=dt is negative, the
particle is moving downward. In our system (12.6), the vertical line x D m=n divides
the phase plane into two half-planes. In the left half-plane dy=dt is positive, and in the
right half-plane it is negative. The directions of the associated trajectories are indicated
in Figure 12.4. Likewise, the horizontal line y D a=b determines the half-planes where
dx=dt is positive or negative. The directions of the associated trajectories are indicated in
Figure 12.5. Along the line y D a=b, dx=dt D 0. Therefore, any trajectory crossing this
line will do so vertically. Similarly, along the line x D m=n, dy=dt D 0, so the line will be
crossed horizontally. Finally, along the y axis, motionmust be vertical, and along the x axis,
motion must be horizontal. Combining all this information into a single graph gives the four
distinct regions A–D with their respective trajectory directions as depicted in Figure 12.6.

J Figure 12.4
To the left of x D m=n the
trajectories move upward;
to the right they move
downward.
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J Figure 12.5
Above the line y D a=b the
trajectories move to the left;
below the line they move to
the right.
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J Figure 12.6
Composite graphical
analysis of the trajectory
directions in the four
regions determined by
x D m=n and y D a=b
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Now let us analyze the motion in the vicinity of the rest points. For .0; 0/, we can
see that all motion is away from it—upward and toward the right. In the vicinity of the
rest point .m=n, a=b/, the behavior depends on the region in which the trajectory begins.
If the trajectory starts in region B, for instance, then it will move downward and leftward
toward the rest point. However, as it gets nearer to the rest point, the derivatives dx=dt and
dy=dt approach zero. Depending on where the trajectory begins and on the relative sizes
of the constants a, b, m, and n, either the trajectory will continue moving downward and
into region D as it swings past the rest point or it will move leftward into region A. Once
it enters either one of these latter two regions, it will move away from the rest point. Thus,
both rest points are unstable. These features are suggested in Figure 12.7.
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Model Interpretation Now let us consider the half-planes y < a=b and y > a=b. In
each half-plane there is exactly one trajectory approaching the rest point (m=n, a=b/. A
proof of this fact is outlined in Problem 7. Above these two trajectories the bass population
increases, and below them the bass population decreases. The trajectory for y < a=b is
shown as a line joining .0; 0/ to .m=n, a=b/ in Figure 12.8 for simplicity, but it is not likely
to be a line.

The graphical analysis conducted so far leads us to the preliminary conclusion that
under the assumptions of our model, it is highly unlikely for both species to reach equilib-
rium levels. Furthermore, the initial stockage levels turn out to be important in determining
which of the two species might survive. Perturbations of the system may also affect the
outcome of the competition. Thus, mutual coexistence of the species is highly improba-
ble. This phenomenon is known as the principle of competitive exclusion, or Gause’s
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J Figure 12.8
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principle.2 Moreover, the initial conditions completely determine the outcome, as depicted
in Figure 12.8. We can see from that graph that any perturbation causing a switch from one
region (e.g., below the two trajectories approaching the rest point .m=n, a=b// to the other
region (above the two trajectories) would change the outcome. One of the limitations of our
graphical analysis is that we have not determined those separating trajectories precisely.
If we are satisfied with our model, we may very well want to determine that separating
boundary for the two regions.

Limitations of a Graphical Analysis It is not always possible to determine the nature
of the motion near a rest point using only graphical analysis. To understand this limitation,
consider the rest point and the direction of motion of the trajectories shown in Figure 12.9.
The information given in the figure is insufficient to distinguish between the three possible
motions shown in Figure 12.10.Moreover, even if we have determined by some other means
that Figure 12.10c correctly portrays the motion near the rest point, we might be tempted to
deduce that the motion will grow without bound in both the x and y directions. However,
consider the system given by

dx

dt
D y C x � x.x2 C y2/

(12.7)
dy

dt
D �x C y � y.x2 C y2/
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Trajectory
direction near
a rest point

J Figure 12.10
Three possible trajectory
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It can be shown that (0; 0/ is the only rest point for Equations (12.7). However, any trajectory
starting on the unit circle x2 C y2 D 1 will traverse the unit circle in a periodic solution

2Named after G. F. Gause, who furthered the work of Joseph Grinnel, Alfred Lotka, and Vita Volterra in
population ecology with his book The Struggle for Existence (Baltimore: Williams & Wilkins, 1934). Actually, it
was Grinnel who first expressed the exclusion principle in 1904. For an interesting historical account, see the
article by G. Hardin, ‘‘The Competitive Exclusion Principle,’’ Science 131(1960):1291–1297.
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because in that case dy=dx D �x=y (see Problem 2 in the problem set). Moreover, if a
trajectory starts inside the circle (provided it does not start at the origin), it will spiral outward
asymptotically, getting increasingly closer to the circular path as t tends to infinity. Likewise,
if the trajectory starts outside the circular region, it will spiral inward and again approach
the circular path asymptotically. The solution x2 C y2 D 1 is called a limit cycle. The
trajectory behavior is sketched in Figure 12.11. Thus, if the system (12.7) models population
behavior for two competing species, we would have to conclude that the population levels
will eventually be periodic. This example illustrates that the results of a graphical analysis
are useful for determining the motion in the immediate vicinity of an equilibrium point
only. (Here we have assumed that negative values for x and y have a physical meaning in
Figure 12.11, or that the point .0; 0/ represents the translation of a rest point from the first
quadrant to the origin.)

J Figure 12.11
The solution x 2 C y 2 D 1
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12.212.2 PROBLEMS

1. List three important considerations that are ignored in the development of the competitive
hunter model presented in this section.

2. For the system (12.7), show that any trajectory starting on the unit circle x2 C y2 D 1
will traverse the unit circle in a periodic solution. First introduce polar coordinates and
rewrite the system as dr=dt D r.1 � r2/ and d�=dt D 1.

3. Develop a model for the growth of trout and bass, assuming that in isolation trout
demonstrate exponential decay (so that a < 0 in Equation (12.6)) and that the bass
population actually grows logistically with a population limit M . Analyze graphically
the motion in the vicinity of the rest points in your model. Is coexistence possible?

4. How might the competitive hunter model (Equations (12.6)) be validated? Include a
discussion of how the various constants a, b, m, and n might be estimated. How could
state conservation authorities use the model to ensure the survival of both species?

5. Consider the competitive hunter model defined by

dx

dt
D a.1 � x=k1/x � bxy

dy

dt
D m.1 � y=k2/y � nxy

where x represents the trout population and y the bass population.
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a. What assumptions are implicitly being made about the growth of trout and bass in
the absence of competition?

b. Interpret the constants a, b, m, n, k1, and k2 in terms of the physical problem.
c. Perform a graphical analysis and answer the following questions:

i. What are the possible equilibrium levels?
ii. Is coexistence possible?
iii. Pick several typical starting points and sketch typical trajectories in the phase

plane.
iv. Interpret the outcomes predicted by your graphical analysis in terms of the con-

stants a, b, m, n, k1, and k2.
Note:When you get to step (i), you should realize that at least five cases exist. You
will need to analyze all five cases. One case is when the lines are coincident.

6. Consider the following economicmodel: LetP be the price of a single item on themarket.
Let Q be the quantity of the item available on the market. Both P and Q are functions of
time. If we consider price and quantity as two interacting species, the following model
might be proposed:

dP

dt
D aP.b=Q � P /

dQ

dt
D cQ.fP � Q/

where a, b, c, andf are positive constants. Justify and discuss the adequacy of themodel.
a. If a D 1, b D 20;000, c D 1, and f D 30, find the equilibrium points of this system.

Classify each equilibrium point with respect to its stability, if possible. If a point
cannot be readily classified, explain why.

b. Perform a graphical stability analysis to determine what will happen to the levels of
P and Q as time increases.

c. Give an economic interpretation of the curves that determine the equilibrium points.

7. Show that the two trajectories leading to (m=n, a=b/ shown in Figure 12.8 are unique.
a. From system (12.6) derive the following equation:

dy

dx
D .m � nx/y

.a � by/x

b. Separate variables, integrate, and exponentiate to obtain

yae�by D Kxme�nx

where K is a constant of integration.
c. Let f .y/ D ya=eby and g.x/ D xm=enx . Show that f .y/ has a unique maximum of

My D .a=eb/a when y D a=b as shown in Figure 12.12. Similarly, show that g.x/
has a unique maximum Mx D .x=en/mwhen x D m=n, also shown in Figure 12.12.
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J Figure 12.12
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d. Consider what happens as .x; y/ approaches .m=n, a=b/. Take limits in part (b) as
x ! m=n and y ! a=b to show that

lim
y!a=b
x!m=n

��
ya

eby

� �
enx

xm

��
D K

or My=Mx D K. Thus, any solution trajectory that approaches .m=n; a=b/ must
satisfy

ya

eby
D

�
My

Mx

� �
xm

enx

�

e. Show that only one trajectory can approach .m=n, a=b/ from below the line y D a=b.
Pick y0 < a=b. From Figure 12.12 you can see that f .y0/ < My , which implies that

My

Mx

�
xm

enx

�
D ya

0 =eby
0 < My

This in turn implies that

xm

enx
< Mx

Figure 12.12 tells you that for g.x/ there is a unique value x0 < m=n satisfying this
last inequality. That is, for each y < a=b there is a unique value of x satisfying the
equation in part (d). Thus, there can exist only one trajectory solution approaching
.m=n, a=b/ from below, as shown in Figure 12.13.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_12_ch12_p524-568 January 23, 2013 19:40 538

538 Chapter 12 Modeling with Systems of Differential Equations

J Figure 12.13
For any y < a=b, only one
solution trajectory leads to
the rest point (m=n; a=b ).
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f. Use a similar argument to show that the solution trajectory leading to .m=n, a=b/ is
unique if y0 > a=b.

12.212.2 PROJECTS

Complete the requirements of the referenced UMAP modules (see enclosed CD).

1. ‘‘TheBudgetary Process: Incrementalism,’’ UMAP332: ‘‘TheBudgetary Process: Com-
petition,’’ UMAP 333, by Thomas W. Likens. The politics of budgeting revolve around
the allocation of limited resources to agencies and groups competing for them. UMAP
332 develops a model to explain how levels of appropriation change from one period to
the next if Congress and federal agencies determine new budgets by making marginal
adjustments in the status quo. The model assumes that the share received by one agency
will not affect or depend on the share received by another agency. In UMAP 333 the
model is refined to address the conflictive nature of politics and the necessary interde-
pendence of budgetary decisions.

2. ‘‘The Growth of Partisan Support I: Model and Estimation,’’ UMAP 304; ‘‘The Growth
of Partisan Support II:Model Analytics,’’ UMAP 305, by CarolWeitzel Kohfeld. UMAP
304 presents a simple model of political mobilization, refined to include the interaction
between supporters of a particular party and recruitable nonsupporters. UMAP 305
investigates the mathematical properties of the first-order quadratic difference equation
model. The model is tested using data from three U.S. counties. An understanding of
linear first-order difference equations with constant coefficients is required.

3. ‘‘RandomWalks: An Introduction to Stochastic Processes,’’ by Ron Barnes, UMAP 520.
This module introduces random walks by an example of a gambling game. It develops
and solves the associated finite difference equation, while introducing the concept of
expected gain. Generalizations toMarkov chains and continuous processes are discussed.
Applications in the life sciences and genetics are noted.

12.2 Further Reading
Tuchinsky, Philip M.Man in Competition with the Spruce Budworm, UMAP Expository Monograph.

The population of tiny caterpillars periodically explodes in the evergreen forests of eastern Canada
and Maine. They devour the trees’ needles and cause great damage to forests that are central to
the economy of the region. The province of New Brunswick is using mathematical models of
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the budworm–forest interaction in an effort to plan for and control the damage. The monograph
surveys the ecological situation and examines the computer simulation and differential equation
models that are currently in use.

12.312.3 A Predator--Prey Model
In this section we study a model of population growth of two species in which one species
is the primary food source for the other. One example of such a situation occurs in the
Southern Ocean, where the baleen whales eat the fish known as the Antarctic krill, Eu-
phausia superboa, as their principal food source. Another example is wolves and rabbits in
a closed forest: the wolves eat the rabbits for their principal food source, and the rabbits eat
vegetation in the forest. Still other examples include sea otters as predators and abalone as
prey and the ladybird beetle, Novius cardinalis, as predator and the cottony cushion insect,
Icerya purchasi, as prey.

Problem Identification Let’s take a closer look at the situation of the baleen whales
and Antarctic krill. The whales eat the krill, and the krill live on the plankton in the sea.
If the whales eat so many krill that the krill cease to be abundant, the food supply of
the whales is greatly reduced. Then the whales will starve or leave the area in search of
a new supply of krill. As the population of baleen whales dwindles, the krill population
makes a comeback because not so many of them are being eaten. As the krill population
increases, the food supply for the whales grows and, consequently, so does the baleen
whale population. Also, more baleen whales are eating increasingly more krill again. In
the pristine environment, does this cycle continue indefinitely or does one of the species
eventually die out? The baleen whales in the Southern Ocean have been overexploited to the
extent that their current population is approximately one-sixth its estimated pristine level.
Thus, there appears to be a surplus of Antarctic krill. (Already, approximately 100,000 tons
of krill are being harvested annually.) What effect does exploitation of the whales have on
the balance between the whale and krill populations? What are the implications that a krill
fishery may hold for the depleted stocks of baleen whales and for other species, such as
seabirds, penguins, and fish, that depend on krill for their main source of food? The ability
to answer such questions is important to management of multispecies fisheries. Let’s see
what answers can be obtained from a graphical modeling approach.

Assumptions Let x.t/ denote the Antarctic krill population at any time t , and let y.t/
denote the population of baleen whales in the Southern Ocean. The level of the krill popu-
lation depends on a number of factors, including the ability of the ocean to support them,
the existence of competitors for the plankton they ingest, and the presence and levels of
predators. As a rough first model, let’s start by assuming that the ocean can support an
unlimited number of krill so that

dx

dt
D ax for a > 0

(Later we may want to refine the model with a limited growth assumption. This refinement
is presented in UMAP 610 described in the 12.1 Projects section.) Second, assume the krill
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are eaten primarily by the baleen whales (so neglect any other predators). Then the growth
rate of the krill is diminished in a way that is proportional to the number of interactions
between them and the baleen whales. One interaction assumption leads to the differential
equation

dx

dt
D ax � bxy D .a � by/x (12.8)

Notice that the intrinsic growth rate k D a�by decreases as the level of the baleen whale
population increases. The constants a and b indicate the degrees of self-regulation of the krill
population and the predatoriness of the baleen whales, respectively. These coefficients must
be determined experimentally or from historical data. So far, Equation (12.8) governing
the growth of the krill population looks just like either of the equations in the competitive
hunter model presented in the preceding section.

Next, consider the baleen whale population y.t/. In the absence of krill the whales
have no food, so we will assume that their population declines at a rate proportional to their
numbers. This assumption produces the exponential decay equation

dy

dt
D �my for m > 0

However, in the presence of krill the baleenwhale population increases at a rate proportional
to the interactions between the whales and their krill food supply. Thus, the preceding
equation is modified to give

dy

dt
D �my C nxy D .�m C nx/y (12.9)

Notice from Equation (12.9) that the intrinsic growth rate r D �m C nx of the whales
increases as the level of the krill population increases. The positive coefficients m and
n would be determined experimentally or from historical data. Putting results (12.8) and
(12.9) together gives the following autonomous system of differential equations for our
predator–prey model:

dx

dt
D .a � by/x (12.10)

dy

dt
D .�m C nx/y

where x.0/ D x0, y.0/ D y0, and a, b, m, and n are all positive constants. The system
(12.10) governs the interaction of the baleen whales and Antarctic krill populations under
our unlimited growth assumptions and in the absence of other competitors and predators.

Graphical Analysis of the Model Let’s determine whether the krill and whale popula-
tions reach equilibrium levels. The rest points or equilibrium levels occur when dx=dt D
dy=dt D 0. Setting the right side of Equations (12.10) equal to zero and solving for x and
y simultaneously give the rest points .x; y/ D .0; 0/ and .x; y/ D .m=n; a=b/. Along the
vertical line x D m=n and the x axis in the phase plane, the growth dy=dt in the baleen
whale population is zero; along the horizontal line y D a=b and the y axis, the growth
dx=dt in the krill population is zero. These features are depicted in Figure 12.14.
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J Figure 12.14
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Because the values for the constants a, b, m, and n in system (12.10) will be only
estimates, we need to investigate the behavior of the solution trajectories near the two rest
points .0; 0/ and .m=n; a=b/. Thus, we analyze the signs of dx=dt and dy=dt in the phase
plane. In system (12.10), the vertical line x D m=n divides the phase plane into two half-
planes. In the left half-plane dy=dt is negative, and in the right half-plane it is positive. In a
similar way, the horizontal line y D a=b determines two half-planes. In the upper half-plane
dx=dt is negative, and in the lower half-plane it is positive.

The directions of the associated trajectories are indicated in Figure 12.15. Along the
y axis, motion must be vertical and toward the rest point .0; 0/, and along the x axis, motion
must be horizontal and away from the rest point .0; 0/.

J Figure 12.15
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From Figure 12.15 you can see that the rest point .0; 0/ is unstable. Entrance to the rest
point is along the line x D 0, where there is no krill population. Thus, the whale population
declines to zero in the absence of its primary food supply. All other trajectories recede from
the rest point. The rest point .m=n, a=b/ is more complicated to analyze. The information
the figure gives is insufficient to distinguish between the three possible motions shown
in Figure 12.10 of the preceding section. We cannot tell whether the motion is periodic,
asymptotically stable, or unstable. Thus, we must perform a further analysis.

An Analytic Solution of the Model Because the number of baleen whales depends on
the number of Antarctic krill available for food, we assume that y is a function of x. Then
from the chain rule for derivatives, we have

dy

dx
D dy=dt

dx=dt
or

dy

dx
D .�m C nx/y

.a � by/x
(12.11)
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Equation (12.11) is a separable first-order differential equation and may be rewritten as
�

a

y
� b

�
dy D

�
n � m

x

�
dx (12.12)

Integration of each side of Equation (12.12) yields

a lny � by D nx � m ln x C k1

or

a lny C m ln x � by � nx D k1

where k1 is a constant.
Using properties of the natural logarithm and exponential functions, this last equation

can be rewritten as

yaxm

ebyCnx
D K (12.13)

where K is a constant. Equation (12.13) defines the solution trajectories in the phase plane.
We now show that these trajectories are closed and represent periodic motion.

Periodic Predator–Prey Trajectories Equation (12.13) can be rewritten as
�

ya

eby

�
D K

�
enx

xm

�
(12.14)

Let’s determine the behavior of the function f .y/ D ya=eby . Using the first derivative test
(see Problem 1 in the problem set), we can easily show that f .y/ has a relative maximum
at y D a=b and no other critical points. For simplicity of notation, call this maximum
value My . Moreover, f .0/ D 0, and from 1’Hôpital’s rule, f .y/ approaches 0 as y tends
to infinity. Similar arguments apply to the function g.x/ D xm=enx , which achieves its
maximum value Mx at x D m=n. The graphs of the functions f and g are depicted in
Figure 12.16.
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From Figure 12.16, the largest value for yae�byxme�nx is MyMx . That is, Equa-
tion (12.14) has no solutions if K > MyMx and exactly one solution, x D m=n and
y D a=b, when K D MyMx . Let’s consider what happens when K < MyMx .

Suppose K D sMy;where s < Mx is a positive constant. Then the equation

xme�nx D s
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J Figure 12.17
The equation xme�nx D s
has exactly two solutions
for s < Mx .

m–
n

g(x)

x

xme–nx

Mx

xm xM

s

©
 C

en
ga

ge
 Le

ar
ni

ng

has exactly two solutions: xm < m=n and xM > m=n (Figure 12.17). Now if x < xm, then
xme�nx < s so that senxx�m > 1 and

f .y/ D yae�by D Kenxx�m D sMyenxx�m > My

Therefore, there is no solution for y in Equation (12.14) when x < xm. Likewise, there is
no solution when x > xM . If x D xm or x D xM , Equation (12.14) has exactly the one
solution y D a=b.

Finally, if x lies between xm and xM , Equation (12.14) has exactly two solutions. The
smaller solution y1.x/ is less than a=b, and the larger solution y2.x/ is greater than a=b.
This situation is depicted in Figure 12.18.Moreover, as x approaches either xm or xM , f .y/
approaches My so that both y1.x/ and y2.x/ approach a=b. It follows that the trajectories
defined by Equation (12.14) are periodic and have the form depicted in Figure 12.19.

J Figure 12.18
When xm < x < xM , there
are exactly two solutions for
y in Equation (12.14).
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J Figure 12.19
Trajectories in the vicinity of
the rest point (m=n; a=b )
are periodic.
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Model Interpretation What conclusions can be drawn from the trajectories in Fig-
ure 12.19? First, because the trajectories are closed curves, they predict that under the
assumptions of our Model (12.10), neither the baleen whales nor the Antarctic krill will
become extinct. (Remember, themodel is based on the pristine situation.) The second obser-
vation is that along a single trajectory the two populations fluctuate between their maximum
and minimum values. That is, starting with populations in the region where x > m=n and
y > a=b, the krill population will decline and the whale population will increase until
the krill population reaches the level x D m=n, at which point the whale population also
begins to decline. Both populations continue to decline until the whale population reaches
the level y D a=b and the krill population begins to increase, and so on, counterclockwise
around the trajectory. Recall from our discussion in Section 12.1 that the trajectories never
cross. A sketch of the two population curves is shown in Figure 12.20. In the figure, we
can see that the krill population fluctuates between its maximum and minimum values over
one complete cycle. Notice that when the krill are plentiful, the whale population has its
maximum rate of increase but that the whale population reaches its maximum value after
the krill population is on the decline. The predator lags behind the prey in a cyclic fashion.

J Figure 12.20
The whale population lags
behind the krill population
as both populations
fluctuate cyclically between
their maximum and
minimum values.
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Effects of Harvesting For given initial population levels x.0/ D x0 and y.0/ D y0, the
whale and krill populations will fluctuate with time around one of the closed trajectories
depicted in Figure 12.19. Let T denote the time it takes to complete one full cycle and return
to the starting point. The average levels of the krill and baleen whale populations over the
time cycle are defined, respectively, by the integrals

x D 1

T

Z T

0

x.t/ dt and y D 1

T

Z T

0

y.t/ dt

Now, from Equation (12.8)
�

1

x

� �
dx

dt

�
D a � by
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so that integration of both sides from t D 0 to t D T leads to
Z T

0

�
1

x

� �
dx

dt

�
dt D

Z T

0

.a � by/ dt

or

ln x.T / � ln x.0/ D aT � b

Z T

0

y.t/ dt

Because of the periodicity of the trajectory, x.T / D x.0/, this last equation gives the average
value

y D a

b

In an analogous manner, it can be shown that

x D m

n

(see Problem 2 in the problem set). Therefore, the average levels of the predator and
prey populations are in fact their equilibrium levels. Let’s see what this means in terms of
harvesting krill.

Let’s assume that the effect of fishing for krill is to decrease its population level at a
rate rx.t/. The constant r indicates the intensity of fishing and includes such factors as the
number of fishing vessels at sea and the number of crew members on those vessels casting
nets for krill. Because less food is now available for the baleen whales, assume the whale
population also decreases at a rate ry.t/. Incorporating these fishing assumptions into our
model, we obtain the refined model

dx

dt
D .a � by/x � rx D Œ.a � r/ � by� x

(12.15)
dy

dt
D .�m C nx/y � ry D Œ�.m C r/ C nx� y

The autonomous system (12.15) is of the same form as Equations (12.10) (provided that
a � r > 0/ with a replaced by a � r and m replaced by m C r . Thus, the new average
population levels will be

x D m C r

n
and y D a � r

b

Consequently, a moderate amount of harvesting krill (so that r < a/ actually increases
the average level of krill and decreases the average baleen whale population (under our
assumptions for the model). The increase in krill population is beneficial to other species
in the Southern Ocean (seals, seabirds, penguins, and fish) that depend on the krill as their
main food source. The fact that some fishing increases the number of krill is known as
Volterra’s principle. The autonomous system (12.10) was first proposed by Lotka (1925)
and Volterra (1931) as a simple model of predator–prey interaction.

The Lotka–Volterra model can be modified to reflect the situation in which both the
predator and the prey are diminished by some kind of depleting force, such as the application
of insecticide treatments that destroy both the insect predator and its insect prey. An example
is given in Problem 3 in the problem set.
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Some biologists and ecologists argue that the Lotka–Volterra Model (12.10) is un-
realistic because the system is not asymptotically stable, whereas most observable natural
predator–prey systems tend to equilibrium levels over time. Nevertheless, regular population
cycles, as suggested by the trajectories in Figure 12.19, do occur in nature. Some scientists
have proposed models other than the Lotka–Volterra model that do exhibit oscillations that
are asymptotically stable (so that the trajectories approach equilibrium solutions). One such
model is given by

dx

dt
D ax C bxy � rx2

dy

dt
D �my C nxy � sy2

In this last autonomous system, the term rx2 indicates the degree of internal competition
of the prey for their limited resource (such as food and space), and the term sy2 indicates
the degree of competition among the predators for the finite amount of available prey. An
analysis of this model is more difficult than that presented for the Lotka–Volterra model, but
it can be shown that the trajectories of the model are not periodic and tend to equilibrium
levels. The constants r and s are positive and would be determined by experimentation or
historical data.

12.312.3 PROBLEMS

1. Apply the first and second derivative tests to the function f .y/ D ya=eby to show that
y D a=b is a unique critical point that yields the relative maximum f .a=b/. Show also
that f .y/ approaches zero as y tends to infinity.

2. Derive the result that the average value x of the prey population modeled by the Lotka–
Volterra system (12.10) is given by the population level m=n.

3. In 1868 the accidental introduction into the United States of the cottony cushion insect
(Icerya purchasi) from Australia threatened to destroy the American citrus industry.
To counteract this situation, a natural Australian predator, a ladybird beetle (Novius
cardinalis) was imported. The beetles kept the scale insects down to a relatively low
level. When DDT was discovered to kill scale insects, farmers applied it in the hope of
reducing even further the scale insect population. However, DDT turned out to be fatal
to the beetle as well, and the overall effect of using the insecticide was to increase the
numbers of the scale insect.

Modify the Lotka–Volterra model to reflect a predator–prey system of two insect
species where farmers apply (on a continuing basis) an insecticide that destroys both
the insect predator and the insect prey at a common rate proportional to the numbers
present. What conclusions do you reach concerning the effects of the application of the
insecticide? Use graphical analysis to determine the effect of using the insecticide once
on an irregular basis.

4. In a 1969 study, E. R. Leigh concluded that the fluctuations in the numbers of Canadian
lynx and its primary food source, the hare, trapped by the Hudson’s Bay Company
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between 1847 and 1903 were periodic. The actual population levels of both species
differed greatly from the predicted population levels obtained from the Lotka–Volterra
predator–prey model.

Use the entire model-building process to modify the Lotka–Volterra model to arrive
at a more realistic model for the growth rates of both species. Answer the following
questions at the appropriate times in the model-building process:
a. How have you modified the basic assumptions of the predator–prey model?
b. Why are your modifications an improvement to the basic model?
c. What are the equilibrium points for your model?
d. Is it possible to classify each equilibrium point as either periodic, asymptotically

stable, or unstable? If so, classify, them.
e. Based on your equilibrium analysis, what values will the population levels of lynx

and hare approach as t tends to infinity?
f. Howwould you use your revised model to suggest hunting policies for Canadian lynx

and hare?Hint: You are introducing a second predator—the human—into the system.

5. Consider two species whose survival depends on their mutual cooperation. Let’s take as
an example a species of bee that feeds primarily on the nectar of one plant species and
simultaneously pollinates that plant. One simple model of this mutualism is given by
the autonomous system

dx

dt
D �ax C bxy

dy

dt
D �my C nxy

a. What assumptions are implicitly being made about the growth of each species in the
absence of cooperation?

b. Interpret the constants a, b, m, and n in terms of the physical problem.
c. What are the equilibrium levels?
d. Perform a graphical analysis and indicate the trajectory directions in the phase plane.
e. Find an analytic solution and sketch typical trajectories in the phase plane.
f. Interpret the outcomes predicted by your graphical analysis. Do you believe themodel

is realistic? Why?

12.312.3 PROJECTS

1. Complete the requirements of the UMAPmodule (see enclosed CD), ‘‘Graphical Analy-
sis of Some Difference Equations in Biology,’’ by Martin Eisen, UMAP 553. Difference
equations model the growth of many biological populations. This module predicts the
behavior of the solutions to certain equations by graphical techniques.

2. Prepare a summary of one of the papers by May (or May et al.) listed in Further Reading
for this section.
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12.3 Further Reading
Clark, Colin W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources.

New York: Wiley, 1976.
May, R. M. Stability and Complexity in Model Ecosystems. Monographs in Population Biology VI.

Princeton, NJ: Princeton University Press, 1973.
May, R. M., ed. Theoretical Ecology: Principles and Applications. Philadelphia: Saunders, 1976.
May, R. M. Stability and Complexity in Model Ecosystems. Princeton, NJ: Princeton University Press,

2001.
May, R. M., J. R. Beddington, C. W. Clark, S. J. Holt, & R. M. Lewis. ‘‘Management of Multispecies

Fisheries.’’ Science 205 (July 1979): 267–277.

12.412.4 Two Military Examples
In Section 1.4, we investigated the Battle of Trafalgar in 1805 as a system of difference
equations. Here, we study twomilitary forces in combat as a system of differential equations.
Our graphical analysis then reveals the condition for which one of the forces may eventually
win out over the other.

EXAMPLE 1 Lanchester Combat Models

Consider the situation of combat between two homogeneous forces: a homogeneous X
force (e.g., tanks) opposed by another homogeneous Y force (e.g., antitank weapons). We
want to know if one force will eventually win out over the other, or will the combat end in
a draw? Other questions of interest include the following: How do the force levels decrease
over time in battle? How many survivors will the winner have? How long will the battle
last? How do changes in the initial force levels and weapon-system parameters affect the
battle’s outcome? In this example, we consider one basic combat model and several of its
refinements.

Assumptions Let x.t/ and y.t/ denote the strengths of the forces X and Y at time t ,
respectively. Usually t is measured in hours or days from the beginning of the combat.
Let’s examine what is meant by the strengths of the two forces X and Y . The strength x.t/,
for example, includes a number of factors. If X is a homogeneous tank force, its strength
depends on the number of tanks in operation, the level of technology used in the tank design,
the quality of workmanship in the manufacturing process, the level of training and the skills
of the individuals operating the tanks, and so forth. For our purposes, let’s assume that the
strength x.t/ is simply the number of tanks in operation at time t . Likewise, the strength
y.t/ is the number of antitank weapons operational at time t .

In the actual state of affairs, the numbers x.t/ and y.t/ are nonnegative integers. How-
ever, it is convenient to idealize the situation and assume that x.t/ and y.t/ are continuous
functions of time. For instance, if there are 500 tanks at 1400 hours (2 o’clock in the
afternoon in military time) and 487 tanks at 1500 hours, then it is reasonable to assume that
there are 497:4 tanks at 1412 hours (if we perform a linear interpolation between the data
points). That is, 2:6 of the 13 tanks lost in the 1 hr of combat were lost in the first 12 min.
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We also assume that x.t/ and y.t/ are differentiable functions of t so that they are smooth
functions without any corners or cusps on their graphs. These idealizations enable us to
model the strength functions by differential equations.

What can we assume about how the force levels change as a result of combat? For
the basic combat model, let’s assume that the combat casualty rate for the X force is
proportional to the strength of the Y force. Other factors affect the change in the X force
over time, such as reinforcements of the force by bringing in additional tanks (or troops
if it is a troop force), tank losses due to mechanical or electronic failures, or losses due to
operator errors or desertions. (Can you name some additional factors?) We will ignore all
these other factors in our initial model so that the rate of change in x.t/ is

dx

dt
D �ay; a > 0 (12.16)

The positive constant a in Equation (12.16) is called the antitankweapon kill rate or attrition-
rate coefficient and reflects the degree to which a single antitank weapon can destroy tanks.
Thus, we begin our analysis with the simplest assumption: that the loss rate is proportional
to the number of firers. Later we assume an interaction is necessary between firer and target
(the firer must locate the target before firing), and we refine our model accordingly. In the
refined model the attrition-rate coefficient is proportional to the number of targets.

Under similar assumptions, the rate of change in the Y force is given by

dy

dt
D �bx; b > 0 (12.17)

Here, the constant b indicates the degree towhich a single tank can destroy antitankweapons.
The autonomous system given by Equations (12.16) and (12.17), together with the initial
strength levels x.0/ D x0 and y.0/ D y0, is called a Lanchester-type combat model
after F. W. Lanchester, who investigated air combat situations during World War I. Equa-
tions (12.16) and (12.17) constitute our basic model subject to the assumptions we have
made. We assume throughout that x � 0 and y � 0 because negative force levels have no
physical meaning.

Analysis of the Model Setting the right sides of Equations (12.16) and (12.17) equal to
zero, we see that .0; 0/ is a rest point for the basic combat model. The trajectory directions
in the phase plane are determined from the observations that dx=dt < 0 and dy=dt < 0,
when x > 0 and y > 0. Moreover, if x D 0, then dy=dt D 0 (and we assume also
that dx=dt D 0 because x < 0 has no physical meaning). These considerations lead to
the trajectory directions depicted in Figure 12.21. Note that our assumptions imply that a

J Figure 12.21
The rest point (0; 0) for the
basic Lanchester combat
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trajectory terminates when it reaches either coordinate axis. (Otherwise, the rest point .0; 0/
would be unstable.)

It is easy to find an analytic solution to the basic model. From the chain rule

dy

dx
D dy=dt

dx=dt

and substitution from Equations (12.16) and (12.17), we get

dy

dx
D �bx

�ay

Separating the variables in this last equation yields

�ay dy D �bx dx (12.18)

Integration of each side of Equation (12.18) and employment of the initial force levels
x.0/ D x0 and y.0/ D y0 produces the Lanchester square law model

a.y2 � y2
0/ D b.x2 � x2

0/ (12.19)

Setting C D ay2
0 � bx2

0 , we obtain the equation

ay2 � bx2 D C (12.20)

Typical trajectories in the phase plane represented by Equation (12.20) are depicted in
Figure 12:22. The trajectories for C 6D 0 are hyperbolas, and when C D 0, the trajectory
is the straight line y D

p
b=a x. When C < 0, the trajectory intersects the x axis at

x D
p

�C=b ; then theX (tank) force wins because the Y force has been totally eliminated.
On the other hand, if C > 0, the Y force wins with a final strength level of y D

p
C=a.

These considerations are shown in Figure 12:22.

J Figure 12.22
Trajectories of the basic
Lanchester combat model:
the trajectories are
hyperbolas satisfying the
Lanchester square law
(12.19).
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Let’s investigate the situation in which the Y (antitank) force wins. Then the constant
C must be positive, so

�
y0

x0

�2

>
b

a
(12.21)
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The inequality (12.21) gives a necessary and sufficient condition that the Y force wins
under the assumptions of our model (e.g., so that reinforcements are not permitted). From
the inequality we can see that a doubling of the initial Y force level results in a fourfold
advantage for that force, assuming the X force remains at the same initial level x0 for
constants a and b. This means Country X must increase b (its technology) by a factor of 4
to keep pace with the increase in the size of Country Y ’s force if the strength x0 is kept at
the same level. Figure 12:23 depicts a typical graph showing the force level curves x.t/ and
y.t/ when the inequality (12.21) is satisfied. Observe from the figure that it is not necessary
for the initial Y force level y0 to exceed the level x0 of the X force to ensure victory for Y .
The crucial relationship is given by the inequality (12.21).

J Figure 12.23
Force level curves x (t ) and
y (t ) for the basic Lanchester
combat model when C > 0
and the Y force wins
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The model given by Equations (12.16) and (12.17) can be converted to a single
second-order differential equation in the dependent variable y as follows: Differentiate
Equation (12.17) to obtain

d 2y

dt2
D �b

dx

dt

Then substitute Equation (12.16) into this last equation to get

d 2y

dt2
D aby

or

d 2y

dt2
� aby D 0 (12.22)

In the problem set you are asked to verify that the function

y.t/ D y0 cosh
p

ab t � x0

p
a=b sinh

p
ab t (12.23)

satisfies the differential Equation (12.22) subject to the condition that y.0/ D y0. Similarly,
the solution for the X force level is

x.t/ D x0 cosh
p

ab t � y0

p
a=b sinh

p
ab t (12.24)

subject to the initial level x.0/ D x0.
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Equation (12.23) can be written in the more revealing form

y.t/

y0

D cosh
p

ab t �
�

x0

y0

� r
a

b
sinh

p
ab t (12.25)

Expression (12.25) states that Y ’s current force level divided by the initial one—that is,
the normalized force level—depends on just two parameters: a dimensionless engagement
parameter E D .x0=y0/

p
a=b and a time parameter T D

p
ab t . The constant

p
ab repre-

sents the intensity of battle and controls how quickly the battle is driven to its conclusion.
The ratio a=b represents the relative effectiveness of individual combatants on the two
opposing sides.3

Refinements of the Basic Lanchester CombatModel In the basic Lanchester combat
model

dx

dt
D �ay

(12.26)
dy

dt
D �bx

it has been assumed that the single-weapon attrition rates a and b are constant over time. In
many circumstances, however, the X force and the Y force are changing positions, and the
weapons’ effectiveness depends on the distance between firer and target. Thus, a D a.t/
and b D b.t/ are time dependent. In that case, theModel (12.26) is no longer an autonomous
system, and it is much more difficult to extract information from the model analytically.

In some situations, the single-weapon attrition rate a depends not only on time but
also on the number of targets x. This situation occurs, for example, when target detection
depends on the number of targets. In this case, a D a.t; x/ is a function of time as well as
of the number of targets. The model now becomes analytically intractable, but numerical
methods can be used to generate force-level results.

We can further enrich the basic Model (12.26). For example, if a D a.t; x=y/, then
the single-weapon attrition rate depends on time and on the force ratio x=y. In still another
operational circumstance, it is possible that a D a.t; x; y/ so that the attrition rate coefficient
depends on time, the number of targets, and the number of firers.

When a weapon system uses area fire and enemy targets defend a constant area, the
corresponding Lanchester attrition-rate coefficients depend on the number of targets. Then
the basic model becomes

dx

dt
D �gxy

(12.27)
dy

dt
D �hyx

where g and h are positive constants, and x.0/ D x0 and y.0/ D y0 are the initial force
levels. Assuming there are no operational losses and no reinforcements on either side,
Model (12.27) reflects combat between two guerilla forces.

3For further study, see the excellent paper ‘‘An Introduction to Lanchester-Type Models of Warfare,’’ by James
G. Taylor, Naval Postgraduate School, Monterey, California (1993).
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System (12.27) is easily solvable. From the chain rule we obtain

dy

dx
D h

g

and separation of variables leads to the equation

g dy D h dx

Integration then yields the linear combat law

g.y � y0/ D h.x � x0/ (12.28)

Setting K D gy0 � hx0, we obtain the equation

gy � hx D K (12.29)

If K > 0, the Y force wins; if K < 0, the X force wins. The trajectories for Model (12.27)
are depicted in Figure 12:24. Notice from Equation (12.29) that the Y force wins provided

y0

x0

>
h

g
(12.30)

In this case, a doubling of the initial Y force simply doubles the advantage of that force,
assuming that the X force retains its same initial level x0.

J Figure 12.24
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It can be shown (see Problem 3 in the problem set) that the X force level satisfying
Model (12.27) is given by

x.t/ D




x0

�
hx0 � gy0

hx0 � gy0e�.hx0�gy0/t

�
for hx0 6D gy0

x0

1 C hx0t
for hx0 D gy0

(12.31)

A similar result holds for the Y force level.
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Let’s consider a few more simple, but natural, enrichments to the basic homogeneous-
force combatModel (12.26). For example, if theX force were to continuously commit more
combatants to the battle at the rate q.t/ � 0; then the rate of change of the X force level
would become

dx

dt
D �ay C q.t/ (12.32)

Here, q.t/ < 0 would mean the continuous withdrawal of forces. Now what might the
function q.t/ look like? First, we would observe that replacements are drawn from a limited
pool of combatants and weapon stocks. Then we could assume that these resources are
committed to the battle at a constant rate m for as long as they last. If R denotes the
total number of reserves that can commit to battle, these considerations translate into the
submodel

q.t/ D




m if 0 � t � R

m

0 if t >
R

m

(12.33)

Another consideration is that operational losses may occur. By operational losses, we mean
those due to noncombat mishaps, such as disease, desertions, and breakdown of machinery.
Many of the factors involved in the operational loss rate, such as psychological factors
inherent in desertions, would be difficult to identify precisely. However, we might assume
that the operational loss rate is proportional to the strength of the force. In that case, also
assuming there are reinforcements, the rate of change of the X force level would be

dx

dt
D �cx � ay C q.t/ (12.34)

where a and c are positive constants and q.t/ � 0. Similar considerations apply to the Y
force. J J J

EXAMPLE 2 Economic Aspects of an Arms Race

In this example we investigate the impact of a two-country arms race on their defense
spending.

Problem Identification Consider two countries engaged in an arms race. Let’s attempt to
assess qualitatively the effect of an arms race on the level of defense spending. Specifically,
we are interested in knowing whether the arms race will lead to uncontrolled spending
and eventually be dominated by the country with the greatest economic assets. Or will
an equilibrium level of spending eventually be reached in which each country spends a
steady-state amount on defense?

Assumptions Define the variable x as the annual defense expenditure for Country 1 and
the variable y as the annual defense expenditure for Country 2. We assume that each nation
is ready to defend itself and considers a defense budget to be necessary. Let’s examine the
situation from the point of view of Country 1. Its rate of spending depends on several factors.
In the absence of any spending on the part of Country 2 or any grievance with that country,
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it is reasonable to assume that the defense spending would decrease at a rate proportional
to the amount being spent. The proportionality constant is indicative of the requirement to
maintain the current arsenal (a percentage of the current spending) and acts as an economic
restraint on defense spending (in the sense that government monies need to be spent in other
areas, such as health and education). Thus,

dx

dt
D �ax for a > 0

Qualitatively, this equation states there will be no growth in defense spending. Now what
happens when Country 1 perceives Country 2 is engaging in defense spending? Coun-
try 1 will feel compelled to increase its defense budget to offset the defense buildup of
its adversary and shore up its own security. Let’s assume that the rate of increase for Coun-
try 1 is proportional to the amount Country 2 spends, where the proportionality coefficient
is a measure of the perceived effectiveness of Country 2’s weapons. This assumption seems
reasonable, at least up to a point. As Country 2 adds weapons to its arsenal, Country 1 will
perceive a need to add weapons to its own arsenal, where the numbers added are based on
the assessment of the effectiveness of Country 2’s weapons. Thus, the previous equation is
modified to become

dx

dt
D �ax C by

We are assuming b is a constant, although this assumption is somewhat unrealistic.
We would expect some kind of diminishing return of perceived effectiveness as Country 2
continues to add weapons. That is, if Country 2 has 100 weapons, Country 1 might perceive
the need to add 40 weapons. However, if Country 2 adds 200 weapons to its arsenal,
Country 1 might perceive the need to add only 75 weapons. Thus, realistically, the constant
b is more likely to be a decreasing function of y (and, in some instances, might be an
increasing function). Later, we may wish to refine our model to account for this probable
diminishing return.

Finally, let’s add a constant term to reflect any underlying grievance felt by Country 1
toward Country 2. That is, even if the level of spending by both countries were zero,
Country 1 would still feel compelled to be armed against Country 2, perhaps because of a
fear of future aggressive action on the part of its adversary. If y D 0, then c �ax represents
a growth in defense spending for Country 1, and until c D ax, growth will continue to
achieve deterrence. These assumptions lead to the differential equation

dx

dt
D �ax C by C c

where a; b, and c are nonnegative constants. The constant a indicates an economic restraint
on defense spending, b indicates the intensity of rivalry with Country 2, and c indicates the
deterrent or grievance factor. Although we are assuming c to be constant, it is more likely
to be a function of both the variables x and y.

An entirely similar argument for Country 2 yields the differential equation

dy

dt
D mx � ny C p

where m, n, and p are nonnegative constants and are interpreted the same way as b, a, and
c, respectively. The preceding equations constitute our model for arms expenditures.
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Graphical Analysis of theModel Weare interested inwhether the defense expenditures
reach equilibrium levels. If so, we will know the arms race will not lead to uncontrolled
spending. This situation means that both defense budgets must stop growing, so dx=dt D 0
and dy=dt D 0. Thus, we seek the rest points, or equilibrium points, of our model.

First, consider the case in which neither country has a grievance against the other or
perceives any need for deterrence. Then c D 0 and p D 0, so our model becomes

dx

dt
D �ax C by

(12.35)
dy

dt
D mx � ny

For the autonomous system (12.35), (x; y/ D .0; 0/ is a rest point. In this state there are no
defense expenditures on either side and the two countries live in permanent peace with all
conflicts resolved through nonmilitary means. (Such a peaceful state has existed between
the United States and Canada since 1817.) However, if grievances that are not resolved to
the mutual satisfaction of both sides do arise, the two countries will feel compelled to arm,
leading to the equations

dx

dt
D c and

dy

dt
D p

Thus, (x, y) will not remain at the rest point .0; 0/ if c and p are positive, so the rest point
is unstable.

Now consider our general model

dx

dt
D �ax C by C c

(12.36)
dy

dt
D mx � ny C p

Setting the right sides equal to zero yields the linear system

ax � by D c
(12.37)

mx � ny D �p

Each of the equations in (12.37) represents a straight line in the phase plane. If the
determinant of the coefficients, bm � an, is not equal to zero, then these two straight lines
intersect at a unique rest point, denoted by .X; Y /. It is easy to solve Equations (12.37) to
obtain this rest point:

X D bp C cn

an � bm

Y D ap C cm

an � bm

Assume that an � bm > 0, so the rest point .X; Y / lies in the first quadrant of the phase
plane. The situation is depicted in Figure 12.25. Shown in the figure are four regions labeled
A–D determined by the two intersecting lines. Let’s examine the trajectory directions in
each of these regions.

Any point .x; y/ in regionA lies above both of the lines represented by Equations (12.37),
so ny � mx � p > 0 and by � ax C c > 0. It follows from Equations (12.36) that for
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J Figure 12.25
If an � bm > 0, the Model
(12.36) has a unique rest
point (X;Y ) in the first
quadrant. Along the line
by D ax � c , dx =dt D 0;
along the line ny D mx C p,
dy =dt D 0.
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region A, dy=dt < 0 and dx=dt > 0. For a point .x; y/ in region B, ny �mx �p > 0 and
by �ax Cc < 0 so that dy=dt < 0 and dx=dt < 0. Similarly, in region C, dy=dt > 0 and
dx=dt > 0; and in region D, dy=dt > 0 and dx=dt < 0. These features are suggested in
Figure 12.26.

J Figure 12.26
Composite graphical
analysis of the trajectory
directions in the four
regions determined by
the intersecting lines
(Equations 12.37)
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An analysis of the trajectory motion in the vicinity of the rest point .X; Y / in Fig-
ure 12.26 reveals that every trajectory in the phase plane approaches the rest point. Thus,
under our assumption that a=b > m=n, so the intersection point .X; Y / lies in the first
quadrant, the rest point .X; Y / is stable. Therefore, we conclude that defense spending for
both countries will approach equilibrium (steady-state) levels of x D X and y D Y . (In the
problems for this section you are asked to investigate the case in which a=b < m=n; you
will see that uncontrolled spending occurs.)

Let’s examine the meaning of the inequality a=b > m=n (which is equivalent to
an � bm > 0/. From the point of view of Country 1, the economic restraint a compared
to the perceived intensity of rivalry b must be high against some specific ratio m=n for
Country 2. The constant b has to do with perception and is, in part, a psychological factor.
If b is lowered, the chances for the rest point to lie in the first quadrant are increased,
with the beneficial result of steady-state levels of defense spending eventually likely for
both countries. The value of our model is not in its capacity to make predictions but in its
clarification of what can happen under different conditions regulating the parameters a, b,
c, m, n, and p in the model. Certainly, we can see that it is important for nations to reduce
tension levels and perceived threats through mutual cooperation, respect, and disarmament
policies if a runaway arms race is to be avoided. Moreover, a permanent peace can be
achieved only if grievances are resolved to the mutual satisfaction of each country.J J J
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12.412.4 PROBLEMS

1. Verify that the Function (12.23) satisfies the differential Equation (12.22).
a. Solve Equation (12.29) for y and substitute the results into the differential equation

dx=dt D �gxy from Model (12.27).
b. Separate the variables in the differential equation resulting from part (a) and integrate

using partial fractions to obtain the force level given by Equation (12.31).

2. In the basic Lanchester model (12.26), assume the two forces are of equal effectiveness,
so a D b. TheY force initially has 50,000 soldiers. There are two geographically separate
units of 40,000 and 30,000 soldiers that make up the X force. Use the basic model and
result (12.20) to show that if the commander of the Y force fights each of the X units
separately, he can bring about a draw.

3. LetX denote a guerilla force andY denote a conventional force. The autonomous system

dx

dt
D �gxy

dy

dt
D �bx

is a Lanchestrian model for conventional–guerilla combat in which there are no opera-
tional loss rates and no reinforcements.
a. Discuss the assumptions and relationships necessary to justify the model. Does the

model seem reasonable?
b. Solve the system and obtain the parabolic law

gy2 D 2bx C M

where M D gy2
0 � 2bx0.

c. What condition must be satisfied by the initial force levels x0 and y0 for the con-
ventional Y force to win? If the Y force does win, how many survivors will there
be?

4. a. Assuming that the single-weapon attrition rates a and b in Equations (12.26) are
constant over time, discuss the submodels

a D rypy and b D rxpx

where ry and rx are the respective firing rates (shots/combatant/day) of the Y and
the X forces, and py and px are the respective probabilities that a single shot kills an
opponent.

b. Howwould youmodel the attrition-rate coefficients g and h inModel (12.27)? It may
be helpful to think of Equations (12.27) as modeling guerilla–guerilla combat.

5. In our Model (12.36) for the arms race, assume that an � bm < 0, so the rest point lies
in a quadrant other than the first one in the phase plane. Sketch the lines dx=dt D 0
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and dy=dt D 0 in the phase plane, and label them and their intercepts on the coordinate
axes. Perform a graphical stability analysis to respond to the following:
a. Do any potential equilibrium levels for defense spending exist? List any such points

and classify them as periodic, asymptotically stable, or unstable.
b. Pick at least four starting points in the first quadrant, and sketch their trajectories in

the phase plane.
c. What outcome for defense spending is predicted by your graphical analysis?
d. From the point of view of Country 1, interpret qualitatively the outcome predicted

by your graphical analysis in terms of the relative values of the parameters in
Model (12.36).

12.412.4 PROJECT

1. Complete the requirements of ‘‘The Richardson Arms RaceModel,’’ by Dina A. Zinnes,
John V. Gillespie, and G. S. Tahim, UMAP 308 (see enclosed CD). This unit constructs
a model based on the classical assumptions of Lewis Fry Richardson and introduces
difference equations. Students gain experience in analyzing the equilibrium, stability,
and sensitivity properties of an interactive model.

12.4 Further Reading
Callahan, L. G. ‘‘Do We Need a Science of War?’’ Armed Forces Journal 106.36 (1969): 16–20.
Engel, J. H. ‘‘A Verification of Lanchester’s Law.’’ Operations Research 2 (1954): 163–171.
Lanchester, F. W. ‘‘Mathematics in Warfare.’’ The World of Mathematics. Edited by J. R. Newman.

Vol. 4. New York: Simon & Schuster, 1956. 2138–2157.
McQuie, R. ‘‘Military History and Mathematical Analysis.’’ Military Review 50.5 (1970): 8–17.
Richardson, L. F. ‘‘Mathematics of War and Foreign Politics.’’ The World of Mathematics. Edited by

J. R. Newman. Vol. 4. New York: Simon & Schuster, 1956. 1240–1253.
U.S. General Accounting Office (GAO). ‘‘Models, Data, and War: A Critique of the Foundation

Defense Analysis.’’ PAD-80–21. Washington, DC; GAO, March 1980.

12.512.5 Euler’s Method for Systems
of Differential Equations

Throughout this chapter we have investigated autonomous systems of first-order differential
equations. Amore general form of a system of two ordinary first-order differential equations
in the dependent variables x and y with independent variable t is given by

dx

dt
D f .t; x; y/

(12.38)
dy

dt
D g.t; x; y/
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If the variable t does appear explicitly in one of the functions f or g, the system is a
nonautonomous system; otherwise, it is autonomous. In this section we present Euler’s
numerical method for approximating the solution functions x.t/ and y.t/ to system (12.38)
subject to the initial conditions x.t0/ D x0 and y.t0/ D y0. As was the case for a single
differential equation in Section 11.5, Euler’s method for systems patches together a string
of tangent line approximations to each curve x.t/ and y.t/ over an interval I : t0 � t � b.

To execute Euler’s method for systems, we first subdivide the interval I for the inde-
pendent variable t into n equally spaced points:

t1 D t0 C �t

t2 D t1 C �t
:::

tn D tn�1 C �t D b

We then calculate successive approximations to the solution functions

x1 D x0 C f .t0; x0; y0/�t

y1 D y0 C g.t0; x0; y0/�t

x2 D x1 C f .t1; x1; y1/�t

y2 D y1 C g.t1; x1; y1/�t
:::

xn D xn�1 C f .tn�1; xn�1; yn�1/�t

yn D yn�1 C g.tn�1; xn�1; yn�1/�t

Therefore, the method for systems is just like Euler’s method studied in Section 11.5
except that we iterate two equations corresponding to the system (12.38) rather than one
equation. As before, the number of steps n can be as large aswe like, but errors do accumulate
if n is too large. Here’s an example to illustrate how the method works.

EXAMPLE 1 Using Euler’s Method for Systems

Find the first three approximations .x1; y1/, .x2; y2/, .x3; y3/ using Euler’s method for the
predator–prey system of whales y and krill x.

dx

dt
D 3x � xy

dy

dt
D xy � 2y

subject to the initial conditions x0 D 1 and y0 D 2 starting at t0 D 0, with �t D 0:1.

Solution We have t0 D 0, t1 D t0 C�t D 0:1, t2 D t1 C�t D 0:2, t3 D t2 C�t D 0:3,
and .x0; y0/ D .1; 2/.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_12_ch12_p524-568 January 23, 2013 19:40 561

12.5 Euler’s Method for Systems of Differential Equations 561

First: x1 D x0 C f .t0; x0; y0/�t

D x0 C .3x0 � x0y0/�t

D 1 C .3 � 2/.0:1/ D 1:1

y1 D y0 C g.t0; x0; y0/�t

D y0 C .x0y0 � 2y0/�t

D 2 C .2 � 4/.0:1/ D 1:8

Second: x2 D x1 C f .t1; x1; y1/�t

D x1 C .3x1 � x1y1/�t

D 1:1 C .3:3 � .1:1/.1:8//.0:1/ D 1:232

y2 D y1 C g.t1; x1; y1/�t

D y1 C .x1y1 � 2y1/�t

D 1:8 C ..1:1/.1:8/ � 3:6/.0:1/ D 1:638

Third: x3 D x2 C f .t2; x2; y2/�t

D x2 C .3x2 � x2y2/�t

D 1:232 C .3:696 � .1:232/.1:638//.0:1/

D 1:3997984

y3 D y2 C g.t2; x2; y2/�t

D y2 C .x2y2 � 2y2/�t

D 1:638 C ..1:232/.1:638/ � 3:276/.0:1/

D 1:5122016 J J J
Euler’s method for systems is easy to program on a computer. A program generates

a table of numerical solutions (tk; xk; yk/ to the system (12.38) starting with the input
(t0; x0; y0/, the number of steps n, and the step size �t . If the system is autonomous, as
in Example 1, we can then plot the points .x0; y0/; .x1; y1/; .x2; y2/; : : : ; .xn; yn/ approx-
imating the solution trajectory through the initial point (x0; y0/ in the xy phase plane. We
can also plot the points x0, x1, x2; : : : ; xn approximating the solution curve x.t/ in the
xt -plane. Likewise, we can plot y0, y1, y2; : : : ; yn approximating the solution curve y.t/
in the yt -plane.

EXAMPLE 2 A Trajectory and Solution Curves

Use Euler’s method to find the trajectory through the point .1; 2/ in the phase plane for the
predator–prey model in Example 1.

Solution Through experimentation with a computer program, we found that a complete
cycle of the solution trajectory through (1, 2) occurs (with some overlap) if we choose 0 �
t � 3. Starting at t0 D 0 with �t D 0:1, we obtain the point plot of the trajectory displayed
in Figure 12.27. Note that for this fairly large value of �t D 0:1, the approximations do not
cycle around counterclockwise exactly to the initial point (1, 2). Thus, the approximations
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J Figure 12.27
A plot of the points in the
phase plane approximating
the solution trajectory
through (1; 2) for the
predator–prey model in
Example 1 forĄt D 0:1,
0 � t � 3
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depart from the true solution trajectory, which is periodic. This failure is due to the errors
inherent in the approximation process (as well as to round-off errors).

Let’s plot the approximations to the trajectory using the much smaller �t D 0:02 for
0 � t � 3. The trajectory is shown in Figure 12.28, and we can see that it is more nearly
periodic because of the reduced error using a smaller step size.

J Figure 12.28
Solution trajectory through
(1; 2) for Example 2 with
Ąt D 0:02, 0 � t � 3
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Further reducing the step size to �t D0:003125 (so nD960 for the interval 0 � t � 3/,
we obtain the trajectory displayed in Figure 12.29, which is very close to being truly periodic.

Finally, we plot each of the solution population curves x.t/ and y.t/ satisfying x.0/D1
and y.0/ D 2 for 0 � t � 9 and�t D 0:0025 (corresponding to n D 3600). The curves are
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J Figure 12.29
WithĄt D 0:003125
(n D 960) on the interval
0 � t � 3, the approxi-
mating solution trajectory
through the point (1; 2) is
very nearly periodic,
corresponding well to the
actual solution.
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J Figure 12.30
Periodic fluctuations of the
individual population levels
over time for the
predator–prey model in
Example 1. The maximum
predator population always
occurs at a later time than
the occurrence of the
maximum prey population
(so the prey population is
already in decline in its
cycle when the predator
reaches its zenith).
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shown in Figure 12.30 and show how the predator whale population lags behind the prey
krill population.

As discussed in Section 11.5 for a single first-order differential equation, more refined
and accurate numerical methods for solving systems exist and are usually studied in the
numerical methods portion of a differential equations course. Many of those methods are
simply modifications of the basic Euler method we presented here, with fairly accurate
approximations to the true solution trajectory for an appropriate step size. J J J
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EXAMPLE 3 Continuous SIR Models of Epidemics

We revisit Example 4, Section 1.4, now as a continuous model. Consider a disease that
is spreading throughout the United States, such as the new flu. The Centers for Disease
Control and Prevention (CDC) is interested in knowing about and experimenting with a
model for this new disease prior to it actually becoming a ‘‘real’’ epidemic. Let us consider
the population as divided into three categories: susceptible, infected, and removed.Wemake
the following assumptions for our model:

� No one enters or leaves the community, and there is no contact outside the community.
� Each person is either susceptible, S (able to catch this new flu); infected, I (currently has
the flu and can spread the flu); or removed, R (already had the flu and will not get it again,
which includes death).

� Initially, every person is either S or I.
� Once someone gets the flu this year, the person cannot get it again.
� The average length of the disease is 5/3 (1 and 2/3) weeks, during which the person is
deemed infected and can spread the disease.

� Our time period for the model will be per week.

The model that we will consider involves susceptible people, infected people, and peo-
ple who have recovered, commonly known as the SIR model. Let’s assume the following
definition for our variables:

S.t/ D number in the population susceptible after time t:

I.t/ D number infected after time t:

R.t/ D number removed after time t:

Let’s start our modeling process with R.t/. Our assumption for the length of time
someone has the flu is 5/3 (1 and 2/3) weeks. Thus, 3/5 of the infected people will be
removed each week:

dR

dt
D 0:6 � I.t/

The value 0.6 is called the removal rate per week. The removal rate represents the proportion
of the infected persons who are removed from infection eachweek. If real data are available,
then we could do ‘‘data analysis’’ to obtain the removal rate. I.t/ will have terms that both
increase and decrease its amount over time. I.t/ is decreased by the number removed each
week, 0:6 � I.t/. I.t/ is increased by the number of susceptible who come into contact
with an infected person and catch the disease, aS.t/I.t/. We define the rate a as the rate at
which the disease is spread, or the transmission coefficient. We realize this is a probabilistic
coefficient. Wewill assume, initially, that this rate is a constant value that can be found from
initial conditions. We use an estimate of 0.001407 for the rate a.

Let’s consider S.t/. This number is decreased only by the number who become in-
fected. We may use the same rate a to obtain the model

dS

dt
D �0:001407 � S.t/ � I.t/
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Our coupled SIR model is shown in the following systems of differential equations:

dR

dt
D 0:6I.t/

dI

dt
D �0:6I.t/ C 0:001407I.t/S.t/

dS

dt
D 0:001407S.t/I.t/

I.0/ D 5; S.0/ D 995; R.0/ D 0

The SIR model above can be solved iteratively and viewed graphically. Let’s iterate
the solution using Euler’s method with an 0.5 step size and obtain the graph (Figure 12.31)
to observe the behavior to obtain some insights.
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SIR model

Interpretation In this example, we see that the maximum number of inflected persons
occurs at about week 7.5. Everyone survives the epidemic, and not everyone gets the flu.J J J

12.512.5 PROBLEMS

In Problems 1–4, use Euler’s method to solve the first-order system subject to the specified
initial condition. Use the given step size �t and calculate the first three approximations
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.x1; y1/, .x2; y2/, and .x3; y3/. Then repeat your calculations for �t=2. Compare your
approximations with the values of the given analytical solution.

1.
dx

dt
D 2x C 3y

dy

dt
D 3x C 2y

x.0/ D 1; y.0/ D 1; �t D 1

4

x.t/ D 1

2
e�t C 1

2
e5t ; y.t/ D �1

2
e�t C 1

2
e5t

2.
dx

dt
D x C 5y

dy

dt
D �x � 3y

x.0/ D 5; y.0/ D 4; �t D 1

4

x.t/ D 5e�t.cos t C 6 sin t /; y.t/ D e�t.4 cos t � 13 sin t /

3.
dx

dt
D x C 3y

dy

dt
D x � y C 2et

x.0/ D 0; y.0/ D 2; �t D 1

4

x.t/ D �e�2t C 3e2t � 2et ; y.t/ D e�2t C e2t

4.
dx

dt
D 3x C e2t

dy

dt
D �x C 3y C te2t

x.0/ D 2; y.0/ D �1; �t D 1

4

x.t/ D 3e3t � e2t ; y.t/ D e3t � 3te2t � 2e2t � te2t

5. Assume we have a lake that is stocked with both bass and trout. Because both eat the
same food sources, they are competing for survival. Let B.t/ and T .t/ denote the bass
and trout populations, respectively, at time t . The rates of growth for bass and for trout
are estimated by the differential equations

dB

dt
D B � .10 � B � T /; B.0/ D 5

dT

dt
D T � .15 � B � 3 � T /; T .0/ D 2

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_12_ch12_p524-568 January 23, 2013 19:40 567

12.5 Euler’s Method for Systems of Differential Equations 567

Use Euler’s method with step size �t D 0:1 to estimate the solution curves from
0 � t � 7 for
a. B.t/ versus t

b. T .t/ versus t

c. The solution trajectory .B.t/; T .t// in the phase plane

6. Repeat Problem 5 for step size�t D 1. Discuss the differences in your plots, and explain
why these differences occur.

7. The following system is a predator–prey model in which harvesting occurs for both
species. Use Euler’s method with step size �t D 1 over 0 � t � 4 to numerically solve

dx

dt
D x � xy � 3

4
y

dy

dt
D xy � y � 3

4
x

subject to x.0/ D 1

2
and y.0/ D 1.

8. Use Euler’s method to solve the model in Problem 7 without harvesting. Compare and
discuss the differences in your solutions to the two models.

12.512.5 PROJECTS

The following algorithm, known as the improved Euler’s method, improves on the accuracy
of the original Euler method. In the improved Euler’s method we take the average of two
slopes. We first estimate xnC1 and ynC1, as in the original Euler method, but denote the
estimates by x�

nC1 and y�
nC1, respectively. We then use these points to find the average

slopes. Thus, to solve the system

dx

dt
D f .t; x; y/ and

dy

dt
D g.t; x; y/

calculate the following updates from tn; xn; yn to tnC1; xnC1; ynC1:

x�
nC1 D xn C f .tn; xn; yn/ �t

y�
nC1 D yn C g.tn; xn; yn/ �t

tnC1 D tn C �t

xnC1 D xn C
�
f .tn; xn; yn/ C f .tnC1; x�

nC1; y�
nC1/

� �t

2

ynC1 D yn C
�
g.tn; xn; yn/ C g.tnC1; x�

nC1; y�
nC1/

� �t

2

1. Using the improved Euler’s method, approximate the solution to the predator–prey prob-
lem in Example 2. Compare the new solution to that obtained by Euler’s method using
�t D 0:1 over the interval 0 � t � 3. Graph the solution trajectories for both solutions.
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2. Using the improved Euler’smethod, approximate the solution to the harvesting predator–
prey problem in Problem 7. Compare the new solution to the one obtained in Problem 7
using the same step size �t D 1 over the interval 0 � t � 4. Graph the solution
trajectories for both solutions.

3. Modern Flu Epidemic. A modern flu is spread throughout a small community with a
fixed population of size n. The disease is spread through contact between infected per-
sons and persons who are susceptible to the disease. Assume that everyone is susceptible
to the disease initially and that the community is contained so that no one leaves the com-
munity. The model given in (12.39) can be used to model the epidemic throughout the
community. Suppose b D 0:002; a D 0:7, and n D 1000.
a. Solve the system for the following initial conditions: I.0/ D 2; 5; 10, and 100.
b. Using I.0/ D 2; 5; 10, and 100 and S.0/ D n�I.0/, resolve the system and interpret

the result.

12.5 Further Reading
Burden, Richard, & Douglas Faires. Numerical Analysis, 6th ed. Pacific Grove, CA: Brooks/Cole,

2000.
Giordano, Frank, & Maurice Weir. Differential Equations: A Modeling Approach. Reading, MA:

Addison-Wesley, 1991.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_13_ch13_p569-600 January 24, 2013 15:26 569

1313 Optimization of Continuous

Models

Introduction

In Chapter 7 you studied linear programming models

Optimize f .X/ (13.1)

subject to inequality constraints

gi.X/

�
�
�

�
bi for all i in I

For linear programmingmodels there is only one objective function f , which is a linear
function of the decision variables or components of the vector X. The constraint functions
gi must also be linear. If the decision variables are restricted to integer values, the problem
is an integer program.

In this chapter we consider optimization problems in which the objective function f is
continuous but nonlinear. Moreover, the constraint functions gi may be nonlinear as well,
and they are equality constraints

gi.X/ D bi for all i in I

We restrict our attention to problems for which X has no more than two components. These
are the optimization models you studied in calculus.

In Section 13.1 we address a special class of problems that can be solved using only
elementary calculus. In the illustrative problem in this section, we develop a model for
determining an optimal inventory strategy. The problem is concerned with deciding in what
quantities and how often goods should be ordered to minimize the total cost of carrying an
inventory. The restrictions on the various submodels are rather severe, so the sensitivity of
the solutions to the assumptions is examined. (A simulationmodel with relaxed assumptions
was constructed in Section 5.4.) The emphasis in Section 13.1 is on model solution and
model sensitivity.

In Section 13.2 we study functions of several variables. We find the optimal solution
using two methods: the usual method of multivariable calculus (solving the equations for
the variables when the partial derivatives equal zero) and then by applying a numerical
approximation technique—the gradient search algorithm.

In Section 13.3, we address equality constrained optimization problems. In the illus-
trative example, we develop a model for transferring oil from the constrained space of a

569
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storage tank. The emphasis in Section 13.3 is on model solution and model sensitivity of
this class of optimization problems. We present the method of Lagrange multipliers for
analyzing such problems.

In Section 13.4, we present graphical optimization. The illustrative problem addresses
the management of a fishing industry and is concerned with whether a free market can lead
to a satisfactory solution for fishers, consumers, and ecologists alike or whether some type
of government intervention is necessary. The graphical analysis in the example provides
a qualitative analysis for the type of analytic models we developed in Chapters 11 and 12
using differential equations.

The projects in this chapter allow for a more detailed study of the optimization topics
we discuss. For instance, students can study Lagrange multipliers or elementary ideas in
the calculus of variations using UMAP modules cited in the various project sections.

13.113.1 An Inventory Problem: Minimizing the Cost

of Delivery and Storage

Scenario A chain of gasoline stations has hired us as consultants to determine how often
and howmuch gasoline should be delivered to the various stations. After some questioning,
we determine that each time gasoline is delivered, stations incur a charge of d dollars, which
is in addition to the cost of the gasoline and is independent of the amount delivered.

Costs are also incurred when the gasoline is stored. One such cost is capital tied up in
inventory—money that is invested in the stored gasoline and thus cannot be used elsewhere.
The cost is normally computed bymultiplying the cost of the gasoline to the company by the
current interest rate for the period the gasoline was stored. Other costs include amortization
of the tanks and equipment necessary to store the gasoline, insurance, taxes, and security
measures.

The gasoline stations are located near interstate highways, where demand is fairly
constant throughout the week. Records indicating the gallons sold daily are available for
each station.

Problem Identification Assume that the firm wishes to maximize its profits and that
demand and price are constant in the short term. Thus, because total revenue is constant,
total profit can be maximized by minimizing the total costs. There are many components of
total costs, such as overhead and employee costs. If these costs are affected by the amount
and the timing of the deliveries, they should be considered. Let’s assume the costs are not
so affected and focus our attention on the following problem: Minimize the average daily
cost of delivery and storing sufficient gasoline at each station to meet consumer demand.
Intuitively, we expect such a minimum to exist. If the delivery charge is very high and the
storage cost very low, we would expect large orders of gasoline delivered infrequently. On
the other hand, if the delivery charge is very low and the storage costs very high, we would
expect small orders of gasoline delivered frequently.
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Assumptions In the following presentation, we consider some factors important in de-
ciding how large an inventory to maintain. Obvious factors to consider are delivery costs,
storage costs, and demand rate for the product. Perishability of the stored product may also
be a paramount concern. In the case of gasoline, the effect of condensation may become
increasingly more appreciable as the gasoline level gets lower in the tank. Also, consider
the market stability of the selling price of the product and the cost of raw materials. For
example, if the market price of the product is volatile, the seller would be reluctant to store
large quantities of the product. On the other hand, an expected large increase in the price of
raw materials in the near future argues for large inventories. The stability of the demand for
the products by the consumer is another factor. There may be seasonal fluctuations in the
demand for the product, or a technological breakthrough may cause the product to become
obsolete. The time horizon can also be extremely important. In the short term, contracts may
be signed for warehouse space, some of which will not be needed in the long term. Another
consideration is the importance to the owner of an occasional unsatisfied demand (stock-
outs). Some owners would opt for a more costly inventory strategy to ensure that they will
never run out of stock. From this discussion we can see that the inventory decision is not an
easy one, and it is not difficult to build scenarios in which any one of the preceding factors
may dictate a particular strategy.We restrict our initial model here to the following variables:

average daily cost D f (storage costs, delivery costs, demand rate)

The Submodels
Storage Costs We need to consider how the storage cost per unit varies with the number
of units being stored. Are we renting space and receiving a discount when storage exceeds
certain levels, as suggested in Figure 13.1a? Or do we rent the cheapest storage first (adding
more space as needed), as suggested by Figure 13.1b?Dowe need to rent an entire warehouse
or floor? If so, the per-unit price is likely to decrease as the quantity stored increases until
another warehouse or floor needs to be rented, as suggested in Figure 13.1c. Does the
company own its own storage facilities? If so, what alternative use can be made of them?
In our model we take per-unit storage as a constant.
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Submodels for storage costs
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Delivery Costs In many cases the delivery charge depends on the amount delivered. For
example, if a larger truck or an extra flatcar is needed, there is an additional charge. In our
model we consider a constant delivery charge independent of the amount delivered.

Demand If we plot the daily demand for gasoline at a particular station, we will very
likely get a graph similar to the one shown in Figure 13.2a. If we plot the frequency of
each demand level over a fixed time period (e.g., 1 year), we might get a plot similar to
that shown in Figure 13.2b. If demands are fairly tightly packed about the most frequently
occurring demand, then we accept the daily demand as being constant. We will assume
that such is the case for our model. Finally, even though we realize that the demands occur
in discrete time periods, for purposes of simplification we take a continuous submodel for
demand. This continuous submodel is depicted in Figure 13.2c, where the slope of the line
represents the constant demand rate. Notice the importance of our assumptions in producing
the linear submodel. Also, as suggested in Figure 13.2b, about half the time demand exceeds
its average value.We will examine the importance of this assumption in the implementation
phase when we consider the possibility of unsatisfied demands.
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A constant demand rate

Model Formulation We use the following notation for constructing our model:

s D storage costs per gallon per day
d D delivery cost in dollars per delivery
r D demand rate in gallons per day

Q D quantity of gasoline in gallons
T D time in days

Now suppose an amount of gasoline, say Q D q, is delivered at time T D 0, and
the gasoline is used up after T D t days. The same cycle is then repeated, as illustrated
in Figure 13.3. The slope of each line segment in Figure 13.3 is �r (the negative of the
demand rate). The problem is to determine an order quantity Q� and a time between orders
T � that minimizes the delivery and storage costs.
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J Figure 13.3
An inventory cycle consists
of an order quantity q
consumed in t days.
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We seek an expression for the average daily cost, so consider the delivery and storage
cost for a cycle of length t days. The delivery costs are the constant amount d because only
one delivery is made over the single time period. To compute the storage costs, take the
average daily inventory q=2, multiply by the number of days in storage t , and multiply that
by the storage cost per item per day s. In our notation this gives

cost per cycle D d C s
q

2
t

which, upon division by t , yields the average daily cost:

c D d

t
C sq

2

Model Solution Apparently, the cost function tominimize has two independent variables,
q and t . However, from Figure 13.3 notice that the two variables are related. For a single
cyclic period, the amount delivered equals the amount demanded. This translates to q D rt .
Substitution into the average daily cost equation yields

c D d

t
C srt

2
(13.2)

Equation (13.2) is the sum of a hyperbola and a linear function. The situation is depicted in
Figure 13.4.

J Figure 13.4
The average daily cost c is
the sum of a hyperbola and
a linear function.
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Let’s find the time between orders T � that minimizes the average daily cost. Differen-
tiating c with respect to t and setting c0 D 0 yields

c0 D � d

t2
C sr

2
D 0

This equation gives the (positive) critical point:

T � D
�

2d

sr

�1=2

(13.3)

This critical point provides a relative minimum for the cost function because the second
derivative

c00 D 2d

t3

is always positive for positive values of t . It is clear from Figure 13.4 that T � gives a global
minimum as well. Also, note from Equation (13.3) that d=T � D .sr=2/T � so that T � is the
point at which the linear function and the hyperbola intersect in Figure 13.4.

Interpretation of theModel Given a (constant) demand rate r , Equation (13.3) suggests
a proportionality between the optimal period T � and .d=s/1=2. Intuitively, we would expect
T � to increase as the delivery cost d increases and to decrease as storage costs s increase.
Thus, our model at least makes common sense. However, the nature of the relationship
(13.3) is interesting.

For our submodels of demand rate, storage costs, and delivery cost, we assumed very
simple relationships. To analyze models that have more complex submodels, we need to
analyze what we did mathematically. Note that to determine the number of item-days of
storage, we computed the area under the curve for one cycle. Thus, the storage costs for
one cycle could be computed as an integral:

s

tZ

0

.q � rx/ dx D s

�
qt � rt2

2

�
D sqt

2

The last equality in this equation follows from the substitution r D q=t and agrees with
our previous result for storage costs per cycle. It is important to recognize the underlying
mathematical structure to facilitate generalization to other assumptions. As we will see, it
is also helpful in analyzing the sensitivity of the model to make changes in the assumptions.

One of our assumptions was to neglect the cost of the gasoline in the analysis. However,
does the cost of gasoline actually affect the optimal order quantity and period? Because the
amount purchased in each cycle is rt , if the cost per gallon is p dollars, then the constant
amountp.q=t/ D pr would have to be added to the average daily cost. Because this amount
is constant, it cannot affect T � because the derivative of a constant is zero. Thus, we are
correct in neglecting the cost of gasoline. In a more refined model the interest lost in capital
invested in the inventory could be considered.

Implementation of theModel Consider again the graph in Figure 13.3. Now the model
assumes the entire inventory is used up in each cyclic period, but all demands are supposed
to be satisfied immediately. Note that this assumption is based on an average daily demand
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of r gallons per day. This assumption means that over the long term, for approximately half
of the time cycles the stations will run out of stock before the end of the period and the
next delivery time, and for the other half of the time cycles the stations will still have some
gasoline left in the storage tanks when the next delivery arrives. Such a situation probably
won’t do much for our credibility as consultants! So let’s consider recommending a buffer
stock to help prevent the stock-outs, as suggested in Figure 13.5. Note in Figure 13.5 that
the optimal time period T � and the optimal order quantityQ� D rT � are indicated as labels
because we know those values from our model given in Equation (13.3).

J Figure 13.5
A buffer stock qb helps
prevent stock-outs.
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Let’s examine the effect of the buffer stock on our inventory strategy. We have already
observed that the storage costs for one cycle are given by the area under the curve over one
periodmultiplied by the constant s. Now, the effect of the buffer stock is to add an additional
constant area qbt to the previous area under the curve. Thus, the constant amount qbs is
added to the average daily cost and consequently the value of T � does not change fromwhat
it was without the buffer stock. Thus, the stations continue to order Q� D rT � as before,
although the maximum inventory now becomes Q� C qb . By determining the daily cost of
maintaining the buffer stock, the business manager can decide how large a buffer stock to
carry. What other information would be useful to the business manager in determining how
large a buffer stock to carry?

Our mathematical analysis has been very straightforward and precise. However, can
we obtain the necessary data to estimate r; s, and d precisely? Probably not. Moreover,
how sensitive is the cost to changes in these parameters? These are issues that a consultant
would want to consider. Note, too, that we would probably round T � to an integer value.
How should it be rounded? Is it better to overestimate or underestimate T �? Of course, in
a given situation, we could substitute various values of T � for t in Equation (13.2) and see
how the cost varies.

Let’s use the derivative to determine the shape of the average daily cost curvemore gen-
erally.We know that the average daily cost curve is minimum at T � D t . The first derivative
of the average daily cost represents its rate of change, or the marginal cost, and from Equa-
tion (13.2) is�d=t2Csr=2. The derivative of the marginal cost is 2d=t3, which for positive
t is always positive and decreases as t increases. Note that the derivative of themarginal cost
becomes large without bound as t approaches zero and approaches zero as t becomes large.
Thus, to the left of T � the marginal cost is negative and becomes steeper and steeper as t
approaches zero. To the right of T � the marginal cost approaches the constant value sr=2.
Relate these results to the graph depicted in Figure 13.4 and interpret them economically.
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13.113.1 PROBLEMS

1. Consider an industrial situation in which it is necessary to set up an assembly line.
Suppose that each time the line is set up a cost c is incurred. Assume c is in addition
to the cost of producing any item and is independent of the amount produced. Suggest
submodels for the production rate. Now assume a constant production rate k and a
constant demand rate r . What assumptions are implied by the model in Figure 13.6?
Next assume a storage cost of s (in dollars per unit per day) and compute the optimal
length of the production runP � to minimize the costs. List all of your assumptions. How
sensitive is the average daily cost to the optimal length of the production run?

J Figure 13.6
Determine the optimal
length of the production
run.
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2. Consider a company that allows back ordering. That is, the company notifies customers
that a temporary stock-out exists and that their order will be filled shortly. What con-
ditions might argue for such a policy? What effect does such a policy have on storage
costs? Should costs be assigned to stock-outs? Why? How would you make such an as-
signment? What assumptions are implied by the model in Figure 13.7? Suppose a ‘‘loss
of goodwill cost’’ of w dollars per unit per day is assigned to each stock-out. Compute
the optimal order quantity Q� and interpret your model.

J Figure 13.7
An inventory strategy
that permits stock-outs
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3. In the inventory model discussed in the text, we assumed a constant delivery cost that is
independent of the amount delivered. Actually, in many cases, the cost varies in discrete
amounts depending on the size of the truck needed, the number of platform cars required,
and so forth. How would you modify the model in the text to take into account these
changes? We also assumed a constant cost for raw materials. However, often bulk-order
discounts are given. How would you incorporate these discount effects into the model?

4. Discuss the assumptions implicit in the two graphical models depicted in Figure 13.8.
Suggest scenarios in which each model might apply. How would you determine the
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J Figure 13.8
Two inventory submodels
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submodel for demand in Figure 13.8b? Discuss how you would compute the optimal
order quantity in each case.

5. What are the optimal speed and safe following distance that allow the maximum flow
rate (cars per unit time)? The solution to the problem would be useful in controlling
traffic in tunnels, for roads under repair, or for other congested areas. In the following
schematic, l is the length of a typical car and d is the distance between cars:

l d

Justify that the flow rate is given by

f D velocity
distance

Let’s assume a car length of 15 ft. In Section 2.2 the safe stopping distance

d D 1:1v C 0:054v2

was determined, where d is measured in feet and v in miles per hour. Find the velocity in
miles per hour and the corresponding following distance d that maximizes traffic flow.
How sensitive is the solution to changes in v? Can you suggest a practical rule? How
would you enforce it?

6. Consider an athlete competing in the shot put. What factors influence the length of his
or her throw? Construct a model that predicts the distance thrown as a function of the
initial velocity and angle of release. What is the optimal angle of release? If the athlete
cannot maximize the initial velocity at the angle of release you propose, should he or
she be more concerned with satisfying the angle of release or generating a high initial
velocity? What are the trade-offs?

7. John Smith is responsible for periodically buying new trucks to replace older trucks in
his company’s fleet of vehicles. He is expected to determine the time a truck should be
retained so as to minimize the average cost of owning the truck. Assume the purchase
price of a new truck is $9000with trade-in. Also assume themaintenance cost (in dollars)
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per truck for t years can be expressed analytically by the following empirical model:

C.t/ D 640 C 180.t C 1/t

where t is the time in years that the company owns the truck.
a. Determine E.t/, the total cost function for a single truck retained for a period of

t years.
b. Determine EA.t/, the average annual cost function for a single truck that is kept in

the fleet for t years.
c. Graphically depict EA.t/ as a function of t . Justify the shape of your graph.
d. Analytically determine t�, the optimal period that a truck should be retained in the

fleet. Remember that the objective is to minimize the average cost of owning a truck.
e. Suppose we have to round t� to the nearest whole year. In general, would it be better

to round up or round down? Justify your answer.

8. Cow to Market—A cow currently weighs 800 lb and is gaining 35 lb per week. It costs
$6.50 a week to maintain the cow. The market price today is $0.95 per pound but is
falling $0.01 per day. Formulate a mathematical model and find the optimal period to
keep the cow until it is sold to maximize profits.

13.113.1 PROJECTS (See enclosed CD for UMAP modules.)
1. ‘‘The Human Cough,’’ by Philip M. Tuchinsky, UMAP 211. A model is developed

showing how our bodies contract the windpipe during a cough to maximize the
velocity of the airflow (making the cough maximally effective). Complete the module
and prepare a short report for classroom discussion.

2. ‘‘An Application of Calculus in Economics: Oligopolistic Competition,’’ by Donald R.
Sherbert, UMAP 518. The author analyzes a number of mathematical models that inves-
tigate the competitive structure of a market in which a small number of firms compete.
Thus, a change in price or production level by one firmwill cause a reaction in the others.
Complete the module and prepare a short report for classroom discussion.

3. ‘‘Five Applications of Max–Min Theory from Calculus,’’ by Thurmon Whitley,
UMAP 341. In this module several unconstrained optimization problems are solved
using the calculus. Scenarios addressed include maximizing profit, minimizing cost,
minimizing travel time of light as it passes through several mediums (Snell’s law), min-
imizing the surface area of a bee’s cell, and the surgeon’s problem of attaching an artery
in such a way as to minimize the resistance to blood flow and strain on the heart.

13.213.2 Methods to Optimize Functions of

Several Variables

In many modeling situations, we are required to optimize a function of several independent
variables. In this section, we present two scenarios with two independent variables that
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are unconstrained: manufacturing of two products and a nonlinear least-squares fit of y as
a function of two variables. In the manufacturing scenario, we find the optimal solution
by two methods: the usual multivariable calculus solving the equations when the partial
derivatives equal zero and then by applying a gradient search algorithm. In the nonlinear
least-squares scenario, we find we cannot solve the equations when the partial derivatives
equal zero in closed form and must rely on the gradient search method.

EXAMPLE 1 Maximizing Profit in Producing Competing Products

Scenario A company manufacturing computers plans to introduce two new products.
Both computers contain the same microprocessing chip, but one system is equipped with
a 27-in. monitor and the other system with a 31-in. monitor. In addition to $400,000 in
fixed costs, it costs the company $1950 to produce a 27-in. system and $2250 to produce a
31-in. system. The manufacturer’s suggested retail price is $3390 for the 27-in. system and
$3990 for the 31-in. system. In the competitive market in which the systems will be sold,
the marketing staff estimates that for each additional system of a particular type sold, the
selling price will fall by $0.10. Furthermore, sales of each type of system affect the sales of
the other. It is estimated that the selling price for each 27-in. system is reduced by $0.03 for
each 31-in. computer sold, and the selling price of each 31-in. system is reduced by $0.04
for each 27-in. computer sold. Assuming it can sell all the computers it makes, how many
systems of each type should the company manufacture to maximize its profits?

Model Formulation We define the following variables for the two types of computer
systems (so i D 1 or 2):

x1 D number of 27-in. systems
x2 D number of 31-in. systems
Pi D selling price of xi

R D revenue obtained from computer sales
C D cost to manufacture the computers
P D total profit from the sales of the computers

From our previous discussion of the manufacturing andmarketing situations, we obtain
the following assumptions and submodels:

P1 D 3390 � 0:1x1 � 0:03x2

P2 D 3990 � 0:04x1 � 0:1x2

R D P1 � x1 C P2 � x2

C D 400;000 C 1950x1 C 2250x2

P D R � C

and

x1; x2 � 0
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Our objective is to maximize the profit function

P.x1; x2/ D R � C

D .3390 � 0:1x1 � 0:03x2/x1 C .3990 � 0:04x1 � 0:1x2/x2

� .400;000 C 1950x1 C 2250x2/

D 1440x1 � 0:1x2
1 C 1740x2 � 0:1x2

2 � 0:07x1x2 � 400;000

The necessary conditions are

@P

@x1

D 1440 � 0:2x1 � 0:07x2 D 0

@P

@x2

D 1740 � 0:07x1 � 0:2x2 D 0

Solution of these equations gives x1 � 4736 and x2 � 7043 (both rounded up). That is, the
company should manufacture 4736 27-in. systems and 7043 31-in. systems for a total profit
of P.4736;7043/ D $9;136;410:25. Figure 13.9 shows a plot of the surface represented by
P.x1; x2/ verifying that the point (4736, 7043) is indeed a maximum extreme value. This
fact can also be verified using the second-derivative test from multivariable calculus. At the
extreme point (4736, 7043),

@2P

@x2
1

D �0:2 < 0
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J Figure 13.9
The total profit surface
P.x1; x2/ D 1440x1 � 0:1x 2

1 C 1740x2 � 0:1x 2
2 � 0:07x1x2 � 400;000
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and

@2P

@x2
1

@2P

@x2
2

�
�

@2P

@x1@x2

�2

D .�0:2/.�0:2/ � .�0:07/2 � 0:04 > 0:

The Gradient Method of Steepest Ascent
A classical iterative method for finding an extreme point is the gradient method of steep-
est ascent (in the case of a maximum extremum) or descent (in the case of a minimum
extremum). It is based on the fact that the gradient vector rf at a point in the domain
of a differentiable function f .x; y/ always points in the direction of the maximum rate of
increase of the function. Thus, starting with an initial point .x0; y0/, we develop an iterative
procedure for generating a sequence of points .xk; yk/ obtained by moving from point to
point in the direction of the gradient rf .xk; yk/ such that f .xkC1; ykC1/ > f .xk; yk/. In
terms of coordinates, for some �k > 0,

xkC1 D xk C �k

@f

@x
.xk; yk/

(13.4)
ykC1 D yk C �k

@f

@y
.xk; yk/

Whenever f is a differentiable function throughout its domain, a theorem from ad-
vanced calculus guarantees that a�k > 0 does exist for which f .xkC1; ykC1/ > f .xk; yk/.
The question is, What value should be assigned to �k to obtain the next approximate solu-
tion .xkC1; ykC1/?

The difficulty in implementing the gradient procedure is that as each point .xk; yk/ gets
closer to the extreme point, the length of the gradient vector becomes increasingly short
(because the partial derivatives of f are zero at the extreme point). So at each stage in
the process we will need a large enough value of �k to advance significantly toward the
extreme point in the direction of the gradient. If �k is too small, we will never get close
enough to the extreme point in a reasonably finite number of steps. On the other hand, if
�k is too large, we overshoot the extreme point and findf .xkC1; ykC1/ < f .xk; yk/, which
is no improvement. One approach would be to determine the value of �k that maximizes
the function value f .xkC1; ykC1/ using Equations (13.4). That is, maximize the real-valued
function

g.�/ D f .xk C �rf .xk//

for the optimal value � D �k . We might try to solve this calculus problem by setting
dg=d� D 0 and solving for �. However, in most cases we cannot easily solve the equation
dg=d� D 0; moreover, the equation may not have a unique solution.

Another approach is to apply one of the search techniques, such as the Golden Sec-
tion Search Method, presented in Chapter 7, to maximize g.�/. We will not pursue that
approach here. Rather than using an elaborate search procedure to determine precisely the
best � D �k at each stage, we will simply use a large enough �k to advance significantly
toward the extreme point at each step. One way to accomplish this is to begin with a small
�0 > 0 and then increase its value at each step through repeated multiplication by some
fixed constant ı > 1whilemaintainingf .xkC1; ykC1/ > f .xk; yk/. For a specific problem,
the number ı > 0 can be determined experimentally with the aid of a computer.
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Table 13.1 Gradient method of steepest ascent for P .x; y/D1440x � 0:1x 2C
1740y � 0:1y 2 � 0:07xy � 400;000 using .x0; y0/ D .0; 0/, �0 D 1=16, and ı D 1:2

k xk yk P .xk ; yk/ krP.xk ; ykk �k

0 0.00000 0.00000 �400000:00 2258.58363 0.06250
1 90.00000 108.75000 �83852:78 2220.64513 0.07500
2 196.07906 237.14625 282264.83 2175.88751 0.09000
3 320.65562 388.24232 703216.07 2123.26645 0.10800
4 466.31434 565.35213 1183043.92 2061.65628 0.12960
5 635.72260 771.97180 1724309.91 1989.88094 0.15552
6 831.49389 1011.64446 2327249.57 1906.76591 0.18662
7 1055.98131 1287.74842 2988767.41 1811.21810 0.22395
8 1310.98315 1603.18739 3701350.51 1702.34142 0.26874
9 1597.34566 1959.96301 4452064.88 1579.59436 0.32249

10 1914.45720 2358.61835 5221908.43 1442.99306 0.38698
11 2259.64855 2797.55995 5985907.75 1293.35557 0.46438
12 2627.54965 3272.30172 6714409.45 1132.57034 0.55726
13 3009.50923 3774.73021 7375944.48 963.84679 0.66871
14 3393.25845 4292.56951 7941721.67 791.88486 0.80245
15 3763.08189 4809.31299 8391166.11 622.85723 0.96294
16 4100.81508 5304.95849 8717048.82 464.08297 1.15553
17 4387.95176 5757.86859 8928057.27 323.27676 1.38663
18 4608.92383 6147.88608 9046844.18 207.33566 1.66396
19 4755.12455 6460.37432 9103274.16 120.79222 1.99675
20 4828.50289 6690.13319 9125410.76 64.25797 2.39610
21 4842.85557 6843.43126 9132779.82 33.19815 2.87532
22 4820.97072 6936.34390 9135179.93 18.10526 3.45038
23 4787.37013 6989.00804 9136044.58 9.73259 4.14046
24 4759.61004 7018.33278 9136332.33 4.50158 4.96855
25 4743.68432 7034.03709 9136400.48 1.59395 5.96226
26 4737.00980 7040.80235 9136409.77 0.35854 7.15472
27 4735.16299 7042.58276 9136410.25 0.02579 8.58566
28 4735.04802 7042.77198 9136410.26 0.00857 10.30279
© Cengage Learning

In the case of our scenario maximizing the profit function P.x; y/ for the company
manufacturing two computer systems (where we renamed the variables x1 D x and x2 D y
to avoid confusionwith our iteration points), we selected a starting point of .x0; y0/D.0; 0/,
an initial � value equal to 1=16, and a multiplier ı D 1:2 (found experimentally). Thus,
�k D1:2�k�1 at each step in finding .xkC1; ykC1/ according to Equations (13.4). Table 13.1
summarizes our iterative approximations to the extreme point. Figure 13.10 shows the
level curves for the profit function P and the gradient vector rP at the 15th iteration
point (3763.08, 4809.31) in the table. In this case, the actual extreme point (4735.042735,
7042.735043) was closely approximated after 28 iterations.
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J Figure 13.10
Level curves of the total profit function P (x; y ) D 1440x � 0:1x 2 C 1740y � 0:1y 2�
0:07xy � 400;000. The gradient vector rP is shown at the iteration point (3763, 4809)
(rounded to integer values) and points in the direction of greatest increase for P .

EXAMPLE 2 Nonlinear Least Squares

Consider the following data on the average tread on a radial racing tire over time. The
variable x will be the hours in heavy racing use, and the variable y will be the average tread
thickness in centimeters (cm). The plot looks like the exponential decaying power function
(Figure 13.11)

The graph of Figure 13.11 shows a decreasing trend that is concave upward. This sug-
gests a model of the form y D axb . Using least squares, we want to minimize the sum of
squared error:

SSE D
X

.yi � axb
i /2

We take the partial derivatives with respect to the two parameters, a and b. We cannot solve
the resulting system of nonlinear equations to obtain a closed form solution. We can use
the gradient search to estimate the values of the parameters a and b. We use technology to
obtain the numerical solution. We find, SSE D 6:62572; a D 8:879, and b D �0:46622.
The generalized nonlinear model is 8:879x�0:46622. We plot both the model and the data
as well as the residuals in Figures 13.12 and 13.13 respectively. We accept the model as
adequate as we find the model appears to fit well and we find no trend in the residuals. We
might use the model to predict or interpolate.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_13_ch13_p569-600 January 23, 2013 19:40 584

584 Chapter 13 Optimization of Continuous Models

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

5.4
5.0
4.5
3.7
3.5
2.5
2.0
1.6
1.8
1.3
0.8
1.1
0.8
0.4
0.6

2
5
7

10
14
19
26
31
34
38
45
52
53
60
65

Number Tread (cm) (y)Hours (x)

T
re

ad
 (

cm
)

Hours ©
 C

en
ga

ge
 Le

ar
ni

ng
 2

01
3

J Figure 13.11
Scatterplot of hours versus tread

J Figure 13.12
Plot of our tread wear data
and nonlinear curve

0

10

20

30

0 10 20 30 40 50 60 70

Nonlinear !t model

©
 C

en
ga

ge
 Le

ar
ni

ng
 2

01
3

13.213.2 PROBLEMS

1. Find the local maximum value of the function

f .x; y/ D xy � x2 � y2 � 2x � 2y C 4

2. Find the local minimum value of the function

f .x; y/ D 3x2 C 6xy C 7y2 � 2x C 4y
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J Figure 13.13
Plot of residuals versus fits
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3. A differentiable function f .x; y/ has a saddle point at a point .a; b/ where its partial
derivatives are simultaneously zero, if in every open disk centered at .a; b/ there are
domain points where f .x; y/ > f .a; b/ and domain points where f .x; y/ < f .a; b/.
Find the saddle points of the following functions.
a. f .x; y/ D x3 � y3 � 2xy C 6

b. f .x; y/ D 6x2 � 2x3 C 3y2 C 6xy

4. A continuous function f .x; y/ takes on its absolute extrema on a closed and bounded
region either at an interior point or at a boundary point of the region. Find the absolute
extrema of

f .x; y/ D 48xy � 32x3 � 24y2

on the square region 0 � x � 1 and 0 � y � 1.

5. A company manufactures x floor lamps and y table lamps each day. The profit in dollars
for the manufacture and sale of these lamps is

P.x; y/ D 18x C 2y � 0:05x2 � 0:03y2 C 0:02xy � 100

Find the daily production level of each lamp to maximize the company’s profits.
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6. If x and y are the amounts of labor and capital, respectively, to produce

Q.x; y/ D 0:54x2 � 0:02x3 C 1:89y2 � 0:09y3

units of output for manufacturing a product, find the values of x and y to maximize Q.

7. The total cost to manufacture one unit of product A is $3, and for one unit of product B
it is $2. If x and y are the retail prices per unit of A and B , respectively, then marketing
research has established that

QA D 2750 � 700x C 200y

and

QB D 2400 C 150x � 800y

are the quantities of each product that will be sold each day. Find a function P.x; y/
modeling the daily profit and the maximum daily profit.

8. An electric power-generating company charges different rates for residential and business
users. (You might consider some reasons why this would be so.) The cost of producing
the electricity is the same for all users and equals $1000 in fixed costs plus an additional
$200 for each unit produced. If residential customers use x units of electricity, they pay
p D 1200 � 2x dollars for each unit. On the other hand, commercial customers pay
q D 1000�y dollars for each of the y units of electricity they use. What price should the
power company charge each type of customer to maximize profit?What is the maximum
profit?

9. Using the basic nonlinear model, y D axb fit the following data set and provide the
model, a plot of the data and the model, and a residual plot:

x y

100 150
125 140
125 180
150 210
150 190
200 320
200 280
250 400
250 430
300 440
300 390
350 600
400 610
400 670

10. Using the data provided in Example 2, fit the nonlinear model y D ae�bx . How does
this solution compare to the power model found in Example 2?
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13.213.2 PROJECTS

1. Write a computer code to perform the gradient method of steepest ascent algorithm
using the multiplier technique �kC1 D ı�k discussed in this section. Use your code to
solve Problems 1, 5, 6, and 7 of this section.

2. Write a computer code to perform the gradient method of steepest ascent algorithm
using the Golden Section Search Method (presented in Section 7.6) to maximize the
function

g.�/ D f .xk C �rf .xk//

to obtain�D�k at each step determining the next point .xkC1; ykC1/ in Equations (13.4).
Use your code to solve Problems 6 and 7 of this section.

13.313.3 Constrained Continuous Optimization

Sometimes in modeling an optimization situation, we need to find a maximum or minimum
value of a function when the independent variables are constrained to lie within some partic-
ular subset of the plane (such as a disk, along a straight line, or a closed triangular region). In
this section we present two examples of such constrained problems and explore a powerful
method for finding the extreme values known as the method of Lagrange multipliers.

EXAMPLE 1 An Oil Transfer Company

Consider a situation in which we are hired as consultants for a small oil transfer company.
The management desires a policy of minimum cost due to restricted tank storage space.

Problem Identification Minimize the costs associated with dispensing and holding the
oil to maintain sufficient oil to satisfy demand while meeting the restricted tank storage
space constraint.

Assumptions Many factors determine the total cost of transferring oil. For our model we
include the following variables: holding costs of the oil in the storage tank, withdrawal rate
of the oil from the tank per unit time, the cost of the oil, and the size of the tank.

Model Formulation We define the following variables for two types of oil (so i D 1
or 2):

xi D the amount of oil type i available
ai D the cost of oil type i

bi D withdrawal rate per unit time of oil type i

hi D holding (storage) costs per unit time for oil type i

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_13_ch13_p569-600 January 23, 2013 19:40 588

588 Chapter 13 Optimization of Continuous Models

ti D space in cubic feet to store one unit of oil type i

T D the total amount of storage space available

Historical records have been studied and a formula has been derived that describes the
system costs in terms of our variables. Our objective is to minimize the sum of the cost
variables:

Minimize f .x1; x2/ D
�

a1b1

x1

C h1x1

2

�
C

�
a2b2

x2

C h2x2

2

�

such that g.x1; x2/ D t1x1 C t2x2 D T (space constraint)




(13.5)

We are provided the following data:

Oil type ai .$/ bi hi .$/ ti (ft3)

1 9 3 0.50 2
2 4 5 0.20 4

We measure the storage tank and find only 24 ft3 of available space. After substitution
of the data into Equations (13.5), the formulation for our problem is

Minimize f .x1; x2/ D 27=x1 C 0:25x1 C 20=x2 C 0:10x2

such that

2x1 C 4x2 D 24

Model Solution The method commonly used for solving nonlinear optimization prob-
lems with equality constraints is known as the method of Lagrange multipliers. The
method involves introducing a new variable � (called a Lagrange multiplier) and setting up
the function

L.x1; x2; �/ D f .x1; x2/ C � Œg.x1; x2/ � T �

For our problem this function is

L.x1; x2; �/ D 27=x1 C 0:25x1 C 20=x2 C 0:10x2 C �.2x1 C 4x2 � 24/ (13.6)

The solution methodology is to take the partial derivatives of Equation (13.6) with respect
to the variables x1, x2, and � and set them equal to zero; that is,

@L

@x1

D �27

x2
1

C 0:25 C 2� D 0

@L

@x2

D �20

x2
2

C 0:10 C 4� D 0

@L

@�
D 2x1 C 4x2 � 24 D 0
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Using a computer algebra system, we find the solution to be x1 D 5:0968, x2 D 3:4516,
�D0:3947, and f .x1; x2/D$12:71. By perturbing the values of x1 and x2 slightly in either
direction (but satisfying the constraint), we find the value of f .x1; x2/ increases. Thus, we
conclude the solution is a minimum.

Model Sensitivity The variable � has special significance and is called a shadow price.
The value of � represents the amount the objective function would change for a 1-unit
increase in the constraint represented by �. Therefore, in this problem, the value of � D
0:3947 means that if the storage space constraint is changed from 24 to 25 ft3, the value of
the objective function would change from $12.71 to approximately 12:71 C .1/.0:3947/
or $13.10. The economic interpretation is that another cubic foot of storage tank capacity
increases the dispensing and holding costs by about $0.40. J J J

EXAMPLE 2 Space Shuttle Water Container

Consider the space shuttle water container that is stored within the shuttle’s wall. The water
container is formed similar to a silo in the shape of a cylinder topped with a cone (see
Figure 13.14). If the radius of each is 6 m, and the total surface area is limited to 450 m2,
determine the heights of the cylinder and the cone that maximize the volume enclosed by
the silo.J Figure 13.14

Space shuttle water
container

h1

h2
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Problem Identification Maximize the volume of the water container for the astronauts
while meeting the design restrictions.

Assumptions There are many factors that can influence the design of a water container.
For our model we include shape and dimensions, volume, surface area, and radius of the
cylinder and cone corresponding with Figure 13.14. We will ignore any effect of gravity or
lack of gravity.

Model Formulation

Vcy D the volume of the cylinder, which equals

�R2h1
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Vc D the volume of the cone, which equals

1

3
�R2h2

Vw D Vcy C Vc D the volume of the water container
Scy D the surface area of the cylinder, which equals

2�Rh1

Sc D the surface are of the cone, which equals

�R
q

R2 C h2
2

ST D Scy C Sc D the total surface area.

We want to maximize the volume Vw of the container. The total surface area ST constrains
the container’s volume. Thus, the problem is

Maximize f .h1; h2/ D �R2h1 C 1

3
�R2h2

subject to

2�Rh1 C �R
q

R2 C h2
2 D 450

Model Solution We employ the method of Lagrange multipliers to solve this equality
constrained optimization problem. We set up the function

L.h1; h2; �/ D �R2h1 C 1

3
�R2h2 � �Œ2�Rh1 C �R

q
R2 C h2

2 � 450�

We substitute R D 6 and � D 3:14 into the equation to simplify the expression

113:04h1 C 37:68h2 � �.37:68h1 � 18:81
q

36 C h2
2 � 450/

Taking the partial derivatives of L with respect to h1; h2, and � and setting them equal to
zero gives

@L

@h1

D 113:04 C 37:68� D 0

@L

@h2

D 37:68 C 18:84�h2p
36 C h2

2

D 0

@L

@�
D �450 C 37:68h1 C 18:84

q
36 C h2

2 D 0

Using a computer algebra system, we find the solution to three decimals accuracy to be
h1 D 7:918; h2 D 5:367; � D 3:000, which implies f .h1; h2/ D 1097:11 m3. By
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perturbing the values of h1 and h2 slightly in either direction (but satisfying the constraint),
we find the value of f .h1; h2/ decreases. Thus, we have found the maximum.

Model Sensitivity The Lagrange multiplier value of � D 3:000 means that if the total
surface area is increased by 1 unit, then the volume of the water container will increase by
approximately 3 m3. J J J

13.313.3 PROBLEMS

1. Resolve the oil transfer problemwhen the storage capacity is 25 ft3. How does this result
compare with our estimated value?

2. Resolve the water container problem when the surface area available is 500 ft2 and the
radius is 9 ft.

Use the method of Lagrange multipliers to solve Problems 3–6.

3. Find the minimum distance from the surface x2 C y2 � z2 D 1 to the origin.

4. Find three numbers whose sum is 9 and whose sum of squares is as small as possible.

5. Find the hottest point .x; y; z/ along the elliptical orbit

4x2 C y2 C 4z2 D 16

where the temperature function is

T .x; y; z/ D 8x2 C 4yz � 16z C 600

6. A Least Squares Plane—Given the four points .xk; yk; zk/

.0; 0; 0/; .0; 1; 1/; .1; 1; 1/; .1; 0; �1/

find the values of A; B , and C to minimize the sum of squared errors

4X

kD1

.Axk C Byk C C � zk/2

if the points must lie in the plane

z D Ax C By C C

7. Resolve the oil transfer problem if we introduce a second storage tank that can be filled
to its capacity of 30 ft3. (Hint:Youmight reformulate with four variables xij , the amount
of oil type i stored in storage tank j .)
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13.313.3 PROJECTS (See enclosed CD for UMAP modules.)
1. ‘‘LagrangeMultipliers and the Design ofMultistage Rockets,’’ by Anthony L. Peressini,

UMAP 517. The method of Lagrange multipliers is applied to compute the minimum
total mass of an n-stage rocket capable of placing a given payload in an orbit at a given
altitude above the earth’s surface. Familiarity with elementary minimization techniques
for functions of several variables, the method of Lagrange multipliers, and the concepts
of linear momentum and conservation of momentum is required.

2. ‘‘LagrangeMultipliers: Applications to Economics,’’ byChristopherH.Nevison, UMAP
270. The Lagrange multipliers method is interpreted and studied as the marginal rate
of change of a utility function. Differential calculus through Lagrange multipliers is
required.

3. Research the requirements for the necessary and sufficient conditions for the method of
Lagrange multipliers, and prepare a 10-minute talk.

13.413.4 Managing Renewable Resources:

The Fishing Industry

Consider the plight of the Antarctic baleen whale, which yielded a peak catch of 2.8 million
tons in 1937 but only 50,000 tons in 1978. Or the case of the Peruvian anchoveta, which
yielded 12.3 million tons in 1970 but only 500,000 tons just 8 years later. The anchoveta
fishery was Peru’s largest industry and the world’s most productive fishery. The seriousness
of the economic impact is realized when one considers that biologists estimate that even
without fishing, it will take several years, or even decades in the case of the baleen whale,
for these fisheries to reach their former levels of maximum biological productivity.1

Resources such as the anchoveta and baleen whale are called renewable (as opposed to
exhaustible) resources. Exhaustible resources can yield only a finite total amount, whereas
renewable resources can (theoretically) yield an unlimited total amount and be maintained
at some positive level. The management of a renewable resource, such as a fishery, involves
several critical considerations.What should the harvest rate be?How sensitive is the survival
of the species to population fluctuation caused by harvesting or to natural disasters, such
as a temporary alteration in the ocean currents (which contributed to the demise of the
anchoveta)? The economist Adam Smith (1723–1790) proclaimed that each individual, in
pursuing only his or her own selfish good, is led by an ‘‘invisible hand’’ to achieve the best
for all. Will that invisible hand really ensure that market forces work in the best interest
of humanity and the renewable resources? Or will intervention be required to improve the
situation, either for humanity or for the resource? In this section we use some graphical
submodels to gain a qualitative understanding of these management issues.

1Data from Colin W. Clarke, ‘‘The Economics of Over-exploration.’’ Science 181 (1973): 630–634.
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Scenario Consider the harvesting of a common fish, such as haddock, in a large com-
petitive fishing industry. Given the population level of the fish at some time, what happens
to future population levels? Future population levels depend on, among other factors, the
harvesting rate of the fish and their natural reproductive rate (births minus deaths per unit
time). Let’s develop submodels for harvesting and reproduction separately.

A harvesting submodel Let’s refer to the classical theory of the firm as presented in
Chapter 2. The graphical models for total profit and marginal profit are reproduced in
Figure 13.15. From Figure 13.15a we can see that a firm breaks even only when it can
produce at least q1 items, where total revenue equals total cost. To maximize profits the
firm should continue to produce items as long as the marginal revenue exceeds the marginal
cost—that is, produce up to the quantity q2 as depicted in Figure 13.15b.

T
o
ta

l 
p
ro
!

t

Quantityq1 q2

TP

MC

M
ar

g
in

al
 r

ev
en

u
e

an
d
 c

o
st

Quantity q2

MR

q q

$$

a b ©
 C

en
ga

ge
 Le

ar
ni

ng

J Figure 13.15
A graphical model for the theory of the firm

How is the theory of the firm related to the fishing industry? For a common fish such
as the haddock, and a competitive fishing industry, it is probably reasonable to assume that
price is a constant. If a common fish cannot bemarketed at that price, consumers will simply
switch to another type of fish. Likewise, in a large industry the quantity of a particular fish
marketed by an individual firm should not affect the price of the fish. Hence, over a wide
range of values, constant price appears to be a reasonable initial assumption.

Next, let’s consider the costs a fishing company encounters. These include salaries, fuel,
capital tied up in equipment, processing, and refrigeration. As usual, once a time horizon is
selected, these costs can be divided into two categories: fixed costs (such as capital costs),
which are independent of the yield harvested, and variable costs (such as processing), which
depend on the size of the yield. The basic principles underlying the theory of the firm apply
reasonably well. For example, we would expect that a typical fishing company must harvest
some minimum yield at a given level of effort (number of boats, person-hours of labor, and
so forth) to break even.

An interesting condition exists with the fishing industry: The cost of harvesting a given
number of fish depends on the size of the fish population. Certainly less effort is required
to catch a given number of fish when they are plentiful, so at a given level of effort one
would expect to catch more fish when they are plentiful. Thus, we assume the average
unit harvesting cost c.N / decreases as the size of the fish population N increases. This
assumption is depicted in Figure 13.16, in which the harvesting cost per fish is shown as
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a decreasing function of the size of the fish population. It is important to note that the
independent variable N is the size of the fish population, not the size of the yield. The
market price p of a fish is also shown in the figure.

J Figure 13.16
The (average) harvesting
cost per fish decreases as
the fish population level
increases.
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The submodel represented by Figure 13.16 suggests that it would be unprofitable to
fish a particular species of fish unless the population level is at least NL, where the cost
of harvesting each fish equals the price paid for it by the consumer. In those instances in
which it is economically feasible to harvest the species, harvesting is a force driving the
population level to NL. If the population level lies significantly above NL, then the excess
profit potential causes the fishing of the species to be intensified. On the other hand, if the
fish population falls below NL, the fishing ceases (theoretically), causing the population
level to increase.

We have reached an impasse with the harvesting submodel. Although we intended to
develop the two submodels independently, we now realize that the average cost of harvesting
a fish depends on the size of the fish population and hence its reproductive capacity. Even if
we know the current size of the fish population, we still need to know how the magnitudes
of the harvesting and reproduction rates compare to determine whether the population will
increase or decrease. We turn now to the development of a simple reproduction submodel.

A Reproduction Submodel Consider how a species of fish grows in the absence of
fishing. Among the many factors affecting its net growth rate are the birthrate, death rate,
and environmental conditions. Each of these factors was developed in detail in Chapter 11, in
which we constructed several population models. For our purposes here, a simple qualitative
graphical model will suffice. Let N.t/ denote the size of the fish population at any time
t , and let g.N / represent the rate of growth of the function N.t/. Assume that g.N / is
approximated by the continuous model g.N / D dN=dt . When N D 0, there are neither
births nor deaths. Now assume there is amaximumpopulation levelNu that can be supported
by the environment. This level might be imposed by the availability of food, the effect of
predators, or some similar inhibitor. AtNu we assume the births equal deaths, or g.Nu/ D 0.
Thus, under our assumptions, g.N / has zeros at N D 0 and N D Nu and positive values in
between. A graphical representation of g is depicted in Figure 13.17.

Before proceeding, we offer one analytic submodel for reproduction as an illustration.
A simple quadratic function having zeros at N D 0 and N D Nu is g.N / D aN.Nu �N /,
where a is a positive constant. Note that the quadratic is positive for 0 < N < Nu and
negative for N > Nu as required. Because g0.N / D a.Nu � 2N /, N D Nu=2 is a critical
point of g. Also, g00.N / D �2a implies g is everywhere concave downward, as depicted in
Figure 13.17.
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J Figure 13.17
A submodel for
reproduction
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J Figure 13.18
Regardless of the initial
population, the population
approaches N D Nu without
fishing.

Time
t

N

F
is

h
 p

o
p
u
la

ti
o
n

N3

N2

N1

N = Nu

N = Nb

©
 C

en
ga

ge
 Le

ar
ni

ng

Let’s see what the submodel for reproduction suggests about the population level.
Suppose the population level is currently at level N1 (Figure 13.17). Because g.N1/ > 0
andg.N /DdN=dt , the functionN is increasing. AsN increases,g.N /DdN=dt increases
as well until it reaches amaximum atN D Nb . ForN > Nb , the derivative remains positive
but becomes smaller and approaches zero as N gets closer to Nu. Thus, the population
approaches N D Nu as suggested in Figure 13.18. Convince yourself that the curves
suggested for starting populations of N D N2 and N D N3 are qualitatively correct in
Figure 13.18, where N1 < Nb < N2 < Nu < N3. Note that the ordinate in Figure 13.17
is the slope of the curves in Figure 13.18. In Chapter 11 we developed an analytic model
using differential equations to represent the population growth in Figure 13.18, which is
called logistic growth.

The Biological Optimum Population Level We now interpret our submodel for repro-
duction. In the absence of fishing, the population always approaches Nu, which is called
the carrying capacity of the environment. Moreover, a population level exists where the net
biological growth is at a maximum. This population level is called the biological optimum
population and is denoted by Nb . In our particular submodel, Nb D Nu=2, as established
earlier and depicted in Figure 13.17. (We established this result more precisely in Chap-
ter 11.)

The Social Optimum Yield Now that we have developed a submodel for reproduction,
let’s return to our harvesting submodel. Assume that the fishing industry seeks to maximize
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total profit, is the product of the yield and the average profit per fish. The average profit
per fish is the difference between the price p and the average cost c.N / to harvest a fish.
Thus, the expression for total profit TP is

TP D .yield/ � Œp � c.N /� (13.7)

What shall we assume about the yield? From the fishing company’s point of view, the ideal
situation is to have a constant yield from year to year. This situation would allow planning
for efficient staffing and capitalization of the resources allocated to fishing that particular
species. Otherwise, in lean years there would be resources, such as fishing vessels and staff,
that would be underused. It is also reasonable to assume that consumer demand for a certain
kind of fish is pretty much constant from year to year, for example, for a 3- or 4-year period.
Let’s see where the assumption of constant yield leads us.

First, how is constant yield obtained from year to year? One way is to harvest the
difference between the births and deaths over time. Because the functiong.N / approximates
this difference for a given populationN of fish, this idea suggests that g.N / equals the yield.
To illustrate the idea, consider Figure 13.19. Suppose the fish population is currently at N2.
If precisely the amount of fish g.N2/ are harvested, the population will remain at N2 (zero
net growth) and the fishing operation could be repeated annually indefinitely. Convince
yourself that any population level N with 0 < N < Nu can be maintained by harvesting
the amount g.N / per year.

Note that Nb , the population level for which the biological growth is a maximum, is of
particular importance under interpretation of a sustainable yield. This is true because Nb is
the population level that allows the largest sustainable yield, g.Nb/. Because this population
level has important social implications, we refer to Nb as the social optimum population
level. Note that the social and biological optimum levels are coincident in this example.

The Economic Optimum Population Level Assuming the yield to be g.N /, Equa-
tion (13.8) for total profit becomes

TP D g.N /Œp � c.N /� (13.8)

The fishing industry wants to maximize TP. What level of fish population permits the
greatest profit? Because g.N / reaches a maximum at N D Nb , we might be tempted to
conclude that profit is maximized there also. After all, the greatest yield occurs there.
However, the average profit continues to increase as N increases, based on our submodel
depicted in Figure 13.16. Thus, by choosing N > Nb , we may increase the profit while

J Figure 13.19
Harvesting g (N ) annually
permits a sustainable yield.
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simultaneously catching fewer fish because g.N / < g.Nb/. Let’s see if this possibility is
indeed the case.

What does the graph of the total profit function TP look like? The factor g.N / has zeros
atN D 0 andN D Nu, and the factor Œp�c.N /� has a zero atN D NL. One representation
of a continuous function meeting these requirements is shown in Figure 13.20 and suggests
that a population level does exist at which profits can be maximized.We call that population
level the economic optimum population level and denote it by Np.

J Figure 13.20
A continuous total profit
function
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Relating All Optimal Population Levels Up to this point several population levels of
interest to us have been introduced. They are summarized as follows:

NL D minimum population level for economic feasibility
Nb D social and biological optimum population levels
Np D economic optimum population level
Nu D maximum population sustainable by the environment

(the environmental carrying capacity)

Next, we relate these population levels. In order that it be worthwhile to fish a species
on a prolonged basis, it must be the case that NL < Nu, with Nb and Np somewhere in
between. However, how are Nb and Np related? If we believe that the fishing industry will
eventually find the population level that maximizes profit, we will hope, for social and
biological considerations, that Np D Nb . Let’s see whether Adam Smith’s invisible hand is
at work.

Consider Figure 13.21. For the case NL < Np < Nu, three possible locations for Nb

are shown on the graph for the total profit function TP. Study the graph and convince yourself
of the following situations:

1. Nb < Np if and only if TP0.Nb/ > 0.
2. Nb D Np if and only if TP0.Nb/ D 0.
3. Nb > Np if and only if TP0.Nb/ < 0.

Now, taking the derivative of Equation (13.9), we have

TP0 D g0.N /Œp � c.N /� � g.N /c0.N / (13.9)

From the definition of Nb , g0.Nb/ D 0 and g.Nb/ > 0, and from the submodel for
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J Figure 13.21
Three possible locations for
Nb are Nb < Np , Nb D Np ,
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average cost depicted in Figure 13.16, c0.N / < 0 for all N . Substitution of Nb into Equa-
tion (13.10) yields TP0.Nb/ > 0, which implies that Nb < Np from Figure 13.21. Thus,
under our assumptions, by allowing the fish population to exceed Nb the fishing company
can catch fewer fish but reap greater profits than is possible at Nb! Let’s interpret our model
to assist management in determining the alternatives for controlling the location of the
various population levels NL, Nb , and Np.

Model Interpretation As we saw in Chapter 11, the assumptions underlying the repro-
duction submodel are extremely simplistic, so we cannot expect to draw precise conclusions
from the graphical models developed here. However, our purpose in constructing the model
was to identify and analyze qualitatively some of the key issues in managing a renewable
resource. Consider again the baleen whale and Peruvian anchoveta in terms of the models
we have developed.

Several considerations must be taken into account with whales. First, the whale pop-
ulation displays a low natural growth rate (typically only 5–10% a year), and even a small
harvest can result in a negative net growth rate when the population is low. Second, many
conservationists argue that there is a minimum population Ns for the whale below which
the species will not survive. If harvesting or natural disasters cause the whale population
to fall below Ns , the species will be driven to extinction. These ideas are incorporated in
the graphical representations depicted in Figure 13.22, showing both the reproduction and
population submodels.

N
N1 N3

N3

NuNs N2

G
ro

w
th

 r
at

e

Whale population

g(N)

t

N1

Nu

Ns

N2

W
h
al

e 
p
o
p
u
la

ti
o
n

Time

N

©
 C

en
ga

ge
 Le

ar
ni

ng

J Figure 13.22
Reproduction and population models incorporating a minimum survival level
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Note from Figure 13.22 how sensitive the future whale population is to levels in the
vicinity ofNs . The relatively highmarket price for thewhale causes theminimumpopulation
NL for economic feasibility to be quite low (Figure 13.16) so that NL can be quite near the
level Ns . Thus, the location of NL becomes critical. (Argue that in the case of the whale,
NL could be smaller than Ns . Management of the fishery in such a case requires separating
Ns and NL.) Ideally, one would like NL and Nb to coincide. Taxation and the establishment
of quotas are two alternatives that are discussed in the following problem set.

In the case of the Peruvian anchoveta, it is estimated that themaximum sustainable yield
is 10 million tons annually. Thus, any additional catch (such as the 12.3 million tons caught
in 1970) would result in population decrease, even if the population were at the biological
optimum level Nb . From Figure 13.19 we suspect that as the population decreases from the
biological optimum population, the sustainable yield decreases, suggesting that the harvest
should be reduced. However, from a practical point of view, once the fishing fleet and staff
are established to catch 12.3 million tons, there is strong economic motivation to continue
harvesting at that level by fishing more intensively. This critical situation existed during the
1970s in Peru, where there were few economic alternatives, and government intervention
to enforce strict regulation of the fishery was politically volatile. We can well imagine how
these practical considerations become substantially more complex when more than one
country is involved in managing the resource.

13.413.4 PROBLEMS

1. Assume that the environmental carrying capacity Nu is determined principally by the
availability of food. Argue that under such an assumption, as N approaches Nu the
physical condition of the average fish deteriorates as competition for the food supply
becomes more severe. What does this suggest about the survival of the species when
natural disasters such as storms, severewinters, and similar circumstances further restrict
the food supply? Where should conservationists attempt to maintain the population
level?

2. In 1981 and 1982, the deer population in the Florida Everglades was very high. Although
the deer were plentiful, they were on the brink of starvation. Hunting permits were issued
to thin out the herd. This action caused much furor on the part of environmentalists and
conservationists. Explain the poor health of the deer and the purpose of the special
hunting permits in terms of population growth and population submodels.

3. Argue that for many species, a minimum population level is required for survival. Give
several examples. Call this minimum survival level Ns . Suggest a simple cubic growth
submodelmeeting these requirements, as depicted in Figure 13.22. Answer the questions
posed in Problem 1 using your graphical submodel.

4. Suppose Nu < NL. What does this inequality suggest about the economic feasibility of
fishing that species? Give several examples.

Problems 5 and 6 are related to fishing regulation.

5. One of the key assumptions underlying the models developed in this section is that the
harvest rate equals the growth rate for a sustainable yield. The reproduction submodels
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in Figures 13.19 and 13.22 suggest that if the current population levels are known, it
is possible to estimate the growth rate. The implication of this knowledge is that if a
quota for the season is established based on the estimated growth rate, then the fish
population can be maintained, increased, or decreased as desired. This quota system
might be implemented by requiring all commercial fishermen to register their catch
daily and then closing the season when the quota is reached. Discuss the difficulties in
determining reproduction models precise enough to be used in this manner. How would
you estimate the population level? What are the disadvantages of having a quota that
varies from year to year? Discuss the practical political difficulties of implementing such
a procedure.

6. One of the difficulties in managing a fishery in a free-enterprise system is that excess
capacity may be created through overcapitalization. This happened in 1970 when the
capacity of the Peruvian anchoveta fishermen was sufficient to catch and process the
maximum annual growth rate in less than 3 months. A disadvantage of restricting access
to the fishery by closing the season after a quota is reached is that this excess capacity is
idle duringmuch of the season, which creates a politically and economically unsatisfying
situation. An alternative is to control the capacity in some manner. Suggest several
procedures for controlling the capacity that is developed. What difficulties would be
involved in implementing a procedure such as restricting the number of commercial
fishing permits issued?

Problems 7–9 are related to taxation.

7. Figure 13.16 suggests that market forces tend to drive the population to NL. Use that
figure to show how taxation or subsidization may be used to control the location of NL.
What forms might the taxation and subsidization take? (Hint: One cost to the fisherman
is the various taxes he pays.) Apply your ideas to the whale fishery.

8. Taxation is appealing from a theoretical perspective because with a properly designed
tax, desired goals can be achieved through normal market forces rather than by some
artificial method (such as restricting the number of commercial permits). Assume a fish
population is currently at Nb and you want to maintain it at that level by harvesting
g.Nb/. How can a tax be determined for each fish caught to cause NL, Nb , and Np to
coincide? (Hint: Consider Equation (13.8) and the condition required for Nb D Np.)

9. A constant price has been assumed in all the models developed in this section. Sug-
gest some fisheries for which that assumption is not realistic. How might you alter the
assumption? How would you determine the appropriate tax?

13.4 Further Reading
Clark, Colin W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources.

New York: Wiley, 1976.
May, Robert M., John R. Beddington, Colin W. Clark, Sidney J. Holt, & Richard M. Laws. ‘‘Man-

agement of Multispecies Fisheries.’’ Science 205 (July 1979): 267–277.
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1414 Dimensional Analysis

and Similitude

Introduction

In the process of constructing a mathematical model, we have seen that the variables influ-
encing the behavior must be identified and classified. We must then determine appropri-
ate relationships among those variables retained for consideration. In the case of a single
dependent variable this procedure gives rise to some unknown function:

y D f .x1; x2; : : : ; xn/

where the xi measure the various factors influencing the phenomenon under investigation.
In some situations the discovery of the nature of the function f for the chosen factors
comes about by making some reasonable assumption based on a law of nature or previous
experience and construction of amathematicalmodel.Wewere able to use thismethodology
in constructing our model on vehicular stopping distance (see Section 2.2). On the other
hand, especially for those models designed to predict some physical phenomenon, we may
find it difficult or impossible to construct a solvable or tractable explicative model because
of the inherent complexity of the problem. In certain instances we might conduct a series
of experiments to determine how the dependent variable y is related to various values of
the independent variable(s). In such cases we usually prepare a figure or table and apply an
appropriate curve-fitting or interpolation method that can be used to predict the value of y
for suitable ranges of the independent variable(s). We employed this technique in modeling
the elapsed time of a tape recorder in Sections 4.2 and 4.3.

Dimensional analysis is a method for helping determine how the selected variables are
related and for reducing significantly the amount of experimental data thatmust be collected.
It is based on the premise that physical quantities have dimensions and that physical laws
are not altered by changing the units measuring dimensions. Thus, the phenomenon under
investigation can be described by a dimensionally correct equation among the variables.
A dimensional analysis provides qualitative information about the model. It is especially
important when it is necessary to conduct experiments in the modeling process because the
method is helpful in testing the validity of including or neglecting a particular factor, in
reducing the number of experiments to be conducted to make predictions, and in improving
the usefulness of the results by providing alternatives for the parameters employed to present
them. Dimensional analysis has proved useful in physics and engineering for many years
and even now plays a role in the study of the life sciences, economics, and operations
research. Let’s consider an example illustrating how dimensional analysis can be used in
the modeling process to increase the efficiency of an experimental design.

1
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2 Chapter 14 Dimensional Analysis and Similitude

Introductory Example: A Simple Pendulum
Consider the situation of a simple pendulum as suggested in Figure 14.1. Let r denote the
length of the pendulum,m its mass, and � the initial angle of displacement from the vertical.
One characteristic that is vital in understanding the behavior of the pendulum is the period,
which is the time required for the pendulum bob to swing through one complete cycle and
return to its original position (as at the beginning of the cycle). We represent the period of
the pendulum by the dependent variable t .

J Figure 14.1
A simple pendulum
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Problem Identification For a given pendulum system, determine its period.

Assumptions First, we list the factors that influence the period. Some of these factors are
the length r , the massm, the initial angle of displacement � , the acceleration due to gravity
g, and frictional forces such as the friction at the hinge and the drag on the pendulum.
Assume initially that the hinge is frictionless, that the mass of the pendulum is concentrated
at one end of the pendulum, and that the drag force is negligible. Other assumptions about
the frictional forces will be examined in Section 14.3. Thus, the problem is to determine or
approximate the function

t D f .r;m; �; g/

and test its worthiness as a predictor.

Experimental Determination of the Model Because gravity is essentially constant
under the assumptions, the period t is a function of the three variables: length r , massm, and
initial angle of displacement � . At this point we could systematically conduct experiments
to determine how t varies with these three variables. We would want to choose enough
values of the independent variables to feel confident in predicting the period t over that
range. How many experiments will be necessary?

For the sake of illustration, consider a function of one independent variable y D f .x/,
and assume that four points have been deemed necessary to predict y over a suitable domain
for x. The situation is depicted in Figure 14.2. An appropriate curve-fitting or interpolation
method could be used to predict y within the domain for x.

Next consider what happens when a second independent variable affects the situation
under investigation. We then have a function

y D f .x; z/
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J Figure 14.2
Four points have been
deemed necessary to
predict y for this function
of one variable x .
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For each data value of x in Figure 14.2, experiments must be conducted to obtain y for four
values of z. Thus, 16 (that is, 42) experiments are required. These observations are illustrated
in Figure 14.3. Likewise, a function of three variables requires 64 (that is, 43) experiments.
In general, 4n experiments are required to predict y when n is the number of arguments
of the function, assuming four points for the domain of each argument. Thus, a procedure
that reduces the number of arguments of the function f will dramatically reduce the total
number of required experiments. Dimensional analysis is one such procedure. J J J

J Figure 14.3
Sixteen points are
necessary to predict y
for this function of the
two variables x and z .
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The power of dimensional analysis is also apparent when we examine the interpolation
curves that would be determined after collecting the data represented in Figures 14.2 and
14.3. Let’s assume it is decided to pass a cubic polynomial through the four points shown in
Figure 14.2. That is, the four points are used to determine the four constants C1–C4 in the
interpolating curve:

y D C1x
3 C C2x

2 C C3x C C4

Now consider interpolating from Figure 14.3. If for a fixed value of x, say x D x1, we
decide to connect our points using a cubic polynomial in z, the equation of the interpolating
surface is

y D D1x
3 CD2x

2 CD3x CD4 C .D5x
3 CD6x

2 CD7x CD8/z

C .D9x
3 CD10x

2 CD11x CD12/z
2 C .D13x

3 CD14x
2 CD15x CD16/z

3
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Note from the equation that there are 16 constants—D1;D2; : : : ;D16—to determine,
rather than 4 as in the two-dimensional case. This procedure again illustrates the dramatic
reduction in effort required when we reduce the number of arguments of the function we
will finally investigate.

At this point we make the important observation that the experimental effort required
depends more heavily on the number of arguments of the function to be investigated than
on the true number of independent variables the modeler originally selected. For example,
consider a function of two arguments, say y D f .x; z/. The discussion concerning the
number of experiments necessarywould not be altered if x were some particular combination
of several variables. That is, x could be uv=w, where u, v, andw are the variables originally
selected in the model.

Consider now the following preview of dimensional analysis, which describes how
it reduces our experimental effort. Beginning with a function of n variables (hence, n
arguments), the number of arguments is reduced (ordinarily by three) by combining the
original variables into products. These resulting .n� 3/ products are called dimensionless
products of the original variables. After applying dimensional analysis, we still need to
conduct experiments to make our predictions, but the amount of experimental effort that is
required will have been reduced exponentially.

In Chapter 2 we discussed the trade-offs of considering additional variables for in-
creased precision versus neglecting variables for simplification. In constructing models
based on experimental data, the preceding discussion suggests that the cost of each addi-
tional variable is an exponential increase in the number of experimental trials that must be
conducted. In the next two sections, we present the main ideas underlying the dimensional
analysis process. You may find that some of these ideas are slightly more difficult than
some that we have already investigated, but the methodology is powerful when modeling
physical behavior.

14.114.1 Dimensions as Products

The study of physics is based on abstract concepts such as mass, length, time, velocity,
acceleration, force, energy, work, and pressure. To each such concept a unit of measurement
is assigned. A physical law such as F D ma is true, provided that the units of measurement
are consistent. Thus, if mass is measured in kilograms and acceleration in meters per
second squared, then the force must be measured in newtons. These units of measurement
belong to the MKS (meter–kilogram–second) mass system. It would be inconsistent with
the equation F D ma to measure mass in slugs, acceleration in feet per second squared,
and force in newtons. In this illustration, force must be measured in pounds, giving the
American Engineering System of measurement. There are other systems of measurement,
but all are prescribed by international standards so as to be consistent with the laws of
physics.

The three primary physical quantities we consider in this chapter are mass, length,
and time. We associate with these quantities the dimensions M , L, and T , respectively.
The dimensions are symbols that reveal how the numerical value of a quantity changes
when the units of measurement change in certain ways. The dimensions of other quantities
follow from definitions or from physical laws and are expressed in terms of M , L, and
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T . For example, velocity v is defined as the ratio of distance s (dimension L) traveled to
time t (dimension T ) of travel—that is, v D st

�1, so the dimension of velocity is LT �1.
Similarly, because area is fundamentally a product of two lengths, its dimension is L2.
These dimension expressions hold true regardless of the particular system of measurement,
and they show, for example, that velocity may be expressed in meters per second, feet per
second, miles per hour, and so forth. Likewise, area can be measured in terms of square
meters, square feet, square miles, and so on.

There are still other entities in physics that are more complex in the sense that they are
not usually defined directly in terms of mass, length, and time alone; instead, their defini-
tions include other quantities, such as velocity. We associate dimensions with these more
complex quantities in accordance with the algebraic operations involved in the definitions.
For example, because momentum is the product of mass with velocity, its dimension is
M.LT

�1
/ or simplyMLT �1.

The basic definition of a quantity may also involve dimensionless constants; these are
ignored in finding dimensions. Thus, the dimension of kinetic energy, which is one-half (a
dimensionless constant) the product of mass with velocity squared, isM.LT �1

/
2 or simply

ML
2
T

�2. As you will see in Example 2, some constants (dimensional constants), such as
gravity g, do have an associated dimension, and these must be considered in a dimensional
analysis.

These examples illustrate the following important concepts regarding dimensions of
physical quantities.

1. We have based the concept of dimension on three physical quantities: mass m, length
s, and time t . These quantities are measured in some appropriate system of units whose
choice does not affect the assignment of dimensions. (This underlying system must be
linear. A dimensional analysis will not work if the scale is logarithmic, for example.)

2. There are other physical quantities, such as area and velocity, that are defined as simple
products involving only mass, length, or time. Here we use the term product to include
any quotient because we may indicate division by negative exponents.

3. There are still other, more complex physical entities, such as momentum and kinetic
energy, whose definitions involve quantities other than mass, length, and time. Because
the simpler quantities from (1) and (2) are products, these more complex quantities can
also be expressed as products involving mass, length, and time by algebraic simplifica-
tion. We use the term product to refer to any physical quantity from item (1), (2), or (3);
a product from (1) is trivial because it has only one factor.

4. To each product, there is assigned a dimension—that is, an expression of the form

M
n
L

p
T

q (14.1)

where n, p, and q are real numbers that may be positive, negative, or zero.

When a basic dimension is missing from a product, the corresponding exponent is
understood to be zero. Thus, the dimensionM 2

L
0
T

�1 may also appear asM 2
T

�1. When
n, p, and q are all zero in an expression of the form (14.1), so that the dimension reduces to

M
0
L

0
T

0 (14.2)

the quantity, or product, is said to be dimensionless.
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Special care must be taken in forming sums of products because just as we cannot add
apples and oranges, in an equation we cannot add products that have unlike dimensions.
For example, if F denotes force, m mass, and v velocity, we know immediately that the
equation

F D mv C v
2

cannot be correct becausemv has dimensionMLT �1, whereas v2 has dimension L2
T

�2.
These dimensions are unlike; hence, the products mv and v2 cannot be added. An equa-
tion such as this—that is, one that contains among its terms two products having unlike
dimensions—is said to be dimensionally incompatible. Equations that involve only sums
of products having the same dimension are dimensionally compatible.

The concept of dimensional compatibility is related to another important concept called
dimensional homogeneity. In general, an equation that is true regardless of the system of
units in which the variables are measured is said to be dimensionally homogeneous. For
example, t D

p
2s=g giving the time a body falls a distance s under gravity (neglecting

air resistance) is dimensionally homogeneous (true in all systems), whereas the equation
t D

p
s=16:1 is not dimensionally homogeneous (because it depends on a particular system).

In particular, if an equation involves only sums of dimensionless products (i.e., it is a
dimensionless equation), then the equation is dimensionally homogeneous. Because the
products are dimensionless, the factors used for conversion from one system of units to
another would simply cancel.

The application of dimensional analysis to a real-world problem is based on the as-
sumption that the solution to the problem is given by a dimensionally homogeneous equa-
tion in terms of the appropriate variables. Thus, the task is to determine the form of the
desired equation by finding an appropriate dimensionless equation and then solving for the
dependent variable. To accomplish this task, we must decide which variables enter into the
physical problem under investigation and determine all the dimensionless products among
them. In general, there may be infinitely many such products, so they will have to be de-
scribed rather than actually written out. Certain subsets of these dimensionless products are
then used to construct dimensionally homogeneous equations. In Section 14.2 we investigate
how the dimensionless products are used to find all dimensionally homogeneous equations.
The following example illustrates how the dimensionless products may be found.

EXAMPLE 1 A Simple Pendulum Revisited

Consider again the simple pendulum discussed in the introduction. Analyzing the dimen-
sions of the variables for the pendulum problem, we have

Variable m g t r �

Dimension M LT
�2

T L M
0
L

0
T

0

Next we find all the dimensionless products among the variables. Any product of these
variables must be of the form

m
a
g

b
t

c
r

d
�

e (14.3)
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and hence must have dimension

.M/
a
.LT

�2
/

b
.T /

c
.L/

d
.M

0
L

0
T

0
/

e

Therefore, a product of the form (14.3) is dimensionless if and only if

M
a
L

bCd
T

c�2b D M
0
L

0
T

0 (14.4)

Equating the exponents on both sides of this last equation leads to the system of linear
equations

a C 0e D 0

b C d C 0e D 0

� 2b C c C 0e D 0


 (14.5)

Solution of the system (14.5) gives a D 0, c D 2b, d D �b, where b is arbitrary. Thus,
there are infinitely many solutions. Here are some general rules for selecting arbitrary
variables: (1) Choose the dependent variable so it will appear only once, (2) select any
variable that expedites the solution of the other equations (i.e., a variable that appears
in all equations), and (3) choose a variable that always has a zero coefficient, if possible.
Notice that the exponent e does not really appear in (14.4) (because it has a zero coefficient
in each equation) so it is also arbitrary. One dimensionless product is obtained by setting
b D 0 and e D 1, yielding a D c D d D 0. A second, independent dimensionless product
is obtained when b D 1 and e D 0, yielding a D 0, c D 2, and d D �1. These solutions
give the dimensionless products

Y
1

D m
0
g

0
t

0
r

0
�

1 D �

Y
2

D m
0
g

1
t

2
r

�1
�

0 D gt
2

r

In Section 14.2, wewill learn amethodology for relating these products to carry themodeling
process to completion. For now, we will develop a relationship in an intuitive manner.

Assuming t D f .r;m; g; �/, to determine more about the function f , we observe that
if the units in which we measure mass are made smaller by some factor (e.g., 10), then the
measure of the period t will not change because it is measured in units (T ) of time. Because
m is the only factor whose dimension containsM , it cannot appear in the model. Similarly,
if the scale of the units (L) for measuring length is altered, it cannot change the measure of
the period. For this to happen, the factors r and g must appear in the model as r=g, g=r , or,
more generally, .g=r/k . This ensures that any linear change in the way length is measured
will be canceled. Finally, if we make the units (T ) that measure time smaller by a factor
of 10, for example, the measure of the period will directly increase by this same factor 10.
Thus, to have the dimension of T on the right side of the equation t D f .r;m; g; �/, g and
r must appear as

p
r=g because T appears to the power �2 in the dimension of g. Note that

none of the preceding conditions places any restrictions on the angle � . Thus, the equation
of the period should be of the form

t D
r
r

g
h.�/

where the function h must be determined or approximated by experimentation.
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8 Chapter 14 Dimensional Analysis and Similitude

We note two things in this analysis that are characteristic of a dimensional analysis.
First, in theMLT system, three conditions are placed on the model, so we should generally
expect to reduce the number of arguments of the function relating the variables by three. In
the pendulum problem we reduced the number of arguments from four to one. Second, all
arguments of the function present at the end of a dimensional analysis (in this case, � ) are
dimensionless products.

In the problem of the undamped pendulum we assumed that friction and drag were
negligible. Before proceeding with experiments (which might be costly), we would like to
know whether that assumption is reasonable. Consider the model obtained so far:

t D
r
r

g
h.�/

Keeping � constant while allowing r to vary, form the ratio

t1

t2

D
p
r1=g h.�0/p
r2=g h.�0/

D
r
r1

r2

Hence the model predicts that t will vary as
p
r for constant � . Thus, if we plot t versus r

with fixed � for some observations, we will expect to get a straight line (Figure 14.4). If we
do not obtain a reasonably straight line, then we need to reexamine the assumptions. Note
that our judgment here is qualitative. The final measure of the adequacy of any model is
always how well it predicts or explains the phenomenon under investigation. Nevertheless,
this initial test is useful for eliminating obviously bad assumptions and for choosing among
competing sets of assumptions.

J Figure 14.4
Testing the assumptions
of the simple pendulum
model by plotting the
period t versus the square
root of the length r for
constant displacement „

t

(    =  Constant)

P
er
io
d

r√ ©
 C

en
ga

ge
 Le

ar
ni

ng

Dimensional analysis has helped construct a model t D f .r;m; g; �/ for the undamped
pendulum as t D

p
r=g h.�/. If we are interested in predicting the behavior of the pendulum,

we could isolate the effect of h by holding r constant and varying � . This provides the ratio

t1

t2

D
p
r0=g h.�1/p
r0=g h.�2/

D h.�1/

h.�2/

Hence a plot of t versus � for several observations would reveal the nature of h. This plot is
illustrated in Figure 14.5. We may never discover the true function h relating the variables.
In such cases, an empirical model might be constructed from the experimental data, as
discussed in Chapter 4. When we are interested in using our model to predict t , based on
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J Figure 14.5
Determining the unknown
function h

t

(r  =  Constant)
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experimental results, it is convenient to use the equation t
p
g=r D h.�/ and to plot t

p
g=r

versus � , as in Figure 14.6. Then, for a given value of � , we would determine t
p
g=r ,

multiply it by
p
r=g for a specific r , and finally determine t . J J J

J Figure 14.6
Presenting the results for
the simple pendulum

g/r√t
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EXAMPLE 2 Wind Force on a Van

Suppose you are driving a van down a highway with gusty winds. How does the speed of
your vehicle affect the wind force you are experiencing?

The force F of the wind on the van is certainly affected by the speed v of the van
and the surface area A of the van directly exposed to the wind’s direction. Thus, we might
hypothesize that the force is proportional to some power of the speed times some power of
the surface area; that is,

F D kv
a
A

b (14.6)

for some (dimensionless) constant k. Analyzing the dimensions of the variables gives

Variable F k v A

Dimension MLT
�2

M
0
L

0
T

0
LT

�1
L

2

Hence, dimensionally, Equation (14.6) becomes

MLT
�2 D .M

0
L

0
T

0
/.LT

�1
/

a
.L

2
/

b
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10 Chapter 14 Dimensional Analysis and Similitude

This last equation cannot be correct because the dimensionM for mass does not enter into
the right-hand side with nonzero exponent.

So consider again Equation (14.6). What is missing in our assumption concerning the
wind force? Wouldn’t the strength of the wind be affected by its density? After some
reflection we would probably agree that density does have an effect. If we include the
density � as a factor, then our refined model becomes

F D kv
a
A

b
�

c (14.7)

Because density is mass per unit volume, the dimension of density is ML�3. Therefore,
dimensionally, Equation (14.7) becomes

MLT
�2 D .M

0
L

0
T

0
/.LT

�1
/

a
.L

2
/

b
.ML

�3
/

c

Equating the exponents on both sides of this last equation leads to the system of linear
equations:

c D 1

aC 2b � 3c D 1

�a D �2


 (14.8)

Solution of the system (14.8) gives a D 2, b D 1, and c D 1. When substituted into
Equation (14.7), these values give the model

F D kv
2
A� J J J

At this point wemake an important observation.When it was assumed thatF Dkva
A

b ,
the constant was assumed to be dimensionless. Subsequently, our analysis revealed that for
a particular medium (so � is constant)

F / Av
2

giving F D k1Av
2. However, k1 does have a dimension associated with it and is called a

dimensional constant. In particular, the dimension of k1 is

MLT
�2

L2.L2T �2/
D ML

�3

Dimensional constants contain important information and must be considered when per-
forming a dimensional analysis. We consider dimensional constants again in Section 14.3
when we investigate a damped pendulum.

If we assume the density � is constant, our model shows that the force of the wind
is proportional to the square of the speed of the van times its surface area directly ex-
posed to the wind. We can test the model by collecting data and plotting the wind force
F versus v2

A to determine whether the graph approximates a straight line through the
origin. This example illustrates one of the ways in which dimensional analysis can be used
to test our assumptions and check whether we have a faulty list of variables identifying
the problem. Table 14.1 gives a summary of the dimensions of some common physical
entities.
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Table 14.1 Dimensions of physical entities in theMLT system

Mass M Momentum MLT
�1

Length L Work ML
2
T

�2

Time T Density ML
�3

Velocity LT
�1 Viscosity ML

�1
T

�1

Acceleration LT
�2 Pressure ML

�1
T

�2

Specific weight ML
�2
T

�2 Surface tension MT
�2

Force MLT
�2 Power ML

2
T

�3

Frequency T
�1 Rotational inertia ML

2

Angular velocity T
�1 Torque ML

2
T

�2

Angular acceleration T
�2 Entropy ML

2
T

�2

Angular momentum ML
2
T

�1 Heat ML
2
T

�2

Energy ML
2
T

�2

© Cengage Learning

14.114.1 PROBLEMS

1. Determine whether the equation

s D s0 C v0t � 0:5gt2

is dimensionally compatible, if s is the position (measured vertically from a fixed refer-
ence point) of a body at time t , s0 is the position at t D 0, v0 is the initial velocity, and
g is the acceleration caused by gravity.

2. Find a dimensionless product relating the torque � .ML2
T

�2
/ produced by an automobile

engine, the engine’s rotation rate  .T�1
/, the volume V of air displaced by the engine,

and the air density �.

3. The various constants of physics often have physical dimensions (dimensional constants)
because their values depend on the system in which they are expressed. For example,
Newton’s law of gravitation asserts that the attractive force between two bodies is pro-
portional to the product of their masses divided by the square of the distance between
them, or, symbolically,

F D Gm1m2

r2

where G is the gravitational constant. Find the dimension of G so that Newton’s law is
dimensionally compatible.

4. Certain stars, whose light and radial velocities undergo periodic vibrations, are thought
to be pulsating. It is hypothesized that the period t of pulsation depends on the star’s
radius r , its massm, and the gravitational constantG. (See Problem 3 for the dimension
of G.) Express t as a product of m, r , and G, so the equation

t D m
a
r

b
G

c

is dimensionally compatible.
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12 Chapter 14 Dimensional Analysis and Similitude

5. In checking the dimensions of an equation, you should note that derivatives also possess
dimensions. For example, the dimension of ds=dt isLT�1 and the dimension of d2

s=dt
2

is LT�2, where s denotes distance and t denotes time. Determine whether the equation

dE

dt
D

�
mr

2

�
d

2
�

dt2

�
mgr sin �

�
d�

dt

for the time rate of change of total energy E in a pendulum system with damping force
is dimensionally compatible.

6. For a body moving along a straight-line path, if the mass of the body is changing over
time, then an equation governing its motion is given by

m
dv

dt
D F C u

dm

dt

wherem is the mass of the body, v is the velocity of the body, F is the total force acting
on the body, dm is the mass joining or leaving the body in the time interval dt , and u
is the velocity of dm at the moment it joins or leaves the body (relative to an observer
stationed on the body). Show that the preceding equation is dimensionally compatible.

7. In humans, the hydrostatic pressure of blood contributes to the total blood pressure. The
hydrostatic pressure P is a product of blood density �, height h of the blood column
between the heart and some lower point in the body, and gravity g. Determine

P D k�
a
h

b
g

c

where k is a dimensionless constant.

8. Assume the force F opposing the fall of a raindrop through air is a product of viscosity
�, velocity v, and the diameter r of the drop. Assume that density is neglected. Find

F D k�
a
v

b
r

c

where k is a dimensionless constant.

14.114.1 PROJECT

1. Complete the requirements of ‘‘Keeping Dimension Straight,’’ by George E. Strecker,
UMAP 564. This module is a very basic introduction to the distinction between dimen-
sions and units. It also provides the student with some practice in using dimensional
arguments to properly set up solutions to elementary problems and to recognize errors.

14.214.2 The Process of Dimensional Analysis

In the preceding section we learned how to determine all dimensionless products among the
variables selected in the problem under investigation. Now we investigate how to use the
dimensionless products to find all possible dimensionally homogeneous equations among
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the variables. The key result is Buckingham’s theorem, which summarizes the entire theory
of dimensional analysis.

Example 1 in the preceding section shows that in general, many dimensionless products
may be formed from the variables of a given system. In that example we determined every
dimensionless product to be of the form

g
b
t

2b
r

�b
�

e (14.9)

where b and e are arbitrary real numbers. Each one of these products corresponds to a
solution of the homogeneous system of linear algebraic equations given by Equation (14.5).
The two products

Y
1

D � and
Y

2
D gt

2

r

obtained when b D 0, e D 1, and b D 1, e D 0, respectively, are special in the sense that
any of the dimensionless products (14.9) can be given as a product of some power of

Q
1

times some power of
Q

2. Thus, for instance,

g
3
t

6
r

�3
�

1=2 D
Y1=2

1

Y3

2

This observation follows from the fact that b D 0, e D 1 and b D 1, e D 0 represent,
in some sense, independent solutions of the system (14.5). Let’s explore these ideas further.

Consider the following system of m linear algebraic equations in the n unknowns
x1; x2; : : : ; xn:

a11x1 C a12x2 C � � � C a1nxn D b1

a21x1 C a22x2 C � � � C a2nxn D b2

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

am1x1 C am2x2 C � � � C amnxn D bm

(14.10)

The symbols aij and bi denote real numbers for each i D 1; 2; : : : ; m and j D 1; 2; : : : ; n.
The numbers aij are called the coefficients of the system, and the bi are referred to as the
constants. The subscript i in the symbol aij refers to the i th equation of the system (14.10)
and the subscript j refers to the j th unknown xj to which aij belongs. Thus, the subscripts
serve to locate aij . It is customary to read a13 as ‘‘a, one, three’’ and a42 as ‘‘a, four, two,’’
for example, rather than ‘‘a, thirteen’’ and ‘‘a, forty-two.’’

A solution to the system (14.10) is a sequence of numbers s1; s2; : : : ; sn for which x1 D
s1; x2 D s2; : : : ; xn D sn solves each equation in the system. If b1 D b2 D � � � D bm D 0,
the system (14.10) is said to behomogeneous. The solution s1 D s2 D � � � D sn D 0 always
solves the homogeneous system and is called the trivial solution. For a homogeneous
system there are two solution possibilities: either the trivial solution is the only solution or
there are infinitely many solutions.

Whenever s1; s2; : : : ; sn and s0
1; s

0
2; : : : ; s

0
n are solutions to the homogeneous system,

the sequences s1 C s
0
1; s2 C s

0
2; : : : ; sn C s

0
n, and cs1; cs2; : : : ; csn are also solutions for any

constant c. These solutions are called the sum and scalar multiple of the original solutions,
respectively. If S and S 0 refer to the original solutions, then we use the notations S CS

0 to
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refer to their sum and cS to refer to a scalar multiple of the first solution. If S1; S2; : : : ; Sk

is a collection of k solutions to the homogeneous system, then the solution

c1S1 C c2S2 C � � � C ckSk

is called a linear combination of the k solutions, where c1; c2; : : : ; ck are arbitrary real
numbers. It is an easy exercise to show that any linear combination of solutions to the
homogeneous system is still another solution to the system.

A set of solutions to a homogeneous system is said to be independent if no solution
in the set is a linear combination of the remaining solutions in the set. A set of solutions
is complete if it is independent and every solution is expressible as a linear combination
of solutions in the set. For a specific homogeneous system, we seek some complete set of
solutions because all other solutions are produced from them using linear combinations.
For example, the two solutions corresponding to the two choices b D 0, e D 1 and b D 1,
e D 0 form a complete set of solutions to the homogeneous system (14.5).

It is not our intent to present the theory of linear algebraic equations. Such a study
is appropriate for a course in linear algebra. We do point out that there is an elementary
algorithm known as Gaussian elimination for producing a complete set of solutions to a
given system of linear equations. Moreover, Gaussian elimination is readily implemented
on computers and handheld programmable calculators. The systems of equations we will
encounter in this book are simple enough to be solved by the elimination methods learned
in intermediate algebra.

How does our discussion relate to dimensional analysis? Our basic goal thus far has been
to find all possible dimensionless products among the variables that influence the physical
phenomenon under investigation. We developed a homogeneous system of linear algebraic
equations to help us determine these dimensionless products. This system of equations
usually has infinitely many solutions. Each solution gives the values of the exponents that
result in a dimensionless product among the variables. If we sum two solutions, we produce
another solution that yields the same dimensionless product as does multiplication of the
dimensionless products corresponding to the original two solutions. For example, the sum
of the solutions corresponding to b D 0, e D 1 and b D 1, e D 0 for Equation (14.5) yields
the solution corresponding to b D 1; e D 1 with the corresponding dimensionless product
from Equation (14.9) given by

gt
2
r

�1
� D

Y
1

Y
2

The reason for this result is that the unknowns in the system of equations are the exponents
in the dimensionless products, and addition of exponents algebraically corresponds to mul-
tiplication of numbers having the same base: xmCn D x

m
x

n. Moreover, multiplication of
a solution by a constant produces a solution that yields the same dimensionless product as
does raising the product corresponding to the original solution to the power of the constant.
For example, �1 times the solution corresponding to b D 1, e D 0 yields the solution
corresponding to b D �1, e D 0 with the corresponding dimensionless product

g
�1
t

�2
r D

Y�1

2

The reason for this last result is that algebraic multiplication of an exponent by a constant
corresponds to raising a power to a power, xmn D .x

m
/

n.
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In summary, addition of solutions to the homogeneous system of equations results
in multiplication of their corresponding dimensionless products, and multiplication of a
solution by a constant results in raising the corresponding product to the power given by
that constant. Thus, if S1 and S2 are two solutions corresponding to the dimensionless
products

Q
1 and

Q
2, respectively, then the linear combination aS1 C bS2 corresponds to

the dimensionless product
Ya

1

Yb

2

It follows from our preceding discussion that a complete set of solutions to the homoge-
neous system of equations produces all possible solutions through linear combination. The
dimensionless products corresponding to a complete set of solutions are therefore called
a complete set of dimensionless products. All dimensionless products can be obtained by
forming powers and products of the members of a complete set.

Next, let’s investigate how these dimensionless products can be used to produce all
possible dimensionally homogeneous equations among the variables. In Section 14.1 we
defined an equation to be dimensionally homogeneous if it remains true regardless of the
system of units in which the variables are measured. The fundamental result in dimensional
analysis that provides for the construction of all dimensionally homogeneous equations
from complete sets of dimensionless products is the following theorem.

Theorem 1

Buckingham’s Theorem An equation is dimensionally homogeneous if and only
if it can be put into the form

f

�Y
1
;

Y
2
; : : : ;

Y
n

�
D 0 (14.11)

where f is some function of n arguments and fQ1;
Q

2; : : : ;
Q

ng is a complete set
of dimensionless products.

Let’s apply Buckingham’s theorem to the simple pendulum discussed in the preceding
sections. The two dimensionless products

Y
1

D � and
Y

2
D gt

2

r

form a complete set for the pendulum problem. Thus, according to Buckingham’s theorem,
there is a function f such that

f

�
�;
gt

2

r

�
D 0

Assuming we can solve this last equation for gt2
=r as a function of � , it follows that

t D
r
r

g
h.�/ (14.12)
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where h is some function of the single variable � . Notice that this last result agrees with our
intuitive formulation for the simple pendulum presented in Section 14.1. Observe that Equa-
tion (14.12) represents only a general form for the relationship among the variablesm; g; t; r ,
and � . However, it can be concluded from this expression that t does not depend on the
massm and is related to r1=2 and g�1=2 by some function of the initial angle of displacement
� . Knowing this much, we can determine the nature of the function h experimentally or
approximate it, as discussed in Section 14.1.

Consider Equation (14.11) in Buckingham’s theorem. For the case in which a complete
set consists of a single dimensionless product, for example,

Q
1, the equation reduces to the

form

f

�Y
1

�
D 0

In this case we assume that the function f has one real root at k (to assume otherwise has
little physical meaning). Hence, the solution

Q
1 D k is obtained.

UsingBuckingham’s theorem, let’s reconsider the example fromSection 14.1 of thewind
force on a van driving down a highway. Because the four variables F; v; A, and � were
selected and all three equations in (14.8) are independent, a complete set of dimensionless
products consists of a single product:

Y
1

D F

v2A�

Application of Buckingham’s theorem gives

f

�Y
1

�
D 0

which implies from the preceding discussion that
Q

1 D k, or

F D kv
2
A�

where k is a dimensionless constant as before. Thus, when a complete set consists of a
single dimensionless product, as is generally the case when we begin with four variables,
the application of Buckingham’s theorem yields the desired relationship up to a constant
of proportionality. Of course, the predicted proportionality must be tested to determine the
adequacy of our list of variables. If the list does prove to be adequate, then the constant
of proportionality can be determined by experimentation, thereby completely defining the
relationship.

For the case n D 2, Equation (14.11) in Buckingham’s theorem takes the form

f

�Y
1
;

Y
2

�
D 0 (14.13)

If we choose the products in the complete set fQ1;
Q

2g so that the dependent variable
appears in only one of them, for example,

Q
2, we can proceed under the assumption that

Equation (14.13) can be solved for that chosen product
Q

2 in terms of the remaining productQ
1. Such a solution takes the form

Y
2

D H

�Y
1

�
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and then this latter equation can be solved for the dependent variable. Note that when a com-
plete set consists of more than one dimensionless product, the application of Buckingham’s
theorem determines the desired relationship up to an arbitrary function. After verifying
the adequacy of the list of variables, we may be lucky enough to recognize the underlying
functional relationship. However, in general we can expect to construct an empirical model,
although the task has been eased considerably.

For the general case of n dimensionless products in the complete set for Buckingham’s
theorem, we again choose the products in the complete set fQ1;

Q
2; : : : ;

Q
ng so that the

dependent variable appears in only one of them, say
Q

n for definiteness. Assuming we can
solve Equation (14.11) for that product

Q
n in terms of the remaining ones, we have the form

Y
n

D H

�Y
1
;

Y
2
; : : : ;

Y
n�1

�

We then solve this last equation for the dependent variable.

Summary of Dimensional Analysis Methodology
STEP 1 Decide which variables enter the problem under investigation.
STEP 2 Determine a complete set of dimensionless products fQ1;

Q
2; : : : ;

Q
ng among the vari-

ables. Make sure the dependent variable of the problem appears in only one of the dimen-
sionless products.

STEP 3 Check to ensure that the products found in the previous step are dimensionless and inde-
pendent. Otherwise you have an algebra error.

STEP 4 Apply Buckingham’s theorem to produce all possible dimensionally homogeneous equa-
tions among the variables. This procedure yields an equation of the form (14.11).

STEP 5 Solve the equation in Step 4 for the dependent variable.
STEP 6 Test to ensure that the assumptions made in Step 1 are reasonable. Otherwise the list of

variables is faulty.
STEP 7 Conduct the necessary experiments and present the results in a useful format.

Let’s illustrate the first five steps of this procedure.

EXAMPLE 1 Terminal Velocity of a Raindrop

Consider the problem of determining the terminal velocity v of a raindrop falling from a
motionless cloud.We examined this problem from a very simplistic point of view in Chapter
2, but let’s take another look using dimensional analysis.

What are the variables influencing the behavior of the raindrop? Certainly the terminal
velocity will depend on the size of the raindrop given by, say, its radius r . The density �
of the air and the viscosity � of the air will also affect the behavior. (Viscosity measures
resistance to motion—a sort of internal molecular friction. In gases this resistance is caused
by collisions between fast-moving molecules.) The acceleration due to gravity g is another
variable to consider. Although the surface tension of the raindrop is a factor that does
influence the behavior of the fall, we will ignore this factor. If necessary, surface tension
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18 Chapter 14 Dimensional Analysis and Similitude

can be taken into account in a later, refined model. These considerations give the following
table relating the selected variables to their dimensions:

Variable v r g � �

Dimension LT
�1

L LT
�2

ML
�3

ML
�1
T

�1

Next we find all the dimensionless products among the variables. Any such product must
be of the form

v
a
r

b
g

c
�

d
�

e (14.14)

and hence must have dimension

.LT
�1
/

a
.L/

b
.LT

�2
/

c
.ML

�3
/

d
.ML

�1
T

�1
/

e

Therefore, a product of the form (14.14) is dimensionless if and only if the following system
of equations in the exponents is satisfied:

d C e D 0

a C b C c � 3d � e D 0

� a � 2c � e D 0


 (14.15)

Solution of the system (14.15) gives b D .3=2/d � .1=2/a, c D .1=2/d � .1=2/a, and
e D �d , where a and d are arbitrary. One dimensionless product

Q
1 is obtained by setting

a D 1, d D 0; another, independent dimensionless product
Q

2 is obtained when a D 0,
d D 1. These solutions give

Y
1

D vr
�1=2

g
�1=2 and

Y
2

D r
3=2
g

1=2
��

�1

Next, we check the results to ensure that the products are indeed dimensionless:

LT
�1

L1=2.LT �2/1=2
D M

0
L

0
T

0

and

L
3=2
.LT

�2
/

1=2
.ML

�3
/

ML�1T �1
D M

0
L

0
T

0

Thus, according to Buckingham’s theorem, there is a function f such that

f

�
vr

�1=2
g

�1=2
;
r

3=2
g

1=2
�

�

�
D 0

Assumingwe can solve this last equation for vr�1=2
g

�1=2 as a function of the second productQ
2, it follows that

v D p
rg h

�
r

3=2
g

1=2
�

�

�

where h is some function of the single product
Q

2. J J J
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The preceding example illustrates a characteristic feature of dimensional analysis.
Normally the modeler studying a given physical system has an intuitive idea of the variables
involved and has a working knowledge of general principles and laws (such as Newton’s
second law) but lacks the precise laws governing the interaction of the variables. Of course,
the modeler can always experiment with each independent variable separately, holding the
others constant and measuring the effect on the system. Often, however, the efficiency of
the experimental work can be improved through an application of dimensional analysis.
Although we did not illustrate Steps 6 and 7 of the dimensional analysis process for the
preceding example, these steps will be illustrated in Section 14.3.

We now make some observations concerning the dimensional analysis process. Sup-
pose n variables have been identified in the physical problem under investigation. When
determining a complete set of dimensionless products, we form a system of three linear
algebraic equations by equating the exponents forM , L, and T to zero. That is, we obtain
a system of three equations in n unknowns (the exponents). If the three equations are inde-
pendent, we can solve the system for three of the unknowns in terms of the remaining n�3
unknowns (declared to be arbitrary). In this case, we find n� 3 independent dimensionless
products that make up the complete set we seek. For instance, in the preceding example
there are five unknowns, a, b, c, d , e, and we determined three of them (b, c, and e) in
terms of the remaining (5� 3) two arbitrary ones (a and d ). Thus, we obtained a complete
set of two dimensionless products. When choosing the n � 3 dimensionless products, we
must be sure that the dependent variable appears in only one of them. We can then solve
Equation (14.11) guaranteed by Buckingham’s theorem for the dependent variable, at least
under suitable assumptions on the function f in that equation. (The full story telling when
such a solution is possible is the content of an important result in advanced calculus known
as the implicit function theorem.)

We acknowledge that we have been rather sketchy in our presentation for solving the
system of linear algebraic equations that results in the process of determining all dimen-
sionless products. Recall how to solve simple linear systems by the method of elimination
of variables. We conclude this section with another example.

EXAMPLE 2 Automobile Gas Mileage Revisited

Consider again the automobile gasoline mileage problem presented in Chapter 2. One of our
submodels in that problem was for the force of propulsion Fp . The variables we identified
that affect the propulsion force areCr , the amount of fuel burned per unit time, the amountK
of energy contained in each gallon of gasoline, and the speed v. Let’s perform a dimensional
analysis. The following table relates the various variables to their dimensions:

Variable Fp Cr K v

Dimension MLT
�2

L
3
T

�1
ML

�1
T

�2
LT

�1

Thus, the product

F
a

pC
b
r K

c
v

d (14.16)
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20 Chapter 14 Dimensional Analysis and Similitude

must have the dimension

.MLT
�2
/

a
.L

3
T

�1
/

b
.ML

�1
T

�2
/

c
.LT

�1
/

d

The requirement for a dimensionless product leads to the system

a C c D 0

a C 3b � c C d D 0

�2a � b � 2c � d D 0


 (14.17)

Solution of the system (14.17) gives b D �a, c D �a, and d D a, where a is arbitrary.
Choosing a D 1, we obtain the dimensionless product

Y
1

D FpC
�1
r K

�1
v

FromBuckingham’s theorem there is a functionf withf .
Q

1/D0, so
Q

1 equals a constant.
Therefore,

Fp / CrK

v

in agreement with the conclusion reached in Chapter 2. J J J

14.214.2 PROBLEMS

1. Predict the time of revolution for two bodies ofmassm1 andm2 in empty space revolving
about each other under their mutual gravitational attraction.

2. A projectile is fired with initial velocity v at an angle � with the horizon. Predict the
range R.

3. Consider an object that is falling under the influence of gravity. Assume that air resis-
tance is negligible. Using dimensional analysis, find the speed v of the object after it
has fallen a distance s. Let v D f .m; g; s/, where m is the mass of the object and g
is the acceleration due to gravity. Does you answer agree with your knowledge of the
physical situation?

4. Using dimensional analysis, find a proportionality relationship for the centrifugal force
F of a particle in terms of its mass m, velocity v, and radius r of the curvature of its
path.

5. One would like to know the nature of the drag forces experienced by a sphere as it
passes through a fluid. It is assumed that the sphere has a low speed. Therefore, the
drag force is highly dependent on the viscosity of the fluid. The fluid density is to be
neglected. Use the dimensional analysis process to develop a model for drag force F as
a function of the radius r and velocitym of the sphere and the viscosity � of the fluid.

6. The volume flow rate q for laminar flow in a pipe depends on the pipe radius r , the
viscosity � of the fluid, and the pressure drop per unit length dp=dz. Develop a model
for the flow rate q as a function of r , �, and dp=dz.
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7. In fluid mechanics, the Reynolds number is a dimensionless number involving the
fluid velocity v, density �, viscosity �, and a characteristic length r . Use dimensional
analysis to find the Reynolds number.

8. The powerP delivered to a pump depends on the specificweightw of the fluid pumped,
the height h to which the fluid is pumped, and the fluid flow rate q in cubic feet per
second. Use dimensional analysis to determine an equation for power.

9. Find the volume flow rate dV=dt of blood flowing in an artery as a function of the
pressure drop per unit length of artery, the radius r of the artery, the blood density �,
and the blood viscosity �.

10. The speed of sound in a gas depends on the pressure and the density. Use dimensional
analysis to find the speed of sound in terms of pressure and density.

11. The lift force F on a missile depends on its length r , velocity v, diameter ı, and initial
angle � with the horizon; it also depends on the density �, viscosity �, gravity g, and
speed of sound s of the air. Show that

F D �v
2
r

2
h

�
ı

r
; �;

�

�vr
;
s

v
;
rg

v2

�

12. The height h that a fluid will rise in a capillary tube decreases as the diameter D of
the tube increases. Use dimensional analysis to determine how h varies withD and the
specific weight w and surface tension � of the liquid.

14.314.3 A Damped Pendulum

In Section 14.1 we investigated the pendulum problem under the assumptions that the hinge
is frictionless, the mass is concentrated at one end of the pendulum, and the drag force is
negligible. Suppose we are not satisfied with the results predicted by the constructed model.
Then we can refine the model by incorporating drag forces. If F represents the total drag
force, the problem now is to determine the function

t D f .r;m; g; �; F /

Let’s consider a submodel for the drag force. Aswe have seen in previous examples, the
modeler is usually facedwith a trade-off between simplicity and accuracy. For the pendulum
it might seem reasonable to expect the drag force to be proportional to some positive power
of the velocity. To keep our model simple, we assume that F is proportional to either v or
v

2, as depicted in Figure 14.7.
Nowwe can experiment to determine directly the nature of the drag force. However, we

will first perform a dimensional analysis because we expect it to reduce our experimental
effort. Assume F is proportional to v so that F D kv. For convenience we choose to work
with the dimensional constant k D F=v, which has dimensionMLT �2

=LT
�1, or simply

MT
�1. Notice that the dimensional constant captures the assumption about the drag force.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_01_ch14_p001-042 January 23, 2013 19:40 22

22 Chapter 14 Dimensional Analysis and Similitude

J Figure 14.7
Possible submodels for the
drag force
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Thus, we apply dimensional analysis to the model

t D f .r;m; g; �; k/

An analysis of the dimensions of the variables gives

Variable t r m g � k

Dimension T L M LT
�2

M
0
L

0
T

0
MT

�1

Any product of the variables must be of the form

t
a
r

b
m

c
g

d
�

e
k

f (14.18)

and hence must have dimension

.T /
a
.L/

b
.M/

c
.LT

�2
/

d
.M

0
L

0
T

0
/

e
.MT

�1
/

f

Therefore, a product of the form (14.18) is dimensionless if and only if

c C f D 0

b C d D 0

a � 2d � f D 0


 (14.19)

The equations in the system (14.19) are independent, so we knowwe can solve for three
of the variables in terms of the remaining (6 � 3) three variables. We would like to choose
the solutions in such a way that t appears in only one of the dimensionless products. Thus,
we choose a, e, and f as the arbitrary variables with

c D �f; b D �d D �a
2

C f

2
; d D a

2
� f

2

Setting a D 1, e D 0, and f D 0, we obtain c D 0, b D �1=2, and d D 1=2 with
the corresponding dimensionless product t

p
g=r . Similarly, choosing a D 0, e D 1, and

f D 0, we get c D 0, b D 0, and d D 0, corresponding to the dimensionless product � .
Finally, choosing a D 0, e D 0, and f D 1, we obtain c D �1, b D 1=2, and d D �1=2,
corresponding to the dimensionless product k

p
r=m

p
g. Notice that t appears in only the
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first of these products. From Buckingham’s theorem, there is a function h with

h

�
t

p
g=r; �;

k
p
r

m
p
g

�
D 0

Assuming we can solve this last equation for t
p
g=r , we obtain

t D
p
r=gH

�
�;
k

p
r

m
p
g

�

for some functionH of two arguments.

Testing the Model (Step 6)
Given t D

p
r=gH.�; k

p
r=m

p
g/, our model predicts that t1=t2 D

p
r1=r2 if the param-

eters of the functionH (namely, � and k
p
r=m

p
g ) could be held constant. Now there is no

difficulty with keeping � and k constant. However, varying r while simultaneously keeping
k

p
r=m

p
g constant is more complicated. Because g is constant, we could try to vary r and

m in such amanner that
p
r=m remains constant. Thismight be done using a pendulumwith

a hollow mass to vary m without altering the drag characteristics. Under these conditions
we would expect the plot in Figure 14.8.

J Figure 14.8
A plot of t versus

p
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Presenting the Results (Step 7)
Aswas suggested in predicting the period of the undamped pendulum,we can plot t

p
g=r D

H.�; k
p
r=m

p
g/. However, because H is here a function of two arguments, this would

yield a three-dimensional figure that is not easy to use. An alternative technique is to
plot t

p
g=r versus k

p
r=m

p
g for various values of � . This is illustrated in Figure 14.9.

J Figure 14.9
Presenting the results
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To be safe in predicting t over the range of interest for representative values of � , it would
be necessary to conduct sufficient experiments at various values of k

p
r=m

p
g. Note that

once data are collected, various empirical models could be constructed using an appropriate
interpolating scheme for each value of � .

Choosing Among Competing Models
Because dimensional analysis involves only algebra, it is tempting to develop severalmodels
under different assumptions before proceeding with costly experimentation. In the case of
the pendulum, under different assumptions, we can develop the following three models (see
Problem 1 in the Section 14.3 problem set):

A: t D
p
r=g h .�/ No drag forces

B: t D
p
r=g h

�
�;
k

p
r

m
p
g

�
Drag forces proportional to vW F D kv

C: t D
p
r=g h

�
�;
k1r

m

�
Drag forces proportional to v2W F D k1v

2

Because all the preceding models are approximations, it is reasonable to ask which, if
any, is suitable in a particular situation. We now describe the experimentation necessary to
distinguish among these models, and we present some experimental results.

Model A predicts that when the angle of displacement � is held constant, the period
t is proportional to

p
r . Model B predicts that when � and

p
r=m are both held constant,

while maintaining the same drag characteristics k, t is proportional to
p
r . Finally, Model

C predicts that if � , r=m, and k1 are held constant, then t is proportional to
p
r .

The following discussion describes our experimental results for the pendulum.1 Various
types of balls were suspended from a string in such a manner as to minimize the friction at
the hinge. The kinds of balls included tennis balls and various types and sizes of plastic balls.
A hole was made in each ball to permit variations in the mass without altering appreciably
the aerodynamic characteristics of the ball or the location of the center of mass. The models
were then compared with one another. In the case of the tennis ball, Model A proved to be
superior. The period was independent of the mass, and a plot of t versus

p
r for constant �

is shown in Figure 14.10.

J Figure 14.10
Model A for a tennis ball
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1Data collected by Michael Jaye.
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Having decided that t D
p
r=gh.�/ is the best of the models for the tennis ball, we

isolated the effect of � by holding r constant to gain insight into the nature of the function
h. A plot of t versus � for constant r is shown in Figure 14.11.

J Figure 14.11
Isolating the effect of „
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Note from Figure 14.11 that for small angles of initial displacement � , the period is
virtually independent of � . However, the displacement effect becomes more noticeable as �
is increased. Thus, for small angles wemight hypothesize that t D c

p
r=g for some constant

c. If one plots t versus
p
r for small angles, the slope of the resulting straight line should

be constant.
For larger angles, the experiment demonstrates that the effect of � needs to be consid-

ered. In such cases, one may desire to estimate the period for various angles. For example,
if � D 45

ı and we know a particular value of
p
r , we can estimate t from Figure 14.10.

Although not shown, plots for several different angles can be graphed in the same figure.

Dimensional Analysis in the Model-Building Process
Let’s summarize how dimensional analysis assists in the model-building process. In the
determination of a model we must first decide which factors to neglect and which to in-
clude. A dimensional analysis provides additional information on how the included factors
are related. Moreover, in large problems, we often determine one or more submodels before
dealing with the larger problem. For example, in the pendulum problem we had to develop
a submodel for drag forces. A dimensional analysis helps us choose among the various
submodels.

A dimensional analysis is also useful for obtaining an initial test of the assumptions
in the model. For example, suppose we hypothesize that the dependent variable y is some
function of five variables, y D f .x1; x2; x3; x4; x5/. A dimensional analysis in theMLT
system in general yields

Q
1 D h.

Q
2;

Q
3/, where each

Q
i is a dimensionless product.

The model predicts that
Q

1 will remain constant if
Q

2 and
Q

3 are held constant, even
though the components of

Q
2 and

Q
3 may vary. Because there are, in general, an infinite

number of ways of choosing
Q

i , we should choose those that can be controlled in laboratory
experiments. Having determined that

Q
1 D h.

Q
2;

Q
3/, we can isolate the effect of

Q
2

by holding
Q

3 constant and vice versa. This can help explain the functional relationship
among the variables. For instance, we say in our example that the period of the pendulum
did not depend on the initial displacement for small displacements.

Perhaps the greatest contribution of dimensional analysis is that it reduces the number of
experiments required to predict the behavior. If we wanted to conduct experiments to predict
values of y for the assumed relationship y D f .x1; x2; x3; x4; x5/ and it was decided that
5 data points would be necessary over the range of each variable, 55, or 3125, experiments
would be necessary. Because a two-dimensional chart is required to interpolate conveniently,
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y might be plotted against x1 for five values of x1, holding x2, x3, x4, x5 constant. Because
x2, x3, x4, and x5 must vary as well, 54, or 625, charts would be necessary. However, after a
dimensional analysis yields

Q
1 D h.

Q
2;

Q
3/, only 25 data points are required. Moreover,Q

1 can be plotted versus
Q

2, for various values of
Q

3, on a single chart. Ultimately, the
task is far easier after dimensional analysis.

Finally, dimensional analysis helps in presenting the results. It is usually best to present
experimental results using those

Q
i that are classical representations within the field of

study. For instance, in the field of fluid mechanics there are eight factors that might be
significant in a particular situation: velocity v, length r , mass density �, viscosity�, acceler-
ation of gravity g, speed of sound c, surface tension � , and pressure p. Thus, a dimensional
analysis could require as many as five independent dimensionless products. The five gen-
erally used are the Reynolds number, Froude number, Mach number, Weber number, and
pressure coefficient. These numbers, which are discussed in Section 14.5, are defined as
follows:

Reynolds number
vr�

�

Froude number
v

2

rg

Mach number
v

c

Weber number
�v

2
r

�

Pressure coefficient
p

�v2

Thus, the application of dimensional analysis becomes quite easy. Depending on which
of the eight variables are considered in a particular problem, the following steps are per-
formed.

1. Choose an appropriate subset from the preceding five dimensionless products.
2. Apply Buckingham’s theorem.
3. Test the reasonableness of the choice of variables.
4. Conduct the necessary experiments and present the results in a useful format.

We illustrate an application of these steps to a fluid mechanics problem in Section 14.5.

14.314.3 PROBLEMS

1. For the damped pendulum,
a. Assume that F is proportional to v2 and use dimensional analysis to show that t Dp

r=gh.�; rk1=m/.
b. Assume that F is proportional to v2 and describe an experiment to test the model
t D

p
r=gh.�; rk1=m/.
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2. Under appropriate conditions, all three models for the pendulum imply that t is pro-
portional to

p
r . Explain how the conditions distinguish among the three models by

considering how m must vary in each case.

3. Use amodel employing a differential equation to predict the period of a simple frictionless
pendulum for small initial angles of displacement. (Hint: Let sin � D � .) Under these
conditions, what should be the constant of proportionality? Compare your results with
those predicted by Model A in the text.2

14.414.4 Examples Illustrating Dimensional Analysis

EXAMPLE 1 Explosion Analysis3

In excavation and mining operations, it is important to be able to predict the size of a
crater resulting from a given explosive such as TNT in some particular soil medium. Direct
experimentation is often impossible or too costly. Thus, it is desirable to use small laboratory
or field tests and then scale these up in some manner to predict the results for explosions
far greater in magnitude.

We may wonder how the modeler determines which variables to include in the initial
list. Experience is necessary to intelligently determine which variables can be neglected.
Even with experience, however, the task is usually difficult in practice, as this example will
illustrate. It also illustrates that the modeler must often change the list of variables to get
usable results.

Problem Identification Predict the crater volume V produced by a spherical explosive
located at some depth d in a particular soil medium.

Assumptions and Model Formulation Initially, let’s assume that the craters are geo-
metrically similar (see Chapter 2), where the crater size depends on three variables: the
radius r of the crater, the density � of the soil, and the mass W of the explosive. These
variables are composed of only two primary dimensions, lengthL andmassM , and a dimen-
sional analysis results in only one dimensionless product (see Problem 1a in the Section 14.4
problem set):

Y
r

D r

�
�

W

�1=3

According to Buckingham’s theorem,
Q

r must equal a constant. Thus, the crater dimensions
of radius or depth vary with the cube root of the mass of the explosive. Because the crater

2For students who have studied differential equations.
3This example is adapted with permission from R. M. Schmidt, ‘‘A Centrifuge Cratering Experiment:
Development of a Gravity-Scaled Yield Parameter.’’ In Impact and Explosion Cratering, edited by D. J. Roddy,
R. O. Pepin, and R. B. Merrill (New York: Pergamon, 1977), pp. 1261–1276.
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volume is proportional to r3, it follows that the volume of the crater is proportional to the
mass of the explosive for constant soil density. Symbolically, we have

V / W

�
(14.20)

Experiments have shown that the proportionality (14.20) is satisfactory for small explosions
(less than 300 lb of TNT) at zero depth in soils, such as moist alluvium, that have good
cohesion. For larger explosions, however, the rule proves unsatisfactory. Other experiments
suggest that gravity plays a key role in the explosion process, and because we want to
consider extraterrestial craters as well, we need to incorporate gravity as a variable.

If gravity is taken into account, then we assume crater size to be dependent on four
variables: crater radius r , density of the soil �, gravity g, and charge energy E. Here,
the charge energy is the mass W of the explosive times its specific energy. Applying a
dimensional analysis to these four variables again leads to a single dimensionless product
(see Problem 1b in the 14.4 problem set):

Y
rg

D r

�
�g

E

�1=4

Thus,
Q

rg equals a constant and the linear crater dimensions (radius or depth of the crater)
vary with the one-fourth root of the energy (or mass) of the explosive for a constant soil
density. This leads to the following proportionality known as the quarter-root scaling and
is a special case of gravity scaling:

V /
�
E

�g

�3=4

(14.21)

Experimental evidence indicates that gravity scaling holds for large explosions (more than
100 tons of TNT)where the stresses in the cratering process aremuch larger than thematerial
strengths of the soil. The proportionality (14.21) predicts that crater volume decreases with
increased gravity. The effect of gravity on crater formation is relevant in the study of
extraterrestial craters. Gravitational effects can be tested experimentally using a centrifuge
to increase gravitational accelerations.4

Aquestion of interest to explosion analysts is whether the material properties of the soil
do become less important with increased charge size and increased gravity. Let’s consider
the case in which the soil medium is characterized only by its density �. Thus, the crater
volume V depends on the explosive, soil density �, gravity g, and the depth of burial d of
the charge. In addition, the explicit role of material strength or cohesion has been tested and
the strength–gravity transition is shown to be a function of charge size and soil strength.

We now describe our explosive in more detail than in previous models. To characterize
an explosive, three independent variables are needed: size, energy field, and explosive
density ı. The size can be given as charge mass W; as charge energy E, or as the radius
˛ of the spherical explosive. The energy yield can be given as a measure of the specific

4See the papers by R. M. Schmidt (1977, 1980) and by Schmidt and Holsapple (1980), cited in Further Reading,
which discuss the effects when a centrifuge is used to perform explosive cratering tests under the influence of
gravitational acceleration up to 480 G, where 1 G is the terrestrial gravity field strength of 981 cm/sec2.
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energy Qe or the energy density per unit volume QV . The following equations relate the
variables:

W D E

Qe

QV D ıQe

˛
3 D

�
3

4�

��
W

ı

�

One choice of these variables leads to the model formulation

V D f .W;Qe; ı; �; g; d/

Because there are seven variables under consideration and theMLT system is being
used, a dimensional analysis generally will result in four (7 � 3) dimensionless products.
The dimensions of the variables are shown in the following table.

Variable V W Qe ı � g d

Dimension L
3

M L
2
T

�2
ML

�3
ML

�3
LT

�2
L

Any product of the variables must be of the form

V
a
W

b
Q

c
eı

e
�

f
g

k
d

m (14.22)

and hence have dimensions

.L
3
/

a
.M

b
/.L

2
T

�2
/

c
.ML

�3
/

eCf
.LT

�2
/

k
.L/

m

Therefore, a product of the form (14.22) is dimensionless if and only if the exponents
satisfy the following homogeneous system of equations:

M W b C e C f D 0

L W 3a C 2c � 3e � 3f C k Cm D 0

T W � 2c � 2k D 0

Solution to this system produces

b D k �m
3

� a; c D �k; e D a � f C k �m
3

where a, f , k, and m are arbitrary. By setting one of these arbitrary exponents equal to 1
and the other three equal to 0, in succession, we obtain the following set of dimensionless
products:

V ı

W
;

�
g

Qe

��
W

ı

�1=3

; d

�
ı

W

�1=3

;
�

ı
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(Convince yourself that these are dimensionless.) Because the dimensions of � and ı are
equal, we can rewrite these dimensionless products as follows:

Y
1

D V�

W

Y
2

D
�
g

Qe

��
W

ı

�1=3

Y
3

D d

�
�

W

�1=3

Y
4

D �

ı

so
Q

1 is consistent with the dimensionless product implied by Equation (14.20). Then,
applying Buckingham’s theorem, we obtain the model

h

�Y
1
;

Y
2
;

Y
3
;

Y
4

�
D 0 (14.23)

or

V D W

�
H

�
gW

1=3

Qeı
1=3
;
dı

1=3

W 1=3
;
�

ı

�

Presenting the Results For oil-base clay, the value of � is approximately 1:53 g/cm2;
for wet sand, 1:65; and for desert alluvium, 1:60. For TNT, ı has the value 2:23 g/cm3.
Thus, 0:69 <

Q
4 < 0:74, so for simplicity we can assume that for these soils and TNT,Q

4 is constant. Then, Equation (14.23) becomes

h

�Y
1
;

Y
2
;

Y
3

�
D 0 (14.24)

J Figure 14.12
A plot of the surface
h.
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J Figure 14.13
Data values for a cross
section of the surface
depicted in Figure 14.12
(data reprinted by
permission from R. M.
Schmidt)

10

100

200

500

20

30

50

1000

0–4 4 8 12 16 20 24
Π3

Π2 = 1.15 × 10–6

Π1

256 lb (1 G)
2.5–7.5 gm (25–65 G)
0.22–0.66 gm (centrifuge up to 480 G) Re

pr
in

te
d 

w
ith

 p
er

m
iss

io
n 

of
 R

.M
. S

ch
m

id
t

R.M. Schmidt gathered experimental data to plot the surface described by Equation (14.24).
A plot of the surface is depicted in Figure 14.12, showing the crater and volume parameterQ

1 as a function of the scaled energy charge
Q

2 and the depth of the burial parameter
Q

3.
Cross-sectional data for the surface parallel to the

Q
1

Q
3 plane when

Q
2 D 1:15 � 10�6

are depicted in Figure 14.13.
Experiments have shown that the physical effect of increasing gravity is to reduce

crater volume for a given charge yield. This result suggests that increased gravity can
be compensated for by increasing the size of the charge to maintain the same cratering
efficiency. Note also that Figures 14.12 and 14.13 can be used for prediction once an
empirical interpolating model is constructed from the data. Holsapple and Schmidt (1982)
extend these methods to impact cratering, and Housen, Schmidt, and Holsapple (1983)
extend them to crater ejecta scaling. J J J

EXAMPLE 2 How Long Should You Roast a Turkey?

One general rule for roasting a turkey is the following: Set the oven to 400 ıF and allow
20 min per pound for cooking. How good is this rule?
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Assumptions Let t denote the cooking time for the turkey. Now, on what variables does
t depend? Certainly the size of the turkey is a factor that must be considered. Let’s assume
that the turkeys are geometrically similar and use l to denote some characteristic dimension
of the uncooked meat; specifically, we assume that l represents the length of the turkey.
Another factor is the difference between the temperature of the rawmeat and the oven�Tm.
(We know from experience that it takes longer to cook a bird that is nearly frozen than it does
to cook one that is initially at room temperature.) Because the turkey will have to reach a
certain interior temperature before it is considered fully cooked, the difference�Tc between
the temperature of the cooked meat and the oven is a variable determining the cooking time.
Finally, we know that different foods require different cooking times independent of size;
it takes only 10 min or so to bake a pan of cookies, whereas a roast beef or turkey requires
several hours. A measure of the factor representing the differences between foods is the
coefficient of heat conduction for a particular uncooked food. Let k denote the coefficient
of heat conduction for a turkey. Thus, we have the following model formulation for the
cooking time:

t D f .�Tm;�Tc; k; l/

Dimensional Analysis Consider the dimensions of the independent variables. The tem-
perature variables �Tm and �Tc measure the energy per volume and therefore have the
dimensionML2

T
�2
=L

3, or simplyML�1
T

�2. Now, what about the heat conduction vari-
able k? Thermal conductivity k is defined as the amount of energy crossing one unit
cross-sectional area per second divided by the gradient perpendicular to the area. That is,

k D energy=.area � time/
temperature=length

Accordingly, the dimension of k is .ML2
T

�2
/.L

�2
T

�1
/=.ML

�1
T

�2
/.L

�1
/, or simply

L
2
T

�1. Our analysis gives the following table:

Variable �Tm �Tc k l t

Dimension ML
�1
T

�2
ML

�1
T

�2
L

2
T

�1
L T

Any product of the variables must be of the form

�T
a

m�T
b

c k
c
l

d
t

e (14.25)

and hence have dimension

.ML
�1
T

�2
/

a
.ML

�1
T

�2
/

b
.L

2
T

�1
/

c
.L/

d
.T /

e

Therefore, a product of the form (14.25) is dimensionless if and only if the exponents satisfy

M : a C b D 0

L: � a � b C 2c C d D 0

T : � 2a � 2b � c C e D 0

Solution of this system of equations gives

a D �b; c D e; d D �2e
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where b and e are arbitrary constants. If we set b D 1; e D 0, we obtain a D �1, c D 0,
and d D 0; likewise, bD 0, eD 1 produces aD 0, cD 1, and d D �2. These independent
solutions yield the complete set of dimensionless products:

Y
1

D �T
�1

m �Tc and
Y

2
D kl

�2
t

From Buckingham’s theorem, we obtain

h

�Y
1
;

Y
2

�
D 0

or

t D
�
l

2

k

�
H

�
�Tc

�Tm

�
(14.26)

The rule stated in our opening remarks gives the roasting time for the turkey in terms of
its weightw. Let’s assume the turkeys are geometrically similar, or V / l

3. If we assume the
turkey is of constant density (which is not quite correct because the bones and flesh differ in
density), then, because weight is density times volume and volume is proportional to l3, we
getw / l

3. Moreover, if we set the oven to a constant baking temperature and specify that the
turkey must initially be near room temperature (65 ıF), then �Tc=�Tm is a dimensionless
constant. Combining these results with Equation (14.26), we get the proportionality

t / w
2=3 (14.27)

because k is constant for turkeys. Thus, the required cooking time is proportional to weight
raised to the two-thirds power. Therefore, if t1 hours are required to cook a turkey weighing
w1 pounds and t2 is the time for a weight of w2 pounds,

t1

t2

D
�
w1

w2

�2=3

it follows that a doubling of the weight of a turkey increases the cooking time by the factor
2

2=3 � 1:59.
How does our result (14.27) compare to the rule stated previously? Assume that�Tm;

�Tc , and k are independent of the length or weight of the turkey, and consider cooking a
23-lb turkey versus an 8-lb bird. According to our rule, the ratio of cooking times is given by

t1

t2

D
�
20 � 23
20 � 8

�
D 2:875

On the other hand, from dimensionless analysis and Equation (14.27),

t1

t2

D
�
23

8

�2=3

� 2:02

Thus, the rule predicts it will take nearly three times as long to cook a 23-lb bird as it will
to cook an 8-lb turkey. Dimensional analysis predicts it will take only twice as long. Which
rule is correct? Why have so many cooks overcooked a turkey?
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Testing the Results Suppose that turkeys of various sizes are cooked in an oven pre-
heated to 325 ıF. The initial temperature of the turkeys is 65 ıF. All the turkeys are removed
from the oven when their internal temperature, measured by a meat thermometer, reaches
195 ıF. The (hypothetical) cooking times for the various turkeys are recorded as shown in
the following table.

w (lb) 5 10 15 20

t (hr) 2 3.4 4.5 5.4

A plot of t versus w2=3 is shown in Figure 14.14. Because the graph approximates a
straight line through the origin, we conclude that t / w

2=3, as predicted by our model.J J J
J Figure 14.14
Plot of cooking times versus
weight to the two-thirds
power reveals the predicted
proportionality.
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14.414.4 PROBLEMS

1. a. Use dimensional analysis to establish the cube-root law

r

�
�

W

�1=3

D constant

for scaling of explosions, where r is the radius or depth of the crater, � is the density
of the soil medium, and W the mass of the explosive.

b. Use dimensional analysis to establish the one-fourth-root law

r

�
�g

E

�1=4

D constant

for scaling of explosions, where r is the radius or depth of the crater, � is the density
of the soil medium, g is gravity, and E is the charge energy of the explosive.

2. a. Show that the products
Q

1;
Q

2;
Q

3;
Q

4 for the refined explosion model presented
in the text are dimensionless products.

b. Assume � is essentially constant for the soil being used and restrict the explosive to a
specific type, say TNT. Under these conditions, �=ı is essentially constant, yieldingQ

1 D f .
Q

2;
Q

3/. You have collected the following data with
Q

2 D 1:5 � 10�6.
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Q
3 0 2 4 6 8 10 12 14

Q
1 15 150 425 750 825 425 250 90

i. Construct a scatterplot of
Q

1 versus
Q

3. Does a trend exist?
ii. How accurate do you think the data are? Find an empirical model that captures the

trend of the data with accuracy commensurate with your appraisal of the accuracy
of the data.

iii. Use your empirical model to predict the volume of a crater using TNT in desert
alluvium with (CGS system) W D 1500 g, � D 1:53 g/cm3, and

Q
3 D 12:5.

3. Consider a zero-depth burst, spherical explosive in a soil medium. Assume the value of
the crater volume V depends on the explosive size, energy yield, and explosive energy, as
well as on the strength Y of the soil (considered a resistance to pressure with dimensions
ML

�1
T

�2), soil density �, and gravity g. In this problem, assume

V D f .W;Qe; ı; Y; �; g/

and use dimensional analysis to produce the following mass set of dimensionless
products.

Y
1

D V�

W

Y
2

D
�
g

Qe

��
W

ı

�1=3

Y
3

D Y

ıQe

Y
4

D �

ı

4. For the explosion process and material characteristics discussed in Problem 3, consider

V D f .E;Qv; ı; Y; �; g/

and use dimensional analysis to produce the following energy set of dimensionless
products.

Y
1

D VQv

E

Y
2

D �gE
1=3

Q
4=3
v

Y
3

D Y

Qv

Y
4

D �

ı

5. Repeat Problem 4 for

V D f .E;Qe; ı; Y; �; g/

and use dimensional analysis to produce the following gravity set of dimensionless
products.

Y
1

D V

�
�g

E

�3=4 Y
2

D
�
1

Qe

��
g

3
E

ı

�1=4

Y
3

D Y

ıQe

Y
4

D �

ı
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6. An experiment consists of dropping spheres into a tank of heavy oil and measuring the
times of descent. It is desired that a relationship for the time of descent be determined
and verified by experimentation. Assume the time of descent is a function of mass m,
gravity g, radius r , viscosity �, and distance traveled d . Neglect fluid density. That is,

t D f .m; g; r;�; d /

a. Use dimensional analysis to find a relationship for the time of descent.
b. How will the spheres be chosen to verify that the time of descent relationship is

independent of fluid density? Assuming you have verified the assumptions on fluid
density, describe how youwould determine the nature of your function experimentally.

c. Using differential equations techniques, find the velocity of the sphere as a function
of time, radius, mass, viscosity, gravity, and fluid density. Using this result and that
found in part (a), predict underwhat conditions fluid densitymay be neglected. (Hints:
Use the results of Problem 5 in Section 14.2 as a submodel for drag force. Consider
the buoyant force.)5

7. A windmill is rotated by air flow to produce power to pump water. It is desired to find
the power output P of the windmill. Assume that P is a function of the density of the
air �, viscosity of the air �, diameter of the windmill d , wind speed v, and the rotational
speed of the windmill ! (measured in radians per second). Thus,

P D f .�;�; d; v; !/

a. Using dimensional analysis, find a relationship forP . Be sure to check your products
to make sure that they are dimensionless.

b. Do your results make common sense? Explain.
c. Discuss how youwould design an experiment to determine the nature of your function.

8. For a sphere traveling through a liquid, assume that the drag force FD is a function of
the fluid density �, fluid viscosity �, radius of the sphere r , and speed of the sphere v.
Use dimensional analysis to find a relationship for the drag force

FD D f .�;�; r; v/

Make sure you provide some justification that the given independent variables influence
the drag force.

14.414.4 PROJECT

1. Complete the requirements for the module, ‘‘Listening to the Earth: Controlled Source
Seismology,’’ by Richard G. Montgomery, UMAP 292-293. This module develops the
elementary theory of wave reflection and refraction and applies it to amodel of the earth’s
subsurface. The model shows how information on layer depth and sound velocity may

5For students who have studied differential equations.
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be obtained to provide data on width, density, and composition of the subsurface. This
module is a good introduction to controlled seismic methods and requires no previous
knowledge of either physics or geology.

14.4 Further Reading
Holsapple, K. A., & R.M. Schmidt. ‘‘AMaterial-StrengthModel for Apparent Crater Volume.’’ Proc.

Lunar Planet Sci. Conf. 10 (1979): 2757–2777.
Holsapple, K. A., & R. M. Schmidt. ‘‘On Scaling of Crater Dimensions–2: Impact Process.’’

J. Geophys. Res. 87 (1982): 1849–1870.
Housen, K. R., K. A. Holsapple, & R. M. Schmidt.’’ Crater Ejecta Scaling Laws 1: Fundamental

Forms Based on Dimensional Analysis.’’ J. Geophys. Res. 88 (1983): 2485–2499.
Schmidt, R. M. ‘‘A Centrifuge Cratering Experiment: Development of a Gravity-Scaled Yield Pa-

rameter.’’ In Impact and Explosion Cratering, edited by D. J. Roddy et al., pp. 1261–1278. New
York: Pergamon, 1977.

Schmidt, R. M. ‘‘Meteor Crater: Energy of Formation—Implications of Centrifuge Scaling.’’ Proc.
Lunar Planet Sci. Conf. 11 (1980): 2099–2128.

Schmidt, R. M., & K. A. Holsapple. ‘‘Theory and Experiments on Centrifuge Cratering.’’ J. Geophys.
Res. 85 (1980): 235–252.

14.514.5 Similitude

Suppose we are interested in the effects of wave action on a large ship at sea, heat loss of
a submarine and the drag force it experiences in its underwater environment, or the wind
effects on an aircraft wing. Quite often, because it is physically impossible to duplicate the
actual phenomenon in the laboratory, we study a scaled-down model in a simulated envi-
ronment to predict accurately the performance of the physical system. The actual physical
system for which the predictions are to be made is called the prototype. How do we scale
experiments in the laboratory to ensure that the effects observed for the model will be the
same effects experienced by the prototype?

Although extreme caremust be exercised in using simulations, the dimensional products
resulting from dimensional analysis of the problem can provide insight into how the scaling
for a model should be done. The idea comes from Buckingham’s theorem. If the physical
system can be described by a dimensionally homogeneous equation in the variables, then
it can be put into the form

f

�Y
1
;

Y
2
; : : : ;

Y
n

�
D 0

for a complete set of dimensionless products. Assume that the independent variable of the
problem appears only in the product

Q
n and that

Y
n

D H

�Y
1
;

Y
2
; : : : ;

Y
n�1

�

For the solution to the model and the prototype to be the same, it is sufficient that the value
of all independent dimensionless products

Q
1;

Q
2; : : : ;

Q
n�1 be the same for the model

and the prototype.
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For example, suppose the Reynolds number vr�=� appears as one of the dimension-
less products in a fluid mechanics problem, where v represents fluid velocity, r a charac-
teristic dimension (such as the diameter of a sphere or the length of a ship), � the fluid
density, and � the fluid viscosity. These values refer to the prototype. Next, let vm; rm; �m,
and �m denote the corresponding values for the scaled-down model. For the effects on
the model and the prototype to be the same, we want the two Reynolds numbers to agree
so that

vmrm�m

�m

D vr�

�

The last equation is referred to as a design condition to be satisfied by the model. If the
length of the prototype is too large for the laboratory experiments so that we have to scale
down the length of themodel, say rm D r=10, then the sameReynolds number for themodel
and the prototype can be achieved by using the same fluid (�m D � and �m D �/ and
varying the velocity, vm D 10v. If it is impractical to scale the velocity by the factor of 10,
we can instead scale it by a lesser amount 0 < k < 10 and use a different fluid so that the
equation

k�m

10�m

D �

�

is satisfied.We do need to be careful in generalizing the results from the scaled-downmodel
to the prototype. Certain factors (such as surface tension) that may be negligible for the
prototype may become significant for the model. Such factors would have to be taken into
account before making any predictions for the prototype.

EXAMPLE 1 Drag Force on a Submarine

We are interested in the drag forces experienced by a submarine to be used for deep-sea
oceanographic explorations. We assume that the variables affecting the drag D are fluid
velocity v, characteristic dimension r (here, the length of the submarine), fluid density �,
the fluid viscosity �, and the velocity of sound in the fluid c. We wish to predict the drag
force by studying a model of the prototype. How will we scale the experiments for the
model?

A major stumbling block in our problem is in describing shape factors related to the
physical object being modeled—in this case, the submarine. Let’s consider submarines
that are ellipsoidal in shape. In two dimensions, if a is the length of the major axis and
b is the length of the minor axis of an ellipse, we can define r1 D a=b and assign a
characteristic dimension such as r , the length of the submarine. In three dimensions, define
also r2 D a=b

0, where a is the originalmajor axis and b0 is the secondminor axis. Then r , r1,
and r2 describe the shape of the submarine. In a more irregularly shaped object, additional
shape factors would be required. The basic idea is that the object can be described using
a characteristic dimension and an appropriate collection of shape factors. In the case of
our three-dimensional ellipsoidal submarine, the shape factors r1 and r2 are needed. These
shape factors are dimensionless constants.
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Returning to our list of six fluid mechanics variablesD, v, r , �,�, and c, notice that we
are neglecting surface tension (because it is small) and that gravity is not being considered.
Thus, it is expected that a dimensionless analysis will produce three
(6 � 3) independent dimensionless products. We can choose the following three products
for convenience:

Reynolds number R D vr�

�

Mach number M D v

c

Pressure coefficient P D p

�v2

The added shape factors are dimensionless so that Buckingham’s theorem gives the equation

h.P;M;R; r1; r2/ D 0

Assuming that we can solve for P yields

P D H.M;R; r1; r2/

Substituting P D p=�v
2 and solving for p gives

p D �v
2
H.R;M; r1; r2/

Remembering that the total drag force is the pressure (force per unit area) times the area
(which is proportional to r2 for geometrically similar objects) and gives the proportionality
D / pr

2, or

D D kpv
2
r

2
H.R;M; r1; r2/ (14.28)

Now a similar equation must hold to give the proportionality for the model

Dm D kpmv
2
mr

2
mH.Rm;Mm; r1m; r2m/ (14.29)

Because the prototype andmodel equations refer to the same physical system, both equations
are identical in form. Therefore, the design conditions for the model require that

Condition (a) Rm D R

Condition (b) Mm D M

Condition (c) r1m D r1

Condition (d) r2m D r2

Note that if conditions (a)–(d) are satisfied, then Equations (14.28) and (14.29) give

Dm

D
D �mv

2
mr

2
m

�v2r2
(14.30)

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_01_ch14_p001-042 January 23, 2013 19:40 40

40 Chapter 14 Dimensional Analysis and Similitude

Thus,D can be computed onceDm is measured. Note that the design conditions (c) and (d)
imply geometric similarity between the model and the prototype submarine

am

bm

D a

b
and

am

b0
m

D a

b0

If the velocities are small compared to the speed of sound in a fluid, then v=c can be
considered constant in accordance with condition (b). If the same fluid is used for both the
model and prototype, then condition (a) is satisfied if

vmrm D vr

or
vm

v
D r

rm

which states that the velocity of the model must increase inversely as the scaling factor
rm=r . Under these conditions, Equation (14.30) yields

Dm

D
D �mv

2
mr

2
m

�v2r2
D 1

If increasing the velocity of the scaled model proves unsatisfactory in the laboratory, then
a different fluid may be considered for the scaled model (�m 6D � and�m 6D �/. If the ratio
v=c is small enough to neglect, then both vm and rm can be varied to ensure that

vmrm�m

�m

D vr�

�

in accordance with condition (a). Having chosen values that satisfy design condition (a),
and knowing the drag on the scaled model, we can use Equation (14.30) to compute the drag
on the prototype. Consider the additional difficulties if the velocities are sufficiently great
that we must satisfy condition (b) as well.

A few comments are in order. One distinction between the Reynolds number and the
other four numbers in fluid mechanics is that the Reynolds number contains the viscosity
of the fluid. Dimensionally, the Reynolds number is proportional to the ratio of the inertia
forces of an element of fluid to the viscous force acting on the fluid. In certain problems
the numerical value of the Reynolds number may be significant. For example, the flow of
a fluid in a pipe is virtually always parallel to the edges of the pipe (giving laminar flow) if
the Reynolds number is less than 2000. Reynolds numbers in excess of 3000 almost always
indicate turbulent flow. Normally, there is a critical Reynolds number between 2000 and
3000 at which the flow becomes turbulent.

The design condition (a) mentioned earlier requires the Reynolds number of the model
and the prototype to be the same. This requirement precludes the possibility of laminar
flow in the prototype being represented by turbulent flow in the model, and vice versa. The
equality of the Reynolds number for a model and prototype is important in all problems in
which viscosity plays a significant role.

The Mach number is the ratio of fluid velocity to the speed of sound in the fluid. It is
generally important for problems involving objects moving with high speed in fluids, such
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as projectiles, high-speed aircraft, rockets, and submarines. Physically, if the Mach number
is the same inmodel and prototype, the effect of the compressibility force in the fluid relative
to the inertia force will be the same for model and prototype. This is the situation that is
required by condition (b) in our example on the submarine. J J J

14.514.5 PROBLEMS

1. A model of an airplane wing is tested in a wind tunnel. The model wing has an
18-in. chord, and the prototype has a 4-ft chord moving at 250 mph. Assuming the
air in the wind tunnel is at atmospheric pressure, at what velocity should wind tunnel
tests be conducted so that the Reynolds number of the model is the same as that of the
prototype?

2. Two smooth balls of equal weight but different diameters are dropped from an airplane.
The ratio of their diameters is 5. Neglecting compressibility (assume constant Mach
number), what is the ratio of the terminal velocities of the balls?Are the flows completely
similar?

3. Consider predicting the pressure drop�p between two points along a smooth horizontal
pipe under the condition of steady laminar flow. Assume

�p D f .s; d; �;�; v/

where s is the control distance between two points in the pipe, d is the diameter of the
pipe, � is the fluid density, � is the fluid viscosity, and v is the velocity of the fluid.
a. Determine the design conditions for a scaled model of the prototype.
b. Must the model be geometrically similar to the prototype?
c. May the same fluid be used for model and prototype?
d. Show that if the same fluid is used for both model and prototype, then the equation is

�p D �pm

n2

where n D d=dm.

4. It is desired to study the velocity v of a fluid flowing in a smooth open channel. Assume
that

v D f .r; �;�; �; g/

where r is the characteristic length of the channel cross-sectional area divided by the
wetted perimeter, � is the fluid density, � is the fluid viscosity, � is the surface tension,
and g is the acceleration of gravity.
a. Describe the appropriate pair of shape factors r1 and r2.
b. Show that

v
2

gr
D H

�
�vr

�
;
�v

2
r

�
; r1; r2

�

Discuss the design conditions required of the model.
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c. Will it be practical to use the same fluid in the model and the prototype?
d. Suppose the surface tension � is ignored and the design conditions are satisfied. If
rm Dr=n, what is the equation for the velocity of the prototype?When is the equation
compatible with the design conditions?

e. What is the equation for the velocity v if gravity is ignored? What if viscosity is
ignored? What fluid would you use if you were to ignore viscosity?

14.5 Further Reading
Massey, Bernard S. Units, Dimensional Analysis and Physical Similarity. London: Van Nostrand

Reinhold, 1971.
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1515 Graphs of Functions

as Models

15.115.1 An Arms Race

You might ask, Why study the arms race? One reason is that almost all modern wars
are preceded by unstable arms races. Strong evidence suggests that an unstable arms race
between great powers, characterized by a sharp acceleration inmilitary capability, is an early
warning indicator of war. In a 1979 article, Michael Wallace of the University of British
Columbia studied 99 international disputes during the 1816–1965 period.1 He found that
disputes preceded by an unstable arms race escalated to war 23 out of 28 times, whereas
disputes not preceded by an arms race resulted in war only 3 out of 71 times. Wallace
calculated an arms race index for the two nations involved in each dispute that correctly
predicted war or no war in 91 out of the 99 cases studied. His findings do not mean
that an arms race between the powers necessarily results in war or that there is a causal
link between arms races and conflict escalation. They do establish, however, that rapid
competitive military growth is strongly associated with the propensity to war. Thus, by
studying the arms race, we have the potential for predicting war. If we can predict war, then
there is hope that we can learn to avoid it.

There is another reason for studying the arms race. If the arms race can be approximated
by a mathematical model, then it can be understood more concretely. You will see that
the answers to such questions as, Will civil defense dampen the arms race? and Will the
introduction of mobile missile launching pads help to reduce the arms requirements? are
not simply matters of political opinion. There is an objective reality to the arms race that
the mathematical model intends to capture.

The former Soviet Union and the United States were engaged in a nuclear arms race
during the Cold War. At that time political and military strategists asked how the United
States should react to changes in numbers and sophistication of the Soviet nuclear arsenal.
To answer the difficult question, How many weapons are enough?, several factors had to
be considered, including American objectives, Soviet objectives, and weapon technology.
A former chairman of the Joint Chiefs of Staff, General Maxwell D. Taylor, suggested the
following nuclear deterrence objectives for the American strategic forces:

The strategic forces, having the single capability of inflicting massive destruction, should have
the single task of deterring the Soviet Union from resorting to any form of strategic warfare. To

1Michael Wallace, ‘‘Arms Races and Escalation: Some New Evidence.’’ In Explaining War, edited by J. David
Singer, pp. 240–252. Beverly Hills, CA: Sage, 1979.

1
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maximize their deterrent effectiveness they must be able to survive a massive first strike and still
be able to destroy sufficient enemy targets to eliminate the Soviet Union as a viable government,
society, and economy, responsive to the national leaders who determine peace or war.2

Note especially that Taylor’s deterrence strategy assumes the worst possible case: the
Soviet’s launching a preemptive first attack to destroy America’s nuclear force.

How many weapons would be necessary to accomplish the objectives General Taylor
suggests? After describing an appropriate system of Soviet targets (generally population
and industrial centers), he states the following:

The number of weapons we shall need will be those required to destroy the specific targets
within this system of which few will be hardened silos calling for the accuracy and short flight
time of ICBMs. As a safety factor, we should add extra weapons to compensate for losses
that may be suffered in a first strike and for uncertainties in weapon performance. The total
weapons requirement should be substantially less than the numbers available to us in our present
arsenal.3

Thus, a minimum number of missiles would be required to destroy specific enemy
targets (generally population and industrial centers) chosen to inflict unacceptable damage
on the enemy. Additional missiles would be required to compensate for losses incurred in
the Soviet’s presumed first strike. Implicitly, the number of such additionalmissiles depends
on the size and effectiveness of the Soviet missile forces. Taylor concluded that meeting
these objectives would allow for a reduction in America’s nuclear arsenal.

In response to a question on expenditures for national defense, Admiral Hyman G.
Rickover testified before a congressional committee as follows:

For example, take the number of nuclear submarines; I’ll hit right close to home. I see no reason
why we have to have just as many as the Russians do. At a certain point you get where it’s
sufficient. What’s the difference whether we have 100 nuclear submarines or 200? I don’t see
what difference it makes. You can sink everything on the ocean several times over with the
number we have and so can they. That’s the point I’m making.4

Again, Admiral Rickover concluded that a reduction in arms would be possible.
On July 14, 2001, in Genoa, Italy, President George W. Bush and Russian President

Vladimir Putin agreed to seek cuts in their nuclear arsenals. Putin said he would accept a
U.S. antimissile shield if it were linked to deep cuts in offensive nuclear weapons. He sug-
gested that both nations could reduce their nuclear arsenals to approximately 1500 strategic
weapons. (At that time the United States had approximately 7000 strategic weapons, and
Russia had approximately 6500.)

We are going to develop a graphical model of the nuclear arms race based on the
preceding remarks. The model will help answer the question, How many weapons are
enough? Although the model applies to any kind of arms race, for purposes of discussion
and illustration we focus on nuclear weapons delivered by long-range intercontinental
ballistic missiles (ICBMs).

2M. D. Taylor, ‘‘How to Avoid a New Arms Race.’’ The Monterey Peninsula Herald, January 24, 1982, p. 3c.
3Ibid.
4Hyman C. Rickover, testimony before Joint Economic Committee. The New York Review, March 18, 1982, p. 13.
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Developing the Graphical Model
Suppose that two countries, Country X and Country Y , are engaged in a nuclear arms race
and that each country adopts the following strategies.

Friendly Strategy: To survive a massive first strike and inflict unacceptable damage on
the enemy.

Enemy Strategy: To conduct a massive first strike to destroy the friendly missile force.

That is, each country follows the friendly strategy when determining its own missile
force and presumes the enemy strategy for the opposing country. Note especially that
the friendly strategy implies targeting population and industrial centers, whereas the enemy
strategy implies targetingmissile sites. This was the policy ofnuclear deterrence advocated
during the Cold War.

Now let’s define the following variables:

x D the number of missiles possessed by Country X

y D the number of missiles possessed by Country Y

Next, let y D f .x/ denote the function representing the minimum number of missiles
required by Country Y to accomplish its strategies when Country X has x missiles. Sim-
ilarly, let x D g.y/ represent the minimum number of missiles required by Country X to
accomplish its objectives.When Country Y determines the required size of its missile force,
it assumes that it has the friendly strategy and that Country X is following the enemy strat-
egy. On the other hand, Country X has the friendly strategy when determining the size of
its missile force and presumes Country Y is following the enemy strategy.

We begin by investigating the nature of the curve y D f .x/. Because a certain number
of missiles y0 are required by Country Y to destroy the selected population and industrial
centers of Country X; y0 is the intercept when x D 0. That is, Country Y considers that it
needs y0 missiles even if CountryX has none (basically, a psychological defense in the sense
that Y fears attack or invasion by X ). As Country X increases its missile force, Country Y
must then add additional missiles because it assumes Country X is following the enemy
strategy and targeting its missile force. Let’s assume that the weapons technology is such
that Country X can destroy no more than one of Country Y ’s missiles with each missile
fired. Then the number of additional missiles Country Y needs for each missile added by
Country X depends on the effectiveness of Country X ’s missiles. Convince yourself that the
curve y D f .x/ must lie between the limiting lines shown in Figure 15.1. Line A, having
slope 0, represents a state of absolute invulnerability of Country Y ’s missiles to any attack.
At the other extreme, line B, having slope 1, indicates that Country Y must add one new
missile for each missile added by Country X .

To determine more precisely the shape of the graph of y D f .x/, we will analyze what
happens for various cases relating the relative sizes of the two missile forces. To determine
the cases, we subdivide the region between linesA andB into smaller subregions defined by
the lines x Dy, x D2y, x D3y, and so forth, as shown in Figure 15.2. We then approximate
y D f .x/ in each of these subregions. Remember that when Country Y determines the
number of missiles it needs to deter Country X for the graph of y D f .x/, Country Y is
presumed to follow the friendly strategy, whereas Country X follows the enemy strategy.
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Case 1: x < y If Country X attacks in this situation, it fires all of its x missiles at the
same number of Country Y ’s missiles. Because the number .y �x/ of Country Y ’s missiles
could not be attacked, at least that many would survive. Of the number x of Country Y ’s
missiles that were fired on, a percentage s would survive, where 0 < s < 1. Thus, the total
number of missiles surviving the attack is y�xCsx. NowCountry Y must have y0 missiles
survive to inflict unacceptable damage on Country X . Hence,

y0 D y � x C sx for 0 < s < 1

or, solving for y,

y D y0 C .1 � s/x (15.1)

Equation (15.1) gives the minimum number of missiles Country Y must have to be
confident that y0 missiles will survive an attack by Country X .

Case 2: y D x In firing all of its missiles, Country X fires exactly one of its missiles at
each of Country Y ’s missiles. Assuming the percentage s will survive the attack, the number
sx D sy survive, in which case Country Y needs

y D y0

s
(15.2)

missiles to inflict unacceptable damage on Country X .
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Case 3: y < x < 2y Country X , in firing all its missiles, targets each of Country Y ’s
missiles once and a portion of them twice, as illustrated in Figure 15.3.

J Figure 15.3
An example of y < x < 2y Country X:

Country Y: ©
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ge
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ng

Convince yourself that x � y of Country Y ’s missiles would be targeted twice and
y�.x�y/ D 2y�x would be targeted once. Of those targeted once, a percentage s.2y�x/
will survive as before. Of those targeted twice, the percentage s.x �y/ will survive the first
round. Of those that survive the first round, the percentage s Œs.x � y/� D s2.x � y/ will
survive the second round. Hence, Country Y must have

y0 D s2.x � y/ C s.2y � x/

missiles survive, or, solving for y,

y D y0 C x.s � s2/

2s � s2
(15.3)

is the minimum number of missiles required by Country Y .

Case 4: x D 2y CountryX will fire exactly twomissiles at each of Country Y ’s missiles.
If we reason as in Case 2, the number s2y survive, so

y D y0

s2
(15.4)

is the minimum number of missiles required by Country Y .
Now let’s combine all of the preceding scenarios into a single graph. For convenience,

we are going to assume that the discrete situation just discussed giving theminimumnumber
of missiles can be represented by a continuous model (giving rise to fractions of missiles).
First, observe that Equations (15.1) and (15.3) both represent straight-line segments: the
first segment for x < y and the second segment for y < x < 2y. In Case 1, when x < y,
we obtained the equation

y0 D y � x C sx

As x approaches y, this last equation becomes (in the limit) y0 D sy. In Case 3, when
y < x < 2y, we obtained the equation

y0 D s2.x � y/ C s.2y � x/ (15.5)

Again, as x approaches y, the equation becomes y0 D sy. Thus, the two line segments
meet at x Dy with the common valuey Dy0=s. Finally, as x approaches 2y, Equation (15.5)
becomes y0 D s2y.

These observations mean that the two line segments defined by Equations (15.1) and
(15.3) form a continuous curve meeting the lines y D x and 2y D x. Moreover, the slope
1�s

2�s
for the line segment represented by Equation (15.3) is less than the slope 1�s of the line
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6 Chapter 15 Graphs of Functions as Models

segment represented by Equation (15.1) because 2 � s > 1. Thus, the curve is piecewise
linear with decreasing slopes. The graphical model is depicted in Figure 15.4. Note the
graph lies within the cone-shaped region between lines A and B as discussed previously.

J Figure 15.4
A graphical model relating
the number of missiles for
Country Y to the number
of missiles for Country X
when 0 � x � 2y

Line A

Line B

x

y

y0

y  =  x

2y = x

Slope (1 – s)

Slope (1 – s)/(2 – s)
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We could continue to analyze additional cases, such as what happens when 2y <
x < 3y. Because we are interested only in qualitative information, however, let’s see if
we can determine the general shape of the curves more simply.

To simplify the analysis, let’s replace our piecewise linear approximation by a single
continuous smooth curve (one without corners) that passes through each of the points
.0; y0/; .x; x/; .x; x

2
/; : : : shown in Figure 15.4. (These are the points where the piecewise

linear approximation crosses the y axis and the lines y D x and 2y D x/. We want a
curve given by a single equation rather than one represented by a different equation in each
subregion. Generalizing from our analysis in Cases 2 and 4, one such curve is given by the
following model:

y D y0

sx=y
for 0 < s < 1 (15.6)

An inspection of Equation (15.6) reveals that for every ratio x=y we can find y. Thus,
the curve y D f .x/ crosses each line x D y, x D 2y; : : : ; x D ny, as illustrated in
Figure 15.5, at the same points as did our piecewise linear approximation.

J Figure 15.5
The curve y D f.x/must
cross every line x D ny .

x

y

y0

x = y
x = 2y

x = 3y
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y = f (x)
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15.1 An Arms Race 7

The situation for Country X is entirely symmetrical. (In determining its curve, Coun-
tryX is assumed to have the friendly strategy to deter Country Y , and Country Y is presumed
to have the enemy strategy.) Its minimum number of missiles is represented by a continuous
curve x D g.y/ that crosses every line y D x, y D 2x; : : : ; y D nx. Thus, the two curves
must intersect.

The preceding discussion leads us to consider two idealized continuously differentiable
curves such as those drawn in Figure 15.6. Because the curve y D f .x/ represents the
minimum number of missiles required by Country Y , the region above the curve represents
missile levels satisfactory to Country Y . Likewise, the region to the right of the curve
x D g.y/ represents missile levels satisfactory to Country X . Thus, the darkest region in
Figure 15.6 represents missile levels satisfactory to both countries.

J Figure 15.6
Regions of satisfaction to
Country X and Country Y

x

y

y0

x0

y = f(x)

(xm, ym)

x = g(y)

21

Satisfactory to
Country X

Satisfactory to
Country Y
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The intersection point of the curves y D f .x/ and x D g.y/ represents the minimum
level at which both sides are satisfied. To see that this is so, assume Country Y has y0

missiles and observes that Country X has x0 missiles. To meet its objectives, Country Y
will have to add sufficient missiles to reach point 1 in Figure 15.6. In turn, Country X will
have to add sufficient missiles to reach point 2. This process will continue until both sides
are satisfied simultaneously. Notice that any point in the darkest regionwill suffice to satisfy
both countries, and there are many points in the darkest region that are quite likely to occur.
The intersection point .xm; ym/ in Figure 15.6 represents theminimum force levels required
of both countries to meet their objectives.

Uniqueness of the Intersection Point
Wewould like to know if the intersection point is unique. Note from Equation (15.6) that as
the ratio x=y increases, y must increase; likewise, x D g.y/ increases. Because both curves
are increasing, it is tempting to conclude that the intersection point is unique. Consider
Figure 15.7, however. In the figure both curves are steadily increasing: the curve y D f .x/
crosses every line x D ny, and x D g.y/ crosses every line y D nx. However, the curves
have multiple intersection points. How can we ensure a unique intersection point? Notice
that the slope of the curve y D f .x/ in Figure 15.7 is steadily decreasing until the point
x D x1, when it begins to increase. Thus, the first derivative changes from a decreasing
to an increasing function at x D x1. That is, the tangent line changes from continuously
turning in a clockwise direction to turning in a counterclockwise direction as x advances.
In other words, the second derivative changes sign. If we can show such a sign change is
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J Figure 15.7
Steadily increasing curves
with multiple intersection
points
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impossible, then we can conclude that the intersection point is unique. In fact, we will show
that the second derivative of y D f .x/ is always negative.

Taking the logarithm of Equation (15.6) yields

lny D lny0 � x

y
ln s

Multiplying both sides of the equation by y and simplifying give

y lny � y lny0 D �x ln s

Differentiating implicitly with respect to x and simplifying yield

y0.1 C lny � lny0/ D � ln s

or

y0 D � ln s

1 C lny � lny0

Differentiating this last equation for the second derivative gives

y00 D
�.� ln s/ 1

y
y0

.1 C lny � lny0/2

Next, we determine the sign of y0. Rewrite y0 as

y0 D ln s

�1 C ln y0

y

Because 0 < s < 1, ln s is negative.
Now, for the cases we are considering, y > y0, which implies that ln.y0=y/ < 0. Thus,

y0 > 0 everywhere, in which case y00 < 0 everywhere. Therefore, we can conclude that
a unique intersection point does in fact exist. The model has the general shape shown in
Figure 15.8.

Graphical Behavior of y D f.x/
Theways in which the graph of y D y0=sx=y behaves depends on three factors: the constant
y0, which is theminimum number of missiles required by Country Y after a preemptive first
strike; the survivability percentage s, which is determined by the technology and weapon
effectiveness of Country X ’s missiles as well as by how securely Country Y ’s missiles
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J Figure 15.8
A graphical model of the
nuclear arms race
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are protected; and the exchange ratio e D x=y. If y0 increases, then the curve y D f .x/
shifts upward and also has a larger slope at each point than before (see Problem 5). If the
survivability factor s increases, the curve rotates downward toward the horizontal line A:
y D y0 and has a smaller slope at each point than before.

If the exchange ratio e increases, then Country X can target Country Y ’s missiles more
than once, requiring Country Y to need more of them. This results in an increase in the
slope and upward rotation of the curve toward the line B: y D y0 C x.

If you have access to a computer graphing package, you can see these effects by plotting
the graph y D y0=sx=y for various values of the three factors.

Although the curve x D g.y/ for Country X displays similar behavior, we note that
its constant x0, survivability, and exchange ratio factors are generally different from the
values for Country Y . Let’s consider several situations in which we use these ideas and the
graphical model to analyze the effects on the intersection point for different political and
military strategies likely to be entertained by the two countries.

When analyzing the graphical effects of a particular strategy, we first consider how the
strategy changes each of the factors y0, s, and e for Country Y . Does the factor increase,
decrease, or remain unchanged? Here we assume that Country Y has the friendly strategy,
whereas Country X is following the enemy strategy. How each factor changes determines
how the curve y D f .x/ changes its position.

Next we consider how the strategy changes each of the factors x0, s, and e for CountryX .
(Again, we stress that these factors are generally not the same as, and are independent of,
their corresponding counterparts for Country Y .) Again, we ask if each factor increases,
decreases, or remains unchanged due to the particular strategy. In answering this question,
we assume that Country X has the friendly strategy, whereas Country Y follows the enemy
strategy. How the factors change determines how the curve x D g.y/ changes its position.

The combined changes of the two curves move the original intersection point .xm, ym)
to a new position .x0

m, y0
m/, where the shifted curves (resulting from our analysis of their

factors) intersect.

Model Interpretation

EXAMPLE 1 Civil Defense

Suppose Country X decides to double its annual budget for civil defense. Presumably,
Country Y will needmoremissiles to inflict an unacceptable level of damage onCountryX ’s
population centers. Thus, y0 increases. Because the effectiveness of Country X ’s weapons
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10 Chapter 15 Graphs of Functions as Models

has not changed, nor has Country Y done anything to improve protection of its missiles in
their silos, no change occurs in the survivability of Country Y ’s missiles. Also, no change
occurs in the exchange ratio for Country Y : one X missile can still destroy at most one Y
missile. The net effect is that the curve y D f .x/ shifts vertically upward with increasing
slope at every x.

For Country X , the factor x0 does not change because increased protection of its
population and industrial centers does not affect theminimumnumber ofmissiles it will need
to retaliate against a preemptive first strike on the part of Country Y . Also, the survivability
factor of Country X ’s missiles does not change because civil defense does not improve the
protection of its missiles typically located in silos in remote geographic regions, nor is it
the case that the effectiveness of Country Y ’s missiles has changed. Finally, one Y missile
can still destroy at most one X missile, so the exchange ratio for Country X is unchanged.
The net effect is that the curve x D g.y/ does not change position at all.

The overall effect of Country X increasing its civil defense budget is shown in Fig-
ure 15.9. The dashed curve is the new position of the function y D f .x/ resulting from
the civil defense of Country X . The point .x0

m, y0
m/ is the new intersection point. Note that

although the course of action seemed fairly passive, the effect is to increase the minimum
number of missiles required by both sides because x0

m > xm and y0
m > ym. J J J

J Figure 15.9
Country X increases its
civil defense posture
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EXAMPLE 2 Mobile Launching Pads

For this scenario, assume that Country X puts its missiles on mobile launching pads, which
can be relocated during times of international crisis. The factor y0 does not change because
CountryY must still target the same number of population and industrial centers in retaliation
for a first strike by Country X . Moreover, the fact that Country X ’s missiles are launched
from mobile pads does not alter the effectiveness of the missiles or improve the protection
of Country Y ’s silos. So the survivability of Country Y ’s missiles is unchanged. No change
in the exchange ratio for Country Y occurs because one X missile, though launched from
a mobile launching pad, can still destroy at most one Y missile in a first strike. Thus, the
curve y D f .x/ does not change.

Regarding the factors for Country X , there is no change in x0 because Country X
still requires the same number of missiles to inflict unacceptable damage on Country Y ’s
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15.1 An Arms Race 11

population and industrial centers. Country X ’s missiles are less vulnerable than before
because Country Y would not know their exact locations in executing a first strike. Thus,
the survivability of Country X ’s missiles is increased. Finally, the placement of a missile
on a mobile pad does not alter the exchange ratio for Country X : one Y missile can still
hit and destroy at most one X missile. The net effect of these changes is to flatten the curve
x D g.y/ toward the y axis, as shown by the new dashed curve in Figure 15.10.

J Figure 15.10
Country X uses mobile
launching pads.

x

y

y0

x0

(xm, ym)
(x'm, y'm)

New  x = g(y)

Original
 x = g(y)

y = f (x)

©
 C

en
ga

ge
 Le

ar
ni

ng

The overall effect of Country X placing its missiles on mobile launching pads is
a movement of the intersection point so that x0

m < xm and y0
m < ym, as depicted in

Figure 15.10. Thus, the minimum number of missiles needed by both countries to deter
the other side from engaging in hostile attack is reduced. J J J

EXAMPLE 3 Multiple Warheads

Suppose now that Country X and Country Y both employ multiple warheads that can
be targeted independently (MIRVs). In our development of the model we assumed each
missile was armed with only one warhead, so counting missiles and counting warheads
would be the same. With MIRVs this correspondence is no longer true. Let’s continue to
count the numbers of missiles (not warheads) required by each country. Assume that each
missile is armed with 16 smaller missiles, each possessing its own warhead. Because it still
takes the same number of warheads to destroy the opponent’s population and industrial
centers, it is reasonable to expect the number of larger missiles, x0 and y0, to be reduced by
the factor 16.

Let’s consider the survivability factor s for Country Y . If we assume awarhead released
independently from an in-flight missile from Country X is just as effective in its destructive
power as before, then there is no change in the survival possibility of the targeted missile
in Country Y . That is, the factor s is unchanged.

However, when one missile from Country X is headed for Country Y in a preemptive
first strike, it carries 16 warheads, each of which can independently target a missile in
Country Y . Thus, 1 X missile can destroy up to 16 Y missiles, and the exchange ratio
factor for Country Y increases significantly. This means the curve y D f .x/ must rise
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12 Chapter 15 Graphs of Functions as Models

more sharply than before to compensate for the increased destruction if it is to meet its
friendly strategy objectives.

Because both countries have MIRVed, the same argument reveals that the survivability
factor for Country X remains unchanged but its exchange ratio factor is increased, causing
a rise in the steepness of the curve x D g.y/ (away from the y axis).

J Figure 15.11
Both countries use multiple
independently targeted
warheads on each missile.
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The new curves are represented in Figure 15.11. Because the reduction in values of the
intercepts x0 and y0 and the changes in the slopes of the curves give different effects on the
new location of the intersection point, it is difficult to determine from a graphical analysis
whether the minimum number of missiles actually increases or decreases. This analysis
demonstrates a limitation of graphical models. To determine the location of the equilibrium
point .x0

m,y0
m/would require amore detailed analysis andmore exact information concerning

the weapon effectiveness and technological capabilities of both countries (along with other
factors, such as military intelligence). J J J

EXAMPLE 4 MIRVs Revisited: Counting Warheads

Althoughwewere unable to predict the effect ofmultiplewarheads on theminimumnumber
ofmissiles required by each side in Example 3, we can analyze the total number of warheads
in this example’s strategy. Let x and y now represent the number of warheads possessed by
Country X and Country Y , respectively. The number of warheads needed by each country
to inflict unacceptable damage on the opponent remain at the levels x0 and y0, as before.
Also, because each warhead is located on a missile, its chance for survivability is the same
as that of the missile, so the survivability factors are unchanged for each country.

Let’s examine what happens to the exchange ratio factor for Country Y . A single
warhead released from an incoming missile from Country X now has the capability of
destroying 16 of Country Y ’s warheads instead of just 1, because they are all clustered on
a single missile targeted by the incoming warhead. This increase in the exchange ratio for
Country Y causes a sharp rise in the steepness of its curve y D f .x/. The same argument
applies to the exchange ratio factor for Country X , so the curve x D g.y/ also increases in
steepness. The new curves are displayed in Figure 15.12. Note that both countries require
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J Figure 15.12
Multiple warheads on each
missile increase the total
number of warheads
required by each side.
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more warheads if multiple warheads are introduced on each missile because x0
m > xm and

y0
m > ym in Figure 15.12. J J J

15.115.1 PROBLEMS

1. Analyze the effect on the arms race of each of the following strategies:
a. Country X increases the accuracy of its missiles by using a better guidance system.
b. CountryX increases the payload (destructive power) of itsmissiles without sacrificing

accuracy.
c. Country X is able to retarget its missiles in flight so that it can aim for missiles that

previous warheads have failed to destroy.
d. Country Y employs sea-launched ballistic missiles.
e. Country Y adds long-range intercontinental bombers to its arsenal.
f. Country X develops sophisticated jamming devices that dramatically increase the

probability of neutralizing the guidance systems of Country Y ’s missiles.

2. Discuss the appropriateness of the assumptions used in developing the nuclear arms race
model. What is the effect on the number of missiles if each country believes the other
country is also following the friendly strategy? Is disarmament possible?

3. Develop a graphical model based on the assumption that each side is following the enemy
strategy. That is, each side desires a first-strike capability for destroying the missile force
of the opposing side. What is the effect on the arms race if Country X now introduces
antiballistic missiles?

4. Discuss how you might go about validating the nuclear arms race model. What data
would you collect? Is it possible to obtain the data?

5. Use the polar coordinate substitution x D r cos � and y D r sin � in Equation (15.6)
to show that a doubling of y0 causes a doubling of r for every fixed � . Show that if y0

increases, then y D f .x/ shifts upward with an increasing slope.
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15.215.2 Modeling an Arms Race in Stages

Let’s again assume that two countries, Country X and Country Y , are engaged in an arms
race. Each country follows a deterrent strategy that requires them to have a given number
of weapons to deter the enemy (inflict unacceptable damage) even if the enemy has no
weapons. Under this strategy, as the enemy adds weapons, the friendly force increases its
arms inventory by some percentage of the number of attacking weapons that depends on
how effective the friendly force perceives the enemy’s weapons to be.

Suppose Country Y believes it needs 120 weapons to deter the enemy. Furthermore, for
every 2 weapons possessed by Country X , Country Y believes it needs to add 1 additional
weapon (to ensure 120 weapons remain after a strike by Country X ). Thus, the number
of weapons needed by Country Y (y weapons) as a function of the number of weapons it
believes Country X has (x weapons) is

y D 120 C 1

2
x

Now suppose Country X is following a similar strategy, believing it needs 60 weapons even
if Country Y has no weapons. Furthermore, for every 3 weapons that it believes Country Y
possesses, X believes that it must add one weapon. Thus, the number x of weapons needed
by Country X as a function of the number y of weapons it believes Country Y has is

x D 60 C 1

3
y

How does the arms race proceed?

A Graphical Solution
Suppose that initially (stage n D 0/Countries Y andX do not think the other side has arms.
Then (stage n D 1/ they build 120 weapons and 60 weapons, respectively. Now assume
each has perfect intelligence; that is, each knows the other has built weapons. In the next
stage (stage n D 2), Country Y increases its inventory to 150 weapons:

y D 120 C 1

2
.60/ D 150 weapons

Similarly, CountryX notes that Y had 120 weapons during the previous stage and increases
its inventory to 100 weapons:

x D 60 C 1

3
.120/ D 100 weapons

The arms race would proceed dynamically—that is, in successive stages. At each stage a
country adjusts its inventory based on the strength of the enemy during the previous stage.
In stage n D 3, Country Y realizes that Country X now has 100 weapons and reacts by
increasing its inventory to y D 120 C 1

2
.100/ D 170. Similarly, Country X increases its

inventory to x D 60 C 1

3
.150/ D 110. If we let n represent the stage of the arms race,
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convince yourself that the following table represents the growth of the arms race under the
assumptions we have made:

Stage n 0 1 2 3 4 5

Country Y 0 120 150 170 175 178
Country X 0 60 100 110 117 118

Note that the growth in the arms race appears to be diminishing. The number ofweapons
needed by Country Y appears to be approaching approximately 180 weapons, whereas X
appears to be approaching approximately 120 weapons (Figures 15.13 and 15.14). Does
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J Figure 15.13
Dynamics of an arms race

J Figure 15.14
Arms race curves for each
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this model actually predict that an equilibrium value will be reached as suggested in the
model developed earlier in this chapter? Is the equilibrium position stable in the sense that
small changes in the number of weapons initially possessed by either side have little change
on the final outcome? Is the outcome sensitive to changes in the coefficients of the model?
Next, we build a dynamical system to answer these questions.

Numerical Solution of an Arms Race as a Dynamical
System Model
Using the notation introduced in Section 15.1,

Let n D stage (years, decades, fiscal periods, etc.)
xn D number of weapons possessed by X in stage n

yn D number of weapons possessed by Y in stage n

Then our assumptions imply that at stage n C 1,

ynC1 D 120 C 1

2
xn

xnC1 D 60 C 1

3
yn




(15.7)

with

x0 D 0

y0 D 0

Recall that the values x0 and y0 are called initial values. Along with the coefficients
1

2
and 1

3
, they are parameters we ultimately would like to vary to determine the sensitivity

of the predictions. In Table 15.1, we display a numerical solution for the model and initial
conditions in Equations (15.7).

What happens if both countries start off with more than the minimum number of
missiles? For example, what if Country X starts with 100 and Country Y with 200? Our
model becomes

ynC1 D 120 C 1

2
xn

xnC1 D 60 C 1

3
yn




(15.8)

with

x0 D 100

y0 D 200

Is the equilibrium reached, or is there uncontrolled growth? In the problems that follow
this section, we ask you to explore the long-term behavior predicted by Equations (15.8) in
terms of the stability of the arms race for different initial values and other parameters (the
survival coefficients of Countries X and Y /.
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15.2 Modeling an Arms Race in Stages 17

Table 15.1 A numerical solution to Equations (15.7)

n xn yn

0 0 0
1 60 120
2 100 150
3 110 170
4 116.6667 175
5 118.3333 178.3333
6 119.4444 179.1667
7 119.7222 179.7222
8 119.9074 179.8611
9 119.9537 179.9537
10 119.9846 179.9769
11 119.9923 179.9923
12 119.9974 179.9961
13 119.9987 179.9987
14 119.9996 179.9994
15 119.9998 179.9998
16 119.9999 179.9999
17 120 180
© Cengage Learning

15.215.2 PROBLEMS

1. Build a numerical solution to Equations (15.8).
a. Graph your results.
b. Is an equilibrium value reached?
c. Try other starting values. Do you think the equilibrium value is stable?
d. Explore other values for the survival coefficients of Countries X and Y . Describe

your results.

2. Recall fromSection 15.1 that an equilibrium value for the arms race requires that xnC1 D
xn and ynC1 Dyn simultaneously. Is there an equilibrium value for Equations (15.7)? If
so, find it.

15.215.2 PROJECTS

For Projects 1–4, complete the requirements in the referenced UMAP module (see enclosed
CD), and prepare a short summary for classroom discussion.

1. ‘‘The Distribution of Resources,’’ by Harry M. Schey, UMAP 60–62 (one module). The
author investigates a graphical model that can be used to measure the distribution of
resources. The module provides an excellent review of the geometric interpretation of
the derivative as applied to the economics of the distribution of a resource. Numerical
calculation of the derivative and definite integral is also discussed.
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2. ‘‘Nuclear Deterrence,’’ byHarveyA. Smith, UMAP327. The author analyzes the stability
of the arms race, assuming objectives similar to those suggested by General Taylor. The
module develops analytic models using probabilistic arguments. An understanding of
elementary probability is required.

3. ‘‘The Geometry of the Arms Race,’’ by Steven J. Brams, Morton D. Davis, and Philip D.
Straffin, Jr., UMAP 311. This module analyzes the possibilities of both parties disarming
by introducing elementary game theory. Interesting conclusions are based onCountryX ’s
ability to detect Country Y ’s intentions, and vice versa.

4. ‘‘The Richardson Arms Race Model,’’ by Dina A. Zinnes, John V. Gillespie, and G. S.
Tahim, UMAP 308. A model is constructed on the basis of the classical assumptions of
Lewis Fry Richardson. Difference equations are introduced.

15.2 Further Reading
Saaty, Thomas L.Mathematical Models of Arms Control and Disarmament. New York: Wiley, 1968.
Schrodt, Philip A. ‘‘Predicting Wars with the Richardson Arms-Race Model.’’ BYTE 7, no. 7

(July 1982): 108–134.
Wallace, Michael D. ‘‘Arms Races and Escalation; Some New Evidence.’’ Explaining War. Edited by

J. David Singe. Beverly Hills, CA: Sage, 1979; 240–252.

15.315.3 Managing Nonrenewable Resources:

The Energy Crisis

During the past century, the United States has shifted into nearly complete dependence on
nonrenewable energy sources. Petroleum and natural gas now constitute about three-fourths
of the nation’s fuel, and nearly half of our crude oil comes from foreign sources. The
rise of the Organization of Petroleum-Exporting Countries cartel (OPEC) has caused some
analysts to fear for supply security, especially during periods of political unrest when we
are threatened by constraints on the supply of foreign oil, such as oil embargoes. Thus, there
are significant attempts to conserve energy so as to reduce our long-term oil consumption.
There is also interest in more drastic short-term reductions to survive a crisis situation.

Various solutions have been proposed to address these long- and short-term needs. One
solution is gas rationing. Another is to place a surcharge tax on each gallon of gasoline
sold at the local pump. Basically, the idea behind this solution is that gasoline companies
will pass the tax on to the consumer by increasing the price per gallon by the amount of
the tax. Accordingly, it is supposed the consumer will reduce consumption because of the
higher price. Let’s study this proposal by constructing a graphical model and qualitatively
addressing the following questions:

1. What is the effect of the surcharge tax on short- and long-term consumer demand?
2. Who actually pays the tax—the consumer or the oil companies?
3. Does the tax contribute to inflation?
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15.3 Managing Nonrenewable Resources: The Energy Crisis 19

Stated more succinctly, the problem is to determine the effect of a surcharge tax on
the market price of, and consumer demand for, gasoline. In the following analysis we are
concernedwith gaining a qualitative understanding of the principal factors involvedwith the
problem. A graphical analysis is appropriate to gain this understanding, especially because
precise data would be difficult to obtain. We begin by graphically analyzing some pertinent
general economic principles. In the ensuing sections we interpret the conclusions of the
graphical model as they apply to the oil situation.

Constructing a Graphical Model
Suppose a firm within a large competitive industry produces a single product. A question
facing the firm is how many units to produce to maximize profits. Assume that the industry
in question is so large that any particular firm’s production has no appreciable effect on
the market price. Hence, the firm may assume the price of the product is constant and
need consider only the difference between the price and the firm’s costs in producing
the product. Individual firms encounter fixed costs, which are independent of the amount
produced over a wide range of production levels. These costs include rent and utilities,
equipment capitalization costs, and management costs. The variable costs depend on the
quantity produced. Variable costs include the cost of raw materials, taxes, and labor. When
the fixed costs are divided by the quantity produced, the share apportioned to each unit is
obtained. This per-unit share is relatively high when production levels are low. However,
as production levels increase, not only does the per-unit share of the fixed costs diminish
but also economies of scale (such as buying raw materials in large quantities at reduced
rates) often reduce some of the variable cost rates. Eventually, production levels are reached
that strain the capabilities of the firm. At this point the firm is faced with hiring additional
employees, paying overtime, or capitalizing additional machinery or similar costs. Because
the per-unit costs tend to be relatively high when production levels are either very low
or very high, one intuitively expects the existence of a production level q� that yields a
maximum profit over the range of production levels being considered. This idea is illustrated
in Figure 15.15. Next, consider the characteristics of q� mathematically.

J Figure 15.15
Profit is maximized at q �.
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At a given level of production q, total profit TP.q/ is the difference between total
revenue TR.q/ and total cost TC.q). That is,

TP.q/ D TR.q/ � TC.q/
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20 Chapter 15 Graphs of Functions as Models

A necessary condition for a relative maximum to exist is that the derivative of TP with
respect to q must be 0:

TP0 D TR0 � TC0 D 0

or, at the level q� of maximum profit,

TR0.q�/ D TC0.q�/ (15.9)

Thus, at q� it is necessary that the slope of the total revenue curve equal the slope of the
total cost curve. This condition is depicted in Figure 15.16.

J Figure 15.16
At q � the slopes of the total
revenue and total cost
curves are equal.
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Let’s interpret economically the meaning of the derivatives TR0 and TC0. From the
definition of the derivative,

TR0.q/ � TR.q C �q/ � TR.q/

�q

for �q small. Thus, if �q D 1, you can see that TR0.q/ approximates TR.q C 1/ �TR.q/,
which is the revenue generated by the next unit sold, or themarginal revenue (MR) of the
q C1st unit. Because total revenue is the price per unit times the number of units, it follows
that the marginal revenue of the q C 1st unit is the price of that unit less the revenue lost on
previous units resulting from price reductions (see Problem 4). Similarly, TC0.q/ represents
the marginal cost (MC) of the q C 1st unit; that is, the extra cost in changing output to
include one additional unit. If Equation (15.9) is interpreted in these new terms, a necessary
condition for maximum profit to occur at q� is that marginal revenue equal marginal cost:

MR.q�/ D MC.q�/ (15.10)

For the critical point defined by Equations (15.8) to be a relative maximum, it is suffi-
cient that the second derivative TP00 be negative. Because TP0 D MR � MC, we have

TP00.q�/ D MR0.q�/ � MC0.q�/ < 0

or

MR0.q�/ < MC0.q�/ (15.11)
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15.3 Managing Nonrenewable Resources: The Energy Crisis 21

This means that at the level q� of maximum profit the slope of the marginal revenue curve
is less than the slope of the marginal cost curve. The results (15:10) and (15:11) together
imply that the marginal revenue and marginal cost curves intersect at q�, with the marginal
cost curve rising more rapidly. These results are illustrated in Figure 15:17.

J Figure 15.17
At q �,MR D MC and
MR 0 <MC 0
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Interpreting the Graphical Model
Now let’s interpret the graphical model represented by Figure 15.17. The MR curve repre-
sents the revenue generated by the next unit sold. The curve is drawn horizontally because
in a large competitive industry, the amount one particular firm produces seldom influences
the market price so there is no loss in revenue on previous units resulting from price re-
duction. Thus, the MR curve represents the (constant) price of the product. Given a market
price determined by the entire industry and aggregate consumer demand, a firm attempting
to maximize profits will continue to produce units until the cost of the next unit produced
exceeds its market price. Verify that this situation is suggested by the graphical model in
Figure 15.17.

15.315.3 PROBLEMS

1. Justify mathematically, and interpret economically, the graphical model for the theory
of the firm given in Figure 15.18. What are the major assumptions on which the model
is based?

2. Show that for total profit to reach a relative minimum, MR D MC and MC0 < MR0:

3. Suppose the large competitive industry is the oil industry, and the firmwithin that industry
is a gasoline station. Howwell does the model depicted in Figure 15.17 reflect the reality
of that situation? How would you adjust the graphical model to make improvements?

4. Verify the result that the marginal revenue of the q C1st unit equals the price of that unit
minus the loss in revenue on previous units resulting from price reduction.
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J Figure 15.18
A graphical model for the
theory of the firm
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15.415.4 Effects of Taxation on the Energy Crisis

Let’s suppose a firm is currently maximizing its profits; that is, given a market price MR,
it is producing q� units as suggested by Figure 15.17. Assume further that a tax is added to
each unit sold. Because the firm must pay the government the amount of the tax for each
unit sold, the marginal cost to the firm of each unit increases by the amount of the tax.
Geometrically, that means the marginal cost curve shifts upward by the amount of the tax.
Assume for themoment that the entire industry is able to increase themarket price by simply
adding on the amount of the tax to the price of each unit. Under this condition the MR curve
also shifts upward by the amount of the tax. This situation is depicted in Figure 15.19. Note
from the figure that the optimal production quantity is still q�. Hence the model predicts no
change in production as a result of the tax. Rather, the firm will produce the same amount
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J Figure 15.19
Both the marginal revenue
and marginal cost curves
shift upward by the amount
of the tax, leaving the
optimal production at the
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but charge a higher price, thereby contributing to inflation. Note too that is it the consumer
who pays the full amount of the tax in the form of a price increase.

The shortcoming with the model in Figure 15.19 is that it does not reveal whether the
entire industry can in fact continue to sell the same quantity at the higher price. To find
out, we need to construct a model for the industry. Thus, for each firm in the industry,
consider the intersection of the firm’s various marginal revenue curves with eachMC curve.
(Remember that each horizontal MR curve corresponds to a price of a unit.) This situation
is depicted for one firm in Figure 15.20a.

For each price, calculate the total that all firms in the industry would optimally produce.
This summing procedure yields a curve for the entire industry. Because this curve represents
the amount the industry would supply at various price levels, it is called a supply curve, an
example of which is depicted in Figure 15.20b. Qualitatively, as the market price increases,
the industry is willing to produce greater quantities.

J Figure 15.20
The industry’s supply curve
is obtained by summing
together the amounts the
firms would produce at
each price level.
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Next, consider aggregate consumer demand for the product at various market price
levels. From a consumer’s point of view, the quantity demanded is a function of the market
price. However, it is traditional to plot market price as a function of quantity (Figure 15.21a).
Conceptually, for each price level, individual consumer demands could be summed as in the
procedure for obtaining the industry’s supply curve. This summation is depicted graphically
in Figure 15.21. Qualitatively, as the price increases, we expect the aggregate demand for
the product to decrease as consumers begin to use less or substitute cheaper alternative
products (Figure 15.21b).

Finally, consider the industry’s supply and demand curves together. Suppose the two
curves intersect at a unique point (q�,p�) as depicted in Figure 15.22. If the industry supplies
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J Figure 15.21
The industry’s demand
curve D represents the
aggregate demand for the
product at various price
levels and is obtained by
summing individual
consumer demands at
those levels. Notice that we
plot price versus quantity
for demand curves rather
than vice versa.
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J Figure 15.22
The intersection of the
supply and demand curves
gives a market price and a
market quantity that satisfy
both consumers and
suppliers alike.
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q� and charges p� (supply curve), then consumers are willing to buy the amount q� at the
pricep� (demand curve). Thus, there is equilibrium in the sense that no excess supply exists
at that price and both consumers and suppliers are satisfied.

Obviously, an industry does not know the precise demand curve for its product. There-
fore, it is important to determine what occurs if the industry supplies an amount other than
q�. For example, suppose the industry supplies an amount q1 greater than q� (Figure 15.23a).
Then consumers are willing to buy an amount as large as q1 only if the price is as low as p1,
forcing a reduction in price. However, if the market price drops to p1, the industry is willing
to supply only q2 units and will cut production back to that level. Then at q2 the unsatisfied
consumers would drive the price up to p2. (Convince yourself that the process converges
to (q�, p�/ in Figure 15.23a, where the supply curve is steeper than the demand curve.)
In that situation, market forces actually drive supply and demand to the equilibrium point.
On the other hand, consider Figure 15.23b, in which the supply curve is more horizontal
than the demand curve. In this case, the equilibrium point (q�, p�/ will not be achieved
by the iterative process just described. Instead, there is likely to be wild fluctuation in the
amount supplied and the market price as the industry and consumers search for the equilib-
rium point. (Convince yourself from Figure 15.23b that the equilibrium point is difficult to
achieve when the supply curve is not as steep as the demand curve.)

The demand curve is steep at q� when consumers cannot switch in the short run to
an alternative product after the price p� increases. Water and electricity are examples of
such products essential to today’s consumers. The supply curve is steep at q� when industry
cannot supply more of the product unless it incurs significant additional cost, causing a
sharp rise in p�. This situation occurs when the industry is operating at full supply capacity
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J Figure 15.23
The ease with which the equilibrium point of supply and demand is achieved
depends on the relative slopes of the supply and demand curves.

and demand for the product increases sharply. At this point, the industry must increase
its costs (e.g., from capitalizing additional machinery or hiring additional employees), and
these costs are passed on to the consumers in the form of price increases. The power crisis
in California during 2000 and 2001 is such an example.

Now consider the effect of a tax on the supply and demand curves. Suppose that a
particular industry is in an equilibrium market position (q�, p�) when a tax is added to
each unit sold. Because each firm has to pay the tax to the government, each marginal
cost curve shifts upward by the amount of the tax (Figure 15.19). These individual shifts
cause the aggregate supply curve for the industry to shift upward by the amount of the tax
as well. This phenomenon is depicted in Figure 15.24. If there is no reason for a shift in
the demand curve, the intersection of the demand curve with the new supply curve shifts
upward toward the left to a new equilibrium point (q1, p1/, indicating an increase in the
equilibrium market price with a corresponding decrease in market quantity. Furthermore,

J Figure 15.24
A tax added to each item
sold causes a decrease in
the quantity produced and
an increase in the price.
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notice from Figure 15.24 that the increase in price, p1 � p�, is less than the tax. Thus, the
model predicts that the consumer and industry share the tax. Study Figure 15.24 carefully
and convince yourself that the proportion of the tax that the consumer pays and the relative
reduction in the quantity supplied at equilibrium depend on the slopes of the supply and
demand curves at the time the tax is imposed.

15.415.4 PROBLEMS

1. Show that when the demand curve is very steep, a tax added to each item sold will
fall primarily on consumers. Now show that when the demand curve is more nearly
horizontal, the tax is paid mostly by the industry. What if the supply curve is very steep?
What if the supply curve is nearly horizontal?

2. Consider the oil industry. Discuss the conditions for which the demand curve will be
steep near the equilibrium. What are the situations for which the demand curve will be
more horizontal (or flat)?

3. Criticize the following quotation:

The effect of a tax on a commodity might seem at first sight to be an advance in price to
the consumer. But an advance in price will diminish the demand, and a reduced demand will
send the price down again. It is not certain, therefore, after all, that the tax will really raise
the price.5

4. Suppose the government pays producers a subsidy for each unit produced instead of
levying a tax. Discuss the effect on the equilibrium point of the supply and demand
curves.What happens to the new price and the new quantity? Discuss how the proportion
of the benefits to the consumer and to the industry depends on the slopes of the supply
and demand curves at the time the subsidy is given (see Problem 1).

15.515.5 A Gasoline Shortage and Taxation

Now let’s consider the energy crisis. Suppose a shortage of oil imports exists at a time
when the vast majority of the population depends on the automobile to get to work and
that no alternative mass transportation system is immediately available. Assume also that
in the short term, most people cannot switch to more fuel-efficient cars because they are not
readily available or easily affordable. These assumptions suggest qualitatively a demand
curve that is steep over a wide range of values because to get to work, consumers will
suffer a high increase in price before significantly cutting back on demand. Of course,
eventually price levels are reached at which it no longer pays for consumers to go to work.
The demand curve is portrayed in Figure 15.25. Note that as q increases, consumers enter
regions where the use of additional gasoline is for leisure. In such flat regions the consumer
is most sensitive to price changes.

5H. D. Henderson, Supply and Demand, p. 22. Chicago: University of Chicago Press, 1958.
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J Figure 15.25
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Next, consider the oil industry’s supply curve. If the shortage of foreign oil catches
the industry by surprise, most likely it will seek to find and develop alternative sources
of oil. Possibly, the industry will be forced to turn to more expensive sources to provide
the same quantities as before the shortage. Furthermore, in the short term, the oil industry
will be more sensitive to price because it will be very difficult for the industry to provide
immediate increases in supply. These arguments suggest an upward shift of the supply
curve, which may become more vertical as well. Study Figure 15.25 and convince yourself
that if the demand curve is steep, a significant price increase may result, but that it will take
an appreciable shift in the supply curve to reduce demand significantly. Decide whether the
new equilibrium point can easily be attained in Figure 15.25.

Now consider the supply–demand curves depicted in Figure 15.26. Suppose the govern-
ment is dissatisfied with the reduction in demand for oil resulting from the shift in the supply
curve, so it imposes a tax on each gallon of gasoline to reduce demand further. As discussed
in the previous section, the tax causes the supply curve to shift upward (Figure 15.26). If
the consumers are less sensitive to price than the industry, the new equilibrium point will
be difficult to achieve. Furthermore, the new equilibrium point suggests that consumers
will pay most of the tax in the form of a price increase. In summary, the graphical model

J Figure 15.26
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q

$
D

Quantityq*

S

S'

p*

P
ri

ce

New
equilibrium

Price increase

Reduction in demand

Original equilibrium

Amount of tax

©
 C

en
ga

ge
 Le

ar
ni

ng

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_02_ch15_p001-030 January 23, 2013 19:40 28

28 Chapter 15 Graphs of Functions as Models

suggests that large fluctuations in price are probable, only modest reductions in demand are
achievable, and the consumer bears the large portion of the tax burden.

What about the long-term effects of the foreign oil shortage? After the crisis, the oil
industry will again have the foreign oil as well as the new sources that were developed
during the crisis. These two sources cause the supply curve to shift downward and perhaps
become more nearly horizontal than during the foreign oil shortage. Meanwhile, a change
in consumer demand has occurred as well. Carpools have been formed, mass transportation
systems are in place, and a larger proportion of the people have switched to fuel-efficient
cars. These changes in supply and demand effectively transform the x axis for the consumers.
That is, for the same amount of gasoline, the consumer is operating closer to the leisure
range, where the demand curve is flat (Figure 15.27). The effect of these shifts in the supply
and demand curves promises lower prices, but it is difficult to determine whether a significant
reduction in demand will occur from the qualitative model depicted in Figure 15.27 (see
Problem 1).

J Figure 15.27
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Finally, suppose the government is still dissatisfied with the level of demand and im-
poses a tax to reduce demand further. The supply curve shifts upward by the amount of the
tax as before (Figure 15.28). Notice from Figure 15.28 that because the demand curve is

J Figure 15.28
If the demand curve is
relatively flat, the industry
pays the larger portion of
the tax, and the reduction in
demand is more significant.
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more horizontal than the supply curve at the original equilibrium, the increase in price due
to the shift in the supply curve caused by the tax is small compared to the amount of the tax.
In essence, the oil industry suffers the burden of the tax. Moreover, notice that the reduction
in demand is more significant with this flatter demand curve. Finally, the new equilibrium
position is more easily obtained.

15.515.5 PROBLEMS

1. Consider the graphical model in Figure 15.27. Argue that if the demand curve fails to
shift significantly to the left, an increase in the equilibrium quantity could occur after
the crisis.

2. Consider the situation in which demand is a fixed curve but there is an increase in supply,
so the supply curve shifts downward. Discuss how the slope of the demand curve affects
the change in price and the change in quantity: How does the price change, and when
does it change the most? When does it change the least? Answer similar questions for
the quantity.

3. Criticize the graphical model of the oil industry. Name somemajor factors that have been
neglected. Which of the underlying assumptions are not satisfied by the crisis situation?
Did the graphical model help you identify some of the key factors and their interactions?
How could you adjust the model?

15.515.5 PROJECTS

For Projects 1–4, complete the requirements in the referenced UMAP module (see enclosed
CD) and prepare a short summary for classroom discussion.

1. ‘‘Differentiation, Curve Sketching, and Cost Functions,’’ by Christopher H. Nevison,
UMAP 376. In this module costs and revenue for a firm are discussed using elementary
calculus. The author discusses several of the economic ideas presented in this chapter.

2. ‘‘Price Discrimination and Consumer Surplus: An Application of Calculus to Eco-
nomics,’’ by Christopher H. Nevison, UMAP 294. The topics in this module are analyzed
in a competitive market, and two-tier price discrimination is also discussed. The module
examines several of the economic ideas presented in this chapter.

3. ‘‘Economic Equilibrium: Simple Linear Models,’’ by Philip M. Tuchinsky, UMAP 208.
In this module linear supply and demand functions are constructed, and the equilibrium
market position is analyzed for an industry producing one product. The result is then
extended to n products. The author concludes by briefly considering nonlinear and
discontinuous functions.

4. ‘‘I Will If You Will : : : A Critical Mass Model,’’ by Jo Anne S. Growney, UMAP 539.
A graphical model is presented to treat the problems of individual behavior in a group
when the individual makes a choice dependent on his or her perception of the behavior
of fellow group members. The model can provide insight into paradoxical situations
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in which members of a group prefer one type of behavior but actually engage in the
opposite behavior (such as not cheating versus cheating in a class).

15.5 Further Reading
Asimakopulos, A. An Introduction to Economic Theory: Microeconomics. New York: Oxford Uni-

versity Press, 1978.
Cohen, Kalman J., & Richard M. Cyert. Theory of the Firm. Englewood Cliffs, NJ: Prentice-Hall,

1975.
Thompson, Arthur A., Jr. Economics of the Firm: Theory and Practice. Englewood Cliffs, NJ:

Prentice-Hall, 1973.
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A P P E N D I X

AA Problems from the Mathematics
Contest in Modeling,
1985--2012

1985: The Animal Population Problem
Choose a fish or mammal for which appropriate data are available to model it accurately.
Model the animal’s natural interactionswith its environment by expressing population levels
of different groups in terms of the significant parameters of the environment. Then adjust
themodel to account for harvesting in a form consistent with the actual method bywhich the
animal is harvested. Include any outside constraints imposed by food or space limitations
that are supported by the data. Consider the value of the various quantities involved, the
number harvested, and the population size to devise a numerical quantity that represents the
overall value of the harvest. Find a harvesting policy in terms of population size and time
that optimizes the value of the harvest over a long period of time. Check that the policy
optimizes this value over a realistic range of environmental conditions.

1985: The Strategic Reserve Problem
Cobalt, which is not produced in the United States, is essential to a number of industries.
(Defense accounted for 17% of the cobalt production in 1979.) Most cobalt comes from
central Africa, a politically unstable region. The Strategic and CriticalMaterials Stockpiling
Act of 1946 requires a cobalt reserve that will carry the United States through a 3-year war.
The government built up a cobalt stockpile in the 1950s, sold most of it in the early 1970s,
and then decided to build it up again in the late 1970s, with a stockpile goal of 85.4 million
pounds. About half of this stockpile had been acquired by 1982.

Build a mathematical model for managing a stockpile of the strategic metal cobalt. You
will need to consider such questions as

� How big should the stockpile be?
� At what rate should it be acquired?
� What is a reasonable price to pay for the metal?

You will also want to consider such questions as

� At what point should the stockpile be drawn down?
� At what rate should it be drawn down?

601
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� What is a reasonable price at which to sell the metal?
� How should sold metal be allocated?

Below we give more information on the sources, cost, demand, and recycling aspects
of cobalt.

Useful Information on Cobalt
The government has projected a need of 25 million pounds of cobalt in 1985.

The United States has about 100 million pounds of proven cobalt deposits. Production
becomes economically feasible when the price reaches $22/lb (as occurred in 1981). It takes
4 years to get operations rolling, and then 6 million pounds per year can be produced.

In 1980, 1.2 million pounds of cobalt were recycled, 7% of total consumption.
Please see Figures A.1–A.3, whose source is Mineral Facts and Problems, United

States Bureau of Mines (Washington, DC: Government Printing Office, 1980).

J Figure A.1
U.S. primary demand
for cobalt, 1960–1980
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J Figure A.2
Cobalt prices in the U.S.
market, 1960–1982
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J Figure A.3
Producers of refined metal
and/or oxide 1979; an
asterisk denotes a country
with domestic production.
Source: U.S. Bureau of
Mines,Mineral Facts and
Problems (1980)
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1986: The Hydrographic Data Problem
The following table gives the depth Z of water in feet for surface points with rectangular
coordinates X , Y in yards. The depth measurements were taken at low tide. Your ship has a
draft of 5 feet. What region should you avoid within the rectangle .150; �50/ � .200; 75/?

X Y Z

129.0 7.5 4
140.0 141.5 8
108.5 28.0 6
88.0 147.0 8
185.5 22.5 6
195.0 137.5 8
105.5 85.5 8
157.5 �6:5 9
107.5 �81:0 9
77.0 3.0 8
162.0 �66:5 9
162.0 84.0 4
117.5 �38:5 9

1986: The Emergency-Facilities
Location Problem

The township of Rio Rancho has hitherto not had its own emergency facilities. It has secured
funds to erect two emergency facilities in 1986, each of which will combine ambulance,
fire, and police services. Figure A.4 indicates the demand, or number of emergencies per
square block, for 1985. The L region in the north is an obstacle, whereas the rectangle in the
south is a park with a shallow pond. It takes an emergency vehicle an average of 15 seconds

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_14_appendixA_p601-642 January 23, 2013 19:40 604

604 Appendix A Problems from the Mathematics Contest in Modeling, 1985–2012

J Figure A.4
A map of Rio Rancho, with
number of emergencies in
1985 indicated for each
block
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to go one block in the N–S direction and 20 seconds in the E–W direction. Your task is to
locate the two facilities so as to minimize the total response time.

� Assume that the demand is concentrated at the center of the block and that the facilities
will be located on corners.

� Assume that the demand is uniformly distributed on the streets bordering each block and
that the facilities may be located anywhere on the streets.

1987: The Salt Storage Problem
For approximately 15 years, a midwestern state has stored salt used on roads in the winter
in circular domes. Figure A.5 shows how salt has been stored in the past. The salt is brought

Door clearance
19 ft 9 in.

Front-end loader
10 ft 9 in. high

Salt ramp

Salt

diameter 103 ft

Dome height
50 ft

Retaining wall
4 ft high
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J Figure A.5
Diagram of a salt storage dome
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into and removed from the domes by driving front-end loaders up ramps of salt leading into
the domes. The salt is piled 25–30 ft high, using the buckets on the front-end loaders.

Recently, a panel determined that this practice is unsafe. If the front-end loader got too
close to the edge of the salt pile, the salt might shift, and the loader could be thrown against
the retaining walls that reinforce the dome. The panel recommended that if the salt is to
be piled with the use of loaders, then the piles should be restricted to a maximum height
of 15 ft.

Construct a mathematical model for this situation and find a recommended maximum
height for salt in the domes.

1987: The Parking Lot Problem
The owner of a paved, 100-ft-by-200-ft corner parking lot in a New England town hires you
to design the layout—that is, to design how the lines are to be painted.

You realize that squeezing as many cars into the lot as possible leads to right-angle
parking with the cars aligned side by side. However, inexperienced drivers have difficulty
parking their cars this way, which can give rise to expensive insurance claims. To reduce the
likelihood of damage to parked vehicles, the owner might then have to hire expert drivers
for valet parking. On the other hand, most drivers seem to have little difficulty in parking
in one attempt if there is a large enough turning radius from the access lane. Of course, the
wider the access lane, the fewer cars that can be accommodated in the lot, leading to less
revenue for the parking lot owner.

1988: The Railroad Flatcar Problem
Two railroad flatcars are to be loaded with seven types of packing crates. The crates have
the same width and height but vary in thickness (t , in cm) and weight (w, in kg). Table A.1
gives, for each crate, the thickness, weight, and number available. Each car has 10.2 m of
length available for packing the crates (like slices of toast) and can carry up to 40 metric
tons. There is a special constraint on the total number of C5, C6, and C7 crates because of a
subsequent local trucking restriction: The total space (thickness) occupied by these crates
must not exceed 302.7 cm. Load the two flatcars (Figure A.6) so as to minimize the wasted
floor space.

Table A.1 The thickness, weight, and number of each kind of crate

C1 C2 C3 C4 C5 C6 C7

t 48.7 52.0 61.3 72.0 48.7 52.0 64.0 cm
w 2000 3000 1000 500 4000 2000 1000 kg

8 7 9 6 6 4 8
© Cengage Learning
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J Figure A.6
Diagram of loading
of a flatcar
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1988: The Drug Runner Problem
Two listening posts 5.43 miles apart pick up a brief radio signal. The sensing devices were
oriented at 110

ı and 119
ı, respectively, when the signal was detected (Figure A.7), and they

are accurate to within 2
ı. The signal came from a region of active drug exchange, and it

is inferred that there is a powerboat waiting for someone to pick up drugs. It is dusk, the
weather is calm, and there are no currents. A small helicopter leaves a pad from Post 1 and
is able to fly accurately along the 110

ı angle direction. The helicopter’s speed is three times
the speed of the boat. The helicopter will be heard when it gets within 500 ft of the boat.
This helicopter has only one detection device, a searchlight. At 200 ft, it can just illuminate
a circular region with a radius of 25 ft.

� Describe the (smallest) region where the pilot can expect to find the waiting boat.
� Develop an optimal search method for the helicopter.

Use a 95% confidence level in your calculations.
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J Figure A.7
Geometry of the problem
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1989: The Aircraft Queuing Problem
A common procedure at airports is to assign aircraft (AC) to runways on a first-come-first-
served basis. That is, as soon as an AC is ready to leave the gate (push back), the pilot calls
ground control and is added to the queue. Suppose that a control tower has access to a fast
online database with the following information for each AC:

� The time it is scheduled for pushback
� The time it actually pushes back
� The number of passengers on board
� The number of passengers who are scheduled to make a connection at the next stop, as
well as the time to make that connection

� The schedule time of arrival at its next stop

Assume that there are seven types of AC with passenger capacities varying from 100
to 400 in steps of 50. Develop and analyze a mathematical model that takes into account
both the travelers’ and the airlines’ satisfaction.

1989: The Midge Classification Problem
Two species of midges, Af and Apf, have been identified by biologists Grogan and Wirth
(1981) on the basis of antenna and wing length (Figure A.8). Each of nine Af midges is
denoted by , and each of six Apf midges is denoted by ı. It is important to be able to
classify a specimen as Af or Apf, given the antenna and wing length.
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J Figure A.8
Display of data collected by Grogan and Wirth (1981)
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1. Given a midge that you know is species Af or Apf, how would you go about classify-
ing it?

2. Apply your method to three specimens with (antenna, wing) lengths (1.24, 1.80), (1.28,
1.84), (1.40, 2.04).

3. Assume that species Af is a valuable pollinator and that species Apf is a carrier of a
debilitating disease. Would you modify your classification scheme and if so, how?

1990: The Brain--Drug Problem
Researchers on brain disorders test the effects of newmedical drugs (e.g., dopamine against
Parkinson’s disease) with intracerebral injections. To this end, they must estimate the size
and the shape of the spatial distribution of the drug after the injection to estimate accurately
the region of the brain that the drug has affected.

The research data consist of the measurements of the amounts of drug in each of 50
cylindrical tissue samples (Figure A.9 and Table A.2). Each cylinder has length 0.76 mm
and diameter 0.66 mm. The centers of the parallel cylinders lie on a grid with mesh 1 �
0:76 � 1 mm so that the cylinders touch one another on their circular bases but not along
their sides, as shown in the accompanying figure. The injection was made near the center
of the cylinder with the highest scintillation count. Naturally, one expects that there is drug
also between the cylinders and outside the region covered by the sample.

J Figure A.9
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Estimate the distribution in the region affected by the drug.
One unit represents a scintillation count, or 4:753 � 10

�13 mole of dopamine. For
example, the table shows that the middle rear cylinder contains 28,353 units.
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Table A.2 Amounts of drug in each of 50 cylindrical tissue samples

Rear vertical section

164 442 1,320 414 188
480 7,022 14,411 5,158 352

2,091 23,027 28,353 13,138 681
789 21,260 20,921 11,731 727
213 1,303 3,765 1,715 453

Front vertical section

163 324 432 243 166
712 4,055 6,098 1,048 232

2,137 15,531 19,742 4,785 330
444 11,431 14,960 3,182 301
294 2,061 1,036 258 188

© Cengage Learning

1991: The Water Tank Problem
Some state water-right agencies require from communities data on the rate of water use, in
gallons per hour, and the total amount of water used each day. Many communities do not
have equipment to measure the flow of water into or out of the municipal tank. Instead, they
can measure only the level of water in the tank, within 0.5% accuracy, every hour. More
important, whenever the level in the tank drops below some minimum level L, a pump fills
the tank up to the maximum level, H ; however, there is no measurement of the pump flow
either. Thus, one cannot readily relate the level in the tank to the amount of water used while
the pump is working, which occurs once or twice per day, for a couple of hours each time.

Estimate the flow out of the tank f .t/ at all times, even when the pump is working, and
estimate the total amount of water used during the day. Table A.3 gives the real data from
an actual small town for one day.

The table gives the time, in seconds, since the first measurement and the level of water
in the tank, in hundredths of a foot. For example, after 3316 seconds, the depth of water in

Table A.3 Water tank levels over a single day for a small town
(time is in seconds and level is in 0.01 ft)

Time Level Time Level Time Level

0 3,175 35,932 pump on 68,535 2,842
3,316 3,110 39,332 pump on 71,854 2,767
6,635 3,054 39,435 3,550 75,021 2,697
10,619 2,994 43,318 3,445 79,254 pump on
13,937 2,947 46,636 3,350 82,649 pump on
17,921 2,892 49,953 3,260 85,968 3,475
21,240 2,850 53,936 3,167 89,953 3,397
25,223 2,797 57,254 3,087 93,270 3,340
28,543 2,752 60,574 3,012
32,284 2,697 64,554 2,927
© Cengage Learning
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the tank reached 31.10 ft. The tank is a vertical circular cylinder, with a height of 40 ft and
a diameter of 57 ft. Usually, the pump starts filling the tank when the level drops to about
27 ft, and the pump stops when the level rises back to about 35.50 ft.

1991: The Steiner Tree Problem
The cost for a communication line between two stations is proportional to the length of
the line. The cost for conventional minimal spanning trees of a set of stations can often be
cut by introducing phantom stations and then constructing a new Steiner tree. This device
allows costs to be cut by up to 13.4% (D 1 �

p
3=2). Moreover, a network with n stations

never requires more than n � 2 points to construct the cheapest Steiner tree. Two simple
cases are shown in Figure A.10.

J Figure A.10
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For local networks, it is often necessary to use rectilinear or checkerboard distances
instead of straight Euclidean lines. Distances in this metric are computed as shown in
Figure A.11.

a
ab = 13, bc = 7, ac = 14

Cost = 20
Cost = 17
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J Figure A.11
Comparison of distances using straight Euclidean line distances (ab D 13, b c D 7,
ac D 14; cost D 20) versus using rectilinear distances (cost D 17)

Suppose you wish to design a minimal-cost spanning tree for a local network with nine
stations. Their rectangular coordinates are

a.0; 15/; b.5; 20/; c.16; 24/; d.20; 20/; e.33; 25/;

f .23; 11/; g.35; 7/; h.25; 0/; i.10; 3/

You are restricted to using rectilinear lines. Moreover, all phantom stations must be
located at lattice points (i.e., the coordinates must be integers). The cost for each line is
its length.
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1. Find a minimal-cost tree for the network.
2. Suppose each station has a cost d

3=2
w, where d is the degree of the station. If w D 1:2,

find a minimal-cost tree.
3. Try to generalize this problem.

1992: The Emergency Power-Restoration
Problem

Power companies serving coastal regionsmust have emergency-response systems for power
outages due to storms. Such systems require the input of data that allow the time and cost
required for restoration to be estimated and the value of the outage judged by objective
criteria. In the past, Hypothetical Electric Company (HECO) has been criticized in the
media for its lack of a prioritization scheme.

You are a consultant to HECO power company. HECO possesses a computerized
database with real-time access to service calls that currently require the following
information:

� Time of report
� Type of requestor
� Estimated number of people affected
� Location .x; y/

Crew sites are located at coordinates (0, 0) and (40, 40), where x and y are in miles.
The region serviced by HECO is within �65 < x < 65 and �50 < y < 50. The region
is largely metropolitan with an excellent road network. Crews must return to their dispatch
site only at the beginning and end of each shift. Company policy requires that no work be
initiated until the storm leaves the area, unless the facility is a commuter railroad or hospital,
which may be processed immediately if crews are available.

HECO has hired you to develop the objective criteria and schedule the work for the storm
restoration requirements listed in Table A.5 using the work force described in Table A.4.
Note that the first call was received at 4:20 a.m. and that the storm left the area at 6:00 a.m.
Also note that many outages were not reported until much later in the day.

Table A.4 Crew descriptions

� Dispatch locations at .0; 0/ and .40; 40/.
� Crews consist of three trained workers.
� Crews report to the dispatch location only at the beginning and end of their shifts.
� One crew is scheduled for duty at all times on jobs assigned to each dispatch location.

These crews would normally be performing routine assignments. Until the storm leaves
the area, they can be dispatched for emergencies only.

� Crews work 8-hr shifts.
� There are six crew teams available at each location.
� Crews can work only one overtime shift in a work day and receive time-and-a-half for overtime.
© Cengage Learning
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Table A.5 Storm restoration requirements

Estimated
Time repair time
(a.m.) Location Type # Affected (hr for crew)

4:20 .�10; 30/ Business (cable TV) ? 6
5:30 . 3; 3/ Residential 20 7
5:35 . 20; 5/ Business (hospital) 240 8
5:55 .�10; 5/ Business (railroad system) 25 workers;

75,000 commuters 5

6:00 All-clear given; storm leaves area; crews can be dispatched

6:05 . 13; 30/ Residential 45 2
6:06 . 5; 20/ Area 2,000 7
6:08 . 60; 45/ Residential ? 9
6:09 . 1; 10/ Government (city hall) ? 7
6:15 . 5; 20/ Business (shopping mall) 200 workers 5
6:20 . 5; �25/ Government (fire dept.) 15 workers 3
6:20 . 12; 18/ Residential 350 6
6:22 . 7; 10/ Area 400 12
6:25 . � 1; 19/ Industry (newspaper co.) 190 10
6:40 .�20; �19/ Industry (factory) 395 7
6:55 . � 1; 30/ Area ? 6
7:00 .�20; 30/ Government (high school) 1,200 students 3
7:00 . 40; 20/ Government (elementary school) 1,700 ?
7:00 . 7; �20/ Business (restaurant) 25 12
7:00 . 8; �23/ Government (police station & jail) 125 7
7:05 . 25; 15/ Government (elementary school) 1,900 5
7:10 .�10; �10/ Residential ? 9
7:10 . � 1; 2/ Government (college) 3,000 8
7:10 . 8; �25/ Industry (computer manuf.) 450 workers 5
7:10 . 18; 55/ Residential 350 10
7:20 . 7; 35/ Area 400 9
7:45 . 20; 0/ Residential 800 5
7:50 . � 6; 30/ Business (hospital) 300 5
8:15 . 0; 40/ Business (several stores) 50 6
8:20 . 15; �25/ Government (traffic lights) ? 3
8:35 .�20; �35/ Business (bank) 20 5
8:50 . 47; 30/ Residential 40 ?
9:50 . 55; 50/ Residential ? 12
10:30 .�18; �35/ Residential 10 10
10:30 . � 1; 50/ Business (civic center) 150 5
10:35 . � 7; � 8/ Business (airport) 350 workers 4
10:50 . 5; �25/ Government (fire dept.) 15 5
11:30 . 8; 20/ Area 300 12

© Cengage Learning
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HECO has asked for a technical report for its purposes and an executive summary in
lay terms that can be presented to the media. Furthermore, it would like recommendations
for the future. To determine your prioritized scheduling system, you will have to make
additional assumptions. Detail those assumptions. In the future, you may desire additional
data. If so, detail the information desired.

1992: The Air-Traffic-Control Radar Problem
You are to determine the power to be radiated by an air-traffic-control radar at a major
metropolitan airport. The airport authority wants to minimize the power of the radar con-
sistent with safety and cost.

The authority is constrained to operate with its existing antennae and receiver circuitry.
The only option it is considering is upgrading the transmitter circuits to make the radar
more powerful.

The question that you are to answer is what power (in watts) must be released by the
radar to ensure detection of standard passenger aircraft at a distance of 100 km.

J Figure A.12
Measurements for the radar
system

6 meters

2 meters

Antenna dish

Antenna dish
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Transmitter/receiver
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Technical specifications (see also Figure A.12):

1. The radar antenna is a section of a paraboloid of revolution with focal length of 1 meter.
Its projection onto a plane tangent to its vertex is an ellipse with a major axis of 6 meters
and a minor axis of 2 meters. The main lobe energy beam pattern, located at the focus, is
an elliptical cone that has a major axis of 1 radian and a minor axis of 50 milliradians. The
antenna and beam are sketched in the figures provided.

2. The nominal class of aircraft is one that has an effective radar reflection cross section of
75 square meters. For the purposes of this problem, this means that in your initial model,
the aircraft is equivalent to a 100% reflective circular disc of 75 square meters, which is
centered on the axis of the antennae and is perpendicular to it. You may want to consider
alternatives or refinements to this initial model.
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1993: The Coal-Tipple Operations Problem
The Aspen–Boulder Coal Company runs a loading facility consisting of a large coal tipple.
When the coal trains arrive, they are loaded from the tipple. The standard coal train takes
3 hours to load, and the tipple’s capacity is 1.5 standard trainloads of coal. Each day the
railroad sends three standard trains to the loading facility, and they arrive at any time between
5 a.m. and 8 p.m. local time. Each of the trains has three engines. If a train arrives and sits
idle while waiting to be loaded, the railroad charges a special fee, called a demurrage. The
fee is $5000 per engine per hour. In addition, a high-capacity train arrives once a week
every Thursday between 11 a.m. and 1 p.m. This special train has five engines and holds
twice as much coal as a standard train. An empty tipple can be loaded directly from the
mine to its capacity in 6 hours by a single loading crew. This crew (and its associated
equipment) costs $9000 per hour. A second crew can be called out to increase the loading
rate by conducting an additional tipple-loading operation at the cost of $12,000 per hour.
Because of safety requirements, during tipple loading no trains can be loaded. Whenever
train loading is interrupted to load the tipple, demurrage charges are in effect.

The management of the coal company has asked you to determine the expected an-
nual costs of this tipple’s loading operations. Your analysis should include the following
considerations:

� How often should the second crew be called out?
� What are the expected monthly demurrage costs?
� If the standard trains could be scheduled to arrive at precise times, what daily schedule
would minimize loading costs?

� Would a third tipple-loading crew at $12,000 per hour reduce annual operations costs?
� Can this tipple support a fourth standard train every day?

1993: The Optimal Composting Problem
An environmentally conscious institutional cafeteria is recycling customers’ uneaten food
into compost by means of microorganisms. Each day, the cafeteria blends the leftover food
into a slurry, mixes the slurry with crisp salad wastes from the kitchen and a small amount of
shredded newspaper, and feeds the resulting mixture to a culture of fungi and soil bacteria,
which digest slurry, greens, and paper into usable compost. The crisp greens provide pockets
of oxygen for the fungi culture, and the paper absorbs excess humidity. At times, however,
the fungi culture appears unable or unwilling to digest as much of the leftovers as customers
leave; the cafeteria does not blame the chef for the fungi culture’s lack of appetite. Also, the
cafeteria has received offers for the purchase of large quantities of its compost. Therefore,
the cafeteria is investigating ways to increase its production of compost. Because it cannot
yet afford to build a new composting facility, the cafeteria seeks methods to accelerate
the fungi culture’s activity—for instance, by optimizing the fungi culture’s environment
(currently held at about 120

ı F and 100% humidity), by optimizing the composition of the
mixture fed to the fungi culture, or both.
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Determine whether any relation exists between the proportions of slurry, greens, and
paper in the mixture fed to the fungi culture and the rate at which the fungi culture composts
the mixture. If no relation exists, state so. Otherwise, determine what proportions would
accelerate the fungi culture’s activity.

In addition to the technical report following the format prescribed in the contest instruc-
tions, provide a 1-page nontechnical recommendation for implementation for the cafeteria
manager.

Table A.6 shows the composition of various mixtures, in pounds of each ingredient
kept in separate bins, and the time it took the fungi culture to compost the mixtures, from
the date fed to the date completely composted.

Table A.6 Composting data

Slurry Greens Paper Composted
(pounds) (pounds) (pounds) Fed (date) (date)

86 31 0 13 Jul 90 10 Aug 90
112 79 0 17 Jul 90 13 Aug 90
71 21 0 24 Jul 90 20 Aug 90

203 82 0 27 Jul 90 22 Aug 90
79 28 0 10 Aug 90 12 Sep 90

105 52 0 13 Aug 90 18 Sep 90
121 15 0 20 Aug 90 24 Sep 90
110 32 0 22 Aug 90 8 Oct 90
82 44 9 30 Apr 91 18 Jun 91
57 60 7 2 May 91 20 Jun 91
77 51 7 7 May 91 25 Jun 91
52 38 6 10 May 91 28 Jun 91

© Cengage Learning

1994: The Concrete Slab Problem
The United States Department of Housing and Urban Development (HUD) is considering
constructing dwellings of various sizes, ranging from individual houses to large apartment
complexes. A principal concern is to minimize recurring costs to occupants, especially
the costs of heating and cooling. The region in which the construction is to take place is
temperate, with a moderate variation in temperature throughout the year.

With special construction techniques, HUD engineers can build dwellings that do not
need to rely on convection—that is, there is no need to rely on opening doors or windows to
assist in temperature variation. The dwellings will be single-story, with concrete slab floors
as the only foundation. You have been hired as a consultant to analyze the temperature
variation in the concrete slab floor to determine whether the temperature averaged over the
floor surface can be maintained within a prescribed comfort zone throughout the year. If
so, what size/shape of slabs will permit this?

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_14_appendixA_p601-642 January 23, 2013 19:40 616

616 Appendix A Problems from the Mathematics Contest in Modeling, 1985–2012

Part 1, Floor Temperature
Consider the temperature variation in a concrete slab given that the ambient temperature
varies daily within the ranges given in Table A.7. Assume that the high occurs at noon and
the low at midnight. Determine whether slabs can be designed to maintain a temperature av-
eraged over the floor surface within the prescribed comfort zone, considering radiation only.
Initially, assume that the heat transfer into the dwelling is through the exposed perimeter
of the slab and that the top and bottom of the slabs are insulated. Comment on the appro-
priateness and sensitivity of these assumptions. If you cannot find a solution that satisfies
Table A.7, can you find designs that satisfy Table A.7 that you propose?

Table A.7 Daily variation in
temperature

Ambient Comfort
temperature zone

High: 85
ı F High: 76

ı F
Low: 60

ı F Low: 65
ı F

© Cengage Learning

Part 2, Building Temperature
Analyze the practicality of the initial assumptions and extend the analysis to temperature
variation within the single-story dwelling. Can the house be kept within the comfort zone?

Part 3, Cost of Construction
Suggest a design that considers HUD’s objective of reducing or eliminating heating and
cooling costs, considering construction restrictions and costs.

1994: The Communications Network Problem
In your company, information is shared among departments on a daily basis. This infor-
mation includes the previous day’s sales statistics and current production guidance. It is
important to get this information out as quickly as possible.

Suppose that a communications network is to be used to transfer blocks of data (files)
from one computer to another. As an example, consider the graph model in Figure A.13.

Vertices V1; V2; : : : ; Vm represent computers, and edges e1; e2; : : : ; en represent files
to be transferred (between computers represented by edge endpoints). T .ex/ is the time that
it takes to transfer file ex , and C.Vy/ is the capacity of the computer represented by Vy to
transfer files simultaneously. A file transfer involves the engagement of both computers for
the entire time it takes to transfer the file. For example, C.Vy/ D 1 means that computer Vy

can be involved in only one transfer at a time.
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J Figure A.13
Example of a file transfer
network
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We are interested in scheduling the transfers in an optimal way, to minimize the total
time that it takes to complete them all. This minimum total time is called the makespan.
Consider the following situations for your company.

Situation A
Your corporation has 28 departments. Each department has a computer, each of which is
represented by a vertex in Figure A.14. Each day, 27 files must be transferred, represented
by the edges in Figure A.14. For this network, T .ex/ D 1 and C.Vy/ D 1 for all x and y.
Find an optimal schedule and the makespan for the given network. Can you prove to your
supervisor that your makespan is the smallest possible (optimal) for the given network?
Describe your approach to solving the problem. Does your approach work for the general
case—that is, where T .ex/, C.Vy/, and the graph structure are arbitrary?

J Figure A.14
Network for situations
A and B
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Situation B
Suppose that your company changes the requirements for data transfer. You must now
consider the same basic network structure (see Figure A.14) with different types and sizes
of files. These files take the amount of time to transfer indicated in Table A.8 by the T .ex/

terms for each edge. We still have C.Vy/ D 1 for all y. Find an optimal schedule and the
makespan for the new network. Can you prove that your makespan is the smallest possible
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Table A.8 File transfer time data for situation B

x 1 2 3 4 5 6 7 8 9
T .ex/ 3.0 4.1 4.0 7.0 1.0 8.0 3.2 2.4 5.0

x 10 11 12 13 14 15 16 17 18
T .ex/ 8.0 1.0 4.4 9.0 3.2 2.1 8.0 3.6 4.5

x 19 20 21 22 23 24 25 26 27
T .ex/ 7.0 7.0 9.0 4.2 4.4 5.0 7.0 9.0 1.2
© Cengage Learning

for the new network? Describe your approach to solving this problem. Does your approach
work for the general case? Comment on any peculiar or unexpected results.

Situation C
Your corporation is considering expansion. If that happens, there are several new files
(edges) that will need to be transferred daily. This expansion will also include an upgrade of
the computer system. Some of the 28 departments will get new computers that can handle
more than one transfer at a time. All of these changes are indicated in Figure A.15 and
Tables A.9 and A.10. What is the best schedule and makespan that you can find? Can you
prove that your makespan is the smallest possible for this network? Describe your approach
to solving the problem. Comment on any peculiar or unexpected results.

J Figure A.15
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Table A.9 File transfer time data for situation C, for the added transfers

x 28 29 30 31 32 33 34 35
T .ex/ 6.0 1.1 5.2 4.1 4.0 7.0 2.4 9.0

x 36 37 38 39 40 41 42
T .ex/ 3.7 6.3 6.6 5.1 7.1 3.0 6.1
© Cengage Learning
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Table A.10 Computer capacity data for situation C

y 1 2 3 4 5 6 7 8 9 10
C.Vy/ 2 2 1 1 1 1 1 1 2 3

y 11 12 13 14 15 16 17 18 19
C.Vy/ 1 1 1 2 1 2 1 1 1

y 20 21 22 23 24 25 26 27 28
C.Vy/ 1 1 2 1 1 1 2 1 1
© Cengage Learning

1995: The Single Helix
A small biotechnical company must design, prove, program, and test a mathematical algo-
rithm to locate in real time all the intersections of a helix and a plane in general positions
in space.

Computer-aided geometric design (CAGD) programs enable engineers to view a plane
section of an object they design, such as an automobile suspension or a medical device.
Engineers may also display on the plane section quantities such as air flow, stress, or
temperature, coded by colors or level curves. Plane sections may be rapidly swept through
the entire object to gain a three-dimensional visualization of the object and its reactions to
motion, forces, or heat. To achieve such results, the computer programs must quickly and
accurately locate all the intersections of the viewed plane and every part of the designed
object. General equation solversmay in principle compute such intersections, but for specific
problems, specific methods may prove faster and more accurate than general methods. In
particular, general CAGD software may prove too slow to complete computations in real
time or too large to fit in the company’s finished medical devices. These considerations have
led the company to the following problem.

Problem
Design, justify, program, and test a method to compute all the intersections of a plane and
a helix, both in general positions (at any locations and with any orientations) in space. A
segment of the helix may represent, for example, a helicoidal suspension spring or a piece
of tubing in a chemical or medical apparatus.
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Theoretical justification of the proposed algorithm is necessary to verify the solution
from several points of view—for instance, through mathematical proofs of parts of the
algorithm and through tests of the final programwith known examples. Such documentation
and tests will be required by government agencies for medical use.

1995: Aluacha Balaclava College
Aluacha Balaclava College, an undergraduate facility, has just hired a new Provost whose
first priority is the institution of a fair and reasonable faculty compensation system. She
has hired your consulting team to design a compensation system that reflects the following
circumstances and principles.

Faculty are ranked as Instructor, Assistant Professor, Associate Professor, and Professor.
Those with Ph.D. degrees are hired at the rank of Assistant Professor. Ph.D. candidates are
hired at the rank of Instructor and promoted automatically to Assistant Professor upon
completion of their degrees. Faculty may apply for promotion from Associate Professor
to Professor after serving at the rank of Associate for 7 or more years. Promotions are
determined by the Provost, with recommendations from a faculty committee.

Faculty salaries are for the 10-month period September through June, with raises effec-
tive beginning in September. The total amount of money available for raises varies yearly
and is generally disclosed in March for the following year.

The starting salary this year for an Instructor with no prior teaching experience was
$27,000; $32,000 for an Assistant Professor. Upon hire, faculty can receive credit for up to
7 years of teaching experience at other institutions.

Principles
1. All faculty should get a raise any year that money is available.
2. Promotion should incur a substantial benefit; e.g., promotion in the minimum possible

time should result in a benefit roughly equal to 7 years of normal raises.
3. Faculty promoted after 7 or 8 years in rank with careers of at least 25 years should make

roughly twice as much at retirement as a starting Ph.D.
4. Experienced faculty should be paid more than less experienced in the same rank. The

effect of additional years of experience should diminish over time; that is, if two faculty
stay in the same rank, their salaries should equalize over time.

Design a new pay system, first without cost-of-living increases. Incorporate cost-of-
living increases, and then design a transition process for current faculty that will move all
salaries toward your system without reducing anyone’s salary. Existing faculty salaries,
ranks, and years of service are shown in Table A.11. Discuss any refinements you think
would improve your system.

The Provost requires a detailed compensation system plan for implementation, as well
as a brief, clear, executive summary outlining the model, its assumptions, its strengths, its
weaknesses, and its expected results, which she can present to the Board and faculty.
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Table A.11 Salary data for Aluacha Balaclava College

Case Years Rank Salary Case Years Rank Salary Case Years Rank Salary

1 4 ASSO 54,000 2 19 ASST 43,508 3 20 ASST 39,072
4 11 PROF 53,900 5 15 PROF 44,206 6 17 ASST 37,538
7 23 PROF 48,844 8 10 ASST 32,841 9 7 ASSO 49,981

10 20 ASSO 43,549 11 18 ASSO 42,649 12 19 PROF 60,087
13 15 ASSO 38,002 14 4 ASST 30,000 15 34 PROF 60,576
16 28 ASST 44,562 17 9 ASST 30,893 18 22 ASSO 46,351
19 21 ASSO 50,979 20 20 ASST 48,000 21 4 ASST 32,500
22 14 ASSO 38,462 23 23 PROF 53,500 24 21 ASSO 42,488
25 20 ASSO 43,892 26 5 ASST 35,330 27 19 ASSO 41,147
28 15 ASST 34,040 29 18 PROF 48,944 30 7 ASST 30,128
31 5 ASST 35,330 32 6 ASSO 35,942 33 8 PROF 57,295
34 10 ASST 36,991 35 23 PROF 60,576 36 20 ASSO 48,926
37 9 PROF 57,956 38 32 ASSO 52,214 39 15 ASST 39,259
40 22 ASSO 43,672 41 6 INST 45,500 42 5 ASSO 52,262
43 5 ASSO 57,170 44 16 ASST 36,958 45 23 ASST 37,538
46 9 PROF 58,974 47 8 PROF 49,971 48 23 PROF 62,742
49 39 ASSO 52,058 50 4 INST 26,500 51 5 ASST 33,130
52 46 PROF 59,749 53 4 ASSO 37,954 54 19 PROF 45,833
55 6 ASSO 35,270 56 6 ASSO 43,037 57 20 PROF 59,755
58 21 PROF 57,797 59 4 ASSO 53,500 60 6 ASST 32,319
61 17 ASSO 35,668 62 20 PROF 59,333 63 4 ASST 30,500
64 16 ASSO 41,352 65 15 PROF 43,264 66 20 PROF 50,935
67 6 ASST 45,365 68 6 ASSO 35,941 69 6 ASST 49,134
70 4 ASST 29,500 71 4 ASST 30,186 72 7 ASST 32,400
73 12 ASSO 44,501 74 2 ASST 31,900 75 1 ASSO 62,500
76 1 ASST 34,500 77 16 ASSO 40,637 78 4 ASSO 35,500
79 21 PROF 50,521 80 12 ASST 35,158 81 4 INST 28,500
82 16 PROF 46,930 83 24 PROF 55,811 84 6 ASST 30,128
85 16 PROF 46,090 86 5 ASST 28,570 87 19 PROF 44,612
88 17 ASST 36,313 89 6 ASST 33,479 90 14 ASSO 38,624
91 5 ASST 32,210 92 9 ASSO 48,500 93 4 ASST 35,150
94 25 PROF 50,583 95 23 PROF 60,800 96 17 ASST 38,464
97 4 ASST 39,500 98 3 ASST 52,000 99 24 PROF 56,922

100 2 PROF 78,500 101 20 PROF 52,345 102 9 ASST 35,798
103 24 ASST 43,925 104 6 ASSO 35,270 105 14 PROF 49,472
106 19 ASSO 42,215 107 12 ASST 40,427 108 10 ASST 37,021
109 18 ASSO 44,166 110 21 ASSO 46,157 111 8 ASST 32,500
112 19 ASSO 40,785 113 10 ASSO 38,698 114 5 ASST 31,170
115 1 INST 26,161 116 22 PROF 47,974 117 10 ASSO 37,793
118 7 ASST 38,117 119 26 PROF 62,370 120 20 ASSO 51,991
121 1 ASST 31,500 122 8 ASSO 35,941 123 14 ASSO 39,294
124 23 ASSO 51,991 125 1 ASST 30,000 126 15 ASST 34,638
127 20 ASSO 56,836 128 6 INST 35,451 129 10 ASST 32,756
130 14 ASST 32,922 131 12 ASSO 36,451 132 1 ASST 30,000
133 17 PROF 48,134 134 6 ASST 40,436 135 2 ASSO 54,500
136 4 ASSO 55,000 137 5 ASST 32,210 138 21 ASSO 43,160
139 2 ASST 32,000 140 7 ASST 36,300 141 9 ASSO 38,624

(continued )
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Table A.12 (Continued )

Case Years Rank Salary Case Years Rank Salary Case Years Rank Salary

142 21 PROF 49,687 143 22 PROF 49,972 144 7 ASSO 46,155
145 12 ASST 37,159 146 9 ASST 32,500 147 3 ASST 31,500
148 13 INST 31,276 149 6 ASST 33,378 150 19 PROF 45,780
151 5 PROF 70,500 152 27 PROF 59,327 153 9 ASSO 37,954
154 5 ASSO 36,612 155 2 ASST 29,500 156 3 PROF 66,500
157 17 ASST 36,378 158 5 ASSO 46,770 159 22 ASST 42,772
160 6 ASST 31,160 161 17 ASST 39,072 162 20 ASST 42,970
163 2 PROF 85,500 164 20 ASST 49,302 165 21 ASSO 43,054
166 21 PROF 49,948 167 5 PROF 50,810 168 19 ASSO 51,378
169 18 ASSO 41,267 170 18 ASST 42,176 171 23 PROF 51,571
172 12 PROF 46,500 173 6 ASST 35,798 174 7 ASST 42,256
175 23 ASSO 46,351 176 22 PROF 48,280 177 3 ASST 55,500
178 15 ASSO 39,265 179 4 ASST 29,500 180 21 ASSO 48,359
181 23 PROF 48,844 182 1 ASST 31,000 183 6 ASST 32,923
184 2 INST 27,700 185 16 PROF 40,748 186 24 ASSO 44,715
187 9 ASSO 37,389 188 28 PROF 51,064 189 19 INST 34,265
190 22 PROF 49,756 191 19 ASST 36,958 192 16 ASST 34,550
193 22 PROF 50,576 194 5 ASST 32,210 195 2 ASST 28,500
196 12 ASSO 41,178 197 22 PROF 53,836 198 19 ASSO 43,519
199 4 ASST 32,000 200 18 ASSO 40,089 201 23 PROF 52,403
202 21 PROF 59,234 203 22 PROF 51,898 204 26 ASSO 47,047

© Cengage Learning

1996: The Submarine Detection Problem
The world’s oceans contain an ambient noise field. Seismic disturbances, surface shipping,
and marine mammals are sources that, in different frequency ranges, contribute to this field.
We wish to consider how this ambient noise might be used to detect large moving objects
(e.g., submarines located below the ocean surface). Assuming that a submarine makes no
intrinsic noise, develop a method for detecting the presence of a moving submarine, its
speed, its size, and its direction of travel, using only information obtained by measuring
changes to the ambient noise field. Begin with noise at one fixed frequency and amplitude.

1996: The Contest Judging Problem
When determining the winner of a competition such as theMathematical Contest in Model-
ing, there are generally a great many papers to judge. Let’s say there are P D100 papers. A
group of J judges is collected to accomplish the judging. Funding for the contest constrains
both the number of judges that can be obtained and the amount of time that they can judge.
For example, if P D 100, then J D 8 is typical.

Ideally, each judge would read each paper and rank-order them, but there are too many
papers for this. Instead, there will be a number of screening rounds in which each judge will
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read some number of papers and give them scores. Then some selection scheme is used to
reduce the number of papers under consideration: If the papers are rank-ordered, then the
bottom 30% that each judge rank-orders could be rejected. Alternatively, if the judges do
not rank-order the papers, but instead give them numerical scores (e.g., from 1 to 100), then
all papers falling below some cutoff level could be rejected.

The new pool of papers is then passed back to the judges, and the process is repeated.
A concern is that the total number of papers that each judge reads must be substantially less
than P . The process is stopped when there are only W papers left. These are the winners.
Typically for P D 100, W D 3.

Your task is to determine a selection scheme, using a combination of rank-ordering,
numerical scoring, and other methods, by which the finalW papers will include only papers
from among the best 2W papers. (By ‘‘best,’’ we mean we assume that there is an absolute
rank-ordering to which all judges would agree.) For example, the top three papers found
by your method will consist entirely of papers from among the best six papers. Among all
such methods, the one that requires each judge to read the least number of papers is desired.

Note the possibility of systematic bias in a numerical scoring scheme. For example,
for a specific collection of papers, one judge could average 70 points, whereas another
could average 80 points. How would you scale your scheme to accommodate changes in
the content parameters (P , J , and W )?

1997: The Velociraptor Problem
The velociraptor, Velociraptor mongoliensis, was a predator dinosaur that lived during the
late Cretaceous period approximately 75 million years ago. Paleontologists think that it was
a very tenacious hunter and may have hunted in pairs or even larger packs. Unfortunately,
there is no way to observe its hunting behavior in the wild as can be done with modern
mammalian predators. A group of paleontologists has approached your team and asked
for help in modeling the hunting behavior of the velociraptor. They hope to compare your
results with field data reported by biologists studying the behaviors of lions, tigers, and
similar predatory animals.

The average adult velociraptor was 3 meters long with a hip height of 0.5 meter and
an approximate mass of 45 kg. It is estimated that the animal could run extremely fast, at
speeds of 60 km/hr, for about 15 seconds. After that burst of speed, the animal needed to
stop and recover from a buildup of lactic acid in its muscles.

Suppose that velociraptor preyed on Thescelosaurus neglectus, a bipedal herbivore
approximately the same size as the velociraptor. A biomechanical analysis of fossilized
thescelosaurus indicates that it could run at a speed of about 50 km/hr almost indefinitely.

Part 1 Assuming the velociraptor is a solitary hunter, design a mathematical model that
describes a hunting strategy for a single velociraptor stalking and chasing a single prey, as
well as the evasive strategy of the prey. Assume that the thescelosaurus can always detect
the velociraptor when it gets within 15 meters but may detect this predator at even greater
ranges (up to 50 meters) depending upon the nature of the habitat and weather conditions.
Additionally, because of its physical structure and strength, the velociraptor has a limited
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turning radius when running at full speed. This radius is estimated to be three times the
animal’s hip height. By contrast, the thescelosaurus is extremely agile and has a turning
radius of 0.5 meters.

Part 2 Assuming the more realistic situation that the velociraptor hunted in pairs, design
a new model that describes a hunting strategy for two velociraptors stalking and chasing a
single prey, as well as the evasive strategy of the prey. Use the same other assumptions and
limitations as in Part 1.

1997: Mix Well for Fruitful Discussions
Small-group meetings are gaining popularity for the discussion of important issues, partic-
ularly long-range planning. It is believed that large groups stymie productive discussion and
that a dominant personality usually controls and directs the discussion. Thus in corporation
board meetings the Board will meet in small groups to discuss issues before meeting as a
whole. These smaller groups still run the risk of control by a dominant personality. In an
attempt to reduce this danger, it is common to schedule several sessions with a different
mix of people in the groups.

A meeting of An Tostal Corporation will be attended by 29 board members of whom 9
are in-house members (i.e., employees of the corporation). The meeting is to be an all-day
affair, with 3 sessions scheduled for the morning and 4 for the afternoon. The sessions
will each be 45 minutes, beginning on the hour from 9:00 a.m. to 4:00 p.m., with lunch
scheduled at noon. Each morning session will consist of six discussion groups, with each
discussion group led by one of the corporation’s six senior officers. None of these officers
are board members. Thus each senior officer will lead three different discussion groups.
The senior officers will not be involved in the afternoon sessions, and each of these sessions
will consist of only four different discussion groups.

The president wants a list of board member assignments to discussion groups for each
of the seven sessions. The assignments should achieve as much mix of the members as
possible. The ideal assignment would have each board member in a discussion group with
each other boardmember the same number of times, whileminimizing commonmembership
of groups for the different sessions.

The assignments should also satisfy the following criteria:

1. For the morning sessions, no board member should be in the same senior officer’s
discussion group twice.

2. No discussion group should contain a disproportionate number of in-house members.

Give a list of assignments for members 1–9 and 10–29 and officers 1–6. Indicate
how well the criteria in the previous paragraphs are met. Since it is possible that some
board members will cancel at the last minute or that some not scheduled will show up, an
algorithm that the secretary can use to adjust the assignments with an hour’s notice would
be appreciated. It would be ideal if the algorithm could also be used to make assignments
for future meetings involving different levels of participation for each type of attendee.
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1998: MRI Scanners
Introduction
Industrial and medical diagnostic machines known as magnetic resonance imagers (MRI)
scan a three-dimensional object, such as a brain, and deliver their results in the form of a
three-dimensional array of pixels. Each pixel consists of one number indicating a color or a
shade of gray that encodes a measure of water concentration in a small region of the scanned
object at the location of the pixel. For instance, 0 can picture high water concentration in
black (ventricles, blood vessels), 128 can picture a medium water concentration in gray
(brain nuclei and gray matter), and 255 can picture a low water density in white (lipid-rich
white matter consisting of myelinated axons). Such MRI scanners also include facilities
to picture on a screen any horizontal or vertical slice through the three-dimensional array
(slices are parallel to any of the three Cartesian coordinate axes). Algorithms for picturing
slices through oblique planes, however, are proprietary. Current algorithms are limited in
terms of the angles and parameter options available; are implemented only on heavily used
dedicated workstations; lack input capabilities for marking points in the picture before
slicing; and tend to blur and ‘‘feather out’’ sharp boundaries between the original pixels.

A more faithful, flexible algorithm implemented on a personal computer would be
useful

1. for planning minimally invasive treatments,
2. for calibrating the MRI machines,
3. for investigating structures oriented obliquely in space, such as post-mortem tissue sec-

tions in animal research,
4. for enabling cross sections at any angle through a brain atlas consisting of black-and-

white line drawings.

To design such an algorithm, one can access the values and locations of the pixels, but
not the initial data gathered by the scanner.

Problem
Design and test an algorithm that produces sections of three-dimensional arrays by planes
in any orientation in space, preserving the original gray-scale values as closely as possible.

Data Sets
The typical data set consists of a three-dimensional array A of numbers A.i; j; k/ that
indicates the density A.i; j; k/ of the object at the location .x; y; z/ijk . Typically, A.i; j; k/

can range from 0 through 255. In most applications, the data set is quite large.
Teams should design data sets to test and demonstrate their algorithms. The data sets

should reflect conditions likely to be of diagnostic interest. Teams should also characterize
data sets that limit the effectiveness of their algorithms.
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Summary
The algorithm must produce a picture of the slice of the three-dimensional array by a plane
in space. The plane can have any orientation and any location in space. (The plane can miss
some or all data points.) The result of the algorithm should be a model of the density of the
scanned object over the selected plane.

1998: Grade Inf lation
Background
Some college administrators are concerned about the grading at A Better C lass (ABC)
College. On average, the faculty at ABC have been giving out high grades (the average
grade now given out is an A�), and it is impossible to distinguish between the good and
the mediocre students. The terms of a very generous scholarship allow only the top 10% of
the students to be funded, so a class ranking is required.

The dean had the idea of comparing each student to the other students in each class
and using this information to build up a ranking. For example, if a student obtains an A in a
class in which all students obtain an A, then this student is only ‘‘average’’ in this class. On
the other hand, if a student obtains the only A in a class, then that student is clearly ‘‘above
average.’’ Combining information from several classes might allow students to be placed in
deciles (top 10%, next 10%, etc.) across the college.

Problem
Assuming that the grades given out are (AC, A, A�, BC; : : :) can the dean’s idea be made
to work?

Can any other scheme produce a desired ranking?
A concern is that the grade in a single class could change many student’s deciles. Is

this possible?

Data Sets
Teams should design data sets to test and demonstrate their algorithms. Teams should
characterize data sets that limit the effectiveness of their algorithms.

1999: Deep Impact
For some time, the National Aeronautics and Space Administration (NASA) has been
considering the consequences of a large asteroid impact on the earth.

As part of this effort, your team has been asked to consider the effects of such an impact
were the asteroid to land in Antarctica. There are concerns that an impact there could have
considerably different consequences than one striking elsewhere on the planet.
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You are to assume that an asteroid is on the order of 1000 meters in diameter and that
it strikes the Antarctic continent directly at the South Pole.

Your team has been asked to provide an assessment of the impact of such an asteroid.
In particular, NASA would like an estimate of the probable amount and location of human
casualties from this impact, an estimate of the damage done to the food production regions
in the oceans of the Southern Hemisphere, and an estimate of possible coastal flooding
caused by large-scale melting of the Antarctic polar ice sheet.

1999: Unlawful Assembly
Many public facilities have signs in rooms used for public gatherings which state that it
is ‘‘unlawful’’ for the rooms to be occupied by more than a specified number of people.
Presumably, this number is based on the speed with which people in the room could be
evacuated via the room’s exits in case of an emergency. Similarly, elevators and other
facilities often have ‘‘maximum capacities’’ posted.

Develop amathematical model for decidingwhat number to post on such a sign as being
the ‘‘lawful capacity.’’ As part of your solution, discuss criteria (other than public safety in
the case of a fire or other emergency) that might govern the number of people considered
‘‘unlawful’’ to occupy the room (or space). Also, for the model that you construct, consider
the differences between a room with movable furniture such as a cafeteria (with tables and
chairs), a gymnasium, a public swimming pool, and a lecture hall with a pattern of rows and
aisles. You may wish to compare and contrast what might be done for a variety of different
environments: elevator, lecture hall, swimming pool, cafeteria, or gymnasium. Gatherings
such as rock concerts and soccer tournaments may present special conditions.

Apply your model to one or more public facilities at your institution (or neighboring
town). Compare your results with the stated capacity, if one is posted. If used, your model is
likely to be challenged by parties with interests in increasing the capacity. Write an article
for the local newspaper defending your analysis.

2000: Air Traffic Control
Dedicated to the memory of Dr. Robert Machol, former chief scientist of the Federal
Aviation Agency

To improve safety and reduce air traffic controller workload, the Federal Aviation
Agency (FAA) is considering adding, to the air traffic control system, software that would
automatically detect potential aircraft flight path conflicts and alert the controller. To that
end, an analyst at the FAA has posed the following problems.

Requirement A: Given two airplanes flying in space, when should the air traffic controller
consider the objects to be too close and to require intervention?

Requirement B: An airspace sector is the section of three-dimensional airspace that one
air traffic controller controls. Given any airspace sector, how do we measure how complex
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it is from an air traffic workload perspective? To what extent is complexity determined by
the number of aircraft simultaneously passing through that sector

1. at any one instant?
2. during any given interval of time?
3. during a particular time of day?

How does the number of potential conflicts arising during those periods affect com-
plexity? Does the presence of additional software tools to automatically predict conflicts
and alert the controller reduce or add to this complexity?

In addition to the guidelines for your report, write a summary (no more than two pages)
that the FAA analyst can present to Jane Garvey, the FAA administrator, to defend your
conclusions.

2000: Radio Channel Assignments
We seek to model the assignment of radio channels to a symmetric network of transmitter
locations over a large planar area, so as to avoid interference. One basic approach is to parti-
tion the region into regular hexagons in a grid (honeycomb-style), as shown in Figure A.16,
where a transmitter is located at the center of each hexagon.

J Figure A.16
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An interval of the frequency spectrum is to be allotted for transmitter frequencies. The
interval will be divided into regularly spaced channels, which we represent by integers, 1, 2,
3, : : : : Each transmitter will be assigned one positive integer channel. The same channel can
be used at many locations, provided that interference from nearby transmitters is avoided.

Our goal is to minimize the width of the interval in the frequency spectrum that is
needed to assign channels subject to some constraints. This is achieved with the concept
of a span. The span is the minimum, over all assignments satisfying the constraints, of the
largest channel used at any location. It is not required that every channel smaller than the
span be used in an assignment that attains the span. Let s be the length of a side of one of
the hexagons. We concentrate on the case that there are two levels of interference.

Requirement A: There are several constraints on frequency assignments. First, no two
transmitters within distance 4s of each other can be given the same channel. Second, due
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to spectral spreading, transmitters within distance 2s of each other must not be given the
same or adjacent channels: Their channels must differ by at least 2. Under these constraints,
what can we say about the span in Figure A.16?

Requirement B: Repeat Requirement A, assuming the grid in the example spreads arbi-
trarily far in all directions.

Requirement C: Repeat Requirements A and B, except now assume, more generally, that
channels for transmitters within distance 2s differ by at least some given integer k, while
those at distance at most 4s must still differ by at least 1. What can we say about the span
and about efficient strategies for designing assignments, as a function of k?

Requirement D: Consider generalizations of the problem, such as several levels of in-
terference or irregular transmitter placements. What other factors may be important to
consider?

Requirement E: Write an article (no more than two pages) for the local newspaper
explaining your findings.

2001: Choosing a Bicycle Wheel
Cyclists have different types of wheels they can use on their bicycles. The two basic types
of wheels are those constructed using wire spokes and those constructed of a solid disk
(Figure A.17). The spoked wheels are lighter, but the solid wheels are more aerodynamic.
A solid wheel is never used on the front for a road race but can be used on the rear of the
bike.

J Figure A.17
A solid wheel is shown on
the left and a spoked wheel
is shown on the right.
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Professional cyclists look at a racecourse and make an educated guess as to what kind
of wheels should be used. The decision is based on the number and steepness of the hills,
the weather, wind speed, the competition, and other considerations. The director sportif of
your favorite team would like to have a better system in place and has asked your team for
information to help determine what kind of wheel should be used for a given course.

The director sportif needs specific information to help make a decision and has asked
your team to accomplish the tasks listed below. For each of the tasks, assume that the same
spoked wheel will always be used on the front but there is a choice of wheels for the rear.

Task 1. Provide a table giving the wind speed at which the power required for a solid rear
wheel is less than for a spoked rear wheel.
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The table should include the wind speeds for different road grades ranging from 0%
to 10% in 1% increments. (Road grade is defined to be the ratio of the total rise of a hill
divided by the length of the road.1) A rider starts at the bottom of the hill at a speed of
45 kph, and the deceleration of the rider is proportional to the road grade. A rider will lose
about 8 kph for a 5% grade over 100 meters.

Task 2. Provide an example of how the table could be used for a specific time trial course.

Task 3. Determine whether the table is an adequate means for deciding on the wheel
configuration, and offer other suggestions as to how to make this decision.

2001: Escaping a Hurricane’s Wrath
Evacuating the coast of South Carolina ahead of the predicted landfall of Hurricane Floyd in
1999 led to a monumental traffic jam. Traffic slowed to a standstill on Interstate I-26, which
is the principal route going inland from Charleston to the relatively safe haven of Columbia
in the center of the state. What is normally an easy 2-hour drive took up to 18 hours to
complete. Many cars simply ran out of gas along the way. Fortunately, Floyd turned north
and spared the state this time, but the public outcry is forcing state officials to find ways to
avoid a repeat of this traffic nightmare.

The principal proposal put forth to deal with this problem is the reversal of traffic on
I-26, so that both sides, including the coastal-bound lanes, have traffic headed inland from
Charleston to Columbia. Plans to carry this out have been prepared (and posted on theWeb)
by the South Carolina Emergency Preparedness Division. Traffic reversal on principal roads
leading inland from Myrtle Beach and Hilton Head is also planned.

Charleston has approximately 500,000 people,Myrtle Beach has about 200,000 people,
and another 250,000 people are spread out along the rest of the coastal strip. (More accurate
data, if sought, are widely available.)

The interstates have two lanes of traffic in each direction, except in metro areas, where
they have three. Columbia, another metro area of around 500,000 people, does not have
sufficient hotel space to accommodate the evacuees (including some coming from farther
north by other routes), so some traffic continues outbound on I-26 toward Spartanburg; on
I-77 north to Charlotte; and on I-20 east to Atlanta. In 1999, traffic leaving Columbia going
northwest was moving very slowly.

Construct a model for the problem to investigate what strategies may reduce the con-
gestion observed in 1999. Here are the questions that need to be addressed:

Under what conditions does the plan for turning the two coastal-bound lanes of I-26
into two lanes of Columbia-bound traffic significantly improve evacuation traffic flow?

In 1999, the simultaneous evacuation of the state’s entire coastal region was ordered.
Would the evacuation traffic flow improve under an alternative strategy that staggers the

1If the hill is viewed as a triangle, the grade is the sine of the angle at the bottom of the hill.
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evacuation, perhaps county-by-county over some time period consistent with the pattern of
how hurricanes affect the coast?

Several smaller highways besides I-26 extend inland from the coast. Under what con-
ditions would it improve evacuation flow to turn around traffic on these?

What effect would it have on evacuation flow to establish more temporary shelters in
Columbia, to reduce the traffic leaving Columbia?

In 1999, many families leaving the coast brought their boats, campers, and motor
homes. Many drove all of their cars. Under what conditions should there be restrictions on
vehicle types or numbers of vehicles in order to guarantee timely evacuation? It has been
suggested that in 1999, some of the coastal residents of Georgia and Florida, who were
fleeing the earlier predicted landfalls of Hurricane Floyd to the south, came up I-95 and
compounded the traffic problems. How big an impact can they have on the evacuation traffic
flow?

Clearly identify what measures of performance are used to compare strategies.
Required: Prepare a short newspaper article, not to exceed two pages, explaining the

results and conclusions of your study.

2002: Wind and Waterspray
An ornamental fountain in a large open plaza surrounded by buildings squirts water high
into the air. On gusty days, the wind blows spray from the fountain onto passersby. The
water flow from the fountain is controlled by a mechanism linked to an anemometer (which
measures wind speed and direction) located on top of an adjacent building. The objective
of this control is to provide passersby with an acceptable balance between an attractive
spectacle and a soaking: The harder the wind blows, the lower the water volume and height
to which the water is squirted, hence the less spray falls outside the pool area.

Your task is to devise an algorithm that uses data provided by the anemometer to adjust
the water flow from the fountain as the wind conditions change.

2002: Airline Overbooking
You’re all packed and ready to go on a trip to visit your best friend in New York City. After
you check in at the ticket counter, the airline clerk announces that your flight has been
overbooked. Passengers need to check in immediately to determine whether they still have
a seat.

Historically, airlines know that only a certain percentage of passengers who have made
reservations on a particular flight will actually take that flight. Consequently, most airlines
overbook—that is, they takemore reservations than the capacity of the aircraft. Occasionally,
however, more passengers will want to take a flight than the capacity of the plane, leading
to one or more passengers being bumped and thus unable to take the flight for which they
had reservations.
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Airlines deal with bumped passengers in various ways. Some are given nothing, some
are booked on later flights on other airlines, and some are given some kind of cash or airline
ticket incentive.

Consider the overbooking issue in light of the current situation:

Fewer flights by airlines from point A to point B
Heightened security at and around airports
Passengers’ fear
Loss of billions of dollars in revenue by airlines to date

Build a mathematical model that examines the effects that different overbooking
schemes have on the revenue received by an airline company in order to find an opti-
mal overbooking strategy, i.e., the number of people by which an airline should overbook
a particular flight so that the company’s revenue is maximized. Ensure that your model
reflects the issues above, and consider alternatives for handling ‘‘bumped’’ passengers. Ad-
ditionally, write a short memorandum to the airline’s CEO summarizing your findings and
analysis.

2003: The Stunt Person
An exciting action scene in a movie is going to be filmed, and you are the stunt coordinator!
A stunt person on a motorcycle will jump over an elephant and land in a pile of cardboard
boxes to cushion the fall. You need to protect the stunt person, and you must also use
relatively few cardboard boxes (lower cost, not seen by camera, etc.).

Your job consists of the following tasks:

� Determine what size boxes to use.
� Determine how many boxes to use.
� Determine how the boxes will be stacked.
� Determine whether any modifications to the boxes would help.
� Generalize to different combined weights (stunt person plus motorcycle) and different
jump heights.

Note that in Tomorrow Never Dies, the James Bond character on a motorcycle jumps over
a helicopter.

2003: Gamma Knife Treatment Planning
Stereotactic radiosurgery delivers a single high dose of ionizing radiation to a radiographi-
cally well-defined, small intracranial three-dimensional brain tumor without delivering any
significant fraction of the prescribed dose to the surrounding brain tissue. Three modalities
are commonly used in this area: the gamma knife unit, heavy charged particle beams, and
external high-energy photon beams from linear accelerators.

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_14_appendixA_p601-642 January 23, 2013 19:40 633

Appendix A Problems from the Mathematics Contest in Modeling, 1985–2012 633

The gamma knife unit delivers a single high dose of ionizing radiation emanating
from 201 cobalt-60 unit sources through a heavy helmet. All 201 beams simultaneously
intersect at the isocenter, resulting in an approximately spherical dose distribution at the
effective dose levels. Irradiating the isocenter to deliver dose is termed a ‘‘shot.’’ Shots can
be represented as different spheres. Four interchangeable outer collimator helmets with
beam channel diameters of 4, 8, 14, and 18 mm are available for irradiating different size
volumes. For a target volume larger than one shot, multiple shots can be used to cover the
entire target. In practice, most target volumes are treated with 1 to 15 shots. The target
volume is a bounded, three-dimensional digital image that usually consists of millions of
points.

The goal of radiosurgery is to deplete tumor cells while preserving normal structures.
Because there are physical limitations and biological uncertainties involved in this therapy
process, a treatment plan needs to account for all those limitations and uncertainties. In
general, an optimal treatment plan is designed to meet the following requirements:

1. Minimize the dose gradient across the target volume.
2. Match specified isodose contours to the target volumes.
3. Match specified dose–volume constraints of the target and critical organ.
4. Minimize the integral dose to the entire volume of normal tissues or organs.
5. Constrain dose to specified normal tissue points below tolerance doses.
6. Minimize the maximum dose to critical volumes.

In gamma unit treatment planning, we have the following constraints:

1. Prohibit shots from protruding outside the target.
2. Prohibit shots from overlapping (to avoid hot spots).
3. Cover the target volume with effective dosage as much as possible, but at least 90% of

the target volume must be covered by shots.
4. Use as few shots as possible.

Your tasks are to formulate the optimal treatment planning for a gamma knife unit
as a sphere-packing problem and to propose an algorithm to find a solution. While de-
signing your algorithm, you must keep in mind that your algorithm must be reasonably
efficient.

2004: Are Fingerprints Unique?
It is a common belief that the thumbprint of every human who has ever lived is different.
Develop and analyze a model that will enable you to assess the probability that this is
true. Compare the odds (that you found in this problem) of misidentification by fingerprint
evidence against the odds of misidentification by DNA evidence.
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2004: A Faster QuickPass System
‘‘QuickPass’’ systems are increasingly appearing to reduce people’s time waiting in line,
whether it is at tollbooths, amusement parks, or elsewhere. Consider the design of a Quick-
Pass system for an amusement park. The amusement park has experimented by offering
QuickPasses for several popular rides as a test. The idea is that for certain popular rides,
you can go to a kiosk near that ride and insert your daily park entrance ticket, and out will
come a slip that states that you can return to that ride at a specific time later. For example,
you insert your daily park entrance ticket at 1:15 p.m., and the QuickPass states that you can
come back between 3:30 and 4:30 p.m. and use your slip to enter a second, and presumably
much shorter, line that will get you to the ride faster. To prevent people from obtaining
QuickPasses for several rides at once, the QuickPass machines allow you to have only one
active QuickPass at a time.

You have been hired as one of several competing consultants to improve the operation
of QuickPass. Customers have been complaining about some anomalies in the test system.
For example, customers observed that in one instance, QuickPasses were being offered for
a return time as long as 4 hours later. A short time later on the same ride, the QuickPasses
were given for times only an hour or so later. In some instances, the lines for people with
QuickPasses are nearly as long and slow as the regular lines.

The problem, then, is to propose and test schemes for issuing QuickPasses in order to
increase people’s enjoyment of the amusement park. Part of the problem is to determine
what criteria to use in evaluating alternative schemes. Include in your report a nontechni-
cal summary for amusement park executives who must choose between alternatives from
competing consultants.

2005: Flood Planning
Lake Murray in central South Carolina is formed by a large earthen dam, which was com-
pleted in 1930 for power production. Model the flooding downstream that would occur if
there were a catastrophic earthquake that breached the dam.

Consider two particular questions:

1. Rawls Creek is a year-round stream that flows into the Saluda River a short distance
downriver from the dam. How much flooding will occur in Rawls Creek from a dam
failure, and how far back will it extend?

2. Could the flood be so massive downstream that water would reach up to the South
Carolina State Capitol Building, which is on a hill overlooking the Congaree River?

2005: Tollbooths
Heavily traveled toll roads such as the Garden State Parkway and Interstate 95 are multilane
divided highways that are interrupted at intervals by toll plazas. Because collecting tolls is
usually unpopular, it is desirable to minimize motorist annoyance by limiting the amount of
traffic disruption caused by the toll plazas. Commonly, a much larger number of tollbooths
is provided than the number of travel lanes entering the toll plaza. Upon entering the toll
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plaza, the flow of vehicles fans out to the larger number of tollbooths, and when leaving
the toll plaza, the flow of vehicles is required to squeeze back down to a number of travel
lanes equal to the number of travel lanes before the toll plaza. Consequently, when traffic is
heavy, congestion increases upon departure from the toll plaza. When traffic is very heavy,
congestion also builds at the entry to the toll plaza because of the time required for each
vehicle to pay the toll.

Make a model to help you determine the optimal number of tollbooths to deploy in a
barrier-toll plaza. Explicitly consider the scenario where there is exactly one tollbooth per
incoming travel lane. Under what conditions is this more effective than the current practice?
Under what conditions is it less effective? Note that the definition of ‘‘optimal’’ is up to you
to determine.

2006: Positioning and Moving Sprinkler
Systems for Irrigation

There is a wide variety of techniques available for irrigating a field. The technologies range
from advanced drip systems to periodic flooding. One approach that is used on smaller
ranches is ‘‘hand move’’ irrigation systems. Lightweight aluminum pipes with sprinkler
heads are put in place across fields, and they are moved by hand at periodic intervals to
ensure that the whole field receives an adequate amount of water. This type of irrigation
system is cheaper and easier to maintain than other systems. It is also flexible, allowing for
use on a wide variety of fields and crops. The disadvantage is that it requires a great deal of
time and effort to move and set up the equipment at regular intervals.

Given that this type of irrigation system is to be used, how can it be configured to min-
imize the amount of time required to irrigate a field that measures 80 meters by 30 meters?
For this task you are asked to find an algorithm to determine how to irrigate the rectangular
field in a way that minimizes the amount of time required by a rancher to maintain the
irrigation system. One pipe set is used in the field. You should determine the number of
sprinklers and the spacing between sprinklers, and you should find a schedule to move the
pipes, including where to move them.

A pipe set consists of a number of pipes that can be connected together in a straight
line. Each pipe has a 10-centimeter inner diameter with rotating spray nozzles that have a
0.6-centimeter inner diameter. When put together, the resulting pipe is 20 meters long. At
the water source, the pressure is 420 kilopascals and has a flow rate of 150 liters per minute.
No part of the field should receive more than 0.75 centimeter per hour of water, and each
part of the field should receive at least 2 centimeters of water every 4 days. The total amount
of water should be applied as uniformly as possible.

2006: Wheelchair Access at Airports
One of the frustrations with air travel is the need to fly through multiple airports, and each
stop generally requires each traveler to change to a different airplane. This can be especially
difficult for people who are not able to walk easily to a different flight’s waiting area. One
of the ways that an airline can make the transition easier is to provide a wheelchair and
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an escort to those people who ask for help. It is generally known well in advance which
passengers require help, but it is not uncommon to receive notice when a passenger first
registers at the airport. In rare instances, an airline may not receive notice from a passenger
until just prior to landing.

Airlines are under constant pressure to keep their costs down. Wheelchairs wear out,
are expensive, and requiremaintenance. There is also a cost formaking the escorts available.
Moreover, wheelchairs and their escorts must be constantlymoved around the airport so that
they are available to people when their flight lands. In some large airports, the time required
to move across the airport is nontrivial. The wheelchairs must be stored somewhere, but
space is expensive and severely limited in an airport terminal. Also, wheelchairs left in
high-traffic areas represent a liability risk as people try to move around them. Finally, one
of the biggest costs is the cost of holding a plane if someone must wait for an escort and
becomes late for his or her flight. The latter cost is especially troubling because it can affect
the airline’s average flight delay, which can lead to fewer ticket sales as potential customers
may choose to avoid that airline.

Epsilon Airlines planners have decided to ask a third party to help them obtain a detailed
analysis of the issues and costs of keeping andmaintaining wheelchairs and escorts available
for passengers. The airline needs to find a way to schedule the movement of wheelchairs
throughout each day in a cost-effective way. They also need to find and define the costs for
budget planning in both the short and the long term.

Epsilon Airlines has asked your consultant group to put together a bid to help solve
this problem. Your bid should include an overview and analysis of the situation to help
the planners decide whether you fully understand their problem. They require a detailed
description of an algorithm that you would like to implement which can determine where
the escorts and wheelchairs should be and how they should move throughout each day. The
goal is to keep the total costs as low as possible. Your bid is one of many that the airline
will consider. You must make a strong case as to why your solution is the best and show
that it will be able to handle a wide range of airports under a variety of circumstances.

Your bid should also include examples of how the algorithm would work for a large
(at least four concourses), a medium (at least two concourses), and a small airport (one
concourse) under high and low traffic loads. You should determine all potential costs and
balance their respectiveweights. Finally, as populations begin to include a higher percentage
of older people who have more time to travel but may require more aid, your report should
include projections of potential costs and needs in the future, with recommendations for
meeting those future needs.

2007: Gerrymandering
The United States Constitution provides that the House of Representatives shall be com-
posed of some number of individuals (currently 435) who are elected from each state in
proportion to the state’s population relative to that of the country as a whole. Although
this provides a way of determining how many representatives each state will have, it says
nothing about how the district represented by a particular representative shall be determined
geographically. This oversight has led to egregious (at least some people think so but usually
not the incumbent) district shapes that look ‘‘unnatural’’ by some standards.
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Hence the following question: Suppose you were given the opportunity to draw con-
gressional districts for a state. How would you do so as a purely ‘‘baseline’’ exercise to
create the ‘‘simplest’’ shapes for all the districts in a state? The rules insist only that each
district in the state contain the same population. The definition of simple is up to you, but
you need to make a convincing argument to voters in the state that your solution is fair. As
an application of your method, draw geographically simple congressional districts for the
state of New York.

2007: The Airplane Seating Problem
Airlines are free to seat passengers waiting to board an aircraft in any order whatsoever. It
has become customary to seat passengers with special needs first, followed by first-class
passengers (who sit at the front of the plane). Then coach and business-class passengers are
seated by groups of rows, beginning with the row at the back of the plane and proceeding
forward.

Apart from consideration of the passengers’ wait time, from the airline’s point of view
time is money, and boarding time is best minimized. The plane makes money for the airline
only when it is in motion, and long boarding times limit the number of trips that a plane
can make in a day.

The development of larger planes, such as the Airbus A380 (800 passengers), reflects
efforts to minimize boarding (and deboarding) time.

Devise and compare procedures for boarding and deboarding planes with varying
numbers of passengers: small (85–210), midsize (210–330), and large (330–800).

Prepare an executive summary, not to exceed two single-spaced pages, in which you
explain your conclusions to an audience of airline executives, gate agents, and flight crews.

Note: The two-page executive summary is to be included in addition to the reports
required by the contest guidelines.

An article that appeared in theNew York Times onNovember 14, 2006, addressed board-
ing and deboarding procedures currently being followed and the importance to the airline of
finding better solutions. The article can be seen at http://travel2.nytimes.com/2006/11/14/
business/14boarding.html.

2008: Take a Bath
Consider the effects on land from the melting of the north polar ice cap due to the predicted
increase in global temperatures. Specifically, model the effects on the coast of Florida every
10 years for the next 50 years due to the melting, with particular attention given to large
metropolitan areas. Propose appropriate responses to deal with this. A careful discussion
of the data used is an important part of the answer.
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2008: Creating Sudoku Puzzles
Develop an algorithm to construct Sudoku puzzles of varying difficulty. Develop metrics
to define a difficulty level. The algorithm and metrics should be extensible to a varying
number of difficulty levels. You should illustrate the algorithm with at least four difficulty
levels. Your algorithm should guarantee a unique solution. Analyze the complexity of your
algorithm. Your objective should be to minimize the complexity of the algorithm and meet
the above requirements.

2009: Designing a Traffic Circle
Many cities and communities have traffic circles—from large ones with many lanes in the
circle (such as at the Arc de Triomphe in Paris and the Victory Monument in Bangkok) to
small ones with one or two lanes in the circle. Some of these traffic circles position a stop
sign or a yield sign on every incoming road that gives priority to traffic already in the circle;
some position a yield sign in the circle at each incoming road to give priority to incoming
traffic; and some position a traffic light on each incoming road (with no right turn allowed
on a red light). Other designs may also be possible.

The goal of this problem is to use a model to determine how best to control traffic
flow in, around, and out of a circle. State clearly the objective(s) you use in your model for
making the optimal choice as well as the factors that affect this choice. Include a Technical
Summary of not more than two double-spaced pages that explains to a Traffic Engineer how
to use yourmodel to help choose the appropriate flow-control method for any specific traffic
circle. That is, summarize the conditions under which each type of traffic-control method
should be used. When traffic lights are recommended, explain a method for determining
how many seconds each light should remain green (which may vary according to the time
of day and other factors). Illustrate how your model works with specific examples.

2009: Energy and the Cell Phone
This question involves the ‘‘energy’’ consequences of the cell phone revolution. Cell phone
usage is mushrooming, and many people are using cell phones and giving up their landline
telephones. What is the consequence of this in terms of electricity use? Every cell phone
comes with a battery and a recharger.

Requirement 1: Consider the current US, a country of about 300million people. Estimate
from available data the number H of households, with m members each, that in the past
were serviced by landlines. Now, suppose that all the landlines are replaced by cell phones;
that is, each of themmembers of the household has a cell phone.Model the consequences of
this change for electricity utilization in the current US, both during the transition and during
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the steady state. The analysis should take into account the need for charging the batteries
of the cell phones, as well as the fact that cell phones do not last as long as landline phones
(for example, the cell phones get lost and break).

Requirement 2: Consider a second ‘‘Pseudo’’ US—a country of about 300 million peo-
ple with about the same economic status as the current US. However, this emerging country
has neither landlines nor cell phones. What is the optimal way of providing phone service
to this country from an energy perspective? Of course, cell phones have many social con-
sequences and uses that landline phones do not allow. A discussion of the broad and hidden
consequences of having only landlines, only cell phones, or a mixture of the two is wel-
comed.

Requirement 3: Cell phones periodically need to be recharged. However, many people
always keep their recharger plugged in. Additionally, many people charge their phones ev-
ery night, whether they need to be recharged or not. Model the energy costs of this wasteful
practice for a PseudoUS based upon your answer to Requirement 2. Assume that the Pseudo
US supplies electricity from oil. Interpret your results in terms of barrels of oil.

Requirement 4: Estimates vary on the amount of energy that is used by various recharger
types (TV, DVR, computer peripherals, and so forth) when left plugged in but not charging
the device. Use accurate data to model the energy wasted by the current US in terms of
barrels of oil per day.

Requirement 5: Now consider population and economic growth over the next 50 years.
How might a typical Pseudo US grow? For each 10 years for the next 50 years, predict
the energy needs for providing phone service based upon your analysis in the first three
requirements. Again, assume electricity is provided from oil. Interpret your predictions in
term of barrels of oil.

2010: The Sweet Spot
Explain the ‘‘sweet spot’’ on a baseball bat.

Every hitter knows that there is a spot on the fat part of a baseball bat where maximum
power is transferred to the ball when hit. Why isn’t this spot at the end of the bat? A simple
explanation based on torque might seem to identify the end of the bat as the sweet spot, but
this is known to be empirically incorrect. Develop a model that helps explain this empirical
finding.

Some players believe that ‘‘corking’’ a bat (hollowing out a cylinder in the head of the
bat and filling it with cork or rubber, then replacing a wood cap) enhances the ‘‘sweet spot’’
effect. Augment your model to confirm or deny this effect. Does this explain why Major
League Baseball prohibits ‘‘corking’’?

Does the material out of which the bat is constructed matter? That is, does this model
predict different behavior for wood (usually ash) or metal (usually aluminum) bats? Is this
why Major League Baseball prohibits metal bats?
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2010: Criminology
In 1981, Peter Sutcliffe was convicted of thirteen murders and subjecting a number of other
people to vicious attacks. One of themethods used to narrow the search forMr. Sutcliffe was
to find a ‘‘center of mass’’ of the locations of the attacks. In the end, the suspect happened
to live in the same town predicted by this technique. Since that time, a number of more
sophisticated techniques have been developed to determine the ‘‘geographical profile’’ of
a suspected serial criminal based on the locations of the crimes.

Your team has been asked by a local police agency to develop a method to aid in their
investigations of serial criminals. The approach that you develop should make use of at least
two different schemes to generate a geographical profile. You should develop a technique
to combine the results of the different schemes and generate a useful prediction for law
enforcement officers. The prediction should provide some kind of estimate or guidance
about possible locations of the next crime based on the time and locations of the past crime
scenes. If you make use of any other evidence in your estimate, you must provide specific
details about how you incorporate the extra information. Your method should also provide
some kind of estimate about how reliable the estimate will be in a given situation, including
appropriate warnings.

In addition to the required one-page summary, your report should include an additional
two-page executive summary. The executive summary should provide a broad overview of
the potential issues. It should provide an overview of your approach and describe situations
when it is an appropriate tool and situations in which it is not an appropriate tool. The
executive summary will be read by a chief of police and should include technical details
appropriate to the intended audience.

2011: Snowboard Course
Determine the shape of a snowboard course (currently known as a ‘‘halfpipe’’) to maximize
the production of ‘‘vertical air’’ by a skilled snowboarder.

‘‘Vertical air’’ is the maximum vertical distance above the edge of the halfpipe.
Tailor the shape to optimize other possible requirements, such as maximum twist in

the air.
What tradeoffs may be required to develop a ‘‘practical’’ course?

2011: Repeater Coordination
The VHF radio spectrum involves line-of-sight transmission and reception. This limitation
can be overcome by ‘‘repeaters’’, which pick up weak signals, amplify them, and retransmit
them on a different frequency. Thus, using a repeater, low-power users (such as mobile
stations) can communicate with one another in situations where direct user-to-user contact
would not be possible. However, repeaters can interfere with one another unless they are
far enough apart or transmit on sufficiently separated frequencies.
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In addition to geographical separation, the ‘‘continuous tone-coded squelch system’’
(CTCSS), sometimes nicknamed ‘‘private line’’ (PL), technology can be used to mitigate
interference problems. This system associates to each repeater a separate subaudible tone
that is transmitted by all users who wish to communicate through that repeater. The repeater
responds only to received signals with its specific PL tone. With this system, two nearby
repeaters can share the same frequency pair (for receive and transmit); so more repeaters
(and hence more users) can be accommodated in a particular area.

For a circular flat area of radius 40 miles radius, determine the minimum number of
repeaters necessary to accommodate 1,000 simultaneous users. Assume that the spectrum
available is 145 to 148MHz, the transmitter frequency in a repeater is either 600 kHz above
or 600 kHz below the receiver frequency, and there are 54 different PL tones available.

How does your solution change if there are 10,000 users?
Discuss the case where there might be defects in line-of-sight propagation caused by

mountainous areas.

2012: The Leaves of a Tree
‘‘How much do the leaves on a tree weigh?’’ How might one estimate the actual weight of
the leaves (or for that matter any other parts of the tree)? How might one classify leaves?
Build a mathematical model to describe and classify leaves. Consider and answer the
following:

� Why do leaves have the various shapes that they have?
� Do the shapes ‘‘minimize’’ overlapping individual shadows that are cast, so as to maxi-
mize exposure? Does the distribution of leaves within the ‘‘volume’’ of the tree and its
branches effect the shape?

� Speaking of profiles, is leaf shape (general characteristics) related to tree profile/branching
structure?

� How would you estimate the leaf mass of a tree? Is there a correlation between the
leaf mass and the size characteristics of the tree (height, mass, volume defined by the
profile)?

� In addition to your one page summary sheet prepare a one page letter to an editor of a
scientific journal outlining your key findings.

2012: Camping along the Big Long River
Visitors to the Big Long River (225 miles) can enjoy scenic views and exciting white water
rapids. The river is inaccessible to hikers, so the only way to enjoy it is to take a river
trip that requires several days of camping. River trips all start at First Launch and exit the
river at Final Exit, 225 miles downstream. Passengers take either oar- powered rubber rafts,
which travel on average 4mph or motorized boats, which travel on average 8 mph. The trips
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range from 6 to 18 nights of camping on the river, start to finish. The government agency
responsible for managing this river wants every trip to enjoy a wilderness experience, with
minimal contact with other groups of boats on the river. Currently, X trips travel down
the Big Long River each year during a six month period (the rest of the year it is too cold
for river trips). There are Y camp sites on the Big Long River, distributed fairly uniformly
throughout the river corridor. Given the rise in popularity of river rafting, the park managers
have been asked to allow more trips to travel down the river. They want to determine how
they might schedule an optimal mix of trips, of varying duration (measured in nights on the
river) and propulsion (motor or oar) that will utilize the campsites in the best way possible.
In other words, how many more boat trips could be added to the Big Long River’s rafting
season? The river managers have hired you to advise them on ways in which to develop
the best schedule and on ways in which to determine the carrying capacity of the river,
remembering that no two sets of campers can occupy the same site at the same time. In
addition to your one page summary sheet, prepare a one page memo to the managers of the
river describing your key findings.

For further information on the Mathematics Contest in Modeling (MCM),
write to COMAP, 57 Bedford Street, Lexington, Massachusetts 02173, or visit
www.comap.com.
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BB
An Elevator Simulation

Algorithm

We will define the terms used in the following algorithm and explain some of its under-
lying logic. Because the algorithm is complex, this approach should be more revealing
than using some hypothetical numbers and taking you step by step through the algorithm.
(This is a difficult program to write if you are not using GPSS or another simulation
language.)

During the simulation there is a TIME clock that keeps track of the time (given in
seconds). Initially, the value of TIME is 0 sec (at 7:50 a.m.), and the simulation ends when
TIME reaches 4800 sec (at 9:10 a.m.). Each customer is assigned a number according to
the order of his or her arrival: The first customer is labeled 1, the second customer 2, and
so forth. Whenever another customer arrives at the lobby, the time between the customer’s
arrival and the time when the immediately preceding customer arrived is added to the TIME
clock. This time between successive arrivals of customers i and i �1 is labeled betweeni in
the algorithm, and the arrival time of customer i is labeled arrivei . Initially, for the customer
arrival submodel, we assume that all values between 0 and 30 have an equal likelihood of
occurring.

All four elevators have their own availability times, called returnj for elevator j . If
elevator j is currently available at the main floor, its time is the current time, so returnj D
TIME. If an elevator is in transit, its availability time is the time at which it will return to the
main floor. Passengers enter an available elevator in the numerical order of the elevators:
first elevator 1 (if it is available), next elevator 2 (if it is available), and so on. Maximum
occupancy of an elevator is 12 passengers.

Whenever another customer arrives in the lobby of the building, two possible situations
exist. Either an elevator is available for receiving passengers or no elevator is available and a
queue is forming as customers wait for one to become available. Once an elevator becomes
available, it is ‘‘tagged’’ for loading, and passengers can enter only that elevator until either it
is fully occupied (with 12 passengers) or the 15-sec time delay is exceeded before the arrival
of another customer. After loading, the elevator departs to deliver all of its passengers. It is
assumed that, even if fully loaded with 12 passengers, the elevator waits 15 sec to load the
last passenger, allow floor selection, and get under way.

To keep track of which floors have been selected during the loading period of an
elevator and the number of times a particular floor has been selected, the algorithm sets up
two one-dimensional arrays (having a component for each of the floors 1–12). (Although
no one selects f loor 1, the indexing is simplified with its inclusion.) These arrays are
called selvecj and f lrvecj for the tagged elevator j . If a customer selects f loor 5, for
instance, then a 1 is entered into the fifth component position of selvecj and also into the

1
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fifth component of f lrvecj . If another customer selects f loor 5, then the fifth component of
f lrvecj is updated to a 2, and so forth. For example, suppose the passengers in elevator j have
selected f loor 3 twice, f loor 5 twice, and floors 7, 8, and 12 once. Then for this elevator,
selvecj D .0; 0; 1; 0; 1; 0; 1; 1; 0; 0; 0; 1/ and flrvecj D .0; 0; 2; 0; 2; 0; 1; 1; 0; 0; 0; 1/.
These arrays are then used to calculate the transport time of elevator j so we can determine
when it will return to the main floor. As stated previously, that return time is designated
returnj . The arrays are also used to calculate the delivery times of each passenger in elevator
j . Initially, we assume that a customer chooses a f loor with equal likelihood. We assume
that it takes 10 sec for an elevator to travel between floors, 10 sec to open and close its
doors, and 3 sec for each passenger to disembark. We also assume that it takes 3 sec for
each passenger in a queue to enter the next available elevator.

Summary of Elevator Simulation Algorithm Terms
betweeni time between successive arrivals of customers i and i � 1 (a random integer

varying between 0 and 30 sec)
arrivei time of arrival from start of clock at t D 0 for customer i (calculated only if

customer enters a queue waiting for an elevator)
floor i floor selected by customer i ( a random integer varying between 2 and 12)

elevator i time customer i spends in an elevator
wait i time customer i waits before stepping into an elevator (calculated only if

customer enters a queue waiting for an elevator)
deliveryi time required to deliver customer i to destination floor from time of arrival,

including any waiting time
selvecj binary 0, 1 one-dimensional array representing the floors selected for elevator

j , not counting the number of times a particular floor has been selected
flrvecj integer one-dimensional array representing the number of times each floor

has been selected for elevator j for the group of passengers currently being
transported to their respective floors

occupj number of current occupants of elevator j

returnj time from start of clock at t D 0 that elevator j returns to the main floor and
is available for receiving passengers

firstj an index, the customer number of the first passenger who enters elevator j
after it returns to the main floor

quecust customer number of the first person waiting in the queue
queue total length of current queue of customers waiting for an elevator to become

available
startque clock time at which the (possibly updated) current queue commences to form
stopj total number of stops made by elevator j during the entire simulation
eldelj total time elevator j spends in delivering its current load of passengers

operatej total time elevator j operates during the entire simulation
limit customer number of the last person to enter an available elevator before it

commences transport
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max largest index of a nonzero entry in the array selvecj (highest floor selected)
remain number of customers left in the queue after loading next available elevator
quetotal total number of customers who spent time waiting
TIME current clock time in seconds, starting at t D 0

DELTIME average delivery time of a customer to reach destination floor from time of
arrival, including any waiting time

ELEVTIME average time a person spends in an elevator
MAXDEL maximum time required for a customer to reach his or her floor of destination

from time of arrival
MAXELEV maximum time a customer spends in an elevator
QUELEN number of customers waiting in the longest queue
QUETIME average time a customer who must wait spends in a queue
MAXQUE longest time a customer spends in a queue

Elevator System Simulation Algorithm

Input None required.
Output Number of passengers serviced, DELTIME, ELEVTIME, MAXDEL, MAXELEV, QUE-

LEN, QUETIME, MAXQUE, stopj , and the percentage time each elevator is in use.

STEP 1 Initially set the following parameters to zero: DELTIME, ELEVTIME, MAXDEL, MAX-
ELEV, QUELEN, QUETIME, MAXQUE, quetotal, remain.

STEP 2 For the first customer, generate time between successive arrivals and floor destination and
initialize delivery time:

i D 1
Generate betweeni and floori

deliveryi D 15
STEP 3 Initialize clock time, elevator available clock times, elevator stops, and elevator operating

times. Also, initialize all customer waiting times.
TIME D betweeni

For k D 1– 4 W returnk D TIME and stopk D operatek D 0
For k D 1– 400 W waitk D 0

(The number 400 is an upper-bound guess for the total number of customers)
STEP 4 While TIME � 4800, do Steps 5–32.
STEP 5 Select the first available elevator:

If TIME � return1, then j D 1 else
If TIME � return2, then j D 2 else
If TIME � return3, then j D 3 else
If TIME � return4, then j D 4

ELSE (no elevator is currently available) GOTO Step 19.
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STEP 6 Set as an index the customer number of the first person to occupy tagged elevator, and
initialize the elevator occupancy floor selection vectors:

firstj D i; occupj D 0
For k D 1–12: selvecj Œk� D flrvecj Œk� D 0

STEP 7 Load current customer on elevator j by setting the floor selection vectors and incrementing
elevator occupancy:

selvecj Œfloori � D 1
flrvecj Œfloori � D flrvecj Œfloori � C 1

occupj D occupj C 1

STEP 8 Get next customer and update clock time:
i D i C 1

Generate betweeni and floori
TIME D TIME C betweeni

deliveryi D 15

STEP 9 Set all available elevators to current clock time:
For k D 1– 4:

If TIME � returnk , then returnk D TIME.
Else leave returnk as is.

STEP 10 If betweeni � 15 and occupj < 12, then increase the delivery times for each customer on
the tagged elevator j :

For k D firstj to i � 1W
deliveryk D deliveryk C betweeni

and GOTO Step 7 to load current customer on the elevator and get the next customer.
Else (send off the tagged elevator):

Set limit D i � 1 and GOTO Step 11.
The sequence of Steps 11–18 implements delivery of all passengers on the currently tagged
elevator j :

STEP 11 For k D firstj to limit, do Steps 12–16.
STEP 12 Calculate time customer k spends in elevator:

N D floork � 1 (an index)
elevatork D travel time up to floor C time to drop off previous

customers C customer k drop off time
C open/close door times on previous floors
C open door on current floor

D 10N C 3

NX

mD1

flrvecj Œm� C 3 C 10

NX

mD1

selvecj Œm� C 5

STEP 13 Calculate delivery time for customer k:
deliveryk D deliveryk C elevatork

STEP 14 Sum to total delivery time for averaging:
DELTIME D DELTIME C deliveryk

STEP 15 If deliveryk > MAXDEL, then MAXDEL D deliveryk .
Else leave MAXDEL as is.

STEP 16 If elevatork > MAXELEV, then MAXELEV D elevatork .
Else leave MAXELEV as is.
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STEP 17 Calculate total number of stops for elevator j , its time in transit, and the time at which it
returns to the main floor:

stopj D stopj C
12X

mD1

selvecj Œm�

Max D index of largest nonzero entry in selvecj (i.e., the highest floor visited)
eldelj D travel time C passenger drop-off time C door time

D 20.Max � 1/ C 3

12X

mD1

flrvecj Œm� C 10

12X

mD1

selvecj Œm�

returnj D TIME C eldelj
operatej D operatej C eldelj

STEP 18 GOTO Step 5.
The sequence of Steps 19–32 is taken when no elevator is currently available and a queue
of customers waiting for elevator service is set up.

STEP 19 Initialize queue:
quecust D i (number for first customer in queue)
startque D TIME (starting time of queue)
queue D 1
arrivei D TIME

STEP 20 Get the next customer and update clock time:
i D i C 1

Generate betweeni and floori
TIME D TIME C betweeni

arrivei D TIME
queue D queue C 1

STEP 21 Check for elevator availability:
If TIME � return1, then j D 1 and GOTO Step 22 else
If TIME � return2, then j D 2 and GOTO Step 22 else
If TIME � return3, then j D 3 and GOTO Step 22 else
If TIME � return4, then j D 4 and GOTO Step 22

ELSE (no elevator is available yet) GOTO Step 20.
STEP 22 Elevator j is available. Initialize floor selection vectors and assess the length of the queue:

For k D 1–12: selvecj Œk� D flrvecj Œk� D 0
remain D queue � 12

STEP 23 If remain � 0, then R D i and occupj D queue.
Else R D quecust C 11 and occupj D 12.

STEP 24 Load customers onto elevator j :
For k D quecust to RW

selvecj Œfloork� D 1 and flrvecj Œfloork� D flrvecj Œfloork� C 1
STEP 25 If queue � QUELEN, then QUELEN D queue.

Else leave QUELEN as is.
STEP 26 Update queuing totals:

quetotal D quetotal C occupj

QUETIME D QUETIME C
RX

mDquecust

ŒTIME � arrivem�
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STEP 27 If .TIME � startque/ � MAXQUE, then MAXQUE D TIME � startque.
Else leave MAXQUE as is.

STEP 28 Set index giving number of first customer to occupy tagged elevator:
firstj D quecust

STEP 29 Calculate delivery and waiting times for each passenger on the tagged elevator:
For k D firstj to RW

deliveryk D 15 C .TIME � arrivek/
waitk D TIME � arrivek

STEP 30 If remain � 0, then set queue D 0 and GOTO Step 8 to get next customer.
Else set limit D R and, for k D firstj to limit, do Steps 12–17. When finished, GOTO

Step 31.
STEP 31 Update queue length and check for elevator availability:

queue D remain
quecust D R C 1
startque D arriveRC1

STEP 32 GOTO Step 20.
The sequence of Steps 33–36 calculates output values for the morning rush-hour elevator
simulation.

STEP 33 Output the following values:
N D i � queue, the total number of customers served
DELTIME D DELTIME=N , average delivery time
MAXDEL, maximum delivery time of a customer

STEP 34 Output the average time spent in an elevator and the maximum time spent in an elevator:

ELEVTIME D
limitX

mD1

elevatorŒm�

limit
and MAXELEV

STEP 35 Output the number of customers waiting in the longest queue, the average time a customer
who waits in line spends in a queue, and the longest time spent in a queue:

QUELEN

QUETIME D QUETIME
quetotal

MAXQUE
STEP 36 Output the total number of stops for each elevator and the percentage time each elevator is

in transport:
For k D 1– 4: display stopk and

operatek

4800
STOP

Note For ease of presentation in the elevator simulation, TIME is updated only as the next
customer arrives in the lobby. Therefore, TIME is not an actual clock being updated every
second. It is possible, when a queue has formed, that an elevator returns to the main floor
during Step 20, before the next customer arrives. However, loading of the available elevator
does not commence until that customer actually arrives. For this reason, the times spent
waiting in a queue are slightly on the high side. In Problem 2 you are asked to modify Steps
20–32 in the algorithm so that loading commences immediately upon the return of the first
available elevator.
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Table B.1 Results of elevator simulation for 15 consecutive days

Total number Percentage of
of stops total time
for each each elevator
elevator is in transport
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1 2 3 4 1 2 3 4

1 328 147 412 89 208 12 40 166 67 76 56 52 84 87 80 75
2 322 146 409 88 211 18 43 176 74 62 52 61 88 80 78 77
3 309 139 385 87 201 12 37 161 62 61 61 62 85 83 80 80
4 331 149 371 89 205 13 42 149 72 69 68 44 85 82 87 73
5 320 146 404 87 208 15 48 178 72 52 58 58 86 78 80 74
6 313 153 405 91 211 13 45 146 69 62 72 47 85 82 82 74
7 328 138 341 88 195 10 35 120 59 66 70 61 86 81 84 82
8 312 147 377 86 198 12 46 163 69 60 61 43 82 82 81 73
9 329 139 352 87 208 11 37 155 58 63 70 57 86 86 82 78

10 314 143 325 88 205 9 35 128 65 68 57 65 83 84 78 83
11 317 137 344 85 202 10 38 129 64 75 64 56 86 85 81 77
12 341 153 396 90 211 18 45 177 83 63 63 53 87 82 78 77
13 318 136 345 80 208 11 36 140 58 64 63 55 91 82 83 73
14 319 140 356 88 208 13 33 135 64 67 58 65 84 83 82 81
15 323 147 386 91 218 15 39 166 76 64 70 54 86 81 87 76

Averages 322 144 374 88 206 13 40 153 67 65 63 56 86 83 82 77
(rounded)

© Cengage Learning

Note: All times are measured in seconds and rounded to the nearest second.

Table B.1 gives the results of 15 independent simulations, representing 3 weeks of
morning rush hour, according to the preceding algorithm.

B.1B.1 PROBLEMS

1. Consider an intersection of two one-way streets controlled by a traffic light. Assume that
between 5 and 15 cars (varying probabilistically) arrive at the intersection every 10 sec
in direction 1, and that between 6 and 24 cars arrive every 10 sec going in direction 2.
Suppose that 36 cars per 10 sec can cross the intersection in direction 1 and that 20 cars
per 10 sec can cross the intersection in direction 2 if the traffic light is green. No turning
is allowed. Initially, assume that the traffic light is green for 30 sec and red for 70 sec in
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direction 1. Write a simulation algorithm to answer the following questions for a 60-min
time period:
a. How many cars pass through the intersection in direction 1 during the hour?
b. What is the average waiting time of a car stopped when the traffic signal is red in

direction 1? The maximum waiting time?
c. What is the average length of the queue of cars stopped for a red light in direction 1?

The maximum length?
d. What is the average number of cars passing through the intersection in direction 1

during the time when the traffic light is green? What is the maximum number?
e. Answer Problems (a)–(d) for direction 2.
How would you use your simulation to determine the switching period for which the
total waiting time in both directions is as small as possible? (You will have to modify it
to account for the waiting times in direction 2.)

2. Modify Steps 20–32 in the elevator simulation algorithm so that loading of the first
available elevator commences immediately upon its return. Thus, if TIME > returnj so
that elevator j is available for loading, then loading commences at time returnj rather
than TIME. Consider how you will now process customer i in Step 20 who has not yet
quite arrived on the scene.

B.1B.1 PROJECT

1. Find a building in your local area that has from 4 to 12 floors that are serviced by 1–4
elevators. Collect data for the interarrival times (and, possibly, floor destinations) of
the customers during a busy hour (e.g., the morning rush hour), and build the inter-
arrival and destination submodels based on your data (by constructing the cumulative
histograms). Write a computer program incorporating your submodels into the elevator
system algorithm to obtain results such as those given in Table B.1.
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CC The Revised Simplex Method

For those of you familiar with matrix algebra, we demonstrate how to accomplish a pivot
using matrix techniques. Any desired extreme point can be determined by first inverting a
submatrix of the original tableau, followed by premultiplying the original tableau by the
inverted submatrix. The method is called theRevised SimplexMethod and has advantages
of both speed and accuracy. In particular, round-off errors can be minimized in subsequent
pivots because the Revised SimplexMethod can use the original data to perform any desired
pivot. We begin by illustrating pivoting by matrix inversion, using the carpenter’s problem
as presented in Section 7.4 for illustration.

Pivoting by Matrix Inversion
and Multiplication

We illustrate how to use matrix inversion and multiplication to move from Tableau 0 to
Tableau 1 (see Section 7.4, Example 1, The Carpenter’s Problem Revisited). For Tableau 1,
we want the set of dependent variables to be (in order)

fx2; y2; zg

The corresponding columns from the original tableau, in the same order, are selected to
form the matrix P :

P D

2

4
30 0 0
4 1 0

�30 0 1

3

5

First, compute the inverse of P :

P �1 D

2

64

1

30
0 0

� 2

15
1 0

1 0 1

3

75

9
Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_04_appendixC_p009-p011 January 23, 2013 19:40 10

10 Appendix C The Revised Simplex Method

Then obtain Tableau 1 by premultiplying the matrix corresponding to Tableau 0 by P �1:

T 1 D P �1T 0 D

2

64

1

30
0 0

� 2

15
1 0

1 0 1

3

75

2

4
20 30 1 0 0 690
5 4 0 1 0 120

�25 �30 0 0 1 0

3

5

D

2

64

2

3
1 1

30
0 0 23

7

3
0 � 2

15
1 0 28

�5 0 1 0 1 690

3

75

The Revised Simplex Method
Note that the columns for the matrix P are selected from the original tableau. Also note that
the matrix P �1 premultiplies the original data. Any intersection point can be enumerated
in this fashion. This method is known as the Revised Simplex Method and is beneficial
when solving large linear programs. By returning to the original data to compute P �1, the
round-off error (which accumulates in successive pivots using other methods) is reduced.
Let’s illustrate the idea by computing Tableau 2 by premultiplying the original tableau by
an appropriate pivot matrix.

Examining T 1 above, we see that the optimality test determines x1 as the entering
variable. The feasibility test as demonstrated in Section 7.4 determines y2 as the exiting
variable. Thus the new dependent variables are

fx2; x1; zg

The columns from the original tableau corresponding to the dependent variables, in order,
are selected to form the matrix P :

P D

2

4
30 20 0
4 5 0

�30 �25 1

3

5

We compute the inverse of P :

P �1 D

2

64

1

14
� 2

7
0

� 2

35

3

7
0

5

7

15

7
1

3

75
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We now obtain Tableau 2 by premultiplying the matrix corresponding to Tableau 0 by the
inverse of the pivot matrix corresponding to the set of dependent variables fx2; x1; zg:

T 2 D P �1T 0 D

2

64

1

14
� 2

7
0

� 2

35

3

7
0

5

7

15

7
1

3

75

2

4
20 30 1 0 0 690
5 4 0 1 0 120

�25 �30 0 0 1 0

3

5

D

2

64
0 1 1

14
� 2

7
0 15

1 0 � 2

35

3

7
0 12

0 0 5

7

15

7
1 750

3

75

which is the optimal tableau (see Section 7.4).
The Revised Simplex Method is used (with various enhancements) to solve large prob-

lems in which speed and accuracy are important.
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A P P E N D I X

DD Brief Review of Integration
Techniques

u-Substitution
The basic idea underlying u-substitution is to perform a simple substitution that converts
the intergral into a recognizable form ready for immediate integration. For example, given

Z
cos x

1 C sin x
dx

let u D 1 C sin x and differentiate to find du D cos x dx. Substitution then yields
Z

cos x

1 C sin x
dx D

Z
du

u
D ln juj C C

Substituting for u again in this last expression gives
Z

cos x

1 C sin x
dx D ln j1 C sin xj C C

Integration by Parts
Recall from calculus that

Z
u dv D uv �

Z
v du

In some cases it is necessary to apply the procedure several times before a form is obtained
that can easily be integrated. In these and other situations, it is helpful to use the tabular
method as follows:

Sign Derivatives Integrals

C � u
�

dv

� �du � v

Diagonal arrows in the table indicate terms to be multiplied (uv in this case). The bottom
row in the table has horizontal arrows to indicate the final integral to be evaluated (

R
v du

in the above case). Finally, the sign column is associated with the differentiated term at each
stage, beginning with a plus sign and alternating with the minus sign, as suggested by the
table format.

12
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Appendix D Brief Review of Integration Techniques 13

Thus the table above would be read as follows:

#� signs �#R
u dv

„ƒ‚…
top row

D C uv
„ƒ‚…
diagonal
arrow

�
R

v du
„ƒ‚…
horizontal
arrow

To apply intergration by parts successively, build the table by repeatedly differentiating the
derivatives (middle) column and intergrating the integrals (right) column, while the sign
(left) column alternates. Terminate the table with a horizontal arrow between the middle
and right column when you can readily intergrate the product of the function in the last row
or when the last row simply repeats the first row (up to a multiplicative constant). Let us
consider several examples.

EXAMPLE 1

Find the integral
R

xexdx by the tabular method.

Solution We set up the table as follows:

Sign Derivatives Integrals

C � x
�

ex

� � 1
�

ex

C � 0 � ex

Interpreting the table, we get
Z

xexdx D Cxex � 1 � ex C
Z

0 � exdx C C

D .x � 1/ex C C J J J

EXAMPLE 2

Integrate
R

x2e2xdx by the tabular method.

Solution We set up the table as before:

Sign Derivatives Integrals

C � x2

�
e2x

� � 2x

�

e2x

2

C � 2

�

e2x

4

� � 0 � e2x

8
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14 Appendix D Brief Review of Integration Techniques

Thus
Z

x2e2xdx D Cx2e2x

2
� 2xe2x

4
C 2e2x

8
�

Z
0 � e2x

8
dx C C

D e2x

4
.2x2 � 2x C 1/ C C J J J

EXAMPLE 3

Integrate
R

ex sin x dx.

Solution After filling in the table, we get

Sign Derivatives Integrals

C � sin x
�

ex

� � cos x
�

ex

C � � sin x � ex

Thus
Z

ex sin x dx D ex sin x � ex cos x C
Z

.� sin x/exdx C C

or
Z

ex sin x dx D ex.sin x � cos x/

2
C C1 J J J

Examples 1–3 illustrate the two basic strategies of integration by parts: (1) Choose a term
to differentiate whose successive derivatives eventually become zero or repeat, and (2) con-
tinue to differentiate by parts until the integrand (up to a multiplicative constant) is repeated
in the bottom row, as in Example 3. In choosing the term dv to integrate, you may find the
following mnemonic ‘‘detail ladder’’ useful:

dv

exponential
trigonometric
algebraic
inverse trigonometric
logarithmic

To use the ladder, choose the term dv to integrate in order of priority from the top to the
bottom. Conversely, the term u to differentiate is chosen from bottom to top. For example,
when integrating

Z
x2exdx
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Appendix D Brief Review of Integration Techniques 15

which involves a polynomial and an exponential, integrate the exponential dv D exdx and
differentiate the polynomial u D x2. The above mnemonic device is a rule of thumb only
and may not work in some eases.

Rational Functions
Given an algebraic fraction with a polynomial in both the numerator and the denominator
(that is, a rational function), division may lead to a simpler form. If the highest power in
the numerator is equal to or greater than the highest power in the denominator, first perform
polynomial division and then integrate the result. For example,

y C 1

y � 1
D 1 C 2

y � 1

so
Z

y C 1

y � 1
dy D

Z �
1 C 2

y � 1

�
dy D y C 2 ln jy � 1j C C

Partial Fractions
In algebra you learned to sum fractional expressions by finding a common denominator.
For example,

2

x � 1
C 4

x C 3
D 2.x C 3/ C 4.x � 1/

.x � 1/.x C 3/

D 6x C 2

x2 C 2x � 3

For purposes of integration we need to reverse this procedure. That is, given the integral
Z

6x C 2

x2 C 2x � 3
dx

we use partial fraction decomposition to obtain a new expression that is readily integrable:
Z �

2

x � 1
C 4

x C 3

�
dx D 2 ln jx � 1j C 4 ln jx C 3j C C

This process of splitting a fraction f .x/=g.x/ into a sum of fractions with linear or
quadratic denominators is called partial fraction decomposition. For the method to work,
the degree of the numerator f .x/ must be less than the degree of the denominator g.x/;
otherwise, you must first perform polynomial long division. To use the method, the denom-
inator must be factored into linear and quadratic factors. In Examples 4–6 we review three
cases that may exist for the factored denominator:
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16 Appendix D Brief Review of Integration Techniques

1. Distinct linear factors
2. Repeated linear factors
3. Quadratic factors

EXAMPLE 4 Distinct Linear Factors

Find the integral
Z

2x2 � x C 1

.x C 1/.x � 3/.x C 2/
dx.

Solution We must find constants A; B; and C such that

2x2 � x C 1

.x C 1/.x � 3/.x C 2/
D A

x C 1
C B

x � 3
C C

x C 2
(1)

Algebraic Method In this method you multiply through by the factored denominator
to obtain

2x2 � x C 1 D A.x � 3/.x C 2/ C B.x C 1/.x C 2/ C C.x C 1/.x � 3/

Then expand the right-hand side and combine like powers of x:

2x2 � x C 1 D .A C B C C /x2 C .�A C 3B � 2C /x C .�6A C 2B � 3C /

Next equate the coefficients of like powers of x on both sides of this last equation. This
procedure results in a system of linear algebraic equations involving our three unknowns:

A C B C C D 2

�A C 3B � 2C D �1

�6A C 2B � 3C D 1

Solution of this system by elimination or by the method of determinants yields

A D �1; B D 4

5
; and C D 11

5

Thus
Z

2x2 � x C 1

.x C 1/.x � 3/.x C 2/
dx D �

Z
dx

x C 1
C 4

5

Z
dx

x � 3
C 11

5

Z
dx

x C 2

D � ln jx C 1j C 4

5
ln jx � 3j C 11

5
ln jx C 2j C C

Heaviside Method There is a shortcut method for finding the constants in the partial
fraction decomposition of f .x/=g.x/. First, write the rational function with g.x/ completely
factored into its linear terms:

f .x/

g.x/
D f .x/

.x � r1/.x � r2/ � � � .x � rn/
(2)
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Appendix D Brief Review of Integration Techniques 17

To find the constant Ai associated with the term

Ai

x � ri

in the partial fraction decomposition, cover the factor x � ri in the denominator of the
right-hand side of Equation (2) and replace all the uncovered x’s with the number ri . For
instance, to find the constant A in Equation (1), cover the factor x C 1 in the denominator
and replace all the uncovered x’s with x D �1.

A D 2 � .�1/ C 1

.x C 1/.�1 � 3/.�1 C 2/
D 4

.�4/.1/
D �1

"
covered

Likewise, we find B by covering the factor x � 3 and replacing all the uncovered x’s with
x D 3.

B D 2.9/ � 3 C 1

.3 C 1/.x � 3/.3 C 2/
D 16

4.5/
D 4

5

"
covered

Finally, C is determined when x D �2.

C D 2.4/ � .�2/ C 1

.�2 C 1/.�2 � 3/.x C 2/
D 11

.�1/.�5/
D 11

5

"
covered

The integration is the same as before. We emphasize that the Heaviside method can be used
only with distinct linear factors. In the next example, we present another method for finding
the constants when the linear factors are repeated. Of course, you can always resort to the
more tedious algebraic method. J J J

EXAMPLE 5 A Repeated Linear Factor

Find the integral
Z

3P

.P C 4/2.P C 1/
dP.

Solution We need to find constants A; B; and C such that

3P

.P C 4/2.P C 1/
D A

P C 4
C B

.P C 4/2
C C

P C 1

or

3P D A.P C 4/.P C 1/ C B.P C 1/ C C.P C 4/2 (3)
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18 Appendix D Brief Review of Integration Techniques

Substitution Method Since Equation (3) is an identity, it holds for every value of P .
Thus, to obtain three equations for finding the unknowns A; B; and C , we simply substitute
convenient values for P :

P D �4: �12 D �3B

P D �1: �3 D 9C

P D 0: 0 D 4A C B C 16C

to give the solutions A D 1

3
; B D 4; C D � 1

3
: Thus

Z
3P

.P C 4/2.P C 1/
dP D

Z �
1

3.P C 4/
C 4

.P C 4/2
� 1

3.P C 1/

�
dP

D 1

3
ln jP C 4j � 4

P C 4
� 1

3
ln jP C 1j C C J J J

EXAMPLE 6 A Quadratic Factor

Find the integral
Z

dP
.P C 1/.P 2 C 1/

.

Solution We must find constants A; B; and C such that

1

.P C 1/.P 2 C 1/
D A

P C 1
C BPC C

P 2 C 1

Thus

1 D A.P 2 C 1/ C .BPC C /.P C 1/

Since this expression is to hold for allP , the coefficients of like powers ofP on both sides of
the equation must be equal. After collecting like powers of P on the right-hand side, we get

0P 2 C 0P 1 C 1P 0 D .A C B/P 2 C .B C C /P C .A C C /

which yields the linear system

0 D A C B

0 D B C C

1 D A C C

The solution is A D 1

2
; B D � 1

2
, and C D 1

2
. Thus

Z
dP

.P C 1/.P 2 C 1/
D

Z
2

664
1

2.P C 1/
C

�P

2
C 1

2

P 2 C 1

3

775 dP

D 1

2
ln jP C 1j � 1

4
ln jP 2 C 1j C 1

2
tan�1 P C C J J J
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Answers to Selected Problems

Chapter 1
SECTION 1.1
1. a. {1, 3, 9, 27, 81} b. {0, 6, 18, 42, 90}
3. a. anC1 D an C 2;

a0 D 2

b. anC1 D a
2

n
; a0 D 2

5. a. {3, 9, 27, 81} b. {6, 18, 42, 90}
7. Let an be the amount in the account after n

months.
anC1 D an C 0:005an C 200; a0 D 5000

8. Let an be the amount owed after n months.
anC1 D an C 0:015an � 50; a0 D 500

9. Let an be the amount owed after n months.

anC1 D an C 0:005an �p; a0 D 200;000; a360 D 0:

10. Let an be the value of the account after n
months. anC1 D 0:01an � 1000; a0 D 50000.
The account will be depleted after time period
69, a69 D 655:28.

11. Let an be the value of the account after nmonths.
anC1 D 0:005an � 1000; a0 D 50000. The ac-
count will be depleted after time period 57,
a57 D 677:29.

SECTION 1.2
3. Let an be the number of people who have the in-

formation after n days.

anC1 D an C an.N � an/

4. Let an be the number of people infected after n
intervals. Then .N � an/ are not infected. If we
assume the increase in the number infected is the
product of those infected and those not infected,
we have the following model:

anC1 D an C an.N � an/

6. Let an be the concentration of drug after n hours.
Then, anC1 � an D �0:2an; or anC1 D 0:8an,
a0 D 640: The concentration reaches 100 be-
tween the 8th and 9th hours.

8. Let an be the percent of carbon-14 remaining af-
ter n intervals of 5700 years.

anC1 D 0:5an; a0 D 1

We find n such that an D :01; n D 6:6 intervals
of 5700 years) or 37,620 years.

SECTION 1.3
1. a. 3n b. 10 � 5n

c. 64 �
�
3

4

�n

d. 2 � 2n C 1

e. �2 � .�1/n C 1 f.
�203
90

�
1

10

�n

C 32

9

2. a. a D 0; unstable b. a D 0; stable
c. a D 0; oscillating but stable
d. Constant solutions—every value is an equi-

librium value.

e. a D 22
8

11
, unstable

f. a D 250; unstable

g. a D
�
100

0:2

�
D 500; stable

h. a D �500; unstable
i. a D 55:5555; stable
j. No equilibrium value
k. No equilibrium value

3. a. The equilibrium value a D 22
8

11
is unstable.

b. The equilibrium value a D �500 is stable.
c. The equilibrium value a D �500 is stable.
d. The equilibrium value is a D 55:5555; or
100=.1C 0:8/: It is stable.

e. No equilibrium value
5. anC1 D an C 0:005an C 200; a0 D 5000: After

58months, the value of the account is $20095.80.
6. anC1 D an C0:015an �50; a0 D 500: The equi-

librium value, a D 3333:33; is unstable. At the
equilibrium value, the payment equals the inter-
est. The debt is paid in 11 months with the final
payment of about $45.81.

643
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7. anC1 D an C 0:005an � p; a0 D 100;000,
a360 D 0: If p � $599:55; the loan will be paid
in 360 months.

9. anC1 D anC0:01an�1000; a0 D 50;000. At the
equilibrium value a D 100;000; the withdrawal
of $1000 equals the interest earned. The equilib-
rium value is unstable. The account is depleted
after 70 months.

10. anC1 D 0:69an C 0:1; a0 D 0:5. The equilib-
rium value a D 0:32258, which is stable, repre-
sents the ‘‘steady-state’’ or long-term amount of
digoxin in the bloodstream.

13. Between periods 8 and 9 (there are 973 people after
period 8 and 1852 people after period 9). After 11
periods all 1,000 people will have had the rumor.

SECTION 1.4
3. a. BnC1 D Bn � 0:05Fn

FnC1 D Fn � 0:15Bn

B0 D 27; F0 D 33

b. After 10 stages, the French–Spanish force has
less than 1 ship remaining, and the British
have 18.43 ships. The French–Spanish force
has lost about 33 ships, the British about
8 ships.
Period British French–Spanish
0 27 33
1 25.35 28.95
2 23.9025 25.1475
3 22.64513 21.56213
4 21.56702 18.16536
5 20.65875 14.9303
6 19.91224 11.83149
7 19.32066 8.844655
8 18.87843 5.946556
9 18.5811 3.114792

10 18.42536 0.327627
c. Battle A

Period British French–Spanish
0.00 13.00 3.00
1.00 12.85 1.05

Battle B
Period British French–Spanish
0.00 26.85 18.05
1.00 25.95 14.02
2.00 25.25 10.13
3.00 24.74 6.34
4.00 24.42 2.63

Battle C
Period British French–Spanish
0.00 24.42 15.63
1.00 23.64 11.97
2.00 23.04 8.42
3.00 22.62 4.97
4.00 22.37 1.57

Battle A concludes after approximately
stage 1. The British have 12.85 ships to combine
with the 14 in reserve, giving the British 26.85 to
begin the battle with force B.We will assume that
the 1.05 ships remaining in force A join force B.
In battle B, we will assume the battle ends after 4
stages with the French–Spanish having 2.63 ships
and the British 24.42 ships. Again we assume that
the remaining ships from battle B join battle C.

We estimate that the battle is over after
4 stages with the French–Spanish having 1.57
ships remaining and the British 22.37 ships.

Using LordNelson’s strategy, the British have
lost about 4 ships instead of 27, and the French–
Spanish have lost about 31 instead of 15. The new
strategy and new technology were effective.

4. Equilibria are (0, 0) and (150, 200).
6. Equilibrium is .P;Q/ D .100; 500/.

Chapter 2
SECTION 2.2
1. y/u=v, so y D k.u=v/ for k > 0

Thus the plot of y versus u=v is a straight line
through the origin with slope k.

3. S / F; S D kF; 0:37 D k14 ! k D 0:02643,
S.9/ D 0:24

4. S 0 /; S 0 D kS; 0:75D k4 ! kD 0:1875; S
0
.27/D

5:0625

SECTION 2.3
1. Let M denote the larger map, and let M0 denote

its smaller scale replication. In superimposing M0

ontoM; possibly turned over, we assume that all of
the points in M0 lie on top of points in M. Now, if
necessary, turn M0 over so that both maps are
oriented right-side up. Consider the 1–1 corre-
spondence between the boundary points of M
and M0. We can think of lifting M0 perpendicu-
larly off M with ‘‘strings’’ attached between the
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corresponding boundary points so that the two
maps are connected by these strings. The strings
all meet at a point (the projection point in space)
if we now think of M0 as a ‘‘shadow’’ on the map
M. To ‘‘untangle’’ or ‘‘straighten’’ the strings, we
merely rotate the map M0 in its plane about the
perpendicular axis passing through the projection
point, M, and M0 (so now the two maps have the
exact same orientation). The points P and P 0,
where this axis meets M and M0, respectively, are
the two spots representing exactly the same place
on bothmaps. That is,P D P

0 when the twomaps
are superimposed at the start.

To show that only one such place exists,
suppose there are two places, say P1 and P2:

Then the length of P1P2 in M equals its length
P

0
1
P

0
2
in M0; that is,P1P2=P

0
1
P

0
2

D 1. But because
M and M0 are geometrically similar, this means
that PQ=P 0

Q
0 D 1 for all corresponding points

P $P
0 andQ$Q

0 between the two maps. This
result implies the twomaps are of exactly the same
scale, contrary to the assumption that one map is
smaller than the other.

2. Use the length of legs (2 ft) as the characteristic
dimension and the model W D kl

3
: W D 20

lb, and l D 2 ft. k D W=l
3 D 20=8 D .5=2/ D

2:5: W D 2:5l
3
: The length of the legs of a 100-lb

flamingo will be 3

q
100

2:5
D 3:41 ft. Use the height

as the characteristic dimension, h D 3 ft, and the
model W D kl

3
: W D 20 lb, and l D 3 ft.

k D W=l
3 D 20=27 D .20=27/ D 0:7407, so

W D 0:7407l
3. The height of a 100-lb flamingo

will be 3

q
100

0:7407
D 5:13 ft.

3. a. Let’s assume initially that both objects have the
same surface. Then, if air density is constant,
air resistance / v2 (submodel).
Fp DFfriction CFair implies k1wD k2wC k3v

2.
v

2 / (k1 � k2/w; .k1 > k2 for motion)
v/w1=2

v1

v2

D k

r
w1

w2

D
r
600

800
D 0:866

b. Now let’s assume the objects are geometrically
similar. Then

6

r
600

800
D 0:953

As the weight increases, the propulsion force
minus the friction force increases faster than
the drag force. We use w versus w2=3, causing
a higher terminal velocity.

4. Heat loss of an object is proportional to exposed
surface area. S / l2 for l as a characteristic dimen-
sion. S1

S2
D

�
12

6

�2 D 4 times as much surface area.

For 70-ft and 7-ft submarines, S1

S2
D

�
70

7

�2 D 100

times as much surface area. The energy loss in the
scaled model is 1=100 the actual energy loss.

Assumptions: same materials, same ability
of medium to absorb heat (this includes conduc-
tivity, convection, relative masses involved, etc.),
geometrically similar submarines, etc.

Note: These submarines can be very irreg-
ularly shaped as long as they are geometrically
similar.

5. Assume that the energy required to maintain a con-
stant body temperature is proportional to surface
area. Assuming geometrically similar animals, we
have E/S/V 2=3 /w2=3 for a constant density.
If we assume that the energy provided is propor-
tional to the weight of the food consumed, we are
assuming the same caloric value of the food and
constant efficiency by the animals in converting
the potential energy. This is highly unlikely. Let-
ting F represent the weight of food consumed, we
have

Enecessary D Eprovided

w
2=3 /F

7. w D 0:00853 l
3 (Model A)

w D 0:0196 lg
3 (Model B) Model B appears to

be the better model.
8. Themodels coincide if the fish are indeed geomet-

rically similar .g/ l/.
9. Consider the models w/ l2

g and w/g3. The
modelw/ l2

g assumes that lengthwise cross sec-
tions are geometrically similar but treats the girth
separately. The model w/g3 assumes geometri-
cal similarity but chooses the girth as the charac-
teristic dimension. The four models coincide if the
fish are geometrically similar (g/ l). If the bass
are geometrically similar, then l /g.
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Chapter 3
SECTION 3.1
2. From a graph of elongation e versus stress
S � 10�3, we ‘‘eyeball’’ the straight line passing
through the origin, e � 3:6S .

20 40 60 80 100 120

50
100
150
200
250

450
400
350
300

Stress

Elongation

4. The following graphs show various plots of the
data or transformed data. The original data are
shown in graph (a).
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200000
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600000

800000

1000000

1600000

1400000

1200000

V

(a)

P

Graph (b) shows ln P versus ln V and indi-
cates that a straight line reasonably approximates
the transformed data. We estimate the parameters
and obtain lnP � �0:96C 8:56 lnV:
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(b)

The model is

P � e
�0:96

V
8:56

or
P � 0:383V

8:56

7. Assuming a relationship of the form T DCra, we
obtain lnT D lnC C a ln r . From the graph we
approximate lnC � �1:61 and a � 1:5. There-
fore, T � e

1:61
r

1:5 � 0:2r
3=2.

2 64 8 10

2

4

6

8

10

12

ln distance

ln period

SECTION 3.2
1. If y D f

2
.x/, then y0 D 2f .x/f

0
.x/ at all points

where the derivative exists. Therefore, the criti-
cal points of y D f .x/ appear among the critical
points of y D f

2
.x/: It follows that themaximum

and minimum points for y D f .x/ occur among
those for y D f

2
.x/.

Suppose that x1 provides a relative minimum
for y D f

2
.x/ and that f .x1/ � 0. Therefore,

f
2
.x/ � f

2
.x1/ for all x in some interval con-

taining x1. Because the square root is an increas-
ing function, it follows that jf .x/j � jf .x1/j.
The property that f .x/ � 0 then implies f .x/ �
jf .x1/j � f .x1/ for all x in some interval con-
taining x1. Therefore, x1 provides a relative min-
imum for y D f .x/, as claimed.

2. a. min r D 0:92; a D 0:533333; b D 2:14667.
The least-squares fit to this data set gives the
line y D 0:564x C 2:21 with dmax D 1:0968.

b. min r D 0:00139; a D 0:00164; b D 0:00293.
The least-squares fit to this data set gives the
line y D 0:00164x C 0:00293.

c. min r D 0:0350; a D 0:9800; b D 1:8550.
The least-squares fit to this data set gives the
line y D 0:9743x C 1:88.
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3. min r D 0:02833; c1 D 4:00000; c2 D � 0:03333;
c3 D � 0:00500. The least-squares fit to this data
set gives the quadratic yD3:7857x2C0:03847x�
0:0050.

5. Suppose the variable x1 can assume any real
value. Show that the following substitution using
nonnegative variables x2 and x3 permits x1 to as-
sume any real value:

x1 D x2 � x3, where x1 is unconstrained
x2 � 0; and x3 � 0:

Case x2 > x3 � 0 implies x1 > 0.
Case x3 > x2 � 0 implies x1 < 0.
Case x2 D x3 � 0 implies x1 D 0.

This implies that x1 is unconstrained. Thus, x1 can
take on any value, whereas x2 and x3 remain non-
negative.

SECTION 3.3
2. a. Least-squares fit: y D 0:5642x C 2:2149 and

D D 0:70059 � cmax � dmax D 1:1

b. Least-squares fit: y D 0:00164x C 0:002925

andD D 0:00092 � cmax � dmax D 0:0015

c. Least-squares fit: y D 0:9743x C 1:88 and
D D 0:24422 � cmax � dmax D 0:3857

3. The least-squares quadratic fit.
Quadratic fit: y D 3:7857x

2 C 0:03857xC 0 and
D D 0:02451 � cmax � dmax D 0:0391

4. P D ae
bt so lnP D ln aC bt

lnP D 0:099886t C 2:14269

Therefore, a � 8:518746 and b � 0:099862. We
have P D 8:518746e

0:099862t .

SECTION 3.4
2. Problem 4 in Section 3.1 shows the model P D
aV

b . Let’s use least squares to fit a line to the
transformed data:
lnP D ln aC b lnV
lnP D �0:727C 8:468 lnV
P D 0:483V

8:468

3. As observed in Problem 4(b) in Section 3.1, the
model P D a lnV is inappropriate for the data.

4. Using the least-squares criterion, we fit a curve of
the form P D at to the data:

a D .32; 697/=.4459/ D 7:33; P D 7:33t;

D D 38:32 � cmax � dmax D 62

5. e D aS implies a D .142; 670/=.38; 525/ �
3:703: D D 13:856 � cmax � dmax D 19:7.

6. QD ae
bx so lnQD ln a C bx. Let’s fit a least-

squares line to the transformed data (lnQ ver-
sus x): lnQ� �0:000178C0:07x, orQ�e0:07x .

7. a. The least-squares fit of W D kl
3 is W D

0:0084368l
3 withDD 1:2328� cmax � 2:305.

b. The least-squares fit of W D klg
2 is W D

0:00186751lg
2 withDD 1:487� cmax � 2:794:

8. The least-squares fit of W D cg
3 is W D

0:0275783g
3 withD D 2:605 � cmax � 4:864.

The least-squares fit of W D kgl
2 is W D

0:0125839gl
2 withD D 0:65 � cmax � 1:204.

Judging on the basis of the models, the residuals,
and their analysis, the W D kgl

2 model is supe-
rior, followed by the W Dkg2

l model.

Chapter 4
SECTION 4.1
1. b. The scatterplot of the log–log data:

3 4 5 6

0.4

0

0.5

0.6

0.7

log P

log V

e. Log V D 0:145C 0:096 logP
f. V D 1:396P

0:096
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7. A scatterplot suggests that Y is approximately
linearly related to X , without the need for any
transformation. A least-squares fit gives Y D
3:86X � 140:78.

8. A scatterplot of the original data suggests the trans-
formation log Y: But a scatterplot of log Y versus
X is not very linear. However, it raises the pos-
sibility that the transformation log X might help.
Thus, we are led to a plot of log Y versus log X ,
which looks to be strongly linear. A line that fits
these data well has, approximately, the equation

logY D 1:50.logX/ � 2:96
or

Y D .1:09 � 10�3
/X

1:5

The latter equation asserts that Y varies directly as
X

3=2 or, what is the same, that Y 2 is proportional
to X3.

9. a. An analysis similar to that of Problem 8 leads to
an equation close to log Y D3:11.logX/�2:53
or Y D .2:95 � 10�3

/X
3:11.

b. The plot of
p
Y versusX is approximately lin-

ear and leads to an equation close to
p
Y D

0:53X � 4:86.

SECTION 4.3
1. x y d1 d2 d3 d4 d5 d6

0 2 0 0 0 0 0 0

1 8 6 0 0 0 0 0

2 24 16 5 0 0 0 0

3 56 32 8 1 0 0 0

4 110 54 11 1 0 0 0

5 192 82 14 1 0 0 0

6 308 116 17 1 0 0 0

7 464 156 20 1 0 0 0

Yes; a cubic polynomial.
2. x y d1 d2 d3 d4 d5 d6

0 23 0 0 0 0 0 0

1 48 25 0 0 0 0 0

2 73 25 0 0 0 0 0

3 98 25 0 0 0 0 0

4 123 25 0 0 0 0 0

5 148 25 0 0 0 0 0

6 173 25 0 0 0 0 0

7 198 25 0 0 0 0 0

Yes; linear.

3. x y d1 d2 d3 d4 d5 d6

0 7 0 0 0 0 0 0

1 15 8 0 0 0 0 0

2 33 18 5 0 0 0 0

3 61 28 5 0 0 0 0

4 99 38 5 0 0 0 0

5 147 48 5 0 0 0 0

6 205 58 5 0 0 0 0

7 273 68 5 0 0 0 0

Yes; a quadratic polynomial.
4. x y d1 d2 d3 d4 d5 d6

0 1 0 0 0 0 0 0

1 45 35 0 0 0 0 0

2 20 155 6000 0 0 0 0

3 90 70 2725 7083 0 0 0

4 403 313 1215 3142 6083 0 0

5 1808 1405 546 1415 2752 4287 0

6 8103 6295 2445 633 1229 1907 2464

7 36320 28210 10960 2838 5512 8568 1110

No, none of the rules works to yield a low-order
polynomial.

6. Negative values in the first divided difference col-
umnmake it invalid to use for obtaining other low-
order information.

7. Negatives appear in the first column of the divided
differences, so the divided difference table proves
invalid for the purpose of identifying low-order
behavior. The graphical trend appears to be a low-
order polynomial, so we could try a 2nd- or 3rd-
order polynomial based solely on the graph.

SECTION 4.4
1. a. The equations:

a1 C 2b1 C 4c1 C 8d1 D 2

a1 C 4b1 C 16c1 C 64d1 D 8

a2 C 4b2 C 16c2 C 64d2 D 8

a2 C 7b2 C 49c2 C 343d2 D 12

b1 C 8c1 C 48d1 � b2 � 8c2 � 48d2 D 0

2c1 C 24d1 � 2c2 � 24d2 D 0

2c1 C 12d1 D 0

2c2 C 42d2 D 0
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The two cubic spline equations are



�4C 7

3
x C 1

2
x

2 � 1

12
x

3
x < 4

�116
9

C 9x � 7

6
x

2 C 1

18
x

3 otherwise

2.5 5.0 7.5 10.0
0

2.5

7.5

12.5

5.0

10.0

15.0

y

x

b. The two cubic spline equations are
��25C 26:67x � 7:5x2 C 0:833x

3
x < 4

55 � 33:33x C 7:5x
2 � 0:4167x3 otherwise

1 2 6543 7

10

0

30

20

40

y

x

c. The two cubic spline equations are
�
7:5x C 2:5x

3
x < 1

5� 7:5xC 15x
2 � 2:5x3 otherwise

0.5 1.0 2.52.01.5 3.0
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d. The two cubic spline equations are



5 � 5

8
x C 25

32
x

3
x < 2

35

2
� 155

8
x C 75

8
x

2 � 25

32
x

3 otherwise

1 2 43 5

10

0

30

20

40

y

x

2. Using the appropriate spline equations, we obtain
approximations.
a. S 0

.3:45/ D 31:49

e
3:45 D 31:50

b. Estimate of area is 9.4850 as compared to
9.485595523.
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Chapter 5

SECTION 5.1

3. Input Total number N of random points.

Output Estimate for �.

Step 1 Set COUNTER D 0.

Step 2 For i D 1; 2; : : : ; N , do Steps 3–5.

Step 3 Generate randomnumbers for xi andyi

such that 0 � xi � 1 and 0 � yi � 1:

Step 4 If x2

i
Cy

2

i
<1, then increment

COUNTER by 1. Otherwise, leave
COUNTER as is.

Step 5 Calculate estimate of
area D (COUNTER=N/ � 4.
STOP

Using this algorithm to obtain estimates for
� yields

N Estimate
100 2.96
500 3.064

1000 3.076
5000 3.1512
9000 3.1475

6. In the algorithm, we will use

volumecurve
volumecube

� numberellipsoid
total

Input Total number N of trials.

Output Volume of ellipsoid.

Step 1 Set COUNTER D 0.

Step 2 For i D 1; 2; : : : ; N , do Steps 3 and 4.

Step 3 Generate random numbers as follows:

0 � xi �
p
32; 0 � yi � 8; 0 � zi �

p
128

Step 4 Calculate the expression

x
2

i

2
C y

2

i

4
C z

2

i

8
� 16

If true, then increment COUNTER
by 1.
Otherwise, leave COUNTER as is.

Step 5 Calculate volume using
Volume of cube � C=N , where volume
of the cube D 512.

SECTION 5.2

1. a. 1009, 180, 324, 1049, 1004, 80, 64, 40, 16, 2, 0
b. 653217, 692449, 485617, 823870, 761776,

302674, 611550, 993402, 847533, 312186,
460098

c. 3043, 2598, 7496, 1900, 6100, 2100, 4100,
8100, 6100, 2100, 4100 (cycles)

2. a. 3, 0, 1, 6, 7, 4, 5, 2, 3 (cycles)
b. 9, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9 (cycles)
c. 13, 4, 7, 6, 1, 8, 11, 10, 5, 12, 15, 14, 9, 0, 3, 2,

13 (cycles)

SECTION 5.3

1. Trial N D 100 ! p D 0:09;N D 300 ! p D
0:17;N D 1000 ! p D 0:12;N D 10000 !
p D 0:1221.

2. Trial N D 100 ! p D 0:3;N D 30 ! p D
0:34;N D 100 ! p D 0:31;N D 10000 !
p D 0:312.

3. N D 100 rolls (Note that with random numbers
and your seed, your values may differ.)

#2!pD 0:03; #3!pD 0:08; #4!pD 0:12;

#5!pD 0:06; #6!pD 0:2; #7!pD 0:18;

#8!pD 0:14; #9!pD 0:07; #10!pD 0:04;

#11!pD 0:06; #12!pD 0:03

SECTION 5.4

1. Additional variables: L D number of days with
unfilled demands andD D amount of unfilled de-
mand in gallons. In Step 2: SetL D 0 andD D 0.
At Step 6: Note that if I D 0, then inventory is
zero from the previous day. Insert between Steps
6 and 7:
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Step 6.5 If qi > I , then I D 0,D D DC qi , and
L D LC 1.
If qi > I and I > 0, thenD D DC .qi � I / and
L D LC 1.
or
If qi > I and I > 0, thenD D DC .qi � I / and
L D LC 1.

Chapter 6
SECTION 6.1
1. Let an D the number of people who eat at the

Grease Dining Hall in period n.
Let bn D the number of people who eat at the
Sweet Dining Hall in period n.

anC1 D 0:25an C 0:07bn

bnC1 D 0:75an C 0:93bn

0.25

0.0
5 100 20

an
bn

1.0

0.75

0.5

an
bn

n
15

n an bn

0 1 0
1 0.25 0.75
2 0.115 0.885
3 0.0907 0.9093
4 0.086326 0.913674
5 0.085539 0.914461
6 0.085397 0.914603
7 0.085371 0.914629
8 0.085367 0.914633
9 0.085366 0.914634
10 0.085366 0.914634
11 0.085366 0.914634
12 0.085366 0.914634
13 0.085366 0.914634

2. Let an D the number of people who eat at the
Grease Dining Hall in period n.
Let bn D the number of people who eat at the
Sweet Dining Hall in period n.
Let pn D the number of people who eat pizza in
period n.

anC1 D 0:25an C 0:1bn C 0:05pn

bnC1 D 0:25an C 0:3bn C 0:15pn

pnC1 D 0:5an C 0:6bn C 0:8pn

0

0.8

0.6

0.4

0.2

1.0

21 4 6 8

an
bn

an
bn
pn

n
5

pn

730

n an bn pn

0 1 0 0
1 0.25 0.25 0.5
2 0.1125 0.2125 0.675
3 0.083125 0.193125 0.72375
4 0.076281 0.187281 0.736438
5 0.07462 0.18572 0.739659
6 0.07421 0.18532 0.74047
7 0.074108 0.185219 0.740673
8 0.074083 0.185194 0.740724

SECTION 6.2
1. Stereo System (from figure)

RS1 D 0:95

RS2 D 0:98C 0:97 � .0:98 � 0:97/ D 0:9994

RS3 D 0:99C 0:99 � 0:992 D 0:9999

System reliability,
Rsystem D 0:95 � 0:9994 � 0:9999 D 0:94934
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2. Personal Computer
Let S1 be the power supply and OC unit in series,
RS1 D 0:996 � 0:999 D 0:995004.
Let S2 be the keyboard and mouse in parallel,
RS2 D 0:9999C 0:9998� .0:9998 � 0:9999/ D
0:99999998.
Let S3 be the three drives in parallel, RS3 D
0:995C 0:995C 0:999�.0:995 � 0:995/�.0:995 �
0:999/�.0:995 � 0:999/C.0:999 � 0:995 � 0:995/ D
0:9999999975.
Let S4 be the two parallel printers,
RS4 D 0:999995, so

Rsystem D RS1 �RS2 �RS3 �RS4 D 0:994999

3. Advanced Stereo System

RS1 D 0:992007

RS2 D 0:99999992

RS3 D 0:999975

Rsystem D 0:992007 � 0:99999992 � 0:999975
D 0:99198212

SECTION 6.3
1. Row Height(h) Weight

1 60 132
2 61 136
3 62 141
4 63 145
5 64 150
6 65 155
7 66 160
8 67 165
9 68 170

10 69 175
11 70 180
12 71 185
13 72 190
14 73 195
15 74 201
16 75 206
17 76 212
18 77 218
19 78 223
20 79 229
21 80 234

The regression equation is

Weight D �178:49C 5:13636h

−1

0

1

2

140

Residuals

W

Residuals versus the Fitted Values
(Response is weight.)

190 240

There is a pattern to these residuals, indicating the
model can be improved.

2. Weight D 59:5C 0:000347h
3

R
2 D 99:8%

SSTD 20338:95, SSED 39:86, SSRD 20299:09

−4

0

2

−3

−2

−1

1

1000

Residuals

200 300

There is more ‘‘randomness’’ to the residual
plot. This model is more adequate than the basic
linear model from Problem 1.

Chapter 7
SECTION 7.1
1. Problem identification: How should the manager

of the plant allocate the vinyl, asbestos, labor, and
trimming machine time to produce floor covering,
counter tops, and wall tiles, according to their re-
quirements, in such a way as to maximize com-
pany profits?
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Decision variables:

x1 D number of boxes of floor covering produced
x2 D amount of counter top produced (in yards)
x3 D number of squares of wall tile produced

Problem:Maximize the profit (objective) function

p D 0:8x1 C 5x2 C 5:5x3

Constraints:

30x1 C 20x2 C 50x3 � 1500 (vinyl)
3x1 C 5x3 � 200 (asbestos)
0:02x1 C 0:1x2 C 0:2x3 � 3 (labor)
0:01x1 C 0:05x2 C 0:05x3 � 1 (machine)

where x1; x2; x3 � 0
The five assumptions of a linear program are

reasonably satisfied. Note that it is reasonable to
assume fractional as well as integer amounts of the
decision variables (Property 5). Also, the decision
variables cannot assume negative values.

7. Decision variables:
Let x1 D acres of soybeans

x2 D acres of corn
x3 D acres of oats
x4 D number of dairy cows
x5 D number of hens
x6 D excess winter work-hours
x7 D excess summer work-hours

Objective function:

Maximize

175x1 C 300x2 C 120x3 C 450x4

C 3:5x5 C 4:8x6 C 5:1x7

Constraints:

x1 C x2 C x3 C 1:5x4 � 100 (land)
400x4 C 3x5 � 25;000 (capital)
20x1 C 35x2 C 10x3 C 100x4

C 0:6x5 C x6 D 3500 (winter labor)
30x1 C 75x2 C 40x3 C 50x4

C 0:3x5 C x7 D 4000 (summer labor)
x4 � 32 (barn)
x5 � 3000 (henhouse)
x1; x2; x3; x4; x5; x6; x7 � 0 (nonnegativity)

Linear program properties are reasonable as-
sumptions for this model although the coefficients
are not constants and x4; x5 are really integers
(they may be approximated by fractions).

SECTION 7.2
1. Let x1 D number of Confederate soldiers manu-

factured per week.
Let x2 Dnumber of Union soldiers manufactured
per week.

x2

x1

P2P1

P3

P4(9, 24)

100 20 4030 50

10

30

20

40

MAXIMIZE z D 28x1 C 30x2

subject to 2x1 C 3x2 � 100

4x1 C 3:5x2 � 120

2x1 C 3x2 � 90

x1; x2 � 0 (nonnegativity)

x1 D 9; x2 D 24; P D $972
2. Let x1 D number of cars per week.

Let x2 D number of trucks per week.
MAXIMIZE z D 3000x1 C 2000x2

s.t 50x1 C 50x2 � 2500 (Body shop)
40x1 C 60x2 � 2400 (Refinish shop)

x1; x2 � 0 (nonnegativity)

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_15_answers_p643-669 January 23, 2013 19:40 654

654 Answers to Selected Problems

x2

x1
100 20 504030 60

10

30

20

50

60

210

40

Optimal solution (50,0), z = 15000

Optimal solution is z D 150;000 with x1 D 50;

x2 D 0:

3. Let x1 D number of acres of wheat
Let x2 D number of acres of corn
MAXIMIZE z D 200x1 C 300x2

subject to 3x1 C 2x2 � 100

2x1 C 4x2 � 120

x1 C x2 � 45

x1; x2 � 0 (nonnegativity)

x2

x1

P2P1

P3

P5(20, 20)

100 20 4030 50

10

30

20

40

Optimal solution is z D 10;000 with x1 D 20;

x2 D 20:

4. Optimal solution is z D 6 with alternative opti-
mal solutions along the line segment from (0, 6)
to (3.75, 2.25).

y

x
P2

P1

P3(3.75, 2.25)

20 4 86 10

2

22

22

6

4

8

10

13. a. Optimal solution is z D 3:75 with c D
2:875;R D 3:75 units.

SECTION 7.3
1. The optimal solution is x1 D 9; x2 D 24; z D

$972:00:

Extreme Feasible (F) Value of z
point or not (N) if feasible
(0, 0) F 0
(30, 0) F 840
(45, 0) N

(50, 0) N

(0, 30) F 900
(0, 33.33) N

(0, 34.29) N

(9, 24) F 972

2. The optimal solution is z D 150; 000 with x1 D
50; x2 D 0.

Extreme Feasible (F)
point or not (N) Value of z
(0, 0) F 0
(50, 0) F 150,000
(0, 50) N NA
(60, 0) N NA
(30, 20) F 130,000
(0, 40) F 80,000
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SECTION 7.4
Using the software program LINDO:
1. LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION VALUE
1) 972.00000

VARIABLE VALUE REDUCED COST
X1 9.000000 .000000
X2 24.000000 .000000

ROW SLACK OR SURPLUS DUAL PRICES
2) 10.000000 .000000
3) .000000 4.800000
4) .000000 4.400000

NO. ITERATIONS= 2
RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE
X1 28.000000 6.285715 8.000000
X2 30.000000 12.000000 5.500000

RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE
2 100.000000 INFINITY 10.000000
3 120.000000 60.000000 15.000000
4 90.000000 10.000000 30.000000

2. LP OPTIMUM FOUND AT STEP 1
OBJECTIVE FUNCTION VALUE
1) 150000.00

VARIABLE VALUE REDUCED COST
X1 50.000000 0.000000
X2 0.000000 1000.000000

ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 60.000000
3) 400.000000 0.000000

NO. ITERATIONS= 1
RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE
X1 3000.000000 INFINITY 1000.000000
X2 2000.000000 1000.000000 INFINITY

RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE
2 2400.000000 500.000000 2400.000000
3 2500.000000 INFINITY 400.000000
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SECTION 7.5
1. If the objective function was 25x1Ccx2, then we

can use the slope method to find the range on the
coefficient c.

x2 D �
�
25

c

�
x1

The slope of constraint (1) is �2=3. The slope
of constraint (2) is �5=4. Thus, provided that the
inequality below holds, we are sure that the basic
variables will not change the solution.
��2
3

�
�

��25
c

�
�

��5
4

�
(slope inequality)

�
2

3

�
�

�
25

c

�
�

�
5

4

�
(simplification)

20 � c � 37:5 (final inequality that
must hold for the
coefficient c of x2/

SECTION 7.6
1. a. Minimize x2 C 2x from Œ�3; 6�

a b

�3 6
�3 1.51
�3 �0:735
�1:878 �0:735
�1:316 �0:735
�1:036 �0:735
�1:036 �0:875

At a tolerance of t D 0:2, the solution interval
is found at iteration 7.�1:036;�0:875/. The
exact solution is x D �1.

b. At t D 0:2, the solution can be found at itera-
tion 6, (0.363125, 0.5075). The exact solution
is x D 0:4.

2. a. Minimize x2 C2x from Œ�3; 6� using Golden
Section
The interval [a, b] is [-3.00, 6.00],
and the user-specified tolerance
level is 0.20000.

The first two experimental endpoints
are x1 = 0.438 and x2 = 2.562.

Iteration Interval
2 [-3.0000, 2.5620]
3 [-3.0000, 0.4380]
4 [-1.6867, 0.4380]
5 [-1.6867, -0.3736]
6 [-1.1851, -0.3736]
7 [-1.1851, -0.6836]
8 [-1.1851, -0.8753]
9 [-1.0668, -0.8753]

The midpoint of the final interval
is -0.971038, and f (midpoint) =
0.999.
The maximum of the function is
0.999 and the x value = -1.030207.

b. Maximize f .x/ D �4x2 C3:2xC3 over the
interval Œ�2; 2�.
The interval [a, b] is [-2.00, 2.00],
and the user-specified tolerance
level is 0.20000.
The first two experimental endpoints
are x1 = -0.472 and x2 = 0.472.

Iteration Interval
2 [-0.4720, 2.0000]
3 [-0.4720, 1.0557]
4 [0.1116, 1.0557]
5 [0.1116, 0.6950]
6 [0.1116, 0.4720]
7 [0.2493, 0.4720]
8 [0.3345, 0.4720]

The midpoint of the final interval is
0.403232, and f (midpoint) = 3.640.
The maximum of the function is
3.634, and the x value = 0.360630

The exact answer is 0.4.
3. a. Use yDax and fit using the sum of the abso-

lute deviations. We multiply the function by
�1 and maximize using Golden Section.

The interval [a, b] is [ 0.00, 42.00],
and the user-specified tolerance
level is 0.20000.
The first two experimental endpoints
are x1 = 16.044 and x2 = 25.956.
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Iteration Interval
2 [ 0.0000, 25.9560]
3 [ 0.0000, 16.0440]
4 [ 0.0000, 9.9152]
5 [ 3.7876, 9.9152]
6 [ 6.1288, 9.9152]
7 [ 6.1288, 8.4688]
8 [ 6.1288, 7.5745]
9 [ 6.6810, 7.5745]

10 [ 6.6810, 7.2332]
11 [ 6.8920, 7.2332]
12 [ 7.0227, 7.2332]
13 [ 7.0227, 7.1528]

The midpoint of the final interval
is 7.087723, and f (midpoint) =
-199.842.
Since we multiplied by -1, the
answer we want is 199.842.
The model is y = 7.087723x.

Chapter 8
SECTION 8.1
1. 1 – Moe, 2 – Che, 3 – Ella, 4 – Hal, 5 – Bo, 6 –

Doug, 7 – John, 8 –Kit, 9 – Ian, 10 – Paul, 11 – Leo.

2. a. G is not Eulerian because there are vertices of
odd degree (vertices 2 and 5).

b. The walk 2 – 1 – 3 – 2 – 4 – 5 – 3 – 4 – 6 – 5
traverses each edge exactly once.

3. Without Tasmania, the resulting graph is not Eu-
lerian; there are several vertices of odd degree. If
you include Tasmania as specified, the resulting
graph is Eulerian. Here’s a tour (this one starts
and ends in Western Australia): WA – NT – Q –
T – NT – SA – Q – NSW – T – SA – V – NSW –
SA – WA. Many other tours are also possible.

4. Plowing snow from streets, delivering mail, etc.
5. Without Tasmania, the graph can be colored us-

ing three colors: WA, Q, and V get one color, SA
gets another, and NT and NSW get the third. With
Tasmania and the (admittedly peculiar) require-
ment that Tasmania be colored with a color dif-
ferent from SA, NSW, Q, and NT, a fourth color
is needed.

6. a. 1 – Blue, 2 – Red, 3 – Green, 4 – Blue, 5 – Blue,
6 – Red.

b. No, it is not possible.
7. Three time periods suffice. Time period 1: 350,

365, 445. Time period 2 : 385, 430. Time period
3: 420, 460.

SECTION 8.2
1. a. E.G/ D fab; ae; af; bc; bd; cd; de; df; ef g

b. ab; bc; and bd
c. b and d d. deg(a/ D 3

e. jE.G/j D jfab; ae; af; bc; bd; cd; de;
df; ef gj D 9

2. a. 14 b. 74 c. 31
3. Every handshake adds 2 to the total number of

handshakes that individuals report. Therefore, this
sum must be even.

SECTION 8.3
1. Aperson’s Bacon number is a nonincreasing fun-

ction of time; it can go down but can never go up.
2. The Erdös numbers of this book’s authors Bill

Fox, Frank Giordano, and Steve Horton are all 2.
3. Define a person’s Reagan number to be 0 if the

person is Ronald Reagan, 1 if the person has
shaken the hand of Ronald Reagan, 2 if she or
he has shaken the hand of a person with Reagan
number 1, and so on.

4. The table shows ˛ C ˇ
7P

kD3

.f3;7.xk/ � yk/2 in row

3, column 7, and shows ˛ C ˇ
7P

kD4

.f4;7.xk/ � yk/2

in row 4, column 7. Because points 3, 4, and 7 are
colinear, f3;7 and f4;7 are the same line (specifi-
cally, f .x/ D x� 2). The nonzero terms in each
sum (the cases where k D 5 and k D 6) are
identical, so the resulting sums are identical.

2 3 4 5 6 7

1 2 20.7778 16.444 28.0625 30.77 47.503
2 2 16.0625 48.1389 33 48.9917
3 2 7.76 6.7755 43
4 2 4.25 43
5 2 8.76
6 2
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6. The path 1 to 2 to 3 to 4 to 5 is best; the cost is 20.
8. Because, by definition, there are no edges with

both ends in A, every edge in the matching must
have one end in B . This means that jBj is an up-
per bound on the number of edges in any match-
ing. The same reasoning, withA andB reversed,
completes the argument.

9. Before the edge bh is added, a maximum
matching contains four edges. One such match-
ing is M D fab; cd; ef; j ig. If the edge bh is
present, a matching of size 5 can be found:
M D fag; bh; cd; ef; j ig.

10. 1 – Alice, 2 – Courtney, 3 – Hermione, 4 – Gladys,
5 – Deb. If Hermione can’t play position 3, there
is no feasible lineup.

11. Yes; all edges go between the set of players and
the set of positions.

12.

0

@
1 1 1 0 1 0

0 1 0 0 1 0

1 0 0 0 1 1

1

A

13. No such matrix is possible.
15. ˇ.P5/ D 2 (pick vertices v2 and v4 to be in S ).

ˇ.P6/ D 3. In general, ˇ.Pn/ D bn=2c.
16. There are two different solutions that are equally

good. Either pick vertex 5 or pick vertices 1, 2,
3, and 4. The cost in either case is 10.

SECTION 8.4
1. a � b � d � g � e � i � j (cost D 12)
2. Start by creating 31 vertices, numbered 0 through

30. The vertex with label i represents the end of
the i th day of June. For example, vertex 5 repre-
sents the end of the 5th day of June, and vertex
0 represents the end of May 31, or the begin-
ning the 1st day of June. Create an edge for each
bid received. If a bid offers to work from the
i th day of June to the j th day of June (inclu-
sive) for c dollars, we add an edge from vertex
i � 1 to vertex j , with an edge weight of c. Now
we can find a shortest (weighted) path from ver-
tex 0 to vertex 30; the resulting path identifies
which bids to accept, and the resulting shortest
distance identifies the total cost of trash removal
for June.

3. The maximum s – t flow is 4, using x1y2; x2y6;

x3y1, and x4y3.
4. In a bipartite graph G with bipartition V.G/ D

hX; Y i, the procedure described in Section 8.4
allows at most 1 unit of flow to eachX vertex and
at most 1 unit of flow out of each Y node. When
the s – t flow is maximized, the edges betweenX
and Y (the edges of the original bipartite graph)
have a flow of either 1 unit or 0 units. The edges
with positive flow are the edges of a maximum
matching (if a larger matching were possible, it
would correspond to a larger maximum flow).
Thus the procedure finds a maximum match-
ing. However, this method does not work if the
original graph G is not bipartite.

5. The optimal route is start – a – b – c – d –
start, and the time estimate for that route is 85
minutes.

SECTION 8.5
1. a. Pick vertices 2, 4, and 5 (other options are also

possible).
2. a. Pick vertices 2, 4, and either of 1 or 5.
3. a. It would take (2100

/=.1000000/ � 1:26765�
10

24 seconds, or about 4 � 1016 years, which
is more than amillion times the age of the uni-
verse.

b. Speeding up the computer by a factor of 1000
will reduce all of the numbers in the answer
above by a factor of 1000. This will have no
practical significance at all, because the cal-
culation still takes too long to perform to be
of any use.

Chapter 9
SECTION 9.1
1. Average D 465=5 D 93
2. Average D 1780=19 D 93:68421
3. EŒX � D 1:74

4. $9200
5. EŒInsurance forMale� D �$4770:10, EŒInsurance

for female� D �$2521:70. Let X represent 49%
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males and 51% female purchase the insurance,
then EŒX � D �$3623:42.

6. EŒCoke� D 3950;EŒCoffee� D 1900 so sell coke
since it is larger.

7. If we let p D probability of it being cold then the
break point is p D :615385.

8. p.7/ D 6=36 and p.11/ D 2=36, roll either a 7 or
11 is p.7 or 11/ D 8=36. EŒGame� D $5.8=36/�
$1.28=36/ D $12=36.

9. EŒHigh School contract� D $162; 000.0:35/ �
$11; 500.0:65/ D $49; 225
EŒElementary School contract�D$140; 000.0:25/
� $5; 750.0:75/ D $30; 687:50
Since EŒHigh School contract� > EŒElementary
School contract� the firm should bid on the high
school contract.

10. If we assume that the probability of getting a con-
tact is p and not getting a contract is 1 � p, then
the breakeven point is p D :207207

SECTION 9.2
1. EŒCoke� D 3950;EŒCoffee� D 1900 so sell coke

since it is larger.
2. EŒHigh School contract� D $162; 000.0:35/ �

$11; 500.0:65/ D $49; 225
EŒElementary School contract� D $140; 000.0:25/
� $5; 750.0:75/ D $30; 687:50
Since EŒHigh School contract� > EŒElementary
School contract� the firm should bid on the high
school contract.

3. EŒoperate� D 0:4.$280; 000/C 0:2.$100; 000/ �
:4.$40; 000/ D $116; 000
Since EŒOperate� > 100; 000 then we operate the
slopes and do not lease.

5. EŒA�D13:5� 4:4D9:1, EŒB�D9C 3:85D12:85,
EŒC� D 2:25 C 8:25 D 10:5, EŒB� is larger.

6. Stock 2 units.
7. They should bid, since 2:281B > 2:1B. Winning

the bid they should design a new electric car as it
has the larger expected value. Thus, design a new
electric car.

8. Do not test the market but market nationally with
an expected value of $310,000.

SECTION 9.3
1. Spin 1: Take a $10 spin only

Spin 2: Take either a $10 or $6 spin
Spin 3: Take any spin
EŒGame� D $10:58

2. ŒGame� D 20:35 when
Spin1: Take $20 only,
Spin 2: Take $15 or $20 spin,
Spin 3: Take any spin.

3. The big private oil company should hire the geol-
ogist, EŒgeologist is hired� D $2:488 m.

4. Board should hire the social media marketing firm
with an expected value of 34.669.

5. Hire the geologist with expected value �13:5m.
6. We hire the firm with an expected value of

$33,750.00.
7. Let tp D test positive, tn D test negative,

u D user, n D not a user then we find
p.ujtp/ D 28=47; p.njtp/ D 19=47; p.ujtn/ D
3=603; p.njtn/ D 600=603. Drug testing yields
positive results for non-drug users.

8. Do not perform steroid tests, EŒno test� D 0 is >
EŒtest every one� D �1:1669, assuming C1 D 1.

9. a) Do not test anyone.
b) Do not test anyone but the expected values are

closer as they differ by only �0:269.
10. Let tp D test positive, tn D test negative,

u D user; n D not a user then we find
p.ujtp/ D 18=67; p.njtp/ D 49=67; p.ujtn/ D
5=833; p.njtn/ D 828=833. Drug testing yields
positive results for non-drug users.

11. Do the market research as its expected value
is greater than no doing the market research,
12:96 > 12:86.

SECTION 9.4
1. a. Alternative B with EŒB� D 1047:50

b. Alternative B has the smallest expected oppor-
tunity loss, EŒB� D 127:50.

2. a. EŒA� D 13500=3;EŒB� D 1200=3;EŒC� D
1200=3;EŒA� is best.

b. {3000,1000,3500} sowe choose Alternative C.
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c. {6000,9000,4500} sowe choose Alternative B.
d. Choose Alternative B
e. Alternative B

3. a. EŒStocks� D 7500 � 1000 D 6500;EŒBonds�
D 5250 � 500 D 4750, choose Stocks.

b. p D 2=3

c. Perhaps you do not ever want to take a chance
of losing anymoney, so bondswould be a better
choice.

4. a. Laplace, EŒA� D $3500=3;EŒB� D $2900=3;
EŒC� D $2100=3;A is better

b. B is better at $800
c. A is better at $2,000 Maximax
d. A is better, E[A] is 1135 with a coefficient of

optimism (assume that x D :55)
e. A is better.

5. a. Laplace EŒHotel� D 27000=3;EŒConvenience
store� D 0;EŒRestaurant� D 17000=3, so the
hotel is best.

b. Restaurant at $5000.
c. Hotel at $25,000
d. Alternative Hotel is best
e. Alternative Hotel is best.

6. a. Laplace, Alabama vs. Auburn with 22.9/3 as
expected value

b. Alabama vs. Auburn with 5.4.
c. Texas A&M vs. LSU at 12.5.

7. Table is

Demand 0.35 0.25 0.2 0.2
Batch 15 25 35 45
10 280 1470 �200 �440
20 360 760 520 280
30 0 1040 1440 1200
40 �360 680 1720 2120
50 �440 600 1640 2680

a. Order 30, Expected Value=$10,888
b. Order 50
c. Order 20
d. Order 50
e. Order 40

Chapter 10
SECTION 10.1
1. a. V D 10 when Rose plays strategy R1 while

Colin plays either strategy C1 or C2.
b. V D 1=2 when Rose plays strategy R1 and

Colin plays strategy C2.
c. V D 0:250 when the batter guesses knuckle-

ball and the pitcher throws the knuckle ball.
d. V D .3;�3/ when Rose plays strategy R2 and

Colin plays strategy C1.
e. V D 0:60when the prey hides and the predator

pursues.
f. V D1when Rose plays R1 and Colin plays C2.
g. No pure strategy solution.
h. V D40whenRose plays R1 and Colin plays C2.
i. V D55whenRose plays R2 and Colin plays C3.

2. a. Row 2 is eliminated.
b. Row 2 and C1 are eliminated.
c. Column 1 and row 1 are eliminated.
d. Row 1 and column C2 are eliminated.
e. Prey runs and the predator attacks strategies are

eliminated.
f. Row R2 and column C1 are eliminated.
g. Nothing is eliminated.

3. For each of the following games, plot the payoffs
and use the plots to determine if each game is a
total conflict or partial conflict game.
a. Total Conflict game

–4.5

1

–4

–3.5

–3

–2.5

–2

–1.5

–1

–0.5

0
0 2 3 54

Series 1
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b. Partial Conflict game

0.5

0
10

1

1.5

2

2.5

3

3.5

4

4.5

2 3 54

Series 1

c. Payoffs fall on a line, so we have a total conflict
game.

d. Payoffs fall on a line, so we have a total conflict
game.

SECTION 10.2
1. Min VAce

st. 40y1 C 32y2 � VAce � 0 or
40y1 C 32.1 � y1/ � VAce � 0

48y1 C 40y2 � VAce � 0 or
48y1 C 40.1 � y1/ � VAce < 0

y1 C y2 D 1 or 0 � y1 � 1

VAce D 40 when Home Depot and Ace both
choose the large city.

2. a. Max VS

st. 10x1 C 5.1 � x1/ � VS � 0

10x1 � VS � 0

0 � x1 � 1

Min VB

10y1 C 10.1 � y1/ � VB � 0

5y1 � VB � 0
0 � y1 � 1

VS D 10 when x1 D 1 and y1 D 1 or x1 D 1

and y2 D 1.

b. Max V

st. 1=2x1 C 1.1 � x1/ � V � 0

1=2x1 � VS � 0

0 � x1 � 1

Min v

1=2y1 C 1=2.1 � y1/ � v � 0

y1 � v � 0

0 � y1 � 1

V D 1=2 when x1 D 1 and v D 1 when
y2 D 1.

c. Max BA

st. 0:4x1 C 0:3.1 � x1/ � BA � 0

0:1x1 C 0:25.1 � x1/ � BA � 0

0 � x1 � 1

Min BA

St 0:4y1 C 0:1.1 � y1/ � BA � 0

0:3y1 C 0:25.1 � y1/ � BA � 0

0 � y1 � 1

BA D 0:25 when x1 D y1 D 0, x2 D 1 and
y2 D 1.

0.05

0.5–0.5 0

0.1

0.15

0.2

0.25

0.3

0.35

1 1.5 2.52
0

Optimal answer,
V 5.25 when x1 5 0
so x2 5 1

Feasible region

Series 1

d. Max V

st.2x1 C 3.1 � x1/ � V � 0

x1 C 4.1 � x1/ � V � 0

0 � x1 � 1
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Min v

St 2y1 C .1 � y1/ � v � 0

3y1 C 4.1 � y1/ � v � 0

0 � y1 � 1

V D 3 D v when x1 D 1; y1 D 1:

e. Max V

st.0:2x1 C 0:8.1 � x1/ � V � 0

0:4x1 C 0:6.1 � x1/ � V � 0

0 � x1 � 1

Min v

St 0:2y1 C 0:4.1 � y1/ � v � 0

0:8y1 C 0:6.1 � y1/ � v � 0

0 � y1 � 1

V D 0:6 D v when .1 � x1/ D x2 D 1 and
.1 � y1/ D y2 D 1.

f. Max V

st.5x1 C 3.1 � x1/ � V � 0

x1 � V � 0

0 � x1 � 1

Min v

St 5y1 C .1 � y1/ � v � 0

3y1 � v � 0

0 � y1 � 1

V D 1 D v when x1 D 1; y2 D 1:

g. Max V

st.x1 C 5.1 � x1/ � V � 0

3x1 C 2.1 � x1/ � V � 0

0 � x1 � 1

Min v

St y1 C 3.1 � y1/ � v � 0

5y1 C 2.1 � y1/ � v � 0

0 � y1 � 1

V D v D 13=5 D 2:6 when Rose plays the
mixed strategy 3/5 R1 and 2/5 R2 while Colin
plays a mixed strategy of 1/5 C1 and 4/5 C2.

0.05

0.5–0.5 0

0.1

0.15

0.2

0.25

0.3

0.35

1 1.5 2.52
0

Optimal answer,
V 5.25 when x1 5 0
so x2 5 1

Feasible region

Series 1

The solution is V D 0:25 when x1 D 0

and x2 D .1 � x1/ D 1.

3. a. Rose:
Max V
st.

2x C 5.1 � x/ � V � 0

3x C 2.1 � x/ � V � 0

x; V � 0

V D 11=4 when x D 3

4
and .1 � x/ D 1=4.

Colin:
Min V
st.

2y C 3.1 � y/ � V � 0

5y C 2.1 � y/ � V > 0

y; V � 0

V D 11=4 when y D 1=4 and .1 � y/ D 3=4.
b. Rose:

Max V
st.

�2x C 3.1 � x/ � V � 0

2x C 0.1 � x/ � V � 0

x; V � 0
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V D 6=7 when x D 3=7 and .1 � x/ D 4=7.
Colin:
Min V
st.

�2y C 2.1 � y/ � V � 0

3y C 0.1 � y/ � V > 0

y; V � 0

V D 6=7 when y D 2=7 and .1 � y/ D 5=7.

c. Rose:
Max V
st.

0:7x C 0:6.1 � x/ � V � 0

0:3x C 1.1 � x/ � V � 0

x; V � 0

V D 0:65 when x D 1=2 and .1 � x/ D 1=2.
Colin:
Min V
st.

0:7y C 0:3.1 � y/ � V � 0

0:6y C .1 � y/ � V > 0

y; V � 0

V D 0:65 when y D 7=8 and .1 � y/ D 1=8.

d. Rose:
Max V
st.

2x C 0.1 � x/ � V � 0

�3x C 4.1 � x/ � V � 0

x; V � 0

V D 8=9 when x D 4=9 and .1 � x/ D 5=9.
Colin:
Min V
st.

2y � 3.1 � y/ � V � 0

0y C 4.1 � y/ � V > 0

y; V � 0

V D 8=9 when y D 7=9 and .1 � y/ D 2=9.

e. Rose:
Max V
st.

�2x C 3.1 � x/ � V � 0

5x � 3.1 � x/ � V � 0

x; V � 0

V D 9=13when x D 6=13 and .1�x/ D 7=13.
Colin:
Min V
st.

�2y C 5.1 � y/ � V � 0

3y � 3.1 � y/ � V > 0

y; V � 0

V D 9=13when y D 8=13 and .1�y/ D 5=13.
f. Rose:

Max V
st.

4x � 2.1 � x/ � V � 0

�4x � .1 � x/ � V � 0

x; V � 0

V D 12=9 when x D 1=9 and .1 � x/ D 8=9.
Colin:
Min V
st.

4y � 4.1 � y/ � V � 0

�2y � .1 � y/ � V > 0

y; V � 0

V D 12=9 when y D 3=9 and .1 � y/ D 6=9.
g. Rose:

Max V
st.

17:3x � 4:6.1 � x/ � V � 0

11:5x C 20:1.1 � x/ � V � 0

x; V � 0

V D 13:13 when x D 0:8098 and .1 � x/ D
0:1902.
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Colin:
Min V
st.

17:3y C 11:5.1 � y/ � V � 0

�4:6y C 20:1.1 � y/ � V > 0

y; V � 0

V D 13:13 when y D 0:282 and .1 � y/ D
0:718.

SECTION 10.3
2. The best solution for investor and nature is 722.22

when the investor never plays alternative A and
plays a mix of alternative B 44.44% of the time
and alternative C 55.56% of the time. For nature,
the optimal mix is never to play conditions 1 or
2 and 44.44% of the time play condition 3 and
55.56% of the time play condition 4.

3. The alternatives are played 0.25 A and 0.75 C,
never play alternative B while nature plays con-
ditions 1, 2, and 3 as 0.442, 0.366, and 0.192, re-
spectively. The payoff is 4125.

4. V D 833:33 when alternative A is played 1/6 of
the time, alternative B is played 5/6 of the time,
and alternative C is never played. For condition 1,
nature plays it 2/3 of the time, never plays condi-
tion 2, and 1/3 of the time plays condition 3.

5. The game theory solution yields an outcome
of 5588.235 when the investor chooses the ho-
tel 0.0294 times, never chooses the convenience
store, and the restaurant is chosen 0.970588 time,
while nature has gas close 0.412 times, gas far
away 0.588, and never has gas at a medium dis-
tance.

6. The best outcome is a pure strategy solution for
Alabama versus Auburn with neither team being
ranked.

7. The game theory solution is Bonds at condition 2,
V D $2000.

SECTION 10.4
1. Pure strategy at Rose plays R1 while Colin plays

either C1 or C2.

2. Pure strategy at R1C2, V D 1=2.
3. Pure strategy at batter guesses knuckleball and

pitcher throws knuckleball. R1C2, V D 0:250.
4. Pure strategy at R2C1, V D .3;�3/.
5. Pure strategy at Hide-Pursue V D 0:60.
6. Pure strategy at R1C2, V D 1.
7. No pure strategy solution.
8. Pure strategy solutions at R1C3 and R3C3, V D1.
9. a. Pure strategy solution at R1C2, R1C4, V D 1.

b. Pure strategy solution at R1C2, R1C4, V D 2.
c. Pure strategy solution at R2C2, V D 1.

SECTION 10.5
1. Rose: V D 11=4 when x1 D 3=4 and x2 D 1=4;

Colin: V D 11=4 when y1 D 1=4 and y2 D 3=4.
2. Rose: V D 6=7 when x1 D 3=7 and x2 D 4=7;

Colin: V D 6=7 when y1 D 2=7 and y2 D 5=7.
3. Rose: V D 0:65 when x1 D 1=2 and x2 D 1=2;

Colin: V D 0:65 when y1 D 7=8 and y2 D 1=8.
4. Rose: V D 8=9 when x1 D 4=9 and x2 D 5=9;

Colin: V D 8=9 when y1 D 7=9 and y2 D 2=9.
5. Rose: V D 9=13 when x1 D 6=13 and x2 D
7=13; Colin: V D 9=13 when y1 D 8=13 and
y2 D 5=13.

6. Rose: V D �12=9 when x1 D 1=9 and x2 D
8=9; Colin: V D �12=9 when y1 D 3=9 and
y2 D 6=9.

7. Rose: V D 13:13 when x1 D 0:8098 and x2 D
0:1902; Colin: V D 13:13 when y1 D 0:282 and
y2 D 0:718.

8. If a > b then d > c and if b > a then c > d .
9. Since there is no saddle pint, we use oddments and

y D d � b
.a � c/C .d � b/ :

10. The value of the game is

v D ad � bc
.a � c/C .d � b/ :

11. V D 4, R1C2.
12. V D 2=9 when a mixed strategy is played of

x1 D 4=9, x2 D 5=9, y1 D 5=9, y2 D 4=9.
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13. BA D 0:291 when Derek guesses fastball 23/31
and split finger 8/31 while the pitcher throws a
fastball 16/31 and a split finger 15/31.

14. V D 41=7 when Rose plays 3/7 R1 and 4/7 R2
while Colin plays 2/7 C1 and 5/7 C2.

SECTION 10.6

1. Nash equilibrium is (2, 3). Rose cannot get a better
outcome with strategic moves.

2. Nash equilibrium is (2, 4). Rose can get a bet-
ter outcome with a threat; if Colin plays C1, then
Rose will play R1. If the threat works, we end up
at (4, 3).

3. Nash equilibrium is (2, 2). If we make Colin in-
different between (2, 2) and (4, 2), then we might
get (4, 2). This might have to go to arbitration.

4. Nash equilibrium is (4, 8). Rose cannot do better
through first moves. There are no valid threats or
promises.

5. Nash equilibrium is (3, 1). This is Roses best po-
sition.

6. Nash equilibria are (4, 3) and (3, 4). If Rose moves
first, Rose gets her best outcome.

SECTION 10.7

1.

H
S L

D S �2 �4
L 2 1

Solution is V D 1 when D and H are both a
long range.

2.

Colin
C1 C2

Rose R1 0 5
R2 10 0

Solution is V D 10=3 when 2/3 of the time
Rose randomly chooses R1 and 1/3 of the time
chooses R2, while Colin 1/3 of the time randomly
chooses C1 I and 2/3 of the time chooses C2.

3. The payoff matrix is

Shoot-out payoff Ike’s strategies
IL IM IC

Doc’s strategies DL �2 �7 �7
DM 0 2 6
DC 0 �2 0

The solution is V D �2 when Doc chooses
long and Ike chooses long.

7. V D 3when Kenney searches south and Imamura
goes south.

8. Writer’s strike and management stay status quo,
V D .4; 5/.

Chapter 11
SECTION 11.1
3. a.

18201810 1830 1840 1850 1860 1870

200

0

400

600

800

1000

2000

1600

1400

1200

1800

t

P(t)

Year

From this graph, we estimateM approximately
as 2000.

b.

18201810 1830 1840 1850 1860 1870

23

0

3

22

1

21

2

Year

ln (P/(M 2 P)

We estimate the slope as 0.1125. We recognize
the slope as rM. The approximate value of t
that we seek is t� D �C

rM
D �.�2:7/

0:1125
D
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24. Since t0 D 1814, we estimate t� as
1814C 24 D 1838.

6. a. The spreading of the disease is limited by the
maximum populationN on the isolated island.
The rate at which the disease spreads decreases
as more and more people are infected. There
is no immigration or emigration. Each person
in the population is subject to infection by the
disease, because there is no inherent immunity
and no vaccine available for immunization.
Eventually, every personwill be infected by the
disease.

The assumptions are not entirely valid if
modern medical technology is available for
control and/or eradication of the disease. It is
also possible that the infected people can be
completely isolated from the healthy segment
of the population, thereby prevent-
ing the spread of the disease.

d. X.t/ D
�

N

1C e�kN.t�t�/

�

e. X ! N as t ! 1 f. Yes

g.
�

N

1C e�kN.t�t�/
D 5000

1C e�0:5.t�3/

�
at t D

12I X.12/ � 4945 people

SECTION 11.2
2. a. T D 1

k
ln H

L
, whereHDeL and kD0:05 hr�1.

Thus T D 1

0:05 hr�1 ln e D 20 hr.
b. No, not enough information is given to deter-

mine the actual size of each dose.We have only
the ratio of the highest safe concentration to the
lowest effective concentration. If the value of
one of these limits were known, the other could
be calculated and the difference in concentra-
tion to be produced by one dose determined.
However, the actual dose required to produce
this change in concentration would depend on
the volume of blood in the patient and on how
quickly the drug would spread through the en-
tire blood system.

3. The smallest n must be 7.

4. T D 1

0:02 hr�1
ln

2mg=ml
0:5mg=ml

D .50/ ln.4/�69 hr

5. T D 1

k
ln
H

L
D 1

0:02 hr�1
ln
0:10mg=ml
0:03mg=ml

D

.5/ ln.1:33/ � 6 hr

SECTION 11.5
1. y.1/ D 0; y.1:2/ D 0:2; y.1:4/ D 0:392

2. y.2/ D �1; y.2:5/ D �0:25; y.3:0/ D 0:3

3. y.0/ D 3; y.0:2/ D 4:2; y.0:4/ D 6:216

4. y.�1/ D 1; y.�0:5/ D 0:5; y.0/ D 0:5

6. a. T �100 D .0:10/.100/�t implies T D 100C
10�t

b. T .1/ D 100C 10.1 � 0/ D 100 � Q.1/

c. T1 D 100C .10/.0:5/ D 105

T2 D 105C.0:10/.105/.0:5/D 110:25�Q.1/

d. T .0:25/ D 102:5

T .0:50/ D 105:0625

T .0:75/ D 107:6890625

T .1/ D 110:3812891 D Q.1/

7. a. Q.t/ D 100e
0:10t

;Q.1/ D 110:5170918

b. Q.1/ D 110:5170918

T .1/ D 110:4622125 for �t D 0:1

T .1/ D 110:3812891 for �t D 0:25

T .1/ D 100:25 for �t D 0:5

T .1/ D 110 for �t D 1

c. .10:5170918=100/D 0:105170918D
10:5170918%

d. (i) 0:1025 D 10:25%
(ii) 0:103812891 D 10:3812891%
(iii) 0:105155781 D 10:5155781%
(iv) For n D 1000; 1:105165393;

for n D 10; 000; 1:105170365;
for n D 100; 000; 1:105170863

e. ef0:10g D 1:105170918

SECTION 11.6
1. y D 1 � .x C C/

�1

3. y � ln jyj D .x C 1/
3 C C

5. y2 D C � 2 sec x

7. y D � ln
�
C � 2

3
.x � 2/5=2 � 4

3
.x � 2/3=2

�
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9. tany D �.x sin x C cos x/C C

11. �ye�y � e�y D ln jxj C C

13. y D ln.x � x ln x C C/

15. ln jyj D x sin�1
x C

p
1 � x2 C C

17. jyj D C

ˇ̌
ˇ̌ x � 1
x C 2

ˇ̌
ˇ̌

19. jyj D C

ˇ̌
ˇ̌x � 1
x

ˇ̌
ˇ̌

21. y D C

ˇ̌
ˇ̌x C 2

x � 1

ˇ̌
ˇ̌ e3=.1�x/

23. tan�1
.x � 1/C sin�1

y D C

25. 2y
p
2y D 3

p
x C C

27. y D C

x
e

�1=x

29.
y

3

9
.3 lny � 1/ D 1

2
x

2 C 2x C ln jxj C C

31. y D ln
�
C C x � 1

2
sin x2

�

33. y3 � 1 D 6 sinh x

35. y D 1

2
e

2.x�2/ � 1

2

37. ln jP j D .1 � t /.1 � et
/

39. .py C 1/
2 D 4jxj

SECTION 11.7

1. y D 1

2
C Ce

�x2

; �1 < x < 1

3. y D 1

4
x

2
e

x=2 C Ce
x=2
; �1 < x < 1

5. y D 1

2
� x�1 C Cx

�2
; x ¤ 0

7. y D Ce
x � e2x

; �1 < x < 1
9. y D 1

jxj ln x
2 C C

jxj ; x ¤ 0

11. y D 1

2
x � 2C 1

x
ln jxj C C

x

13. Linear in x and x D .2y � 1/ey C Ce
�y

15. Linear in x and x D siny C C

y3

17. ex3

y D 1

3
.e

x3 � 4/
19. y D 3x

2
.x � 1/e�x

21. Approximately 99.5% oxygen

Chapter 12
SECTION 12.5
1. Euler’s Euler’s

approx. approx.
n for x.n/ for y.n/ Exact x.n/ Exact y.n/

0 1 1 1 1
0.25 2.25 2.25 2.1346 2.1346
0.50 5.0625 5.0625 6.3945 6.3945

Euler’s Euler’s
approx. approx.

n for x.n/ for y.n/ Exact x.n/ Exact y.n/

0 1 1 1 1
0.125 1.625 1.625 1.3754 1.3745
0.250 2.6406 2.6406 2.1346 2.1346

2. Euler’s Euler’s
approx. approx.

n for x.n/ for y.n/ Exact x.n/ Exact y.n/

0 5 4 5 4
0.25 11.25 �0.25 9.5533 0.5135
0.50 13.75 �2.875 11.385 �1.651

Euler’s Euler’s
approx. approx.

n for x.n/ for y.n/ Exact x.n/ Exact y.n/

0 5 4 5 4
0.125 8.125 1.875 7.6788 2.0721
0.250 10.3125 0.15625 9.5533 0.51354

3. Euler’s Euler’s
approx. approx.

n for x.n/ for y.n/ Exact x.n/ Exact y.n/

0 0 2 0 2
0.25 1.5 2 1.7716 2.2553
0.50 3.375 2.517 4.4895 3.086

Euler’s Euler’s
approx. approx.

n for x.n/ for y.n/ Exact x.n/ Exact y.n/

0 0 2 0 2
0.125 0.75 2 0.8069 2.0628
0.250 1.5938 2.1270 1.7716 2.2553
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5. a. B.t/ versus t

50 10
Time

15 20 25

0.5

0

1

1.5

2

2.5

3

t

B(t)

b. T .t/ versus t

0.50 1 1.5
Time

2 2.5

2

0

4

6

8

t

T(t)

c. T.t/ versus B.t/

10 2 4 6 8753

0.5

0

1

1.5

3

2.5

2

B(t)

T(t)

Chapter 13
SECTION 13.1
7. a. E.t/ D C.t/C 9000 D 9640C 180.t C 1/t

b. EA.t/ D E.t/=t D .9640/=t/C 180t C 180

c. 9640=t C 180t C 180

t

EA(t)

Minimum EA(t)

9640/t

180t
t 5 7.3

5

1000

1500

2500

2000

3000

6 7 8 9 10

d. 7.3 years
e. Since the marginal average annual cost, EA,

decreases as t increases, it is better to over-
estimate than to underestimate t�. However,
EA.7/ D 2817:14 and EA.8/ D 2825. In this
case, it would be best to round t� to 7 years.

8. Let x D number of weeks to keep the cow. Let
P D profit from the sale of the cow. Assume that
the price is falling at $0.01 per week.

MaximizeP D .0:95�0:01x/.800C35x/�
6:5x.

dP=dt D 18:75 � 0:70x
dP=dt D 0 when x D .18:75=0:70/ D

26:7857 weeks.
d

2
P=dt

2 D �0:70 which is <0, so we have
found the maximum.

P D $1011:11

Keep the cow for 26.78 weeks to maximize
the profit at $1011.11.

SECTION 13.2
1. f .�2;�2/ D 8

2. f .13=12;�3=4/ D �31=12 D �2:58333

3. a. fx D 0; y D 0g;
�
x D �2

3
; y D 2

3

�

b. x D 1; y D �1
4. Maximum value is 2 at .1=2; 1=2/:

5. Maximum is 1800 when x D 200; y D 100.

6. Q D 181:8 when x D 18; y D 14:

9. 0:711602x1:136.
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Answers to Selected Problems 669

10. Tread D 5:86e0:395 hr.

SECTION 13.3
1. x1 D 5:282; x2 D 3:609;� D 0:3588

4. x D 3; y D 3; z D 3;� D 6

Chapter 14
SECTION 14.1
1. s D s0 C v0t � .1=2/gt2. In terms of dimensions,
L D LC .LT

�1
/T � .1=2/.LT �2

/T
2, which is

dimensionally correct.

2. �3
 

�6
V

�5
�

�3

3. GD F r2

m1m2

, so dimensionally,GD .MLT
�2
/.L

2
/=

.M
2
/ D M

�1
L

3
T

�2, the dimension of the grav-
itational constant.

4. t D m
�1=2

r
3=2
G

�1=2

5. Yes, it is dimensionally correct.
dE

dt
D ML

2
T

�2

T
CML

2
T

�3

D .ML
2
T

�2 CML
2
T

�2
/T

�1

6. Yes, it is dimensionally correct.
M.LT

�2
/ D MLT

�2 C .LT
�1
/.MT

�1
/

D MLT
�2 CMLT

�2

7. P D k�hg 8. F D k�vr

SECTION 14.2

1. T D r
3=2

G1=2m
1=2

2

h

�
m1

m2

�

2. �1 D Rv
�2
g and �2 D �

SECTION 14.5

1. 250.4=1:5/ � 666:67 mph
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Index

Absolute deviations
Chebyshev approximation criterion, 115–117
defined, 109
minimizing the largest, 110, 115–117
minimizing the sum, 109–110, 111–112,
116–118

visual model fitting and, 109–110
Adjacent graph vertices, 306
Algebraic solutions to linear programs
carpenter’s problem, 266–268
computational complexity in, 268
overview, 265–268

Algorithms
dichotomous search method, 288
Dijkstra’s Algorithm (shortest-path), 324–325
further reading, 297, 322, 332
maximum-flow, 328

Alliance of Motion Picture and Television
Producers (AMPTP), 452

Analytical methods of model fitting. See also
specific criteria

Chebyshev approximation criterion, 115–117,
119

choosing a best model, 128–135
comparison of, 119–120
least-squares criterion, 118–120, 121–125
minimizing sum of absolute deviations,
117–118, 119

Annuity
defined, 27
depletion in 20 years, 30
equilibrium value, 27–28

Approximation
of change with difference equations, 10–16
of difference equations with differential
equations, 459

of nonlinear function by piecewise linear
function, 247–248

numerical methods for differential equations,
491–498

type of interpolation, 107
Area under a curve simulation, 187–189
Arms race
economic aspects, 554–557
further reading, 559
systems of differential equations for, 554–557

Assumptions for modeling
overview, 62–63
proportionality as simplifying assumption,
1–2, 71–72

Automobile-related examples.
See Vehicle-related examples

Bacon numbers, 308–309, 323
Bass competitive hunter model, 530–535
Bass fishing derby
geometric similarity, 83–88
linear regression, 239–240

Batter–Pitcher duel model
algebraic solutions, 394–395, 399–400
equating expected values for, 423–424
game tree for, 388
geometric solutions, 391–394, 397–399

linear programs, 445–448
modeling batter’s decision, 389–391
pure curve strategy, 391–392, 397–398
pure fast strategy, 391–392, 397–398
solution interpretation, 400–401

Battle of Trafalgar, 40–43
further reading, 57

Biological optimum population, defined, 595
Bipartite graphs, 316
Bipartite matching problems
maximum flow for, 328–330
softball example, 316–317

Body weight and height, 99–103
factors defining, 100
for males aged 17–21, 100

Braking distance
defined, 65
observed reaction and, 75
proportionality of, 76
submodels, 65, 66, 74–75

Break points, 341
Bridges of Königsberg problem, 299–300

Carpenter’s problem
algebraic solution, 266–268
alternative optimal solutions, 281–282
geometric solutions, 256–257, 260–262
sensitivity analysis, 279–284
simplex method, 270, 273–276

Car rental company, 37–40, 224–226
Change, modeling
difference vs. differential equations for, 3–4,
458–459

discrete vs. continuous change, 3–4, 10
paradigm for, 3

Chaotic behavior in nonlinear dynamical
systems, 31

Chebyshev approximation criterion
choosing a best model, 128–130
compared to other analytical criteria, 119
linear program, 255
overview, 115–117

Checking account, 28
Coefficient of determination R2, 235
Coefficient of optimism criterion, 370
Coin flip simulation, 195–196
Competitive hunter model
further reading, 538–539
graphical analysis, 531–533
limitations of graphical analysis, 534–535
model interpretation, 533–534
system of difference equations, 43–46
system of differential equations, 530–535

Component or system reliability, 230–231
parallel system, 231
series and parallel system, 231
series system, 230

Conditional probability, 357–363
for steroid testing, 362
using decision trees, 360–363

Conjecture method for dynamical systems
defined, 19
form an C 1 D ran; r constant, 20–22

overview, 19–20
for savings certificate, 19–20

Constant sum games, 380. See also Total conflict
games

Constrained continuous optimization
oil transfer company example, 587–589
overview, 587
space shuttle water container example,
589–591

Constrained optimization problems
constrained continuous optimization, 587–591
maximum-flow constraints, 336–337
unconstrained problems vs., 244

Construction of models
iterative nature of, 67–68
steps in the process, 62–65

Continuous change, 3–4, 10. See also
Differential equations

Cooling soup
autonomous differential equation, 487–488
separation of variables, 507–508

Costs of modeling, 61, 62
Counter, Nick, 452
Cubic spline interpolation, 170–177, 178
clamped spline, 173–174
construction of models, 174–176
described, 170
developing equations for, 172–173
inventory model, 209–210
model fitting issues with, 107
natural spline, 173, 174–176
vehicular stopping distance example, 177, 178

Cycling issues for random number generation,
193

Dantzig, George, 269
Data collection issues, 108–109
Data-fitting problems
geometric solutions, 257–259
graph theory solutions, 310–315
as shortest-path problems, 315
sum of squared errors computation for,
312–314

Decisions, alternative criteria and, 367–373
investment strategy, 371–373
investment strategy vs. nature cases, 368–371

Decision theory modeling
decision trees, 348–355
expected value, 341–346
introduction, 339–341
investment strategy example, 411–413
manufacturing firm and economy example,
407–411

probability, 341–346
Decision trees, 348–355. See also Decision

theory modeling
described, 348
golf course construction/remodeling example,
349–351

Hardware & Lumber example, 352–353
Las Vegas casino spinning wheel example,
357–360

local tv station example, 353–355
notations, 348–349
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Decision variables, defined, 243
Degree of graph vertices, 306
Delivery cost minimization, 570–575
Derivative
in continuous vs. discrete problems, 459
as rate of change, 459, 460
as slope of tangent line, 460–461

Deterministic modeling, 341
Deterministic simulation modeling
area under a curve, 187–189
overview, 187–189
volume under a surface, 189–190

Dichotomous search method, 287–289
Die roll simulation
fair, 196–197
unfair, 197–198

Difference equations. See also Dynamical
systems

approximating change with, 10–16
approximating with differential equations, 459
battle of Trafalgar, 40–43
car rental company, 37–40
competitive hunter model, 43–46
defined, 3
differential equations vs., 3–4, 458–459
for digoxin decay, 14–15, 23–26
discrete epidemic models (sir model), 50–52
for disease spread, 13–14
for dynamical systems, 5–6, 18–31
first difference, defined, 4
further reading, 18, 56–57
heating a cooled object, 15–16
iterating, 13
for mortgages, 6–7
nth first difference, defined, 4
for savings certificates, 5–6, 19–20
systems of, 37–52
travelers’ tendencies at a regional airport,
47–50

for yeast growth, 10–13
Differential equations. See also Systems of

differential equations
approximating with differential equations, 459
autonomous, graphical solutions of, 483–490
average rate of change, 459
derivative as rate of change, 459, 460
derivative as slope of tangent line, 460–461
derivative roles, 459
difference equations vs., 3–4, 458–459
existence and uniqueness theorem, 521
further reading, 471, 500
instantaneous rate of change, 459
linear, 512–522
numerical approximation methods, 491–498
overview, 458–459
population growth examples, 461–468
prescribing drug dosage example, 471–477
separation of variables, 497, 500–510
the spread of a contagious disease, 499–500
uniqueness of solutions, 509–510, 521–522
vehicular stopping distance example, 479–481
water pollution, 512–513, 521–522

Digoxin decay in bloodstream
difference equation modeling, 14–15
dynamical system solutions, 23–26
effective level, 14, 26
form an C 1 D ran; r constant, 23–24
form an C 1 D ran C b; r and b constants,
25–26

safe level, 14, 26

Dijkstra, Edsger, 324–325
Dijkstra’s Algorithm, 324–325
Directed graphs. See also Graph theory
for maximum-flow problems, 325
for 0–1 matrix problem, 318

Directed paths, 326
Discrete change, 3–4, 10
Discrete optimization modeling. See also Linear

programs; Optimization problems
approximation by a piecewise linear function,
247–248

further reading, 297
investment problem, 248–249
numerical search methods, 285–295
overview, 243–250
space shuttle cargo example, 246

Disease spread, 13–14
Divided differences, 159–167
computing, 160–162
difference table construction, 160
divided difference table construction, 161–162
divided difference table observations, 162–163
elapsed time of tape recorder example, 162
estimating derivatives from data points,
159–160

vehicular stopping distance example, 163–165
yeast growth example, 165–167

Dominance principle, 380
Dominant strategy, defined, 380
Drug dosage-related examples
digoxin decay in bloodstream, 14–15, 23–26
prescribing dosage, 471–477

Dynamical systems
annuities, 27–28, 30
battle of Trafalgar, 40–43
car rental company, 37–40
checking accounts, 28
competitive hunter model, 43–46
defined, 5, 7
digoxin decay, 23–26
discrete epidemic models (sir model), 50–52
equilibrium value examples, 25–26, 38–39,
44–45, 47–48

equilibrium values, defined, 25
equilibrium values, finding and classifying,
28–30

form an C 1 D ran, long-term behavior, 22,
24, 25

form an C 1 D ran, r constant, 20–22
form an C 1 D ran C b, equilibrium
value, 29

form an C 1 D ran C b, r and b constants,
25–28

form an C 1 D ran C b, solution if r
not 1, 30

method of conjecture for, 19–20
nonlinear, 13, 31
savings certificate, 5–6, 19–20
sewage treatment, 21–22
Theorem 1, 21
Theorem 2, 29
Theorem 3, 30
travelers’ tendencies at a regional airport,
47–50

Dynamic programs
defined, 245
problems, 249–250

Edge set of graph, 306
Effective level, 14, 26

Elapsed time of tape recorder
divided differences table, 162
high-order polynomial model, 150–151
quadratic model, 158–159

Empirical model construction, 106, 177–180.
See also Experimental modeling

Equilibrium values or points
annuity investment, 27–28
asymptotically stable, 526
autonomous differential equations, 483–484
car rental company, 38–39
competitive hunter model, 44–45
defined, 22, 25
digoxin decay, 25–26
discrete epidemic models (sir model), 50–52
finding and classifying, 28–30
form an C 1 D ran C b; r and b constants,
25–26

Lanchester combat model, 549
stable, 26
stable and unstable, 486–487, 525–526
for systems of differential equations, 525–526
travelers’ tendencies at a regional airport,
47–50

Error sources in modeling process
for high-order polynomials, 153–155, 156
overview, 107–108

Error sum of squares, 234
An Essay on the Principle of Population . . .
(Malthus), 461

Euler, Leonhard, 299
Eulerian graphs, 300
Euler’s method
continuous SIR models of epidemics,
564–565

further reading, 500
for initial value problems, 494–495, 497
nonautonomous vs. autonomous systems, 560
overview, 494–495
savings certificate example, 495–497
steps in, 493
for systems of differential equations,
559–565

trajectory and solution curves example,
561–563

Euler’s problem, 299–300
Even degree graph vertices, 300, 306–307
Existence and uniqueness theorem, 521
Expected value, 341–346. See also Probability
golf course construction/remodeling example,
345, 346

life insurance example, 344
maximize, 368–369
opposing player’s strategies, equating,
422–424

rolling dice example, 343
roulette example, 344
uncertainity node, 350

Experimental modeling. See also Dimensional
analysis; specific kinds of models

cubic spline interpolation, 169–177
empirical model, defined, 137
empirical model construction, 177–180
flowchart for empirical model building, 179
further reading, 148
high-order polynomial models, 148–155
low-order polynomial models, 157–167
model fitting vs. empirical construction, 106
one-term models, 138–144
overview, 137
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Fair coin flip simulation, 195–196
Fair die roll simulation, 196–197
Feasible intersection point, 265–266
Feasible point, 335
Fidelity of models, 61, 62
Flexibility of models, 61, 62
Formulation errors, 108
Four-color problem, 300–303
Fragility of models, 67
Frequency definition, 341
Friendship network, 309

Game of Chicken, 432–438
combination threat and promise example,
436–438

with communication, 434–438
defined, 433
without communication, 433

Games against nature, 407–413
investment strategy example, 407–411
manufacturing firm and economy example,
407–411

Game theory
defined, 378
illustrative examples of, 441–453
partial conflict. See Partial conflict games
total conflict. See Total conflict games

Game tree, batter-pitcher duel and, 388
Gasoline and consumer demand, inventory

model, 203–211
Geometric similarity, 80–91
bass fishing derby example, 83–88
corresponding angle equality in, 81
defined, 80
overview, 80–82
raindrop velocity example, 82–83
simplification of modeling by, 80, 81–82
terror bird example, 88–91
testing for, 83–88

Geometric solutions to linear programs
carpenter’s problem, 256–257, 260–262
convex set for, 255–256
data-fitting problem, 257–259
empty and unbounded feasible regions,
259–260

model interpretation, 259
nonnegativity constraints, 255
Theorem 1, 262

Goal or multiobjective programs, 248–249
defined, 245

Golden Section Search Method, 289–295, 587
assumptions, 290
example using, 291–293
golden ratio used by, 289–290
model fitting example (least-squares
criterion), 293–294

optimizing industrial flow example, 294–295
overview, 289–291
steps of, 291

Golf course construction/remodeling
decision trees and, 349–351
expected value and, 345, 346
probability and, 345, 346
weighted average, 342–345

Gradient method of steepest ascent or descent,
581–583

Graph coloring, 300–303
Graphical model fitting, 108–113
transforming data for linear relationships,
110–113

visual, with the original data, 109–110

Graphical solutions, of autonomous differential
equations, 483–490

autonomous differential equations, defined,
484

cooling soup example, 487–488
drawing phase line and solution curves,
485–486

equilibrium values, 483–484
linear autonomous system example, 526–527
logistic growth example, 488–490
nonlinear autonomous system example,
527–529

phase lines, 484, 485–486
sigmoid shape, 489
slope fields, 483, 484
solution curves, 483, 484, 485–486
stable and unstable equilibria, 486–490
systems of first-order equations, 525–529

Graphs. See also Graph theory
bipartite, 316
defined, 299, 306
directed. See Directed graphs
terminology for, 306–307

Graph theory
Bacon numbers, 308–309
bipartite matching problems, 316–317,
328–330

directed graphs, 318, 325
directed paths, 326
Euler’s problem, 299–300
fitting a piecewise linear function to data,
310–315

further reading, 306, 308, 323, 332, 338
graph-coloring problem, 300–303
graphs as models, 299–303
mathematical programming using, 332–337
maximum-flow problems, 318, 325–331,
336–337

notation for, 307
real-world situations suitable for, 298
shortest-path problems, 315, 323–325
social networks, 309
softball example, 298, 316–317
terminology for graphs, 306–307
vertex cover problem, 319, 333–335
0–1 matrix problem, 317–318

Harbor system queuing model, 213–219, 221
Hardware & Lumber, 340
decision trees and, 352–353
sequential decisions and, 360

Harvesting in Chesapeake Bay, 138–144
blue crabs example, 142–143
bluefish example, 140–142
ladder of powers, 139
ladder of transformations, 140
overview, 138–140
verifying the models, 143–144

Hawk competitive hunter model, 43–46
Heating a cooled object, 15–16
High-order polynomial models, 148–155
advantages and disadvantages, 152–155
effect of measurement errors, 154–155, 156
elapsed time of tape recorder example,
150–151

error sources, 153–154
Lagrangian form of polynomial, 151–152
oscillation near end points, 153–154, 170
sensitivity to small data changes, 154–155,
156, 170

Theorem 1, 152
unique polynomial of (at most) degree 2,
149–150

Hines, William W., 129
Home Depot
movement diagram and, 418–420
total conflict games and, 378–381, 402–404

ICBM. See Intercontinental ballistic missiles
Identifying the problem, 62
Implementing the model, 64
Incident graph vertices, 306
Industrial flow optimization, 294–295
Infeasible intersection point, 266
Integer optimization programs
approximation by a piecewise linear function,
247–248

defined, 245
overview, 247
solving linear programs first, 335
space shuttle cargo example, 246
vertex cover problem, 333–335

Interpolation. See also Experimental modeling
approximation, 107
cubic spline, 107
linear, 170–172
model fitting vs., 106–107

Interpreting the model, 63
Intersection point
enumeration, 268
feasible vs. infeasible, 265–266

Intrinsic growth rate, 531, 540
Inventory
gasoline supply and consumer demand,
203–211

minimizing delivery and storage costs,
570–575

Investment strategy
cases, 368–371
ceiling on, 370
conservative, 369
optimistic, 369
regret cost, 370

Iterative nature of model construction, 67–68

Kennedy, John F., 449–451
Kennedy, Robert, 451
Kepler, Johannes, 72
Kepler’s third law, 72–73
Khrushchev, Nikita, 449, 451
Known probability, 340
Königsberg bridges problem, 299–300

Lagrange multipliers, described, 588
Lagrangian form of polynomial, 151–152
Lanchester combat models, 548–554
Lanchester square law model, 550
Laplace criterion, 369
Las Vegas casino spinning wheel
decision trees and, 357–360
sequential decisions and, 357–360

Least-squares criterion
choosing a best model, 128–130
compared to other analytical criteria, 119–120
fitting a power curve, 122–123
fitting a straight line, 122
fitting quadratic model, 157–159
Golden Section Search Method for, 293–294
overview, 118–119
transformations approximating, 123–125
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Lehmer, D. H., 193
Level curves of objective function, 260–262
Linear combat law, 553
Linear congruence random number generation,

193
Linear differential equations, 512–522. See also

Differential equations
case 1, first stage, 514–515
case 2, second stage, 515
case 3, general linear equation, 515–516
examples, 512–513, 517–521
first-order, 513–519
integrating factor for, 516
standard form of, 514
steps for solving first-order equations,
516–517

uniqueness of solutions, 521–522
water pollution, 512–513, 521–522

Linear programs. See also specific kinds
algebraic solutions, 265–268
batter-pitcher duel, 445–448
carpenter’s problem, 256–257, 260–262
Chebyshev approximation criterion, 255
convex set for, 255–256
data-fitting problem, 257–259
geometric solutions, 255–262
inconsistent constraint sets, 260
maximum-flow problem, 336–337
nonnegativity constraints, 255
properties, 244–245
pure strategies with, 401–402
sensitivity analysis, 279–284
simplex method for, 117, 269–278
solving before integer programs, 335
Theorem 1, 262

Linear regression, 233–240
basic model, 234–235
bass fishing derby example, 239–240
defined, 233
objectives, 233–234
ponderosa pines example, 235–238

Linear spline model
gasoline and consumer demand, 207–208
overview, 170–172

Logistic curve, 465, 509
Logistic growth, 464–465, 488–490
Lotka–Volterra model, 545–546
Low-order polynomial models
divided differences, 159–163
divided difference table observations, 162–163
elapsed time of tape recorder examples,
158–159, 162

optimization problem for, 157
smoothing by, 157, 159
vehicular stopping distance example, 163–165
yeast growth example, 165–167

Maintaining the model, 64
Malthus, Thomas, 461
Managing nonrenewable resources. See Energy

crisis
Managing renewable resources: fishing industry,

592–599
biological optimum population level, 595
economic optimum population level, 596–597
harvesting submodel, 593–594
interpreting the model, 598–599
relating all population levels, 597–598
reproduction submodel, 594–595
scenario, 593

social optimum yield, 595–596
Manufacturing problem: maximizing profit,

579–584
Marginal value, 284
Markov chains
defined, 224
properties, 227–228
three state, 227
two state, 224, 225, 230

Matching, defined, 317
Mathematical models. See alsoModeling process
conditions prohibiting success, 60–61
construction of, 62–65
costs, 61, 62
defined, 1, 60
direct vs. indirect observations for, 62
fidelity, 61, 62
flexibility, 61, 62
fragility, 67
implementing, 64
iterative nature of construction, 67–68
maintaining, 64
real-world systems vs., 58–60
refinement, 67, 68
robust, 67
sensitivity, 67
simplification, 1–2, 67, 68, 80, 81–82
solving or interpreting, 63
verifying, 63–64

Matrix
defined, 317
0–1 matrix problem, 317–318

Maximax criterion, 369
Maximin criterion, 369
Maximin strategy, 415–418
Maximin value, 415
Maximum-flow problems
algorithm, 328
bipartite matching problems, 328–330
constraints, 336–337
fitting a piecewise linear function to data,

310–315
iterative example, 326–327
linear program, 336–337
objective function, 336
traveling salesman problem, 330–331

Maximum matching, 317
Measurement errors, 108, 155, 156
Method of oddments (William’s method)
algebraic approach, 425–427
for the batter and pitcher example, 426–427
geometric approach, 424–425
penalty kicks in soccer example, 444–445

Metropolis, N., 192
Middle-square random number generation, 192
Minimax criterion, 370
Minimax regret criterion, 370–371
Minimax strategy, 416–418
Minimax Theorem, defined, 423
Minimax value, 416
Minimizing largest absolute deviation
Chebyshev approximation criterion, 115–117
in graphical model fitting, 110

Minimizing sum of absolute deviations
in analytical model fitting, 116–118, 119
in graphical model fitting, 109–110, 111–112
least-squares criterion, 118–120, 121–125
transforming the data for, 110–113

Mixed-integer programs, 245
problems, 248

Mixed strategy
defined, 382
penalty kicks in soccer example, 444–445

Model fitting. See also specific criteria
analytical methods, 115–120
Chebyshev approximation criterion, 115–117,
119

choosing a best model, 128–135
comparison of analytical criteria, 119–120
error sources, 107–108, 153–155, 156
further reading, 127–128
graphical, 108–113
interpolation vs., 106–107
least-squares criterion, 118–120, 121–125,
157–159

minimizing sum of absolute deviations,
109–110, 111–112, 116–118, 119

overview, 105–106
for piecewise linear function using graph,
310–315

vehicular stopping distance example, 130–132
Modeling process. See alsoMathematical models
automobile gasoline mileage example, 96–99
body weight and height example, 99–103
as closed system, 60
construction of models, 62–65
error sources, 107–108
flow of, 1, 60
geometric similarity in, 80–91
iterative nature of, 67–68
proportionality in, 70–78
real-world vs. mathematical world, 58–60
scientific method vs., 66
steps, 62–64
strength and agility example, 103–104
vehicular stopping distance example, 65–66,
73–78

Model predictions, 13
Modern Flu Epidemic, 568
Monte Carlo algorithms
area under a curve, 188
fair coin flip, 196
fair die roll, 197
harbor system simulation, 216–217
inventory model, 210–211
unfair die roll, 198
volume under a surface, 190

Monte Carlo simulation
advantages and disadvantages, 187
area under a curve, 187–189
described, 186
for deterministic behavior, 187–190
fair coin flip, 195–196
fair die roll, 196–197
harbor system queuing model, 215–219
inventory model, 207–211
random number generation, 186, 191–193
unfair die roll, 197–198
volume under a surface, 189–190

Montgomery, Douglas C., 129
Morning rush hour queuing model, 219–221
Mortgaging a home, 6–7
Movement diagram, 418–420
Home Depot and, 418–420
pure strategy, 418–420
saddle point in, 418–419

Multiobjective or goal programs, 245, 248–249
defined, 245

Multiple-server queues, 219
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Nash equilibrium, defined, 380
Network science, 309
Newton, Isaac, 487
Newton’s second law, 500
Nonlinear dynamical systems, 13, 31
Nonlinear least squares, 583–584
Nonlinear optimization problems, 245
Nonnegativity constraints, 255
Numerical approximation for differential

equations, 491–498
approximating solutions to initial value
problems, 492–497

Euler’s method example, 494–495
first-order initial value problems, 492
initial value equation, 492
interval of the x axis, 492
numerical method, defined, 493
numerical solution, defined, 493
overview, 491–492
savings certificate example, 495–497
separation of variables, 497

Numerical method, defined, 493
Numerical search methods, 285–295
dichotomous, 287–289
Golden Section Search Method, 289–295
overview, 285–286
search method paradigm, 286–287
unimodal function on an interval, 286

Numerical solution. See also Numerical
approximation for differential equations

defined, 7, 493
sources of error in, 108

Objective functions
defined, 243, 335
level curves of, 260–262
maximum-flow problem, 336
optimal solution to changes in coefficients,
279–281

Oil transfer company, 587–589
One-term experimental models, 138–144
blue crabs example, 142–143
bluefish example, 140–142
ladder of powers, 139
ladder of transformations, 140
verifying the models, 143–144

Opportunity cost, 370
Optimization of continuous models
constrained continuous optimization, 587–591
inventory problem: minimizing delivery and
storage costs, 570–575

managing renewable resources: fishing
industry, 592–599

manufacturing problem: maximizing profit,
579–584

nonlinear least squares, 583–584
oil transfer company example, 587–589
overview, 569–570
space shuttle water container example,
589–591

submodels, 571–575
Optimization problems. See also Discrete

optimization modeling; Linear programs
Chebyshev approximation criterion, 116, 117,
119

classifications of, 244–245
dynamic programs, 245, 249–250
integer programs, 245, 246–248
least-squares criterion, 118, 119, 123
linear program properties, 244–245

low-order polynomial models, 157
minimizing sum of absolute deviations, 118
mixed-integer programs, 245
multiobjective or goal programs, 245, 248–249
nonlinear, 245
stochastic programs, 245
transformed least-squares, 125
unconstrained vs. constrained, 244

Optimizing industrial flow, 294–295

Parallel system, 231
series and, 231

Partial conflict games
battle of sexes, 438–439
characterizing, 383–384
defined, 383
game of chicken, 432–438
prisoner’s dilemma, 382–383, 430–432
Writers Guild strike 2007–2008, 451–453

Periodic behavior in nonlinear dynamical
systems, 31

Piecewise linear function
approximation of nonlinear function by,
247–248

data-fitting using graph theory, 310–315
Policing a city, 318–319
Ponderosa pines, 235–238
Population growth. See also Competitive hunter

model
difference equations for, 10–13
differential equations for, 461–468, 488–490,
508–509

experimental modeling, 163–165
further reading, 18, 471
human, 461–462, 467–468
limited, 463–468, 508–509
logistic, 464–465, 488–490
separation of variables, 508–509
yeast, 10–13, 163–165, 465–467

Predator-prey model, 539–546, 560–561
analytic solution, 541–542
effects of harvesting, 544–546
Euler’s method for, 560–561
further reading, 548
graphical analysis, 540–541
Lotka–Volterra model, 545–546
model interpretation, 544
periodic trajectories, 542–543
problem identification, 539

Prescribing drug dosage
assimilation rate submodel, 474
assumptions, 473
decay rate submodel, 473
determining the dose schedule, 475–477
drug accumulation with repeated doses,
474–475

elimination constant, 473
loading dose, 477
problem identification, 471–472
residual concentration, 474–475
verifying the model, 477

Prisoner’s Dilemma, 382–383, 430–432
defined, 432
objectives, 430–431
without communication, 432

Probabilistic simulation modeling
car rental company example, 224–226
component and system reliability, 230–231
with discrete systems, 224–241
further reading, 241

linear regression, 233–240
overview, 186–187
voting tendencies example, 226–228

Probability, 341–346. See also Expected value
of an event, 341–346
conditional, 357–363
defined, 195
frequency definition of, 341
golf course construction/remodeling example,
345, 346

life insurance example, 344
rolling dice example, 343
roulette example, 344
security analysis, 345–346
subjective, 368
weighted average, 342–345

Probability and Statistics in Engineering and
Management Science (Hines and
Montgomery), 129

Problem identification, 62
Profit maximization, 579–584
Proportionality, 70–78
defined, 2
famous examples, 72
hypothesis for yeast growth, 10–11
Kepler’s third law example, 72–73
overview, 70–72
as simplifying assumption, 1–2, 71–72
testing for, 2–3
vehicular stopping distance example, 73–78
zero y-intercept required for, 71

Pseudorandom number, 192, 193. See also
Random number generation

Pure strategy
alternative strategies for, 415–420
defined, 379
linear programs with, 401–402
maximin strategy, 415–420
minimax strategy, 416–420
movement diagram, 418–420
Nash equilibrium, 381
solutions, 423

Quadratic model
divided differences, 159–163
fitting with least-squares criterion, 157–159

Queuing models
harbor system example, 213–219, 221
morning rush hour example, 219–221

Raindrop velocity, 82–83
Random number generation, 186, 191–193
Reaction distance
defined, 65
driver vs. velocity, 74, 75
proportionality of, 76
submodel for, 65

Refinement of models, 67, 68
Regression sum of squares, 234–235
Regret cost, 370
Relative frequency, 341
Reliability of component or system, 230–231
parallel system, 231
series and parallel system, 231
series system, 230

Removal rate per week, 51
Rental car company, 37–40, 224–226
Residuals
bass fishing derby example, 239–240
in Chebyshev approximation criterion,
116–117
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defined, 116, 235
harvesting in Chesapeake Bay example, 143
in linear regression, 235
plotting as function of independent variables,
132–133, 235

ponderosa pines example, 236, 237–238
verifying the model, 143

Rest points, 525. See also Equilibrium values or
points

Right-hand side, described, 243
Robust models, 67
Round-off errors, 108
Rush hour queuing model, 219–221
Rusk, Dean, 448

Saddle point, 585
defined, 416
in mixed strategy, 402
in movement diagram, 418–419

Safe level, 14, 26
Savings certificate
difference equation modeling, 5–6
Euler’s method for numerical approximation,
495–497

method of conjecture for, 19–20
Scientific method, modeling process vs., 66
Sensitivity of models
defined, 67
high-order polynomial models, 154–155, 156,
170

Monte Carlo simulation, 187
oil transfer company example, 589
sensitivity analysis, 187, 279–284
space shuttle water container example, 591

Separation of variables
defined, 497
differential form, 503
examples, 502–509
Heaviside method, 504
for numerical approximation, 497
overview, 500–501
tableau method, 504
uniqueness of solutions, 509–510

Sequence, defined, 7
Sequential decisions, 357–363
Hardware & Lumber example, 360
Las Vegas casino spinning wheel example,
357–360

Series system, 230
parallel and, 231

Set notation in graph theory, 307
Seven bridges of Königsberg problem, 299–300
Sewage treatment, 21–22
Shadow price, 589
Shortest-path problems
data-fitting example, 315
Dijkstra’s Algorithm, 324–325
overview, 323–325
string-and-knots analogy, 324

Simplex method, 269–278
carpenter’s problem, 270, 273–276
for Chebyshev approximation criterion, 117
computational efficiency, 270–271
feasibility test, 269, 270, 272–273
independent and dependent sets for, 269
initial extreme point, 269, 272
optimality test, 269, 270, 272
pivot, 269, 273
steps of, 269
summary, 273

tableau format, 269, 271–272, 276–278
Simplification of models
formulation errors from, 108
geometric similarity for, 80, 81–82
overview, 67, 68
proportionality for, 1–2, 71–72

Simulation modeling
advantages and disadvantages, 187
area under a curve, 187–189
for deterministic behavior, 187–189
fair coin flip, 195–196
fair die roll, 196–197
harbor system queuing model, 213–219, 221
inventory model, 203–210
Monte Carlo simulation, 186–190, 195–198
morning rush hour queuing model, 219–221
for probabilistic behavior, 195–198
probabilistic vs. deterministic, 186–187
queuing models, 213–221
random number generation, 186, 191–193
sensitivity analysis needed for, 187
situations requiring, 185–186
unfair die roll, 197–198
volume under a surface, 189–190

Single-server queues
defined, 219
harbor system queuing model, 213–219, 221

‘‘Six Degrees of Kevin Bacon,’’ 308
Smoothing, 157, 159. See also Low-order

polynomial models
Social networks, 309
Softball team positions, 298, 316–317
Sorensen, Theodore, 449
Space shuttle examples
constrained continuous optimization, 589–591
integer optimization program, 246

Spline, defined, 170
Spline interpolation
cubic, 170, 172–177, 178
linear, 170–172

Spotted owl competitive hunter model, 43–46
Spring-mass system, proportionality test for, 2–3
Stable equilibrium, 486
Statistical independence of random numbers, 193
Stochastic optimization programs, 245
Stochastic situations, 339
Storage cost minimization, 570–575
Strength and agility problem, 103–104
Summation notation in graph theory, 307
System reliability, 230–231
parallel system, 231
series and parallel system, 231
series system, 230

Systems
defined, 58
real-world vs. mathematical world, 58–60

Systems of difference equations
battle of Trafalgar, 40–43
car rental company, 37–40
competitive hunter model, 43–46
discrete epidemic models (sir model), 50–52
travelers’ tendencies at a regional airport,

47–50
Systems of differential equations
competitive hunter model, 530–535
continuous SIR models of epidemics, 564–565
economic aspects of an arms race, 554–557
equilibrium point or rest point, 525
Euler’s method for, 559–565
further reading, 538–539, 548, 559, 568

graphical solutions of autonomous systems of
first-order, 525–529

interactive situations, 524
Lanchester combat models, 548–554
linear autonomous system example, 526–527
Lotka–Volterra model, 545–546
Modern Flu Epidemic, 568
nonlinear autonomous system example,
527–529

phase plane, 525
predator-prey model, 539–546
trajectory path/orbit, 525

Terminal velocity of raindrops, 82–83
Terror bird size modeling, 88–91
Titanis walleri size modeling, 88–91
Total conflict games
alternative shortcut solution for (two players),
422–427

battle of the Bismarck Sea example, 441–444
characterizing, 383–384
Cuban missile crisis, 448–451
as linear program model, 388–404
with mixed strategies example, 381–382
with pure strategies example, 378–381,
402–404

Total corrected sum of squares, 234
Transforming data
for graphical model fitting, 110–113
ladder of transformations, 140

Transition matrix, 225, 226, 228
Traveler’s tendencies, system of difference

equations, 47–50
Traveling salesman problem, 330–331
Trout competitive hunter model, 530–535
Truncation errors, 108

Ulm, S., 192
UMAP modules on the CD
Application of Calculus in Economics (518),
578

Budgetary Process: Competition (333), 538
Budgetary Process: Incrementalism (332), 538
Calculus of Variations with Applications in
Mechanics (486), 254

Cobb–Douglas Production Function (509),
471

Curve Fitting via Criterion of Least Squares
(321), 127

Difference Equations with Applications (322),
36, 471

Diffusion of Innovation in Family Planning
(303), 18, 471

Digestive Process of Sheep (69), 499
Epidemics (73), 479
Feldman’s Model (75), 498
Five Applications of Max–Min Theory from
Calculus (341), 578

Geometric Programming (737), 254
Graphic Analysis of Some Difference
Equations in Biology (553), 56, 547

Growth of Partisan Support I (304), 56, 538
Growth of Partisan Support II (305),
56, 538

Human Cough (211), 578
Kinetics of Single Reactant Reactions (232),
482

Lagrange Multipliers: Applications to
Economics (270), 592

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_16_index_p670-676 January 23, 2013 19:40 676

676 Index

UMAP modules on the CD (Continued)
Lagrange Multipliers and the Design of
Multistage Rockets (517), 592

Modeling the Nervous System (67), 479
Monte Carlo (269), 194
Pace of Life (551), 148
Poisson Random Process (340), 209, 213
Radioactive Chains (234), 482–483
Random Numbers (589), 194
Random Walks (520), 538
Relationship between Directional Heading of
an Automobile and Steering Wheel
Deflection (506), 483

Richardson Arms Race Model (308),
559Selection in Genetics (70), 479

Tracer Methods in Permeability (74), 479
Unconstrained Optimization (522), 254
Whales and Krill (610), 530, 539

Unconstrained optimization problems, 244, 245
Unfair die roll simulation, 197–198
Unimodal function on an interval, 286
Unknown probability, 340
Unstable equilibrium, 486

Vehicle-related examples. See also Energy crisis
automobile gasoline mileage, 96–99

car rental company, 37–40, 224–226
gasoline and consumer demand, 203–211
morning rush hour, 219–221
stopping distance, 65–66, 73–78, 130–132,
163–165, 177, 178, 479–481

Vehicular stopping distance
braking distance submodels, 65, 66, 73–78,
479–481

constructing the model, 65–66
cubic spline interpolation, 177, 178
differential equations, 479–481
low-order polynomial model, 163–165
model fitting for, 130–132
one-car-length rule, 73–74
reaction distance submodel, 65
time required to allow, 78

Verhulst, Pierre-Francois, 464
Verifying the model, 63–64
Vertex cover problem
greedy choice method, 333
integer programming model for, 333–335
policing a city, 318–319

Vertex set of graph, 306
Volterra’s principle, 545
Volume under a surface simulation,

189–190

Von Neuman, John, 192
Voting tendencies, discrete probabilistic

modeling, 226–228

Water pollution, 512–513, 519–521
Weighted average, 342–345
golf course construction/remodeling example,
345

life insurance example, 344
rolling the dice example, 343
roulette example, 344

Wilde, Carroll, 209
Writers Guild of America, East (WGAE), 451
Writers Guild of America, West (WGAW), 451

Yeast growth
carrying capacity, 11
constrained growth model, 11–13
difference equations for, 10–13
differential equations for, 465–467
low-order polynomial model, 163–165
proportional hypothesis for, 10–11

0–1 matrix problem, 317–318
Zero sum games, 380. See also Total conflict

games

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_16_index_p670-676 January 23, 2013 19:40 677

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_16_index_p670-676 January 23, 2013 19:40 678

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_16_index_p670-676 January 23, 2013 19:40 679

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_16_index_p670-676 January 23, 2013 19:40 680

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_16_index_p670-676 January 23, 2013 19:40 681

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_16_index_p670-676 January 23, 2013 19:40 682

Copyright 201  Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


