

DEA e Dados em painel

Enzo Barberio Mariano

Tipos de Análises – Cross section

- Análise restrita a um período específico;
- Mais adequada para se utilizar a DEA;
- Possibilita uma análise comparativa válida apenas para um ano específico;
- As DMUs em um mesmo período de tempo de tempo trabalham sob a mesma tecnologia;

Tipos de análise - Séries temporais

- Uma mesma unidade em vários períodos de tempo;
- Cada DMU em um dado período pode ser adotada como uma DMU distinta;
- Permite identificar o ano em as unidades foram mais ou menos eficientes;
- Deve ser utilizada com cuidado (hipóteses bem embasadas)
- Difícil separar:
 - Ineficiências gerenciais
 - Aumento da tecnologia
 - Fatores ambientais (crise econômica).

Tipos de análise - Dados em painel

Múltiplas DMUs em múltiplos anos;

Abordagens possíveis:

- Uma aplicação para cada ano;
- Única aplicação com todos os anos misturados;
- Análise de janelas;
- Índice Malmquist;

Uma aplicação para cada ano

- Garante uma múltiplas análises homogenias;
 - Cada análise individual é consistente;
- Fica difícil verificar a evolução da eficiência em termos absolutos;
 - DEA fornece uma eficiência relativa;

	2011	2012
Unidade 1	0,9	1
Unidade 2	1	0,9
Unidade 3	0,8	0,8

A unidade 1 foi mais eficiente em 2012 do que em 2013?

Uma única aplicação

- A análise fica muito heterogênea;
 - É irreal supor que a tecnologia não muda com o tempo;
- A fronteira pode ser constituída de muitas unidades em anos distintos, o que não faz muito sentido.
 - O índice de eficiência perde o sentido;
 - As metas e benchmarks são irreais;
- Pode ser utilizada em uma análise preliminar:
 - Permite verificar alguns padrões:
 - Ex: se todas as DMUs em um ano forem mais eficientes do que no outro;

Análise de janela

- Abordagem empírica muito utilizada:
 - Proposta por Charnes et al. (1985);
 - A ideia é semelhante a uma média móvel (um ano sai e outro entra)
- Consiste de múltiplas aplicações com DMUs de vários anos misturados (mas não de todos);
 - Apenas anos próximos são misturados em uma janela;
 - Garante um pouco mais de homogeneidade;
- Une e diminui as desvantagens das duas abordagens anteriores;
 - Questão da tecnologia e questão da eficiência relativa

Análise de janela – Passo 1

- Cada aplicação da DEA se chamada janela;
 - Dados de anos misturados
- Fórmulas básicas (empíricas):

Tamanho da janela (p) = (k + 1)/2

Número de janelas = k - p + 1

k = número de anosArredondar para cima ou para baixo

Exemplo

Determine o tamanho das janelas, o número de janelas análisadas e liste os anos contidos em cada uma considerando o período de 1996 a 2009

•(K = 14): Tamanho da janela = 8 e número de janelas = 7

•Janelas:

- (a) 1996 to 2003
- (b) 1997 to 2004,
- (c) 1998 to 2005,
- (d) 1999 to 2006,
- (e) 2000 to 2007,
- (f) 2001 to 2008,
- (g) 2002 to 2009.

naen 🕶							
	Janela						
Setor_ano	1	2	3	4	5	6	7
Chemical_1996	87.86%						
Chemical_1997	67.29%	42.11%					
Chemical_1998	83.16%	51.97%	51.97%				
Chemical_1999	100.00%	75.84%	75.84%	64.14%			
Chemical_2000	52.27%	40.15%	36.71%	35.05%	33.31%		
Chemical_2001	66.10%	51.86%	41.19%	39.37%	37.78%	32.76%	
Chemical_2002	65.95%	51.72%	41.18%	38.37%	36.96%	32.12%	31.04%
Chemical_2003	100%	79.83%	66.10%	57.15%	51.76%	39.58%	38.29%
Chemical_2004		100%	100 %	100%	100%	100%	100%
Chemical_2005			100%	83.05%	75.99%	66.00%	48.95%
Chemical_2006	Out	lier		100%	91.61%	88.19%	83.55%
Chemical_2007					100%	100%	100%
Chemical_2008						39.49%	37.56%
Chemical_2009							37.14%
Média por janela	77.83%	61.68%	64.12%	64.64%	65.93%	62.27%	59.57%
Média	65.15%						
Desvio padrão	25.28%						

Comparação de média e desvio padrão

Ranking	Setor	Média	Desvio padrão
1	Textil	94.75%	6.92%
2	Comidas e bebidas	84.27%	14.69%
3	Quimico	65.15%	25.28%
4	Mineração	27.48%	30.07%
5	Papel e celulose	16.05%	3.01%
6	Não-metálicos	14.15%	3.42%
7	Metalurgico	10.21%	1.30%

Média: Desempenho médio

Desvio padrão: Estabilidade

Enzo Barberio Mariano

Limitações

- Abordagem altamente empírica:
 - Baseada em tentativa e erro;
 - Não existem justificativas teóricas;
- Exige alguma experiência de interpretação para fornecer resultados relevantes;

- Ainda há campo para ser aprimorada:
 - Qual o melhor tamanho de janelas?

Índice Malmquist

- Mede as mudanças de produtividade entre dois períodos;
 - Meda a mudança na produtividade e não na eficiência relativa;

Número Índice:

- Mede as mudanças em uma variável multidimensional entre dois períodos de tempo;
- Análise apenas de dois em dois anos;
- Ex: índice de preços ao consumidor (IPC);

Histórico do IM

Malmquist (1953):

Propôs uma medida para medir mudanças de produtividade;

Caves et al (1982):

- Propôs o índice Malmquist e com os seus componentes;
- Generalização do trabalho de Malmquist;

Färe et al. (1994):

- Propôs o uso da DEA para o cálculo do índice Malmquist;
- Método DEA Malmquist;

Índice Malmquist

Interpretação:

- Se for maior que 1 houve evolução na produtividade;
- Se for menor que 1 houve involução na produtividade:

IM = 1,14 (evolução de 14% na produtividade)

IM = 0,9 (involução de 10% na produtividade)

Pode ser decomposto:

- AE: Alterações de eficiência relativa
 - Efeitos de emparelhamento (cach-up effect);
- AT: Alterações tecnológicas
 - Efeitos do deslocamento na fronteira (frontier shift effect):

Significado de IM, AT e AE

- IM: Evolução da produtividade de maneira absoluta;
 - Se melhorou ou piorou a relação entre inputs e outputs
- AE: Alterações na eficiência relativa:
 - O quanto a DMU ficou mais próxima ou mais longe a da fronteira:
- AT: Alterações devido a mudanças tecnológicas:
 - O quanto da evolução se deu por que todas as DMUs melhoraram;

IM = AT * AE

Exemplo

DMU	IM	AE	AT	
А	1,4	1	1,4	
В	0,88	0,8	1,1	
С	1,3	1,08	1,2	
D	1	1,1	0,91	
E	0,4	0,7	0,57	
F	1,05	0,7	1,5	
G	0,72	0,6	1,2	
Н	0,9	0,9	1	
I	1,2	1,09	1,1	

Calculo do Índice Malmquist

- d₀(x⁰,y⁰): Eficiência da DMU no período "0" relativa à fronteira do período "0";
- d₀(x^t,y^t): Eficiência da DMU no período "t" relativa à fronteira do período "0";
- d_t(x⁰,y⁰): Eficiência da DMU no período "0" relativa à fronteira do período "t";
- d_t(x^t,y^t): Eficiência da DMU no período "t" relativa à fronteira do período "t".

Calculo do Índice Malmquist

- $d_0(x^0,y^0)$: Eficiência da DMU no modelo CCR (período 0);
 - Valor entre 0 e 1;
- $d_t(x^t, y^t)$: Eficiência da DMU no modelo CCR (período t);
 - Valor entre 0 e 1
- $d_0(x^t,y^t)$: Restrições no período 0, dados da DMU no período t;
 - Pode ser maior ou menor que 1;
- d_t(x⁰,y⁰): Restrições no período t, dados da DMU no período 0;
 - Pode ser maior ou menor que 1

Relação entre os dois anos relativos a fronteira 0

Índice Malmquist

Relação entre os dois anos relativos a fronteira t

$$IM = \underbrace{\begin{pmatrix} d_0(x^t, y^t) \\ d_0(x^0, y^0) \end{pmatrix} \begin{pmatrix} d_t(x^t, y^t) \\ d_t(x^0, y^0) \end{pmatrix}}_{}$$

Relação entre os dois anos em suas respectivas fronteiras

Média geométrica

$$IM = \left(\sqrt{\frac{d_0(x^t, y^t)}{d_t(x^t, y^t)} \cdot \frac{d_0(x^0, y^0)}{d_t(x^0, y^0)}} \right) \cdot \left(\frac{d_t(x^t, y^t)}{d_0(x^0, y^0)} \right)$$

AT

AE

Exemplo

	$d_0(x^0,y^0)$	$d_t(x^t,y^t)$:	$d_0(x^t, y^t)$	$d_t(x^0,y^0)$	IM	AE	AT
Α	1	1	0,9	1,2	0,86	1	0,86
В	0,9	0,8	1	1,1	0,89	0,88	1,01
С	0,8	0,6	0,8	0,9	0,82	0,75	1,09
D	0,3	0,5	1	1,2	1,18	1,67	0,71
E	1	0,9	0,8	0,8	0,95	0,9	1,05
F	1	1	1,1	2	0,74	1	0,74
G	0,7	0,9	0,8	0,95	1,04	1,29	0,81
Н	0,9	0,8	1,1	1	0,99	0,89	1,11

