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Abstract

The measurement of productive e�ciency is an issue of great interest. Since Farrell (Farrell, M.J., 1957. Journal of

Royal Statistical Society, Series A 120, 253) implemented the ®rst measure of technical e�ciency, many researchers have

developed new measures or have extended the already existing ones. The beginning of Data Envelopment Analysis

(DEA) meant a new way of empirically measuring productive e�ciency. Under some speci®c technologies, Farrell's

measure was implemented giving rise to the ®rst DEA models, CCR (Charnes, A., Cooper, W.W., Rhodes, E., 1978.

European Journal of Operational Research 2, 429) and BCC (Banker, R.D., Charnes, A., Cooper, W.W., 1984.

Management Science, 1078). The fact that these measures only account for radial ine�ciency has motivated the de-

velopment of the so-called Global E�ciency Measures (GEMs) (Cooper, W.W., Pastor, J.T., 1995. Working Paper,

Departamento de Estad�õstica e Investigaci�on Operativa, Universidad de Alicante, Alicante, Spain). In this paper we

propose a new GEM inspired by the Russell Graph Measure of Technical E�ciency which avoids the computational

and interpretative di�culties with this latter measure. Additionally, the new measure satis®es some other desirable

properties. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The measurement of technical e�ciency started
with the works of Debreu (1951) and Koopmans
(1951). Following them, Farrell (1957) imple-
mented the ®rst measure of technical e�ciency.
Later, FaÈre and Lovell (1978) pointed out some
di�culties with this measure which motivated the
development of new measures of technical e�-

ciency. In their work of 1978, these authors axi-
omatically approached this issue by suggesting
some desirable properties that an ideal technical
e�ciency measure should satisfy, and then pro-
posed a measure which satis®ed them (it was later,
in FaÈre et al. (1983), when it was noted that this
measure does not satisfy homogeneity of degree
ÿ1 in inputs). This measure was called the Russell
Input Measure of Technical E�ciency and was
extended to the multiple output case by FaÈre et al.
(1983). An output version, the Russell Output
Measure of Technical E�ciency, was similarly
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de®ned by FaÈre et al. (1985). They also de®ned the
Russell Graph Measure of Technical E�ciency
which extends the two previous ones in the sense
that it simultaneously accounts for the ine�ciency
in both inputs and outputs. There are also some
graph versions of the Farrell measure. FaÈre et al.
(1985) de®ned two of them: the hyperbolic and the
generalized hyperbolic graph e�ciency measures.
Recently, Briec (1997) has also proposed a new
graph-type extension of the Farrell measure. The
main di�erence between Farrell and Russell mea-
sures is that Farrell measures are radial, whereas
Russell ones are not, so they do not necessarily
agree in classifying the same subset of units as
e�cient (in the particular case of DEA, they dis-
agree when a DMU on the frontier has nonzero
slacks). A comparative study of the performance
of these measures which also includes two other
measures can be found in Ferrier et al. (1994) and
De Borger and Kerstens (1996).

The development of measures of e�ciency has
also been approached from the particular per-
spective of DEA. Initially, Farrell's measure was
implemented in the LP problems which gave rise
to the ®rst DEA models, the CCR (Charnes,
Cooper and Rhodes, 1978) and the BCC (Banker,
Charnes and Cooper, 1984). Due to their radial
nature, the e�ciency scores obtained from these
models overstate e�ciency when nonzero slacks
are present because they do not account for the
nonradial ine�ciency of the slacks. In contrast to
these radial models, the additive model (Charnes et
al., 1985) accounts for all sources of ine�ciency,
i.e., radial and nonradial ine�ciency, both in in-
puts and in outputs. However, it does not directly
provide an e�ciency measure. To sort out these
problems, several measures which consider all
types of ine�ciency detected by a given DEA
model have been designed in the last few years,
and it is still an issue of great interest. In Cooper
and Pastor (1995) a complete revision with new
proposal of these measures, which they call
``Global E�ciency Measures'' (GEM), can be
found. Besides this, the authors list four basic
properties that such a measure should satisfy.

GEMs can be de®ned both for radial and for
nonradial DEA models. In this paper, we focus on
the latter possibility. Next, we refer to two GEMs

of this kind existing in the literature: the ``Measure
of E�ciency Proportions'' (MEP) developed by
Banker and Cooper (1994) and the ``Range Ad-
justed Measure'' (RAM) of Cooper et al. (1998)
(see Appendix A for the expression of these mea-
sures). These two measures, together with the TDT
measure (Thompson and Thrall, 1994) which is
not a GEM, are the new approaches to ine�ciency
measurement in DEA explained in Cooper and
Tone (1997).

MEP should be used after an optimal solution
of the additive or the invariant additive model is
obtained. Therefore, we may have di�erent values
of this measure for the di�erent alternate optima
(if any). This also happens to all GEMs not in-
cluded in the DEA model from which they are
computed. A way of avoiding this problem is to
include these GEMs as the objective of the models
used for their computation. The di�culty with this
including is that it usually gives rise to nonlinear
programming problems which are complicated to
solve, as in the case of MEP.

With these considerations in mind, we set two
main goals for the GEM we are going to develop: (1)
that it is well de®ned and (2) easy to compute. Ad-
ditionally, we want our measure to satisfy some de-
sirable properties, like the four basic ones listed by
Cooper and Pastor (1995) and, in addition, that it is
readily understood. RAM is an example of a measure
meeting all these requirements, so we will take it as a
reference to evaluate the behavior of our measure.

Aside from the mentioned approaches, the e�-
ciency measurement with DEA models has been
extended and enhanced in other directions. Some of
these developments involve incorporating judge-
ment or prior knowledge by restricting the range for
the multipliers: see, for instance, Charnes et al.
(1990) for the cone ratio model, Thompson et al.
(1990) for the assurance region approach and Dyson
and Thanassoulis (1988) which impose bounds on
individual multipliers. In other extensions stochastic
elements are introduced into the DEA models: see,
for example, Sengupta (1987) for e�ciency mea-
surement in the stochastic case, Banker (1993) for
maximum likelihood estimation of ine�ciency and
hypothesis testing and Land et al. (1993), Olesen
and Petersen (1995) and Cooper et al. (1996) for the
chance-constrained DEA approach.
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The paper unfolds as follows. In Section 2 we
de®ne the new measure and show the way to
compute it by means of an LP problem. Section 3
contains a set of desirable properties that the new
measure satis®es. In Section 4 we include an ex-
ample to illustrate the performance of the measure.
Section 5 concludes.

2. A new DEA global e�ciency measure

In this section we develop a new DEA e�ciency
measure which is closely related to the Russell
measures. Assume that we have a set of n DMUs
with m inputs and s outputs,

f�Xj; Yj� � �x1j; . . . ; xmj; y1j; . . . ; ysj�; j � 1; . . . ; ng;
where all inputs and outputs are positive. Let us
also assume that the production possibility set
T� {(X,Y)/Y can be produced from X} satis®es the
usual postulates of convexity, free disposability,
constant returns to scale and minimum extrapola-
tion (see Banker et al., 1984), as in the CCR model.

The Russell Graph Measure of Technical E�-
ciency was de®ned as a combination of the Input
and Output Russell Measures of Technical E�-
ciency (see FaÈre et al. (1985), pp. 160, 161), for the
corresponding formulations). For a given DMU0,
(X0,Y0), the value of this measure can be obtained
from the following DEA formulation:

min Rg�X0; Y0� � 1

m� s

Xm

i�1

hi �
Xs

r�1

1

/r

 !

s:t:
Xn

j�1

kjxij6 hixi0; i � 1; . . . ;m;

Xn

j�1

kjyrj P /ryr0; r � 1; . . . ; s;

0 < hi6 1; /r P 1 8i; r;
kj P 0; j � 1; . . . ; n:

�1�

In the formulation above the constraints 0 < hi6 1
and /r P 1 are the requirements for dominance. In
addition, the convexity constraint

Pn
j�1 kj � 1

would be included if T were not assumed to satisfy
constant returns to scale.

Although Rg is well de®ned in the sense we ex-
plained in Section 1 and it also satis®es the four

basic properties listed by Cooper and Pastor, there
are some di�culties with this measure. First, it
must be computed from a nonlinear programming
problem whose solution is not easily obtained.
And, secondly, it is not readily understood because,
as Cooper et al. (1998) note, Rg is a weighted av-
erage of arithmetic and harmonic means. More-
over, this measure fails to satisfy other properties
we study in Section 3. Therefore, we propose an
alternative to this measure which, although closely
related, avoids the mentioned di�culties.

2.1. De®nition of the new measure

Instead of combining the input and output
Russell measures in an additive way, as in Eq. (1),
we de®ne our measure as the ratio between them.
That is, we separately average the input and the
output e�ciency and then combine these two e�-
ciency components in a ratio form. The result is
the following model:

min Re�X0; Y0� �

1

m

Xm

i�1

hi

1

s

Xs

r�1

/r

s:t:
Xn

j�1

kjxij6 hixi0; i � 1; . . . ;m;

Xn

j�1

kjyrj P /ryr0; r � 1; . . . ; s;

hi6 1; /r P 1 8i; r;
kj P 0; j � 1; . . . ; n:

�2�

On the analogy of Russell measures, we will call
Re the Enhanced Russell Graph E�ciency Mea-
sure. It can be interpreted as the ratio between the
average e�ciency of inputs and the average e�-
ciency of outputs, which is a more straightforward
interpretation than that of Rg. Moreover, Re may
be decomposed into an input component of aver-
age e�ciency and an output one to better explain
the e�ciency of the DMU being evaluated. If
�h�1; . . . ; h�m;/

�
1; . . . ;/�s � is an optimal solution of

Eq. (2), these components of e�ciency are, re-
spectively, the numerator �1=m�Pm

i�1 h�i and the
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denominator �1=s�Ps
r�1 /�r of Re, which represent,

respectively, the proportion with respect to DMU0

of used inputs and produced outputs (on average)
of a DMU (or virtual) on the e�cient frontier.
There may be alternate optima of Eq. (2) which
would give rise to di�erent decompositions of Re

into the input and output components. Obviously,
they all have the same associated Re value.

On the other hand, by means of the following
change of variables:

hi � xi0 ÿ sÿi0
xi0

� 1ÿ sÿi0
xi0
; i � 1; . . . ;m;

/r �
yr0 � s�r0

yr0

� 1� s�r0

yr0

; r � 1; . . . ; s;
�3�

it is easy to reexpress formulation (2) of Re in
terms of total slacks. The result is this new prob-
lem which provides an alternative expression of
the Enhanced Russell Measure connecting Re with
the usual GEMs:

min Re�X0; Y0� �
1ÿ 1

m

Xm

i�1

sÿi0
xi0

1� 1

s

Xs

r�1

s�r0

yr0

s:t:
Xn

j�1

kjxij � xi0 ÿ sÿi0; i � 1; . . . ;m;

Xn

j�1

kjyrj � yr0 � s�r0; r � 1; . . . ; s;

sÿi0; s
�
r0 P 0 8i; r;

kj P 0; j � 1; . . . ; n:

�4�

In a similar fashion, by means of Eq. (3) formu-
lation (1) can also be reexpressed as a problem
having the MEP as objective and the same set of
constraints as in Eq. (4)

Again, the convexity constraint would appear
in Eqs. (2) and (4) if T were not assumed to satisfy
constant returns to scale.

Concerning the ®rst main goal we set for our
measure in Section 1, we can say that Re is clearly
well de®ned in the sense we explained there, be-
cause it is the optimal value of the used DEA
model. Besides, it can be readily understood.

We remark that the objective in Eq. (4) was
proposed as a new global e�ciency measure in

Cooper and Pastor (1995), although it was not in-
cluded as the objective of any model there. Besides,
the model used by Lovell et al. (1995) for their
macroeconomic evaluation of the OECD countries
coincides with Eq. (4) in the case of having a un-
ique constant input, as happened in that analysis.

2.2. Computational aspects

One of the most important advantages of Re

over Rg is that the value of Re can be computed
more easily than that of Rg. As explained before,
the implementation of both measures for the usual
DEA technologies gives rise to Eq. (1) for Rg and
Eq. (2) or Eq. (4) for Re. Although these three
problems are nonlinear, Eq. (1) is more compli-
cated to solve than Eq. (2) or Eq. (4) because the
two latter are ordinary linear fractional program-
ming problems whose solution can be found
through a linear programming problem.

Following Charnes and Cooper (1962), let

b � 1� 1

s

Xs

r�1

s�r0

yr0

 !ÿ1

;

tÿi0 � bsÿi0; i � 1; . . . ;m;

t�r0 � bs�r0; r � 1; . . . ; s;

lj � bkj; j � 1; . . . ; n:

�5�

Then, an optimal solution of the following
linear programming problem:

min bÿ 1

m

Xm

i�1

tÿi0
xi0

s:t: b� 1

s

Xs

r�1

t�r0

yr0

� 1;

ÿ bxi0 �
Xn

j�1

ljxij � tÿi0 � 0; i � 1; . . . ;m;

ÿ byr0 �
Xn

j�1

ljyrj ÿ t�r0 � 0; r � 1; . . . ; s;

b P 0;

tÿi0; t
�
r0 P 0; 8i; r;

lj P 0; j � 1; . . . ; n

�6�
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(which would include the constraint ÿb�Pn
j�1 lj � 0 associated to the convexity constraint

in Eq. (4) if VRS over the reference technology
were assumed) gives rise to an optimal solution of
Eq. (4). To be precise, we know that from any
optimal solution of Eq. (6) with b > 0 we can
obtain an optimal solution of Eq. (4) through the
change of variables (5). Moreover, the associated
optima are equal (see Charnes and Cooper, 1962).
Note, in addition, that no feasible solution of
Eq. (6) satis®es b� 0, so we can use Eq. (6) to
solve Eq. (4) and, in particular, to obtain the Re

values as the optimal values of Eq. (6). Thus, if we
are only interested in these e�ciency scores and
not in the e�cient projection of the DMUs being
evaluated, we do not even need to transform the
optimal solutions of Eq. (6) through Eq. (5).

Hence, we have a well-de®ned measure which,
as intended, improves the Russell Graph one with
respect to the computational and interpretative
di�culties. In the next section we study some de-
sirable properties which are satis®ed by Re.

3. Properties of Re

FaÈre and Lovell (1978) were the ®rst ones who
proposed a set of desirable properties that an ideal
e�ciency measure should satisfy, although these
were enunciated for the particular case of an input
oriented measure. Recently, Cooper and Pastor
(1995) listed similar requirements for the DEA
context and suggested some others. Next, we study
the properties which the proposed Enhanced
Russell Measure satis®es.

Theorem 1. The following is true for Re:
(i) 0 < Re 6 1.
(ii) Re � 1 () DMU0 being evaluated is
Koopmans-e�cient.
(iii) Re is units invariant.
(iv) Re is strongly monotonic in inputs and in out-
puts.
(v) Re satis®es the following relationships:

(v.1) If h > �<�1 then

Re�hX0; Y0�6 �P � 1h Re�X0; Y0�:

(v.2) If / < �>�1 then

Re�X0;/Y0�6 �P �/Re�X0; Y0�:
(v.3) If k > �<�1 then

Re�kX0;
1

k
Y0�6 �P � 1

k2
Re�X0; Y0�:

(vi) Re satis®es the following relationships with
respect to the radial e�ciency measures h and /:

(vi.1) Re 6 h.
(vi.2) Re 6 1//.

Proof. See Appendix B.

Remark 1. Relations in parentheses in (v) are true
provided the resulting point belongs to the pro-
duction possibility set.

(i) to (iv) are the four basic properties listed by
Cooper and Pastor (1995). The ®rst two mean that
the Enhanced Russell Measure is bounded by 0
and 1, reaching the top value of 1 if, and only if,
DMU0 is Koopmans-e�cient. Property (iii) guar-
antees that the values of Re are independent of the
units of measurement of the considered inputs and
outputs. Property (iv) requires sensitivity of input
usage and output production in any single di-
mension: if we rate two units which have the same
values for all their inputs and outputs except one,
the more ine�cient unit gets a smaller Re value.
That is, if the two units di�er in one input, the one
with the smaller input value gets an Re value
greater than the one of the other unit. Analo-
gously, if they di�er in one output, the unit having
a higher output value gets a greater value of Re.
Note that (iv) is not a usual property since, as
Cooper and Pastor (1995) assert, it is very di�cult
to achieve. This leads some authors to consider
instead some weaker property as weak-monoto-
nicity or decreasing in the relative values of the
slacks. Concerning other existing measures, we
remark that Rg and RAM also satisfy these four
basic properties. In particular, (i) and (ii) imply
that the three measures determine the same set of
e�cient DMUs, so they only di�er in the assigned
value to the ine�cient units. We should ®nally
clarify that both (ii) and an input version of
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(iv) were previously proposed by FaÈre and Lovell
(1978) in a more general context.

FaÈre and Lovell (1978) also suggested that a
good e�ciency measure should satisfy homogene-
ity of degree ÿ1 in inputs. The Russell input
measure failed to meet this requirement, but it
satis®ed the weaker property of subhomogeneity
of degree ÿ1 in inputs stated in (v.1) (see FaÈre et
al., 1983). In FaÈre et al. (1985), relations between
the scaling of an input vector and/or an output
vector and the resulting Russell graph e�ciency
measure can be found. The three properties gath-
ered in (v) include similar, but more satisfying re-
lations, referring to Re measure. (v.1) means that
the scaling of the input vector by a factor larger
(smaller) than unity leads to an e�ciency measure
smaller (larger) than or equal to the inverse scaling
of the e�ciency measure by the same factor. (v.2)
studies the e�ect on Re of the scaling of an output
vector, whereas (v.3) considers the simultaneous
scaling of the input and output vectors by inverse
factors. Hence, this property in some way quanti-
®es the sensitivity of the Enhanced Russell Mea-
sure guaranteed by property (iv). We remark that,
concerning the scaling of an input or an output
vector, for Rg and RAM it can only be asserted
that

Rg�hX0; Y0� < Rg�X0; Y0� and RAM�hX0; Y0�
< RAM�X0; Y0�; if h > 1;

and

Rg�X0;/Y0� < Rg�X0; Y0� and RAM�X0;/Y0�
< RAM�X0; Y0�; if / < 1:

As for the simultaneous scaling of the two vectors
by inverse factors,

RAM�kX0;
1

k
Y0� < RAM�X0; Y0� and Rg�kX0;

1

k
Y0�

6 1

k
Rg�X0; Y0�; if k > 1:

However, all these relationships (except the last
one), in contrast to those in (v), are not sensitive to
the scaling factor magnitude hence they add no
information to the one provided by the monoto-
nicity property.

Finally, since, like any GEM, our global e�-
ciency measure Re accounts for radial and nonra-
dial ine�ciency both in inputs and outputs,
property (vi) re¯ects the expected relationship be-
tween Re and the usual radial e�ciency scores h
and /. This property asserts that Re can never
score a given DMU as more e�cient than h and /
do, which are oriented measures and only account
for radial ine�ciency. The meaning of (vi.1) is
clear, but the di�culty with relating the output-
oriented radial e�ciency score / and Re leads us to
consider in (vi.2) the inverse of / (which equals h if
CRS in the e�cient frontier were considered).
Moreover, Re and h (/) are closely related as
Eq. (2) extends the radial DEA models in the sense
that any feasible solution of the input oriented
(output oriented) model �k1; k2; . . . ; kn; h�(/ in-
stead of h for the output oriented case), whose
objective function value equals h (/) gives rise to a
feasible solution of Eq. (2) �k1; . . . ; kn; h; . . .�m� ; h;
1; . . .�s� ; 1� ��k1; . . . ; kn; 1; . . .�m� ; 1;/; . . .�s� ;/�� whose cor-
responding objective function value also equals h
(1// for the output oriented case). In contrast to
Re, neither Rg or RAM satisfy either (vi.1) or
(vi.2). Relations in (vi) were also listed by Cooper
and Pastor (1995) as desirable properties, whereas
FaÈre et al. (1985) only related, in a more general
context, Russell and Farrell measures according to
their orientation (input, output or graph).

Finally, we refer to the ``translation invariance''
property, an additional desirable property pro-
posed by Cooper and Pastor. This property allows
us to deal with inputs and outputs unrestricted in
sign and is satis®ed by RAM, but not by Rg and
Re.

4. Example

In order to illustrate the performance of our
new GEM, we have used the data relative to the
agencies engaged in supplying water and related
services in the Kanto region of Japan analyzed in
Aida et al. (1998). These data contain 108 obser-
vations on ®ve inputs (Number of Employees,
Operating Expenses before Depreciation, Net
Plant and Equipment, Population and Length of
Pipes) and two outputs (Operating Revenues and
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Water Billed). Variable returns to scale on the ef-
®cient frontier were assumed.

Applying Eq. (4) to the data reveals 49 e�cient
units. Results for the 59 remaining DMUs are
shown in Table 1. The ®rst column records the
value of Re. The second and third, respectively,
contain the average e�ciency components of in-
puts and outputs. The remaining columns contain
the optimal slacks or ine�ciencies for each of the
inputs and outputs.

For example, Re� 0.84930 for DMU1 indicates
that the ratio between the average e�ciency of
inputs and of outputs for this DMU equals
0.84930. Decomposition of the Enhanced Russell
Measure into the input and output components
reveals the existence of an e�cient DMU or a
linear combination of e�cient DMUs which uses,
on average, 84.93% of the inputs used by DMU 1
maintaining the same level of output production.
The most ine�cient observation detected by the
Enhanced Russell Measure is DMU 86, with
Re� 0.29861. In this case the decomposition of Re

indicates that there exists an e�cient DMU or a
linear combination of e�cient DMUs which pro-
duces, on average, 59.16% more outputs than
DMU 86 by using, on average, 47.53% of the in-
puts used by this DMU.

Next, we compare results obtained for Re to
those of RAM. Obviously, both measures agree in
the classi®cation of the e�cient DMUs. Table 2
records Re and RAM values for the ine�cient
observations. We immediately notice the great
di�erence between the magnitude of Re values and
those of RAM, highlighting the large values taken
by the latter measure. Values of Re for the ine�-
cient units go from 0.29861, for DMU 86, to
0.91974, for DMU 104. In contrast, the minimum
for RAM is 0.97759 and only four DMUs score
less than 0.99. This shows that the discriminating
capability of Re over a given set of DMUs is much
stronger than that of RAM measure. Such a large
magnitude of RAM values is due to the use of the
range inverse as weights of the slacks in the linear
combination which de®nes this measure (see Ap-
pendix A).

To illustrate the ful®lment of property (vi.1) by
Re, Table 2 also includes a third column with the
radial input-oriented score h. It can be seen that h

is always greater than Re. As for RAM, it is never
lower than h. Very recently, a new version of RAM
has been proposed so as to broaden the range of its
values.

5. Conclusions

This paper is concerned with the measurement
of e�ciency from a DEA perspective. We have
de®ned a new nonradial nonoriented e�ciency
measure. Because of the analogy to the Russell
measures, we have called it the Enhanced Russell
Measure. First of all, it represents a solution for
the problem of nonzero slacks when measuring
e�ciency by means of DEA models. However,
other interesting goals have been achieved: the
measure is well de®ned and can be easily computed
by solving an LP problem. In addition, the inter-
pretation is straightforward in opposition to the
usual Russell Graph Measure. The new measure
represents the ratio between average e�ciency in
inputs and in outputs. These two average e�ciency
components are helpful to interpret the e�ciency
of the DMU under evaluation.

To sum up, we have de®ned an e�ciency
measure that is well behaved since, apart from the
above mentioned: (1) it is bounded by 0 and 1,
attaining the maximum value of unity if and only
if the units being rated are Koopmans-e�cient; (2)
in computing the e�ciency of an ine�cient unit,
the DMU being evaluated is compared to e�cient
units; (3) it is units invariant; (4) it monotonically
declines for any increase in input usage or any
reduction in output production and does it at least
equiproportionately for any proportionate in-
crease in inputs usage or any proportionate re-
duction in output production; (5) it does not
exceed the value of the radial e�ciency scores,
and, ®nally, as said before, (6) it is well-de®ned
because it is the optimal value of a mathematical
programming problem and can be easily computed
and interpreted.

Finally, we would like to stress that in the fu-
ture it could be interesting to study the behavior of
our measure for other kind of technologies.

For instance, some aspects of global e�ciency
measurement in FDH (Deprins et al., 1984) are
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discussed in Pastor et al. (1998). On the other
hand, it is also interesting to study the dual for-
mulation of Eq. (6) (see Tone, 1997).
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Appendix A. Other global e�ciency measures

In this appendix we include the expression of
some other global e�ciency measures. The ex-
pression of the MEP is

1ÿ 1

m� s

Xm

i�1

sÿi0
xi0
�
Xs

r�1

s�r0

yr0 � s�r0

 !
:

The expression of the RAM is

1ÿ 1

m� s

Xm

i�1

sÿi0
Rÿi
�
Xs

r�1

s�r0

R�r

 !
:

Rÿi and R�r being the range for input i and output r,
respectively.

Appendix B. Proof of Theorem 1

Proofs can equivalently be done either for
Eq. (2) or Eq. (4). As (i)±(iv) have been introduced
as the four basic properties of a GEM, we resort to
expression (4) to prove them:

(i) and (ii) are immediate as a consequence of
the de®nition of Re. (iii) is also a consequence of
the de®nition of Re, since the ratios considered in

Table 2

Comparison of Re, RAM and h

DMU Re RAM h

1 0.84930 0.99032 0.90355

2 0.83189 0.99228 0.89862

4 0.76750 0.99776 0.86967

5 0.85247 0.99728 0.98278

6 0.70358 0.99730 0.88164

10 0.55681 0.99571 0.76881

11 0.78772 0.99523 0.89129

13 0.72127 0.99713 0.89514

14 0.47117 0.99829 0.98691

16 0.33428 0.99093 0.56904

19 0.69759 0.99615 0.84046

21 0.68144 0.99535 0.86315

23 0.77267 0.99677 0.94924

24 0.79986 0.99632 0.97778

25 0.58087 0.99587 0.76737

26 0.65213 0.99683 0.86182

27 0.69755 0.99635 0.90223

28 0.65515 0.99235 0.88284

31 0.90776 0.99787 0.97943

32 0.87817 0.99567 0.96410

33 0.90682 0.99598 0.97944

34 0.86910 0.99908 0.97738

36 0.73202 0.99714 0.89499

39 0.82122 0.98865 0.94726

42 0.80514 0.99577 0.87221

44 0.83981 0.99332 0.91951

45 0.68765 0.99341 0.82711

46 0.79388 0.99729 0.90825

49 0.84417 0.99634 0.90088

50 0.86877 0.99670 0.95455

51 0.90223 0.99701 0.97128

53 0.87079 0.99771 0.90522

59 0.80107 0.99521 0.83600

65 0.83004 0.99732 0.91375

66 0.85531 0.99711 0.91124

67 0.82111 0.99721 0.88614

69 0.85406 0.99616 0.89374

70 0.75351 0.99796 0.90899

72 0.73984 0.99708 0.89360

74 0.83133 0.99635 0.96093

75 0.56641 0.99624 0.75070

77 0.61736 0.98081 0.84261

78 0.79566 0.99593 0.93431

79 0.51243 0.99610 0.82798

80 0.68466 0.99611 0.85388

81 0.76490 0.99173 0.86237

82 0.58739 0.99620 0.84663

83 0.80854 0.99576 0.88111

84 0.86220 0.99114 0.91666

86 0.29861 0.97759 0.48215

87 0.82001 0.99351 0.91635

88 0.79388 0.99342 0.86389

89 0.64894 0.99110 0.71821

Table 2 (Continued)

91 0.74960 0.98825 0.91180

92 0.52442 0.99145 0.79104

93 0.74913 0.99554 0.81298

94 0.74790 0.99415 0.94925

104 0.91974 0.99669 0.94034

105 0.78094 0.99730 0.86975
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the objective function of Eq. (4) are dimensionless
and the constraints are lineal. (iv) First, we are
going to rate two units di�ering only in one input.
Consider an observation DMU0 with vector of
inputs and outputs �x10; . . . ; xm0; y10; . . . ; ys0�, and
another observation, DMUa, with the same values
for all inputs and outputs but input k, which has
the value xka � xk0 � a; a > 0. We have to show
that the value of Re for the second observation,
Re�Xa; Ya�, is smaller than Re�X0; Y0�, the value of
Re for the ®rst unit. Throughout this proof let us
call problems (Pa) and (P0) the fractional problems
(4) evaluating DMUa and DMU0, respectively,
and let Re�Xa; Ya� and Re�X0; Y0� be the corre-
sponding optima. Let �k̂10; k̂20; . . . ; k̂n0; ŝÿ10; . . . ;
ŝÿm0; ŝ

�
10; . . . ; ŝ�s0� be an optimal solution of problem

(P0). Then, it is easy to check that �k̂10; k̂20; . . . ;
k̂n0; hÿ1a; . . . ; hÿma; ŝ

�
10; . . . ; ŝ�s0� where hÿia � ŝÿi0; i 6� k;

and hÿka � ŝÿk0 � a, is a feasible solution of (Pa), with
an associated value of the objective function
(which is greater than or equal to Re�Xa; Ya�� being
less than Re�X0; Y0�. So, we can state Re�Xa; Ya� <
Re�X0; Y0�:

Following the notation above, let us now con-
sider DMUa equal to DMU0 except for the output
p, taking the value ypa � yp0 � a; a > 0, for DMUa.
Now, we have to prove Re�Xa; Ya� > Re�X0; Y0�. Let
us start the proof by showing that any solution of
the problem (Pa) gives a feasible solution of the
problem (P0) with a smaller value of the objective
function than the one associated with the ®rst so-
lution. Let �k1a; k2a; . . . ; kna; sÿ1a; . . . ; sÿma; s

�
1a; . . . ; s�sa�

be a solution of (Pa). Then, we can see that
�k1a; k2a; . . . ; kna; sÿ1a; . . . ; sÿma; h

�
10; . . . ; h�s0�, where

h�r0 � s�ra; r 6� p; and h�p0 � s�pa � a; is a feasible so-
lution for (P0) verifying the above requirement. In
particular, if the starting solution of (Pa) is an
optimum, we ®nd a solution of problem (P0) with
an associated value of the objective function less
than Re�Xa; Ya�, so we can conclude Re�Xa; Ya� >
Re�X0; Y0�.

Property (v) is more naturally related formu-
lation (2) of Re, because it deals with equip-
roportionate scalings of the observations.
Therefore, we use Eq. (2) to prove (v):

(v.1) If h > 1 and �h�i ;/�r ; k�j � is an optimal so-
lution of Eq. (2) when DMU0 is being evaluated,
then �h�i =h;/�r ; k�j � is a feasible solution of Eq. (2)

when (hX0,Y0) is under evaluation, because the
constraints for inputs and outputs are clearly sat-
is®ed and h�i =h < h�i 6 1: Therefore,

Re�hX0; Y0�6

1

m

Xm

i�1

h�i
h

1

s

Xs

r�1

/�r

� 1

h
Re�X0; Y0�:

Moreover, it is easy to ®nd examples in which
both the given bound is reached and Re�hX0; Y0� is
lower than �1=h�Re�X0; Y0�. Therefore, a less gen-
eral relationship between both values of Re cannot
be stated.

(v.2) Identical to (v.1), but taking �h�i ;//�r ; k
�
j �

as a feasible solution of Eq. (2) for (X0, /Y0).
(v.3) This is also similar to the two previous

proofs. Now, we only need to consider that for an
optimal solution of Eq. (2) when DMU0 is being
evaluated, �h�i ;/�r ; k�j �, vector �h�i =k; k/�r ; k

�
j � is a

feasible solution of Eq. (2) when �kX0; �1=k�Y0�;
k > 1; is under evaluation. Therefore,

Re kX0;
1

k
Y0

� �
6

1

m

Xm

i�1

h�i
k

1

s

Xs

r�1

k/�r

� 1

k2
Re�X0; Y0�:

The same remark about the given bound as in
(v.1) can be made here.

(vi.1) To get the desired relation Re6 h, we
have only to check that the total ine�ciencies in
the input-oriented radial model together with the
optimal values of the scalars kj, give a feasible
solution of Eq. (4) with an associated value of
the fractional objective function less than or equal
to h.

(vi.2) The proof of this property is similar to the
previous one, but replacing the input-oriented ra-
dial model by the output-oriented one, and
checking that the value of the fractional objective
function in the output radial model associated
with the feasible solution of Eq. (4) given by the
total ine�ciencies and the optimal values of kj is
less than or equal to 1//.

Finally, it should be noted that if we include the
convexity constraint in the formulation of Re the
above proof remains valid. h
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