

PSI 3560 – COGNITIVE SYSTEMS

Course presentation

Marcio Lobo Netto João Eduardo Kogler Junior

Polytechnic School of the University of São Paulo Department of Electronic Systems Engineering © 2019 – University of São Paulo

Summary

```
- First session (7:30 - 8:30 )
```

- Course organization
- Calendar
- Participants
- Syllabus
 - Coffee break
 - Second session (8:30 10:30)

Course Organization

- Language
 - English, working proficiency level
- Classes
 - 4 classes on Tuesdays morning grouped in two sessions with coffee break intermission
 - Sessions one on foundations and the other on techniques
- Evaluation
 - Two homework exercises (30%),
 - one final exam (30%),
 - one final project with written report and oral presentation (40%) → report due to the final exam's day
- Resources
 - Moodle/STOA → (with news forum + email notification)
 - Facebook → (closed group for sharing findings and discussions)
 - All academic news will be delivered via STOA and email

PSI 3560

Calendar

month	day	part A - Foundations	part B - Techniques
FEB	18/2	Course presentation	Introduction
	25/2	no classes (carnaval)	no classes (carnaval)
	3/3	F1	T1
MAR	10/3	F2	T2
	17/3	F3	T3
	24/3	F4	T4
	31/3	F5	T5
APR	7/4	no classes (semana santa)	no classes (semana santa)
	17/4	F6 / deadline 1st homework	T6 / deadline1st homework
	21/4	no classes - Tiradentes	no classes - Tiradentes
	28/4	no class - 1st. exams week	no class - 1st. exams week
	5/5	F7	T7
MAY	12/5	F8	Т8
	19/5	F9	Т9
	26/5	F10	T10
	1/6	F11	T11
JUN	9/6	F12	T12
	16/6	wrap up/deadline 2nd homework	wrap up/deadline 2nd homework
	23/6	final exam PSI3560	oral presentations
	30/6	oral presentations	oral presentations

PSI 3560

Language proficiency

- About the expected working proficiency level of English usage, it means...
 - To understand what the <u>instructors and colleagues say</u>
 and be capable of having conversations with them.
 - To read and understand the academic materials (books, exercises, papers, shared news, academic news).
 - To write your own material (exercises answers, reports) so it can be understood by others.
 - To present orally your project at the end of the course
 - Full proficiency and fluency are not required.

Pre-requisites

- What kind of background is required to follow the course subject?
- Answer: having entered this university.
 - This course is open to all areas.
 - The subject (cognitive science) is interdisciplinary.
 - The approach is usually multidisciplinary.
 - All required explanations will be presented in a very accessible way.
 - However, some effort will be required of everyone, both the engineering students and the non-engineering ones.

Homework level

- For the homeworks you will have to:
 - Read materials available in English language.
 - Make critical analysis and write down your own considerations on it.
 - Propose ideas and solutions about detected issues.
- You will not be required to:
 - Make calculations, develop computer programs, and develop projects.
 - More about this on the technique sessions of this course.

About the final exam

- The final exam will have two parts:
 - A part to be done in classroom
 - And a part to be done at home, individually.
 - The part to be done in classroom will be based on concepts discussed during the classes.
 - The part to be done at home may involve some extra research.

Participants

- Instructors
 - Marcio Lobo Netto
 - Research gate page
 - LinkedIn page
 - João Kogler
 - Research gate page
 - LinkedIn page
- Students
 - 16 students enrolled

Participants

- Present yourself and tell with some few words
 - Your name, your school and course / study area
 - Your reasons to attend this course
 - Your expectations about this course
 - About one minute per student
 - » You will have opportunity to tell more details in the first homework, below...

- Homework 0 mandatory
 - Write down your reasons and expectations, save it in a pdf file, and upload to STOA with the tile "Homework 0 – usp_number", up to Mar/08.

Syllabus

PART F – Foundations (about 2 weeks each topic)

- Foundational concepts of cognitive science (F1/F2)
 - Perception, cognition, learning, consciousness, attention, emotions, language, decision making, action planning, etc....
- Selected topics about brain and mind (F3/F4)
 - Memory, brain organization and functionalities, representation.
- Neuroscience (F5/F6)
 - The neural basis of cognitive processes and information representation and processing
 - Neuroimaging and experimental methods in neuroscience
- Social cognition (F7/F8)
 - Communication, language, emotion
- General approaches to cognitive modelling (F9/F10)
 - Dynamic systems approach, embodied cognition, embedded cognition and ecological approach, enactive approach
- Evolution and development (F11/F12)
 - Life and the emergence of cognition, developmental aspects of cognition.

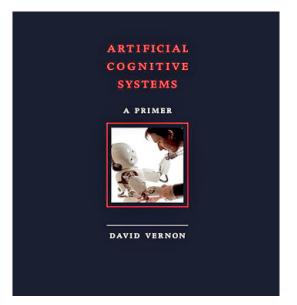
Syllabus

PART T – Techniques (about 2 weeks each topic)

- The concept of cognitive system and the nature of cognition (T1/T2)
 - Cognitive agents, natural versus artificial cognition, cognitive systems, machine learning and AI, paradigms of cognition, examples of cognitive systems and applications.
- Modelling cognition (T3/T4)
 - The computational approach to cognitive modelling, representation and processes, the nature of the cognitive problem, autonomy, knowledge and conceptual systems
- Artificial Intelligence and cognitivism (T5/T6)
 - The symbolical approach, symbol systems, artificial general intelligence.
- Machine learning and the connectionism (T7/T8)
 - Statistical learning, traditional neural network approach, deep learning, advanced networks
- Adaptive systems (T9/T10)
 - Adaptation, cellular automata, artificial life, morphogenesis
- Cognitive architectures (T11/T12)
 - Classes of cognitive architectures, examples, cognitive robotics

References

Textbooks


- Artificial cognitive systems a primer
 - David Vernon, MIT Press, 2014

Bernard Baars and Nicole Gage, Elsevier, 2013

Additional references

- The Cognitive Neurosciences
 - Michael Gazzaniga , MIT Press, 4th Ed, 2009
- The MIT Encyclopedia of Cognitive Sciences
 - Robert A. Wilson and Frank C. Keil, MIT Press, 1999
- Foundations of Cognitive Sciences
 - Michael Posner, MIT Press, 2001
- Neural Networks and Learning Machines
 - Simon S. Haykin, Prentice Hall, 2010
- Artificial Intelligence, a Modern Approach
 - Stuart Russel and Peter Norvig, Prentice Hall, 3rd Ed, 2010

Historical overview

- Previous courses
 - Cognitive Sciences were originally introduced at USP / POLI by Prof. Henrique Schutzer Del Nero
 - Followed from a study/working group he started at Advanced Studies Institute (IEA)
 - Then he moved to POLI Electrical Eng. and brought here this research group as a continuous effort in the area
 - He offered also a graduate course on Cognitive
 Science in the PhD program of POLI Electrical Eng.
- Recently, with the EC3 reformulation of the undergrad curriculum of POLI courses, it became viable offering this new course as an optional subject for students of all areas.
 - First offering was on 2018

15

Thank you

Following 2nd session

