Hoeffding inequality

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq 2 M e^{-2 \epsilon^{2} N}
$$

VC inequality

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq 4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N}
$$

Hypothesis space: \mathcal{H}
Growth-function: $m_{\mathcal{H}}(N)$ (counts dichotomies)
Break point: k is a break point for \mathcal{H} if there is no dataset of size k for which \mathcal{H} generates all 2^{k} dichotomies
$m_{\mathcal{H}}(N)$ is polynomial if there is a break-point

The bound $4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N}$ in the VC inequality tends to zero as N increases (The negative exponential starts to dominate the polinomial at some point)

VC dimension

VC dimension $d_{\text {vc }}(\mathcal{H})$:
The largest number of points that can be shattered by \mathcal{H} (The largest value of N for which $m_{\mathcal{H}}(N)=2^{N}$)

Break point:

k is a break point for \mathcal{H} if there is no dataset of size k shattered by \mathcal{H}

If k is a break point for \mathcal{H}, then $d_{\mathrm{vc}}(\mathcal{H})<k$
$d_{\mathrm{vc}}(\mathcal{H})+1$ is a break-point for \mathcal{H}

The growth function

In terms of a break point k :

$$
m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1}\binom{N}{i}
$$

In terms of the VC dimension d_{VC} :

$$
m_{\mathcal{H}}(N) \leq \underbrace{\sum_{i=0}^{d_{\mathrm{VC}}}\binom{N}{i}}_{\text {maximum power is }}
$$

$$
m_{\mathcal{H}}(N) \leq \sum_{i=0}^{d_{\mathrm{vc}}}\binom{N}{i} \leq N^{d_{v c}}+1
$$

Examples

- \mathcal{H} is positive rays:

$$
d_{\mathrm{VC}}=1
$$

- \mathcal{H} is 2 D perceptrons:

$$
d_{\mathrm{VC}}=3
$$

- \mathcal{H} is convex sets:

$$
d_{\mathrm{VC}}=\infty
$$

VC dimension and learning

$d_{\mathrm{VC}}(\mathcal{H})$ is finite $\quad \Longrightarrow \quad g \in \mathcal{H}$ will generalize

- Independent of the learning algorithm
- Independent of the input distribution
- Independent of the target function

The VC inequality holds for

- any target function
- any input distribution
- any learning algorithm

It is a "worst case bound"

Let d be the input data dimension $\left(x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)\right)$

For perceptrons, $d_{\mathrm{vc}}=d+1$

To prove it, it is enough to show that
(a) $d_{v c} \geq d+1$, and
(b) $d_{v c} \leq d+1$

What do we need to do to prove (a) $d_{\mathrm{vc}} \geq d+1$?

What do we need to do to prove (a) $d_{\mathrm{vc}} \geq d+1$?
A. We need to show that there is a set of $d+1$ points that can be shattered by the perceptron

How? Carefully choose $d+1$ points, assign arbitrary labels in $\{-1,+1\}$ for each of them, and then show that there is a hypothesis that agrees with the labels

Here is one direction

A set of $N=d+1$ points in \mathbb{R}^{d} shattered by the perceptron:

$$
\mathrm{X}=\left[\begin{array}{c}
-\mathbf{x}_{1}^{\top}- \\
-\mathbf{x}_{2}^{\top}- \\
-\mathbf{x}_{3}^{\top}- \\
\vdots \\
-\mathbf{x}_{d+1}^{\top}-
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 0 & 1 & & 0 \\
& \vdots & & \ldots & 0 \\
1 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

X is invertible

Can we shatter this data set?

$$
\begin{array}{r}
\text { For any } \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d+1}
\end{array}\right]=\left[\begin{array}{c}
\pm 1 \\
\pm 1 \\
\vdots \\
\pm 1
\end{array}\right], \text { can we find a vector } \mathbf{w} \text { satisfying } \\
\qquad \begin{array}{l}
\operatorname{sign}(X w)=\mathbf{y} \\
\text { Easy! Just make } \quad \mathrm{Xw}=\mathbf{y} \\
\text { which means } \mathbf{w}=X^{-1} \mathbf{y}
\end{array}
\end{array}
$$

What do we need to do to prove (b) $d_{\mathrm{vc}} \leq d+1$?

What do we need to do to prove (b) $d_{\mathrm{vc}} \leq d+1$?
A. We need to show that no set of $d+2$ points can be shattered by the perceptron

How? Take any set of $d+2$ points and show that it is always possible to build a dichotomy that can not be generated by any of the hypotheses

Take any $d+2$ points

For any $d+2$ points,

$$
\mathbf{x}_{1}, \cdots, \mathbf{x}_{d+1}, \mathbf{x}_{d+2}
$$

More points than dimensions \Longrightarrow we must have

$$
\mathbf{x}_{j}=\sum_{i \neq j} a_{i} \mathbf{x}_{i}
$$

where not all the a_{i} 's are zeros

So?

$$
\mathbf{x}_{j}=\sum_{i \neq j} a_{i} \mathbf{x}_{i}
$$

Consider the following dichotomy:
\mathbf{x}_{i} 's with non-zero a_{i} get $\quad y_{i}=\operatorname{sign}\left(a_{i}\right)$
and \mathbf{x}_{j} gets $y_{j}=-1$
No perceptron can implement such dichotomy!

Why?

$$
\mathbf{x}_{j}=\sum_{i \neq j} a_{i} \mathbf{x}_{i} \quad \Longrightarrow \quad \mathbf{w}^{\top} \mathbf{x}_{j}=\sum_{i \neq j} a_{i} \mathbf{w}^{\top} \mathbf{x}_{i}
$$

If $y_{i}=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)=\operatorname{sign}\left(a_{i}\right)$, then $a_{i} \mathbf{w}^{\top} \mathbf{x}_{i}>0$

This forces

$$
\mathbf{w}^{\top} \mathbf{x}_{j}=\sum_{i \neq j} a_{i} \mathbf{w}^{\top} \mathbf{x}_{i}>0
$$

Therefore, $\quad y_{j}=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}_{j}\right)=+1$

Putting it together

We proved $\quad d_{\mathrm{VC}} \leq d+1 \quad$ and $\quad d_{\mathrm{VC}} \geq d+1$

$$
d_{\mathrm{VC}}=d+1
$$

What is $d+1$ in the perceptron?

It is the number of parameters $w_{0}, w_{1}, \cdots, w_{d}$

Discussions

- Interpretation of VC dimension
- what it signifies
- is there a practical use?
- Some comments on the VC bound

1. Degrees of freedom

Parameters create degrees of freedom
\# of parameters: analog degrees of freedom
d_{VC} : equivalent 'binary' degrees of freedom

The usual suspects

Positive rays $\left(d_{\mathrm{VC}}=1\right)$:

$$
h(x)=-1 \begin{array}{lll}
& a & h(x)=+1 \\
\hline
\end{array}
$$

Positive intervals $\left(d_{\mathrm{VC}}=2\right)$:

$$
h(x)=-1 \quad \phi \longleftrightarrow \underset{h(x)=+1}{ } \quad h(x)=-1
$$

Not just parameters

Parameters may not contribute degrees of freedom:

d_{VC} measures the effective number of parameters

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq 4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N}
$$

If d_{vc} is finite, learning generalises
How many examples do we need ?

Let us examine the behavior of a rough approximation for the bound:

$$
N^{d v c} e^{-N}
$$

$$
\text { (Recall that } m_{\mathcal{H}}(N) \leq N^{d v c}+1 \text {) }
$$

$$
N^{d} e^{-N}
$$

Fix $N^{d} e^{-N}=$ small value

How does N change with d ?

Rule of thumb:

$$
N \geq 10 d_{\mathrm{VC}}
$$

Given ϵ, we have the bound (δ):

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq \underbrace{4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N}}_{\delta}
$$

Given δ, we can compute ϵ :

$$
\delta=4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N} \Longrightarrow \epsilon=\sqrt{\frac{8}{N} \ln \frac{4 m_{\mathcal{H}}(2 N)}{\delta}}
$$

$P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq \delta \Longleftrightarrow P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \leq \epsilon\right)>1-\delta$

With probability at leas $1-\delta$ we have

$$
\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right| \leq \epsilon
$$

Probably approximately correct (PAC)

Rearranging things

Start from the VC inequality:

$$
\mathbb{P}\left[\left|E_{\text {out }}-E_{\text {in }}\right|>\epsilon\right] \leq \underbrace{4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N}}_{\delta}
$$

Get ϵ in terms of δ :

$$
\delta=4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N} \Longrightarrow \epsilon=\underbrace{\sqrt{\frac{8}{N} \ln \frac{4 m_{\mathcal{H}}(2 N)}{\delta}}}_{\Omega}
$$

With probability $\geq 1-\delta, \quad\left|E_{\text {out }}-E_{\text {in }}\right| \leq \Omega(N, \mathcal{H}, \delta)$

Generalization bound

With probability $\geq 1-\delta, \quad E_{\text {out }}-E_{\text {in }} \leq \Omega$

$$
\Longrightarrow
$$

With probability $\geq 1-\delta$,

$$
E_{\text {out }} \leq E_{\text {in }}+\Omega
$$

1. Dichotomies are the key for the definition of VC dimension
2. The VC dimension replaces M (size of \mathcal{H}) in the Hoeffding inequality bound

$$
P\left(\left|E_{\text {in }}-E_{\text {out }}\right|>\epsilon\right) \leq 4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N} \quad\left(m_{\mathcal{H}}(2 N) \leq(2 N)^{d r c}+1\right)
$$

3. VC dimension is related to the expressiveness of \mathcal{H}
4. $E_{\text {out }} \leq E_{\text {in }}+\underbrace{\sqrt{\frac{8}{N} \ln \frac{4 m_{\mathcal{H}}(2 N)}{\delta}}}_{\Omega}$

