


Hoeffding inequality

P( |Ein(g) — Eout(g)] > 6) < 2Me 2N

VC inequality

P( |Ein(g) — Eou(g)| > e) < 4 my(2N) e 5N



Quick review

Hypothesis space: H

Growth-function: mH(N) ( counts dichotomies )

Break point: k is a break point for # if there is no dataset of size
k for which 7{ generates all 2% dichotomies

my(N) is polynomial if there is a break-point
The bound 4 my(2N) e 5N in the VC inequality tends to zero as

N increases (The negative exponential starts to dominate the polinomial
at some point)
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VC dimension d,.(H):

The largest number of points that can be shattered by H
(The largest value of N for which my,(N) = 2N)

Break point:
k is a break point for H if there is no dataset of size k

shattered by H

If k is a break point for #, then d,(#H) < k

dyc(H) + 1 is a break-point for H
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The growth function

In terms of a break point k:

In terms of the VC dimension d.:

my(N) < g(]j)

- . dvc
maximum power is [N ©"C
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Examples

e 1 is positive rays: °
dyc=1
e 7 is 2D perceptrons: °
Ohio = & ° .
e H is convex sets: «®
dye = 00 4 :
L]
h L[]
* L] L]
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VC dimension and

dve(H) is finte = g € H will generalize
o Independent of the learning algorithm
e Independent of the input distribution

e Independent of the target function
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The VC inequality holds for
e any target function
e any input distribution

e any learning algorithm

It is a “worst case bound”



Example: VC dimension of the perceptron

Let d be the input data dimension ( x = (x1,x2,...,x4) )
For perceptrons, d,c = d +1
To prove it, it is enough to show that

(a) doe > d+1, and

(b) de <d+1
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J()Zk
@l What do we need to do to prove (a) dyc > d + 17

A. We need to show that there is a set of d + 1 points that can be
shattered by the perceptron

How? Carefully choose d + 1 points, assign arbitrary labels in
{—=1,+1} for each of them, and then show that there is a
hypothesis that agrees with the labels



Here is one direction

Aset of N = d + 1 points in R? shattered by the perceptron:

—x] — 1 0 0
— X5 — 1 1 0 . 0
X = — X5 — = 1 1 0
] 0
—XJ 1 0 0 1
X is invertible
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Can we shatter this data set?

Y1 +1
el .
Forany y = G = , can we find a vector w satisfying
Yd+1 ==1l

sign(Xw) = y

Easy! Just make Xw =y
which means w = X"y
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J()/k
@l What do we need to do to prove (b) d,c <d+17?

A. We need to show that no set of d + 2 points can be shattered
by the perceptron

How? Take any set of d + 2 points and show that it is always
possible to build a dichotomy that can not be generated by any of
the hypotheses



Take any d + 2 points
For any d + 2 points,
X1yt Xd1y Xd42

More points than dimensions == we must have

X = E a; X;

i#]
where not all the a;'s are zeros
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So?

X = E a; X;

i#j

Consider the following dichotomy:

x;'s with non-zero a; get  y; = sign(a;)
and x; gets y; =—1

No perceptron can implement such dichotomy!
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Why?

X; = E a; X, — WX; = E a; W'X;
i#j i#j

If y; = sign(w'x;) = sign(a;), then a; w'x; > 0

This forces wx; = Zai w'x; > 0
7]

Therefore, y; = sign(w'x;) = +1
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Putting it together

We proved dye <d+1 and dye>d+1

doe=d+1

What is d + 1 in the perceptron?

It is the number of parameters wg, wy, - - -
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Discussions

o Interpretation of VC dimension

e what it signifies
e is there a practical use ?

e Some comments on the VC bound



1. Degrees of freedom

Parameters create degrees of freedom

# of parameters: analog degrees of freedom

dyc: equivalent ‘binary’ degrees of freedom
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The usual suspects

Positive rays (dyc = 1):

Positive intervals (d,c = 2):

h(z) = -1 h(z) =41 " h(z) =-1
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Not just parameters

Parameters may not contribute degrees of freedom:

— DO~~~

d measures the effective number of parameters
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P( ‘E/n(g) - Eout(g)} > 6) < 4m7—[(2N) e*éCQN

If dic is finite, learning generalises

How many examples do we need 7

Let us examine the behavior of a rough approximation for the
bound:

Ndvece=N (Recall that my (N) < N 4 1)
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Fix Nle N = small value

How does N change with d?

Rule of thumb:

N > 10 dyc
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Given ¢, we have the bound (0):

P( ‘Ein(g) - Eout(g)| > 6> < 4mH(2N) e*é62N

Given 9, we can compute e€:

d=4my(2N) e 8N = ¢ = /& |n 2mu2V)
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P(|En(g) — Eouelg)| > ¢) < 6 <= P(|Enlg) — Eouelg)] <€) > 10

With probability at leas 1 — § we have

|Ein(g) — Eout(g)] < ¢

Probably approximately correct (PAC)

12



Rearranging things
Start from the VC inequality:
PHEout - Ein| > E] S 4m7{(2N)6_%62N
ﬁ_/
0

Get € in terms of o:

0= 4mH(2N)e_%‘2N = €= %lnllm%@m

.~
Q

With probability > 1 — 4, | Eout — Ei| < Q(N,H,0)
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Generalization bound

With probability 2 1-— 6, Emn - Ein S Q

—

With probability > 1 — 4,

E out <
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1. Dichotomies are the key for the definition of VC dimension

2. The VC dimension replaces M (size of #) in the Hoeffding
inequality bound

1
P( ‘E,-,, — Eout‘ > e) < 4my(2N) e 5N (mu(2N) < (2N)4e +1)

3. VC dimension is related to the expressiveness of H

de | E Q

8 4mH(2N) mall large mall

4. Epu < E; P mall | forge s
out = En T\ NN 5 Ll

Q large small large




