Hoeffding inequality

$$P\Big(\big| \mathsf{E}_{\mathit{in}}(g) - \mathsf{E}_{\mathit{out}}(g) \big| > \epsilon \Big) \leq 2Me^{-2\epsilon^2 N}$$

VC inequality

$$\mathsf{P}\Big(\left|\mathsf{E}_{\mathit{in}}(g) - \mathsf{E}_{\mathit{out}}(g)
ight| > \epsilon\Big) \leq 4 \, m_{\mathcal{H}}(2N) \, \mathrm{e}^{-rac{1}{8}\epsilon^2 N}$$

Hypothesis space: \mathcal{H}

<u>Growth-function</u>: $m_{\mathcal{H}}(N)$ (counts dichotomies)

Break point: k is a break point for \mathcal{H} if there is no dataset of size \overline{k} for which \mathcal{H} generates all 2^k dichotomies

 $m_{\mathcal{H}}(N)$ is polynomial if there is a break-point

The bound $4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\epsilon^2 N}$ in the VC inequality tends to zero as N increases (The negative exponential starts to dominate the polynomial at some point)

<u>VC dimension</u> $d_{vc}(\mathcal{H})$:

The largest number of points that can be shattered by \mathcal{H} (The largest value of N for which $m_{\mathcal{H}}(N) = 2^N$)

Break point:

k is a break point for \mathcal{H} if there is no dataset of size k shattered by \mathcal{H}

If k is a break point for \mathcal{H} , then $d_{vc}(\mathcal{H}) < k$

 $d_{vc}(\mathcal{H}) + 1$ is a *break-point* for \mathcal{H}

The growth function

In terms of a break point *k*:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

In terms of the VC dimension $d_{\rm VC}$:

$$n_{\mathcal{H}}(N) \leq \sum_{\substack{i=0\\ \text{maximum power is } N^{d_{\mathrm{VC}}}}}^{d_{\mathrm{VC}}}$$

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{d_{VC}} \binom{N}{i} \leq N^{d_{VC}} + 1$$

Examples

- ${\cal H}$ is positive rays: ${\it d}_{\rm VC}=1$ ${\cal H}$ is 2D perceptrons: ${\it d}_{\rm VC}=3$ •
- \mathcal{H} is convex sets:

 $d_{
m VC}=\infty$

VC dimension and learning

 $d_{\scriptscriptstyle \mathrm{VC}}(\mathcal{H})$ is finite $\implies g \in \mathcal{H}$ will generalize

- Independent of the learning algorithm
- Independent of the input distribution
- Independent of the target function

The VC inequality holds for

- any target function
- any input distribution
- any learning algorithm

It is a "worst case bound"

Example: VC dimension of the perceptron

Let *d* be the input data dimension ($\mathbf{x} = (x_1, x_2, \dots, x_d)$)

For perceptrons,
$$d_{vc} = d + 1$$

To prove it, it is enough to show that

(a)
$$d_{ ext{vc}} \geq d+1$$
, and
(b) $d_{ ext{vc}} \leq d+1$

What do we need to do to prove (a) $d_{ m vc} \geq d+1$?

A. We need to show that there is a set of d + 1 points that can be shattered by the perceptron

How? Carefully choose d + 1 points, assign arbitrary labels in $\{-1, +1\}$ for each of them, and then show that there is a hypothesis that agrees with the labels

Here is one direction

A set of N = d + 1 points in \mathbb{R}^d shattered by the perceptron:

 ${\bf X}$ is invertible

Can we shatter this data set?

For any
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{d+1} \end{bmatrix} = \begin{bmatrix} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix}$$
, can we find a vector \mathbf{w} satisfying $\operatorname{sign}(\mathbf{X}\mathbf{w}) = \mathbf{y}$

Easy! Just make $X \mathbf{w} = \mathbf{y}$

which means
$$\mathbf{w} = \mathrm{X}^{-1}\mathbf{y}$$

What do we need to do to prove (b) $d_{\rm vc} \leq d+1$?

What do we need to do to prove (b) $d_{vc} \leq d+1$?

A. We need to show that no set of d + 2 points can be shattered by the perceptron

How? Take any set of d + 2 points and show that it is always possible to build a dichotomy that can not be generated by any of the hypotheses

Take any d+2 points

For any d+2 points,

$$\mathbf{x}_1, \cdots, \mathbf{x}_{d+1}, \mathbf{x}_{d+2}$$

More points than dimensions \implies we must have

$$\mathbf{x}_j = \sum_{i
eq j} oldsymbol{a}_i \; \mathbf{x}_i$$

where not all the a_i 's are zeros

🕐 🌆 Creator: Yaser Abu-Mostafa - LFD Lecture 7

So?

$$\mathbf{x}_j = \sum_{i
eq j} \mathbf{a}_i \; \mathbf{x}_j$$

Consider the following dichotomy:

 \mathbf{x}_i 's with non-zero \mathbf{a}_i get $y_i = \operatorname{sign}(\mathbf{a}_i)$

and \mathbf{x}_j gets $y_j = -1$

No perceptron can implement such dichotomy!

Why?

$$\mathbf{x}_j = \sum_{i \neq j} a_i \, \mathbf{x}_i \quad \Longrightarrow \quad \mathbf{w}^{\mathsf{T}} \mathbf{x}_j = \sum_{i \neq j} a_i \, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i$$

If $y_i = \operatorname{sign}(\mathbf{w}^{\scriptscriptstyle \mathsf{T}} \mathbf{x}_i) = \operatorname{sign}(a_i)$, then $a_i \, \mathbf{w}^{\scriptscriptstyle \mathsf{T}} \mathbf{x}_i \ > \ 0$

This forces
$$\mathbf{w}^{ \mathrm{\scriptscriptstyle T} } \mathbf{x}_j = \sum_{i \neq j} a_i \; \mathbf{w}^{ \mathrm{\scriptscriptstyle T} } \mathbf{x}_i \; > \; 0$$

Therefore, $y_j = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_j) = +1$

Putting it together

We proved $d_{\scriptscriptstyle \mathrm{VC}} \leq d+1$ and $d_{\scriptscriptstyle \mathrm{VC}} \geq d+1$

$$d_{\scriptscriptstyle
m VC} = d+1$$

What is d + 1 in the perceptron?

It is the number of parameters w_0, w_1, \cdots, w_d

Discussions

- Interpretation of VC dimension
 - what it signifies
 - is there a practical use ?
- Some comments on the VC bound

1. Degrees of freedom

Parameters create degrees of freedom

of parameters: **analog** degrees of freedom

 $d_{\rm VC}$: equivalent 'binary' degrees of freedom

The usual suspects

Positive rays $(\mathbf{d}_{VC} = 1)$:

$$h(x) = -1 \qquad \qquad h(x) = +1$$

Positive intervals $(\mathbf{d}_{VC} = 2)$:

Not just parameters

Parameters may not contribute degrees of freedom:

 $d_{\rm VC}$ measures the **effective** number of parameters

$$P\Big(|E_{in}(g) - E_{out}(g)| > \epsilon\Big) \le 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\epsilon^2 N}$$

If d_{vc} is finite, learning generalises

How many examples do we need ?

Let us examine the behavior of a rough approximation for the bound:

 $N^{d_{VC}}e^{-N}$ (Recall that $m_{\mathcal{H}}(N) \leq N^{d_{VC}}+1$)

 $\mathsf{Fix}\; N^{\textit{d}} e^{-N} = \mathsf{small}\; \mathsf{value}$

How does N change with d?

Rule of thumb:

 $N \geq 10 \ d_{\rm VC}$

Given ϵ , we have the bound (δ):

$$P\Big(|E_{in}(g) - E_{out}(g)| > \epsilon\Big) \leq \underbrace{4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\epsilon^2 N}}_{\delta}$$

Given δ , we can compute ϵ :

$$\delta = 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\epsilon^2 N} \Longrightarrow \epsilon = \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}}$$

$$\mathsf{P}\Big(ig| \mathsf{E}_{\mathit{in}}(g) - \mathsf{E}_{\mathit{out}}(g) ig| > \epsilon \Big) \leq \delta \Longleftrightarrow \mathsf{P}\Big(ig| \mathsf{E}_{\mathit{in}}(g) - \mathsf{E}_{\mathit{out}}(g) ig| \leq \epsilon \Big) > 1 - \delta$$

With probability at leas $1-\delta$ we have

 $\left|E_{in}(g) - E_{out}(g)\right| \leq \epsilon$

Probably approximately correct (PAC)

Rearranging things

Start from the VC inequality:

$$\mathbb{P}[|E_{\text{out}} - E_{\text{in}}| > \epsilon] \leq \underbrace{4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N}}_{\delta}$$

Get ϵ in terms of δ :

$$\delta = 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N} \implies \epsilon = \underbrace{\sqrt{\frac{8}{N}\ln\frac{4m_{\mathcal{H}}(2N)}{\delta}}}_{\Omega}$$

With probability $\geq 1-\delta$, $|E_{ ext{out}}-E_{ ext{in}}| \leq \Omega(N,\mathcal{H},\delta)$

🕐 🌁 Creator: Yaser Abu-Mostafa - LFD Lecture 7

Generalization bound

With probability $\geq 1-\delta$, $E_{
m out}-E_{
m in}~\leq \Omega$

 \implies

With probability $\geq 1-\delta$,

 $E_{
m out}~\leq~E_{
m in}~+~\Omega$

- 1. Dichotomies are the key for the definition of VC dimension
- 2. The VC dimension replaces M (size of \mathcal{H}) in the Hoeffding inequality bound

 $P\Big(\left|E_{in}-E_{out}\right|>\epsilon\Big)\leq 4\,m_{\mathcal{H}}(2N)\,e^{-\frac{1}{8}\epsilon^2N}\qquad(m_{\mathcal{H}}(2N)\leq(2N)^{d_{VC}}+1)$

3. VC dimension is related to the expressiveness of ${\cal H}$

4.
$$E_{out} \leq E_{in} + \underbrace{\sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}}}_{\Omega}$$
 $\xrightarrow{\begin{array}{c} d_{vc} & E_{in} & \Omega \\ \hline small & large & small \\ \downarrow & \uparrow & \downarrow \\ large & small & large \end{array}}$