


Hoeffding inequality

P
( ∣∣Ein(g)− Eout(g)

∣∣ > ε
)
≤ 2Me−2ε2N

VC inequality

P
( ∣∣Ein(g)− Eout(g)

∣∣ > ε
)
≤ 4mH(2N) e−

1
8ε

2N
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Quick review

Hypothesis space: H

Growth-function: mH(N) ( counts dichotomies )

Break point: k is a break point for H if there is no dataset of size

k for which H generates all 2k dichotomies

mH(N) is polynomial if there is a break-point

The bound 4mH(2N) e−
1
8
ε2N in the VC inequality tends to zero as

N increases (The negative exponential starts to dominate the polinomial

at some point)
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VC dimension

VC dimension dVC(H):

The largest number of points that can be shattered by H
(The largest value of N for which mH(N) = 2N)

Break point:

k is a break point for H if there is no dataset of size k
shattered by H

If k is a break point for H, then dVC(H) < k

dVC(H) + 1 is a break-point for H
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The growth funtion
In terms of a break point k:

mH(N) ≤
k−1∑

i=0

(
N

i

)

In terms of the VC dimension dv:
mH(N) ≤

dv∑

i=0

(
N

i

)

︸ ︷︷ ︸maximum power is N dv
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mH(N) ≤
dVC∑

i=0

(
N

i

)
≤ NdVC + 1
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Examples
• H is positive rays: •

dv = 1

• H is 2D pereptrons: •
dv = 3 • •

• H is onvex sets:
dv = ∞
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VC dimension and learning
dv(H) is �nite =⇒ g ∈ H will generalize
• Independent of the learning algorithm
• Independent of the input distribution
• Independent of the target funtion HYPOTHESIS   SET

ALGORITHM

LEARNING FINAL
HYPOTHESIS

H

A

g ~ f  ~

f: X    Y

TRAINING   EXAMPLES

UNKNOWN  TARGET  FUNCTION

DISTRIBUTION

PROBABILITY

onP X

x y x y
NN11

(    ,    ), ... , (    ,    )

up

down
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The VC inequality holds for

• any target function

• any input distribution

• any learning algorithm

It is a “worst case bound”
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Example: VC dimension of the perceptron

Let d be the input data dimension ( x = (x1, x2, . . . , xd ) )

For perceptrons, dVC = d + 1

To prove it, it is enough to show that

(a) dVC ≥ d + 1, and

(b) dVC ≤ d + 1
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What do we need to do to prove (a) dVC ≥ d + 1 ?

A. We need to show that there is a set of d + 1 points that can be
shattered by the perceptron

How? Carefully choose d + 1 points, assign arbitrary labels in
{−1,+1} for each of them, and then show that there is a
hypothesis that agrees with the labels
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Here is one diretion
A set of N = d+ 1 points in Rd shattered by the pereptron:

X =




� xT
1 �� xT
2 �� xT
3 �...�xT

d+1�



=




1 0 0 . . . 0

1 1 0 . . . 0

1 0 1 0

. . . ... . . . 0

1 0 . . . 0 1




X is invertible
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Can we shatter this data set?

For any y =




y1
y2...
yd+1


 =




±1

±1...
±1


, an we �nd a vetor w satisfying

sign(Xw) = y

Easy! Just make sign(Xw)= y

whih means w = X−1y
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What do we need to do to prove (b) dVC ≤ d + 1 ?

A. We need to show that no set of d + 2 points can be shattered
by the perceptron

How? Take any set of d + 2 points and show that it is always
possible to build a dichotomy that can not be generated by any of
the hypotheses
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Take any d+ 2 points
For any d+ 2 points,

x1, · · · ,xd+1,xd+2

More points than dimensions =⇒ we must have
xj =

∑

i6=j

ai xi

where not all the ai's are zeros
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So?
xj =

∑

i6=j

ai xi

Consider the following dihotomy:
xi's with non-zero ai get yi = sign(ai)

and xj gets yj = −1

No pereptron an implement suh dihotomy!
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Why?
xj =

∑

i6=j

ai xi =⇒ wTxj =
∑

i6=j

ai w
Txi

If yi = sign(wTxi) = sign(ai), then ai w
Txi > 0

This fores wTxj =
∑

i6=j

ai w
Txi > 0

Therefore, yj = sign(wTxj) = +1
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Putting it together
We proved dv ≤ d+ 1 and dv ≥ d+ 1

dv = d+ 1

What is d+ 1 in the pereptron?
It is the number of parameters w0, w1, · · · , wd
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Discussions

• Interpretation of VC dimension

• what it signifies
• is there a practical use ?

• Some comments on the VC bound
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1. Degrees of freedom
Parameters reate degrees of freedom
# of parameters: analog degrees of freedom
dv: equivalent `binary' degrees of freedom
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The usual suspets
Positive rays (dv = 1):

PSfrag replaements

x1 x2 x3 xN. . .

h(x) = −1 h(x) = +1
a

00.20.40.60.81-0.1-0.08-0.06-0.04-0.0200.020.040.060.080.1
Positive intervals (dv = 2):

PSfrag replaements

x1 x2 x3 xN. . .

h(x) = −1 h(x) = −1h(x) = +1

00.20.40.60.81-0.1-0.08-0.06-0.04-0.0200.020.040.060.080.1© AM
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Not just parameters
Parameters may not ontribute degrees of freedom:

down

down

yx

dv measures the e�etive number of parameters
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P
( ∣∣Ein(g)− Eout(g)

∣∣ > ε
)
≤ 4mH(2N) e−

1
8
ε2N

If dVC is finite, learning generalises

How many examples do we need ?

Let us examine the behavior of a rough approximation for the
bound:

NdVCe−N (Recall that mH(N) ≤ NdVC + 1)
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N de−N

Fix N de−N = small value
How does N hange with d?
Rule of thumb:

N ≥ 10 dv
20 40 60 80 100 120 140 160 180 200

10
−5

10
0

10
5

10
10

N 30e−N
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Given ε, we have the bound (δ):

P
( ∣∣Ein(g)− Eout(g)

∣∣ > ε
)
≤ 4mH(2N) e−

1
8
ε2N

︸ ︷︷ ︸
δ

Given δ, we can compute ε:

δ = 4mH(2N) e−
1
8
ε2N =⇒ ε =

√
8
N ln 4mH(2N)

δ
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P
( ∣∣Ein(g)− Eout(g)

∣∣ > ε
)
≤ δ ⇐⇒ P

( ∣∣Ein(g)− Eout(g)
∣∣ ≤ ε

)
> 1− δ

With probability at leas 1− δ we have

∣∣Ein(g)− Eout(g)
∣∣ ≤ ε

Probably approximately correct (PAC)
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Rearranging things
Start from the VC inequality:

PP [|Eout − Ein| > ǫ] ≤ 4mH(2N)e−
1
8ǫ

2N

︸ ︷︷ ︸
δGet ǫ in terms of δ:

δ = 4mH(2N)e−
1
8ǫ

2N =⇒ ǫ =

√
8

N
ln

4mH(2N)

δ︸ ︷︷ ︸
Ω

With probability ≥ 1− δ, |Eout − Ein| ≤ Ω(N,H, δ)© AM
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Generalization bound
With probability ≥ 1− δ, |Eout − Ein| ≤ Ω(N,H, δ)

=⇒

With probability ≥ 1− δ,
Eout ≤ Ein + Ω
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Summary

1. Dichotomies are the key for the definition of VC dimension

2. The VC dimension replaces M (size of H) in the Hoeffding
inequality bound

P
( ∣∣Ein − Eout

∣∣ > ε
)
≤ 4mH(2N) e−

1
8
ε2N

(mH(2N) ≤ (2N)dVC + 1)

3. VC dimension is related to the expressiveness of H

4. Eout ≤ Ein +

√
8

N
ln

4mH(2N)

δ︸ ︷︷ ︸
Ω

dVC Ein Ω
small large small

↓ ↑ ↓
large small large
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