Our question: Does $E_{in}(h)$ say anything about $E_{out}(h)$?

Probability of a "bad" event (fixed h) (Hoeffding)

$$P(|E_{in}(h) - E_{out}(h)| > \epsilon) \le 2e^{-2\epsilon^2 N}$$

Probability of a "bad" event (g selected from a set of M hypothesis)

$$\mathsf{P}\Big(\left|\mathsf{\textit{E}}_{\mathit{in}}(g) - \mathsf{\textit{E}}_{\mathit{out}}(g)
ight| > \epsilon\Big) \leq 2\mathsf{\textit{M}}e^{-2\epsilon^{2}\mathsf{\textit{N}}}$$

Compare the experiment of **tossing one coin** N **times** with the experiment of **tossing** M **coins**, N **times each**. The chance of a coin resulting in N heads is much larger for the second case.

 $P(|E_{in}(g) - E_{out}(g)| > \epsilon) \le 2Me^{-2\epsilon^2N}$

M appears because of the **union bound**, which does not take overlaps among "bad" events into consideration

Can we find another bound that takes the overlaps into consideration ?

(and also works for inifinite Hypothesis set?)

Dicothomies

Let

- $X = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$ (N points)
- \mathcal{H} : a hypothesis space

Dichotomies generated by \mathcal{H} :

any bipartition of X as $X_{-1} \cup X_{+1}$ that agrees with a hypothesis $h \in \mathcal{H}$

$$\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = \left\{ \left(\ h(\mathbf{x}_1), h(\mathbf{x}_2), \dots, h(\mathbf{x}_N) \right) \mid h \in \mathcal{H} \right\}$$

We know that $|\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)| \leq 2^N$

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \cdots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \cdots, \mathbf{x}_N)|$$

Perceptron 2D: $m_{\mathcal{H}}(3) = 8 = 2^3$, $m_{\mathcal{H}}(4) = 14 < 2^4$

Positive rays: $m_{\mathcal{H}}(N) = N + 1$

Positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$

Convex sets: $m_{\mathcal{H}}(N) = 2^N$

If no dataset of size k can be shattered by ${\mathcal H}$ then k is a break point for ${\mathcal H}$

Perceptron 2D: k = 4 is a break point

Positive rays: $m_{\mathcal{H}}(N) = N + 1$, break point k = 2

Positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$, break point k = 3

Convex sets: $m_{\mathcal{H}}(N) = 2^N$, break point $k = +\infty$

Outline

• Proof that $m_{\mathcal{H}}(N)$ is polynomial

• Proof that $m_{\mathcal{H}}(N)$ can replace M

Bounding $m_{\mathcal{H}}(N)$

To show: $m_{\mathcal{H}}(N)$ is polynomial

We show: $m_{\mathcal{H}}(N) \leq \cdots \leq \cdots \leq$ a polynomial

Key quantity:

B(N,k): Maximum number of dichotomies on N points, with break point k

B(N, k): Maximum number of dichotomies on N points, with break point k

Example of last meeting: Supposing k = 2 is a break point, we computed B(3, k) = 4

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3
0	0	0
0	0	٠
0	٠	0
٠	0	0

Recursive bound on B(N, k)

Consider the following table:

$$B(N,k) = \alpha + 2\beta$$

		# of rows	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{N-1}	\mathbf{x}_N
			+1	+1		+1	+1
			-1	$^{+1}$		$^{+1}$	$^{-1}$
	S_1	α		4	4	+	- 1
			$^{+1}$	$^{-1}$		$^{-1}$	$^{-1}$
			-1	$^{+1}$		$^{-1}$	+1
			+1	$^{-1}$		+1	+1
			-1	$^{-1}$		+1	+1
	S_2^+	β	- 1	4	4	÷	1
S_2			$^{+1}$	-1		+1	+1
			-1	-1		$^{-1}$	+1
		β	+1	-1		+1	-1
			$^{-1}$	$^{-1}$		+1	-1
	S_2^-			4	4	+	4
			$^{+1}$	$^{-1}$		+1	-1
			-1	-1		$^{-1}$	-1

Estimating α and β

Focus on $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{N-1}$ columns:

 $\alpha + \beta \leq B(N-1,k)$

			\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{N-1}	
			$^{+1}$	$^{+1}$		+1	
			$^{-1}$	$^{+1}$		+1	
		α		4	4	+	
			$^{+1}$	-1		-1	
			$^{-1}$	$^{+1}$		$^{-1}$	
		β	$^{+1}$	$^{-1}$		$^{+1}$	
			-1	$^{-1}$		$^{+1}$	
				÷	÷	÷	
			$^{+1}$	$^{-1}$		+1	
			-1	-1		$^{-1}$	

Estimating β by itself

Now, focus on the $S_2 = S_2^+ \cup S_2^-$ rows:

 $\beta \leq B(N-1,k-1)$

S_2		β	$^{+1}$	$^{-1}$		+1	+1
			-1	$^{-1}$		$^{+1}$	+1
	S_2^+			÷	÷	÷	
			+1	$^{-1}$		$^{+1}$	+1
			$^{-1}$	$^{-1}$		-1	+1
							-1
							-1
	S_2^-						
							-1
							-1

Putting it together

$B(N,k) = \alpha + 2\beta$		# of rows					l
		# OF FOWS				\mathbf{x}_{N-1}	
			+1	+1		+1	+1
-10 < D(N + 1)			$^{-1}$	+1		+1	$^{-1}$
$lpha+eta~\leq~B(N-1,k)$	S_1	α		4	4	+	+
			+1	$^{-1}$		$^{-1}$	$^{-1}$
			-1	$^{+1}$		$^{-1}$	+1
$\beta \leq B(N-1,k-1)$			+1	$^{-1}$		+1	+1
			-1	$^{-1}$		+1	$^{+1}$
	S_2^+	β	. :	÷	÷	÷	1
			$^{+1}$	$^{-1}$		+1	$^{+1}$
$B(N,k) \leq$	S_2		-1	-1		$^{-1}$	$^{+1}$
$D(N, \kappa) \leq$	D2		+1	$^{-1}$		+1	-1
			$^{-1}$	-1		+1	$^{-1}$
D(X + 1) = D(X + 1)	S_2^-	β		4	4	+	÷
B(N-1,k) + B(N-1,k-1)	-		+1	$^{-1}$		+1	$^{-1}$
			$^{-1}$	$^{-1}$		$^{-1}$	$^{-1}$

Numerical computation of B(N,k) bound

$$B(N,k) \leq B(N-1,k) + B(N-1,k-1)$$

$$(1 \ 2 \ 3 \ 4 \ 5 \ 6 \ ..)$$

$$1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ ..)$$

$$2 \ 1 \ 3 \ 4 \ 4 \ 4 \ 4 \ ..)$$

$$3 \ 1 \ 4 \ 7 \ 8 \ 8 \ 8 \ ..)$$

$$N \ 4 \ 1 \ 5 \ 11 \ .. \ .. \ ..)$$

$$5 \ 1 \ 6 \ : \ .$$

$$6 \ 1 \ 7 \ : \ . \ ..$$

$$(1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ ..)$$

$$(1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ ..)$$

$$(1 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ ..)$$

$$(2 \ 1 \ 3 \ 4 \ 4 \ 4 \ 4 \ ..)$$

$$(3 \ 1 \ 4 \ 7 \ 8 \ 8 \ 8 \ ..)$$

$$(3 \ 1 \ 6 \ 1 \ 7 \ ..)$$

$$(3 \ 1 \ 6 \ ..)$$

$$(3 \ 1 \ 6 \ ..)$$

$$(3 \ 1 \ 6 \ ..)$$

$$(3 \ 1 \ 6 \ ..)$$

$$(3 \ 1 \ 6 \ ..)$$

$$(3 \ 1 \ 6 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

$$(3 \ ..)$$

🕐 🌆 Creator: Yaser Abu-Mostafa - LFD Lecture 6

8/18

Analytic solution for B(N, k) bound

$$\begin{array}{c|c} B(N,k) \leq B(N-1,k) + B(N-1,k-1) & k \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & . \\ \hline 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & . \\ B(N,k) \leq \sum_{i=0}^{k-1} \binom{N}{i} & 1 & 1 & 2 & 2 & 2 & 2 & 2 & . \\ B(N,k) \leq \sum_{i=0}^{k-1} \binom{N}{i} & 1 & 1 & 2 & 2 & 2 & 2 & 2 & . \\ \hline 1 & 1 & 2 & 2 & 2 & 2 & 2 & . \\ \hline 2 & 1 & & & & \\ 3 & 1 & & & & \\ N & 4 & 1 & & & \\ N & 4 & 1 & & & \\ 5 & 1 & & & & \\ 6 & 1 & & & \\ \vdots & \vdots & & & \\ \end{array}$$

2. The induction step

$$\begin{split} \sum_{i=0}^{k-1} \binom{N}{i} &= \sum_{i=0}^{k-1} \binom{N-1}{i} + \sum_{i=0}^{k-2} \binom{N-1}{i}? & \xrightarrow{N-1} \binom{k-1}{N} \\ &= 1 + \sum_{i=1}^{k-1} \binom{N-1}{i} + \sum_{i=1}^{k-1} \binom{N-1}{i-1} \\ &= 1 + \sum_{i=1}^{k-1} \left[\binom{N-1}{i} + \binom{N-1}{i-1} \right] \\ &= 1 + \sum_{i=1}^{k-1} \binom{N}{i} = \sum_{i=0}^{k-1} \binom{N}{i} \checkmark \end{split}$$

It is polynomial!

For a given \mathcal{H} , the break point k is fixed

$$m_{\mathcal{H}}(N) \leq \sum_{\substack{i=0 \ maximum power is N^{k-1}}}^{k-1} {N \choose i}$$

Three examples

 $\sum_{i=0}^{k-1} \binom{N}{i}$

- $\bullet \; \mathcal{H} \; \text{is positive rays:} \; \; (\text{break point } k=2) \\ m_{\mathcal{H}}(N) = N+1 \; \leq \; \; N+1$
- \mathcal{H} is positive intervals: (break point k = 3) $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \leq \frac{1}{2}N^2 + \frac{1}{2}N + 1$
- $\mathcal H$ is 2D perceptrons: (break point k=4) $m_{\mathcal H}(N)=~?~\leq~\frac{1}{6}N^3+\frac{5}{6}N+1$

Outline

• Proof that $m_{\mathcal{H}}(N)$ is polynomial

• Proof that $m_{\mathcal{H}}(N)$ can replace M

What we want

Instead of:

$$\mathbb{P}[|E_{ ext{in}}(g) - E_{ ext{out}}(g)| > \epsilon] \le 2$$
 M $e^{-2\epsilon^2 N}$

We want:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \leq 2 \ m_{\mathcal{H}}(N) \ e^{-2\epsilon^2 N}$$

Pictorial proof ③

- How does $m_{\mathcal{H}}(N)$ relate to overlaps?
- What to do about $E_{ ext{out}}$?
- Putting it together

- The canvas is the space of all possible datasets of size *N*
- Each point in the canvas is a dataset of size N
- Given a hypothesis h, one can compute *E_{in}(h)* with respect to each dataset
- The red points are the "bad" events for h
 (i.e., |E_{in}(h) − E_{out}(h)| > ε)
- According to Hoeffding the probability of "bad" event of h is bounded (thus only a small area of the canvas is painted red)

Union Bound

- When we have multiple hypothesis, we should consider the probability of "bad" events associated to all of them
- Each color in the canvas correspond to points that are the "bad" events for a specific h (i.e., |E_{in}(h) – E_{out}(h)| > ε)
- Since we are considering the union bound (no overlaps between "bad" events) a large area of the canvas is colored (as "bad" events)

- It is very reasonable to think that one dataset corresponds to "bad" event for multiple hypothesis
- For instance, the two separating lines could have $E_{in} = 0$ and both have large error (the same dataset corresponds to a "bad" event for both)

• Considering the overlaps, the canvas painting should look like the one at the left, suggesting a bound larger tha the original Hoeffding bound but much smaller than the union bound Many hypotheses share the same dichotomy on a given \mathcal{D} , since there are finitely many dichotomies even with an infinite number of hypotheses. Any statement based on \mathcal{D} alone will be simultaneously true or simultaneously false for all the hypotheses that look the same on that particular \mathcal{D} . What

The growth function groups hypotheses based on their behavior on D

The event $|E_{in}(h) - E_{out}(h)| > \epsilon$ depends not only on *D*, but also on entire \mathcal{X}

Now we need to consider the event $|E_{in}(h) - E_{out}(h)| > \epsilon$ in terms of a group of hypothesis ...

What to do about $E_{\rm out}$

Putting it together

Not quite:

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2 m_{\mathcal{H}}(N) e^{-2\epsilon^2 N}$$

but rather:

$$\mathbb{P}[|E_{\mathrm{in}}(g) - E_{\mathrm{out}}(g)| > \epsilon] \leq 4 m_{\mathcal{H}}(2N) e^{-rac{1}{8}\epsilon^2 N}$$

The Vapnik-Chervonenkis Inequality

$$P\left(\left|E_{in}(g) - E_{out}(g)\right| > \varepsilon\right) \le 2 m_{\mathcal{H}}(N) e^{-2\varepsilon^2 N}$$
$$P\left(\left|E_{in}(g) - E_{out}(g)\right| > \varepsilon\right) \le 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\varepsilon^2 N}$$

2**N**:

- hypotheses are grouped based on their behavior on *D*, but their behavior outside *D* is not the same
- to track |E_{in}(h) − E_{out}(h)| > ε, we track |E_{in}(h) − E'_{in}(h)| > ε (relative to D and D', both of size N)

4 and $\frac{1}{8}$:

• these are factors to account for the uncertainties added when we replace $|E_{in}(h) - E_{out}(h)| > \epsilon$ with $|E_{in}(h) - E'_{in}(h)| > \epsilon$

Summary

- The growth function (counts number of dichotomies) is polynomially bounded if ${\cal H}$ has a break point
- The growth function can replace M
- Main result: VC inequality

$$P\Big(|E_{in}(g) - E_{out}(g)| > \varepsilon \Big) \le 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\varepsilon^2 N}$$

Again, we have a bound that can be made small enough by taking a sufficiently large $\it N$

Next meeting: (i) Do we need to have the growth function ?
 (ii) Sample complexity