Our question: Does $E_{\text {in }}(h)$ say anything about $E_{\text {out }}(h)$?

Probability of a "bad" event (fixed h)

$$
P\left(\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right) \leq 2 e^{-2 \epsilon^{2} N}
$$

Probability of a "bad" event (g selected from a set of M hypothesis)

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq 2 M e^{-2 \epsilon^{2} N}
$$

Compare the experiment of tossing one coin N times with the experiment of tossing M coins, N times each. The chance of a coin resulting in N heads is much larger for the second case.

Our current discussion

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq 2 M e^{-2 \epsilon^{2} N}
$$

M appears because of the union bound, which does not take overlaps among "bad" events into consideration

Can we find another bound that takes the overlaps into consideration ?
(and also works for inifinite Hypothesis set?)

Dicothomies

Let

- $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\} \quad(N$ points)
- \mathcal{H} : a hypothesis space

Dichotomies generated by \mathcal{H} :
any bipartition of X as $X_{-1} \cup X_{+1}$ that agrees with a hypothesis $h \in \mathcal{H}$

$$
\mathcal{H}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=\left\{\left(h\left(\mathbf{x}_{1}\right), h\left(\mathbf{x}_{2}\right), \ldots, h\left(\mathbf{x}_{N}\right)\right) \mid h \in \mathcal{H}\right\}
$$

We know that $\left|\mathcal{H}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{N}\right)\right| \leq 2^{N}$

Growth function

$$
m_{\mathcal{H}}(N)=\max _{\mathbf{x}_{1}, \cdots, \mathbf{x}_{N} \in \mathcal{X}}\left|\mathcal{H}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{N}\right)\right|
$$

Perceptron 2D: $m_{\mathcal{H}}(3)=8=2^{3}, m_{\mathcal{H}}(4)=14<2^{4}$
Positive rays: $m_{\mathcal{H}}(N)=N+1$
Positive intervals: $m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1$
Convex sets: $m_{\mathcal{H}}(N)=2^{N}$

If no dataset of size k can be shattered by \mathcal{H} then k is a break point for \mathcal{H}

Perceptron 2D: $k=4$ is a break point
Positive rays: $m_{\mathcal{H}}(N)=N+1$, break point $k=2$
Positive intervals: $m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1$, break point $k=3$
Convex sets: $m_{\mathcal{H}}(N)=2^{N}$, break point $k=+\infty$

Outline

- Proof that $m_{\mathcal{H}}(N)$ is polynomial
- Proof that $m_{\mathcal{H}}(N)$ can replace M

Bounding $m_{\mathcal{H}}(N)$

To show: $\quad m_{\mathcal{H}}(N)$ is polynomial

We show: $\quad m_{\mathcal{H}}(N) \leq \cdots \leq \cdots \leq$ a polynomial

Key quantity:
$B(N, k)$: Maximum number of dichotomies on N points, with break point k
$B(N, k)$: Maximum number of dichotomies on N points, with break point k

Example of last meeting: Supposing $k=2$ is a break point, we computed $B(3, k)=4$

$$
\begin{array}{ccc}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\
\hline \circ & \circ & \circ \\
\circ & \circ & \bullet \\
\circ & \bullet & \circ \\
\bullet & \circ & \circ
\end{array}
$$

Recursive bound on $B(N, k)$

Consider the following table:
$B(N, k)=\alpha+2 \beta$

Estimating α and β

Focus on $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N-1}$ columns:

$$
\alpha+\beta \leq B(N-1, k)
$$

Estimating β by itself

Now, focus on the $S_{2}=S_{2}^{+} \cup S_{2}^{-}$rows:
$\beta \leq B(N-1, k-1)$

Putting it together

$$
\begin{gathered}
B(N, k)=\alpha+2 \beta \\
\alpha+\beta \leq B(N-1, k) \\
\beta \leq B(N-1, k-1) \\
B(N, k) \leq \\
B(N-1, k)+B(N-1, k-1)
\end{gathered}
$$

	\# of rows	x_{1} x_{2}	x_{N-1}	x_{N}
S_{1}	α	+1 +1	+1	+1
		$-1+1$	+1	-1
		!	!	:
		+1 \quad-1	-1	-1
		$\begin{array}{ll}-1 & +1\end{array}$	-1	+1
$S^{\text {S }}$ S ${ }^{+}$	β	+1 -1	+1	+1
		-1 -1	+1	+1
		: \quad -	:	\vdots
		+1 \quad-1	+1	+1
		-1 -1	-1	+1
$S_{2} \longrightarrow$	β	+1 $\quad-1$	+1	-1
		$\begin{array}{ll}-1 & -1\end{array}$	+1	-1
		:	:	:
		+1 -1	+1	-1
		-1 -1	-1	-1

Numerical computation of $B(N, k)$ bound

Analytic solution for $B(N, k)$ bound

$$
B(N, k) \leq B(N-1, k)+B(N-1, k-1)
$$

Theorem:

$$
B(N, k) \leq \sum_{i=0}^{k-1}\binom{N}{i}
$$

1. Boundary conditions: easy

2. The induction step

$$
\begin{aligned}
\sum_{i=0}^{k-1}\binom{N}{i} & =\sum_{i=0}^{k-1}\binom{N-1}{i}+\sum_{i=0}^{k-2}\binom{N-1}{i} ? \\
& =1+\sum_{i=1}^{k-1}\binom{N-1}{i}+\sum_{i=1}^{k-1}\binom{N-1}{i-1} \\
& =1+\sum_{i=1}^{k-1}\left[\binom{N-1}{i}+\binom{N-1}{i-1}\right] \\
& =1+\sum_{i=1}^{k-1}\binom{N}{i}=\sum_{i=0}^{k-1}\binom{N}{i}
\end{aligned}
$$

It is polynomial!

For a given \mathcal{H}, the break point k is fixed

$$
m_{\mathcal{H}}(N) \leq \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}_{\text {maximum power is } N^{k-1}}
$$

Three examples

$$
\sum_{i=0}^{k-1}\binom{N}{i}
$$

- \mathcal{H} is positive rays: (break point $k=2$)

$$
m_{\mathcal{H}}(N)=N+1 \leq N+1
$$

- \mathcal{H} is positive intervals: (break point $k=3$)

$$
m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1 \leq \frac{1}{2} N^{2}+\frac{1}{2} N+1
$$

- \mathcal{H} is 2D perceptrons: (break point $k=4$)

$$
m_{\mathcal{H}}(N)=? \leq \frac{1}{6} N^{3}+\frac{5}{6} N+1
$$

Outline

- Proof that $m_{\mathcal{H}}(N)$ is polynomial
- Proof that $m_{\mathcal{H}}(N)$ can replace M

What we want

Instead of:

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 2 \quad M \quad e^{-2 \epsilon^{2} N}
$$

We want:

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 2 m_{\mathcal{H}}(N) e^{-2 \epsilon^{2} N}
$$

Pictorial proof ©

- How does $m_{\mathcal{H}}(N)$ relate to overlaps?
- What to do about $E_{\text {out }}$?
- Putting it together

- The canvas is the space of all possible datasets of size N

- Each point in the canvas is a dataset of size N
- Given a hypothesis h, one can compute $E_{\text {in }}(h)$ with respect to each dataset
- The red points are the "bad" events for h (i.e., $\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon$)
- According to Hoeffding the probability of "bad" event of h is bounded (thus only a small area of the canvas is painted red)

- When we have multiple hypothesis, we should consider the probability of "bad" events associated to all of them
- Each color in the canvas correspond to points that are the "bad" events for a specific h (i.e., $\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon$)
- Since we are considering the union bound (no overlaps between "bad" events) a large area of the canvas is colored (as "bad" events)
- It is very reasonable to think that one dataset corresponds to "bad" event for multiple hypothesis

VC Bound

- For instance, the two separating lines could have $E_{i n}=0$ and both have large error (the same dataset corresponds to a "bad" event for both)

- Considering the overlaps, the canvas painting should look like the one at the left, suggesting a bound larger tha the original Hoeffding bound but much smaller than the union bound

Many hypotheses share the same dichotomy on a given \mathcal{D}, since there are finitely many dichotomies even with an infinite number of hypotheses. Any statement based on \mathcal{D} alone will be simultaneously true or simultaneously false for all the hypotheses that look the same on that particular \mathcal{D}. What

The growth function groups hypotheses based on their behavior on D

The event $\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon$ depends not only on D, but also on entire \mathcal{X}

Now we need to consider the event $\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon$ in terms of a group of hypothesis ...

What to do about $E_{\text {out }}$

-
$E_{\mathrm{in}}(h)$

$E_{\text {in }}(h)$ $E_{\mathrm{in}}^{\prime}(h) \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Putting it together

Not quite:

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 2 m_{\mathcal{H}}(N) e^{-2 \epsilon^{2} N}
$$

but rather:

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N}
$$

The Vapnik-Chervonenkis Inequality

VC inequality

$$
\begin{gathered}
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\varepsilon\right) \leq 2 m_{\mathcal{H}}(N) e^{-2 \varepsilon^{2} N} \\
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\varepsilon\right) \leq 4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \varepsilon^{2} N}
\end{gathered}
$$

$2 N:$

- hypotheses are grouped based on their behavior on D, but their behavior outside D is not the same
- to track $\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon$, we track $\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\epsilon$ (relative to D and D^{\prime}, both of size N)

4 and $\frac{1}{8}$:

- these are factors to account for the uncertainties added when we replace $\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon$ with $\left|E_{\text {in }}(h)-E_{\text {in }}^{\prime}(h)\right|>\epsilon$
- The growth function (counts number of dichotomies) is polynomially bounded if \mathcal{H} has a break point
- The growth function can replace M
- Main result: VC inequality

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\varepsilon\right) \leq 4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \varepsilon^{2} N}
$$

Again, we have a bound that can be made small enough by taking a sufficiently large N

- Next meeting: (i) Do we need to have the growth function ? (ii) Sample complexity

