Our question: Does $E_{\text {in }}(h)$ say anything about $E_{\text {out }}(h)$?

Probability of a "bad" event (fixed h)

$$
P\left(\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right) \leq 2 e^{-2 \epsilon^{2} N}
$$

Probability of a "bad" event (g selected from a set of M hypothesis)

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq 2 M e^{-2 \epsilon^{2} N}
$$

Compare the experiment of tossing one coin N times with the experiment of tossing M coins, N times each. The chance of a coin resulting in N heads is much larger for the second case.

Recall: Bound variation in function of N

The smaller ϵ, the larger the number of samples needed to keep the probability of "bad" events small (Each color represents a different value of ϵ)

$$
P\left(\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right) \leq 2 e^{-2 \epsilon^{2} N}
$$

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq 2 M e^{-2 \epsilon^{2} N}
$$

If M is infinite, the bound $2 M e^{-2 \epsilon^{2} N}$ will be large (meaningless)

Can we replace M ?

Where did the M come from?

The \mathcal{B} ad events \mathcal{B}_{m} are

$$
"\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right|>\epsilon \text { " }
$$

The union bound:

$$
\begin{aligned}
& \mathbb{P}\left[\mathcal{B}_{1} \text { or } \mathcal{B}_{2} \text { or } \cdots \text { or } \mathcal{B}_{M}\right] \\
& \leq \underbrace{\left[\mathbb{P} \mathcal{B}_{1}\right]+\mathbb{P}\left[\mathcal{B}_{2}\right]+\cdots+\mathbb{P}\left[\mathcal{B}_{M}\right]}_{\text {no overlaps: } M \text { terms }}
\end{aligned}
$$

The choice of g from \mathcal{H} is affected by D (training data)

Usually there are many similar hypothesis h_{j} that classify samples in D in the exact same way

If in such a group of hypothesis, there is one that corresponds to a "bad" event, would it not be reasonable to think that other similar hypothesis also correspond to "bad" event?

Can we improve on M ?

Yes, bad events are very overlapping!
$\Delta E_{\text {out }}$: change in +1 and -1 areas
ΔE_{in} : change in labels of data points
$\left|E_{\text {in }}\left(h_{1}\right)-E_{\text {out }}\left(h_{1}\right)\right| \approx\left|E_{\text {in }}\left(h_{2}\right)-E_{\text {out }}\left(h_{2}\right)\right|$

To improve the bound, we will replace the Union bound with one that takes the overlap into consideration

For that, we will define a "number" that characterizes the complexity of \mathcal{H}

Important definitions:

- dichotomy
- growth function
- break point (the "number")

What can we replace M with?

Instead of the whole input space,
we consider a finite set of input points,

and count the number of dichotomies

$$
\text { Let } X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\} \quad \text { (} N \text { points) }
$$

Let \mathcal{H} be a hypothesis space

Dichotomies generated by \mathcal{H} :
any bipartition of X as $X_{-1} \cup X_{+1}$ that agrees with a hypothesis $h \in \mathcal{H}$

$$
\mathcal{H}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=\left\{\left(h\left(\mathbf{x}_{1}\right), h\left(\mathbf{x}_{2}\right), \ldots, h\left(\mathbf{x}_{N}\right)\right) \mid h \in \mathcal{H}\right\}
$$

Dichotomies: mini-hypotheses

A hypothesis $h: \mathcal{X} \rightarrow\{-1,+1\}$
A dichotomy $h:\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right\} \rightarrow\{-1,+1\}$
Number of hypotheses $|\mathcal{H}|$ can be infinite
Number of dichotomies $\left|\mathcal{H}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right)\right|$ is at most 2^{N}

Candidate for replacing M

Why the number of dichotomies $\left|\mathcal{H}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{N}\right)\right|$ is at most 2^{N} ?

If you consider another set of points, say, $X^{\prime}=\left\{\mathbf{x}^{\prime}{ }_{1}, \mathbf{x}^{\prime}{ }_{2}, \ldots, \mathbf{x}^{\prime}{ }_{N}\right\}$,

- is $\mathcal{H}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=\mathcal{H}\left(\mathbf{x}^{\prime}{ }_{1}, \mathbf{x}^{\prime}{ }_{2}, \ldots, \mathbf{x}^{\prime}{ }_{N}\right)$?
- is $\left|\mathcal{H}\left(\mathbf{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{N}\right)\right|=\left|\mathcal{H}\left(\mathbf{x}^{\prime}{ }_{1}, \mathrm{x}^{\prime}{ }_{2}, \ldots, \mathbf{x}^{\prime}{ }_{N}\right)\right|$?

The growth function

The growth function counts the most dichotomies on any N points

$$
m_{\mathcal{H}}(N)=\max _{\mathbf{x}_{1}, \cdots, \mathbf{x}_{N} \in \mathcal{X}}\left|\mathcal{H}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{N}\right)\right|
$$

The growth function satisfies:

$$
m_{\mathcal{H}}(N) \leq 2^{N}
$$

Let's apply the definition.

Growth function for the perceptron

$$
m_{\mathcal{H}}(N)=\max _{\mathbf{x}_{1}, \cdots, \mathbf{x}_{N} \in \mathcal{X}}\left|\mathcal{H}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{N}\right)\right|
$$

$$
m_{\mathcal{H}}(3)=?
$$

Applying $m_{\mathcal{H}}(N)$ definition - perceptrons

$N=3$

$N=3$

$$
m_{\mathcal{H}}(3)=8
$$

$$
m_{\mathcal{H}}(4)=14
$$

It may not be easy to compute the growth function for an arbitrary hypothesis set.

Imagine doing that for perceptrons, for each value of N !!

There are, however some simple hypothesis set for which we can write down the growth function in terms of N

Example 1: positive rays

$$
\begin{aligned}
& \mathcal{H} \text { is set of } h: \mathbb{R} \rightarrow\{-1,+1\} \\
& h(x)=\operatorname{sign}(x-a) \\
& m_{\mathcal{H}}(N)=N+1
\end{aligned}
$$

Example 2: positive intervals

\mathcal{H} is set of $h: \mathbb{R} \rightarrow\{-1,+1\}$
Place interval ends in two of $N+1$ spots

$$
m_{\mathcal{H}}(N)=\binom{N+1}{2}+1=\frac{1}{2} N^{2}+\frac{1}{2} N+1
$$

Example 3: convex sets

\mathcal{H} is set of $h: \mathbb{R}^{2} \rightarrow\{-1,+1\}$
$h(\mathbf{x})=+1$ is convex
$m_{\mathcal{H}}(N)=2^{N}$
The N points are 'shattered' by convex sets

The 3 growth functions

- \mathcal{H} is positive rays:

$$
m_{\mathcal{H}}(N)=N+1
$$

- \mathcal{H} is positive intervals:

$$
m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1
$$

- \mathcal{H} is convex sets:

$$
m_{\mathcal{H}}(N)=2^{N}
$$

Why are we discussing growth functions ?

Back to the big picture

Remember this inequality?

$$
\mathbb{P}\left[\left|E_{\text {in }}-E_{\text {out }}\right|>\epsilon\right] \leq 2 M e^{-2 \epsilon^{2} N}
$$

What happens if $m_{\mathcal{H}}(N)$ replaces M ?
$m_{\mathcal{H}}(N)$ polynomial \Longrightarrow Good!

Just prove that $m_{\mathcal{H}}(N)$ is polynomial?

If the growth function is polynomial, the bound could be made arbitrarily small by choosing an adequate value of N.

Do we need to compute the growth function value for each N ?

Break point of \mathcal{H}

Definition:

If no data set of size k can be shattered by \mathcal{H}, then k is a break point for \mathcal{H}

$$
m_{\mathcal{H}}(k)<2^{k}
$$

For 2D perceptrons, $k=4$

A bigger data set cannot be shattered either

Break point - the 3 examples

- Positive rays $m_{\mathcal{H}}(N)=N+1$

$$
\text { break point } k=2
$$

- Positive intervals $m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1$
break point $k=3$
- Convex sets $m_{\mathcal{H}}(N)=2^{N}$

$$
\text { break point } k=' \infty \text { ' }
$$

An exercise

Assume that for a certain hypothesis set \mathcal{H} the break-point is 2

This means that \mathcal{H} can not generate the $2^{2}=4$ possible dichotomies for any subset of two samples $\left\{x_{1}, x_{2}\right\}$.

Under such supposition, how many dichotomies are possible when we consider three samples $\left\{x_{1}, x_{2}, x_{3}\right\}$?

Puzzle

\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}
\circ	\circ	\circ
\circ	\circ	\bullet
\circ	\bullet	\circ
\bullet	\circ	\circ

Main result

No break point $\quad \Longrightarrow \quad m_{\mathcal{H}}(N)=2^{N}$

Any break point $\Longrightarrow m_{\mathcal{H}}(N)$ is polynomial in N

1. We started searching a replacement for M

$$
P\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq 2 M e^{-2 \epsilon^{2} N}
$$

2. Dichotomies: to deal with the issue of overlapping "bad" events.

- The complexity of \mathcal{H} is related to the number of dichotomies it can generate

3. Growth function: number of dichotomies for each N

- Polynomial growth functions are good candidate for replacing M
- Not always possible to write this function

4. Break-point: if it is finite, it means that the growth function is polynomial (to be demonstrated)
5. Next meeting

- if there is a finite break-point, then the growth function is polynomial
- it is valid to replace M with the growth function

