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Our question: Does Ein(h) say anything about Eout(h) ?

Probability of a “bad” event (fixed h) (Hoeffding)

P
(
|Ein(h)− Eout(h)| > ε

)
≤ 2e−2ε2N

Probability of a “bad” event (g selected from a set of M hypothesis)

P
( ∣∣Ein(g)− Eout(g)

∣∣ > ε
)
≤ 2Me−2ε2N

Compare the experiment of tossing one coin N times with the experiment of tossing

M coins, N times each. The chance of a coin resulting in N heads is much larger for

the second case.

Nina S. T. Hirata MAC0460/MAC5832 (2020) 2



Recall: Bound variation in function of N

The smaller ε, the larger the number of samples needed to keep
the probability of “bad” events small (Each color represents a different value of ε)

P
(
|Ein(h)− Eout(h)| > ε

)
≤ 2e−2ε2N
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P
( ∣∣Ein(g)− Eout(g)

∣∣ > ε
)
≤ 2Me−2ε2N

If M is infinite, the bound 2Me−2ε2N will be large (meaningless)

Can we replace M ?
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Where did the M 
ome from?
The Bad events Bm are

�|Ein(hm)− Eout(hm)| > ǫ�
The union bound:
P[B1 or B2 or · · · or BM ]

B3

B1 B2

≤P[B1] + P[B2] + · · ·+ P[BM ]︸ ︷︷ ︸no overlaps: M terms
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The choice of g from H is affected by D (training data)

Usually there are many similar hypothesis hj that classify samples
in D in the exact same way

If in such a group of hypothesis, there is one that corresponds to a
“bad” event, would it not be reasonable to think that other similar
hypothesis also correspond to “bad” event ?
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Can we improve on M?

1

+1

up

down

Yes, bad events are very overlapping!
∆Eout: 
hange in +1 and −1 areas
∆Ein: 
hange in labels of data points

|Ein(h1)− Eout(h1)| ≈ |Ein(h2)− Eout(h2)|
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To improve the bound, we will replace the Union bound with one
that takes the overlap into consideration

For that, we will define a “number” that characterizes the
complexity of H

Important definitions:

• dichotomy

• growth function

• break point (the “number”)
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What 
an we repla
e M with?
Instead of the whole input spa
e,
we 
onsider a �nite set of input points,
and 
ount the number of di
hotomies
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Let X = {x1, x2, . . . , xN} (N points)

Let H be a hypothesis space

Dichotomies generated by H:
any bipartition of X as X−1 ∪ X+1 that agrees with a hypothesis
h ∈ H

H(x1, x2, . . . , xN) =
{(

h(x1), h(x2), . . . , h(xN)
)
| h ∈ H

}
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Di
hotomies: mini-hypotheses
A hypothesis h : X → {−1,+1}

A di
hotomy h : {x1,x2, · · · ,xN} → {−1,+1}

Number of hypotheses |H| 
an be in�nite
Number of di
hotomies |H(x1,x2, · · · ,xN)| is at most 2N
Candidate for repla
ing M
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Why the number of dichotomies |H(x1, x2, . . . , xN) | is at most 2N ?
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If you consider another set of points, say, X ′ = {x′1, x′2, . . . , x′N},

• is H(x1, x2, . . . , xN) = H(x′1, x′2, . . . , x′N) ?

• is |H(x1, x2, . . . , xN)| = |H(x′1, x′2, . . . , x′N)| ?
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The growth fun
tion
The growth fun
tion 
ounts the most di
hotomies on any N points

mH(N)= max
x1,··· ,xN∈X

|H(x1, · · · ,xN)|

The growth fun
tion satis�es:
mH(N) ≤ 2N

Let's apply the de�nition.
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Growth function for the perceptron

mH(3) =?
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Applying mH(N) de�nition - per
eptronsPSfrag repla
ements00.511.522.533.5411.21.41.61.822.22.42.62.83

PSfrag repla
ements00.511.522.533.5411.21.41.61.822.22.42.62.83

PSfrag repla
ements00.511.522.533.540.511.522.53
N = 3 N = 3 N = 4

mH(3) = 8 mH(4) =14
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It may not be easy to compute the growth function for an arbitrary
hypothesis set.

Imagine doing that for perceptrons, for each value of N !!

There are, however some simple hypothesis set for which we can
write down the growth function in terms of N
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Example 1: positive rays

PSfrag repla
ements

x1 x2 x3 xN. . .

h(x) = −1 h(x) = +1
a

00.20.40.60.81-0.1-0.08-0.06-0.04-0.0200.020.040.060.080.1
H is set of h : R → {−1,+1}

h(x) = sign(x− a)

mH(N) = N + 1
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Example 2: positive intervals

PSfrag repla
ements

x1 x2 x3 xN. . .

h(x) = −1 h(x) = −1h(x) = +1

00.20.40.60.81-0.1-0.08-0.06-0.04-0.0200.020.040.060.080.1
H is set of h : R → {−1,+1}

Pla
e interval ends in two of N + 1 spots
mH(N) =

(
N+1
2

)
+1 = 1

2N
2 + 1

2N + 1
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Example 3: 
onvex sets

+
+

+

+

+

−

−

−

−

−

up

bottom

H is set of h : R2 → {−1,+1}

h(x) = +1 is 
onvex
mH(N) = 2N

The N points are `shattered' by 
onvex sets
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The 3 growth fun
tions
• H is positive rays:

mH(N) = N + 1

• H is positive intervals:
mH(N) = 1

2N
2 + 1

2N + 1

• H is 
onvex sets:
mH(N) = 2N
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Why are we discussing growth functions ?
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Ba
k to the big pi
ture
Remember this inequality?

PP [ |Ein − Eout| > ǫ ] ≤ 2Me−2ǫ2N

What happens if mH(N) repla
es M?
mH(N) polynomial =⇒ Good!
Just prove that mH(N) is polynomial?

© AM

L Creator: Yaser Abu-Mostafa - LFD Le
ture 5 15/20



If the growth function is polynomial, the bound could be made
arbitrarily small by choosing an adequate value of N.

Do we need to compute the growth function value for each N ?

Nina S. T. Hirata MAC0460/MAC5832 (2020) 13



Break point of H

PSfrag repla
ements00.511.522.533.540.511.522.53

De�nition:If no data set of size k 
an be shattered by H,then k is a break point for H
mH(k) < 2k

For 2D per
eptrons, k = 4

A bigger data set 
annot be shattered either
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Break point - the 3 examples
• Positive rays mH(N) = N + 1 break point k = 2 • •

• Positive intervals mH(N) = 1
2N

2 + 1
2N + 1 break point k = 3 • • •

• Convex sets mH(N) = 2N break point k =`∞'
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An exercise

Assume that for a certain hypothesis set H the break-point is 2

This means that H can not generate the 22 = 4 possible
dichotomies for any subset of two samples {x1, x2}.

Under such supposition, how many dichotomies are possible when
we consider three samples {x1, x2, x3} ?
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Puzzle
x1 x2 x3

◦ ◦ ◦
◦ ◦ •
◦ • ◦
• ◦ ◦
• ◦ •
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Main result
No break point =⇒ mH(N) = 2N

Any break point =⇒ mH(N) is polynomial in N
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Summary

1. We started searching a replacement for M

P
( ∣∣Ein(g)− Eout(g)

∣∣ > ε
)
≤ 2Me−2ε2N

2. Dichotomies: to deal with the issue of overlapping “bad” events.

- The complexity of H is related to the number of dichotomies it

can generate

3. Growth function: number of dichotomies for each N
- Polynomial growth functions are good candidate for replacing M

- Not always possible to write this function
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4. Break-point: if it is finite, it means that the growth function is

polynomial (to be demonstrated)

5. Next meeting

• if there is a finite break-point, then the growth function is
polynomial

• it is valid to replace M with the growth function
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