Classifier evaluation

Sample set: $(\mathbf{x}^{(i)}, y^{(i)}), i = 1, 2, ..., N$

Let $h(\mathbf{x})$ be a soft classifier and $\hat{y}^{(i)}$ be the predicted output (e.g., $\hat{y}^{(i)} = \begin{cases} 1, & \text{if } h(\mathbf{x}^{(i)}) \ge 0.5, \\ 0, & \text{otherwise.} \end{cases}$)

Several performance metrics for binary classifiers exist

They are often used to compare different classifier models

Erros em problemas de classificação binária

Classes

- Positivo
- Negativo

Quatro possíveis diagnósticos:

- Verdadeiro-positivo (TP)
 - y = 1 and $\hat{y} = 1$
- Falso-positivo (FP) y = 0 and $\hat{y} = 1$
- Falso-negativo (FN) y = 1 and $\hat{y} = 0$
- Verdadeiro-negativo (TN)

y = 0 and $\hat{y} = 0$

 Actual Values

 Positive (1)
 Negative (0)

 Positive (1)
 TP
 FP

 Negative (0)
 FN
 TN

Predicted Values

Matriz de confusão

	True condition				
Total population	Condition positive	Condition negative	$\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Acco <u>Σ True posit</u> Σ Το	uracy (ACC) = <u>ive + Σ True negative</u> tal population
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
Predicted condition negative	False negative , Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma}{\Sigma}$ True negative Σ Predicted condition negative	
	True positive rate (TPR), Recall, Sensitivity, probability of detection $\equiv \Sigma$ True positive False negative rate (FNR), Miss rate $\equiv \Sigma$ False negative $= \Sigma$ false negative	False positive rate (FPR), Fall-out, probability of false alarm $= \sum False positive$ $\sum Condition negative Specificity (SPC), Selectivity, True negative rate (TNR) \sum True negative rate (TNR)$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$ Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$	$F_1 \text{ score} =$ 2 $\cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$

	True condition				
Total population	Condition positive	Condition negative	$Prevalence = \frac{\Sigma Condition positive}{\Sigma Total population}$	Acc <u>Σ True posit</u> Σ Το	uracy (ACC) = <u>ive + Σ True negative</u> tal population
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	$\frac{\text{Negative predictive value (NPV)}}{\Sigma \text{ True negative}} = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
	$\label{eq:constraint} \begin{split} & \text{True positive rate (TPR),} \\ & \text{Recall, Sensitivity,} \\ & \text{probability of detection} \\ & = \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}} \end{split}$	$\begin{array}{l} \mbox{False positive rate (FPR),} \\ \mbox{Fall-out,} \\ \mbox{probability of false alarm} \\ \mbox{=} \frac{\Sigma \mbox{ False positive}}{\Sigma \mbox{ Condition negative}} \end{array}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$	F ₁ score = 2 · <u>Precision · Recall</u> Precision + Recall
	False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$		Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$		

Precision =
$$\frac{TP}{TP+FP}$$

	True condition				
Total population	Condition positive	Condition negative	$Prevalence = \frac{\Sigma Condition positive}{\Sigma Total population}$	Acc <u>Σ True posit</u> Σ Το	uracy (ACC) = <u>ive + Σ True negative</u> tal population
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma}{\Sigma}$ True negative $\overline{\Sigma}$ Predicted condition negative	
	$\begin{array}{l} \mbox{True positive rate (TPR),} \\ \mbox{Recall, Sensitivity,} \\ \mbox{probability of detection} \\ \mbox{\underline{\sc l}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{l} \mbox{False positive rate (FPR),} \\ \mbox{Fall-out,} \\ \mbox{probability of false alarm} \\ \mbox{$$= $ \frac{\Sigma \mbox{False positive}}{\Sigma \mbox{Condition negative}} \end{array}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$	F ₁ score = 2 · <u>Precision · Recall</u> Precision + Recall
	False negative rate (FNR), Miss rate = $\frac{\Sigma}{\Sigma}$ False negative Σ Condition positive	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$		

$$\mathsf{Recall} = \frac{TP}{TP + FN}$$

	True condition				
Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\Sigma \text{ Total population}} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Acc <u>Σ True posit</u> Σ Το	uracy (ACC) = <u>ive + Σ True negative</u> tal population
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
Predicted condition negative	False negative , Type II error	True negative	$\frac{\text{False omission rate (FOR)}}{\Sigma \text{ False negative}} = \frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	$\frac{\text{Negative predictive value (NPV)}}{\Sigma \text{ True negative}}$ $\overline{\Sigma \text{ Predicted condition negative}}$	
	$\label{eq:relation} \begin{array}{l} \mbox{True positive rate (TPR),} \\ \mbox{Recall, Sensitivity,} \\ \mbox{probability of detection} \\ \mbox{\underline{\Sigma} True positive} \\ \mbox{\underline{\Sigma} Condition positive} \end{array}$	$\begin{array}{l} \mbox{False positive rate (FPR),} \\ \mbox{Fall-out,} \\ \mbox{probability of false alarm} \\ \mbox{probability of false positive} \\ \mbox{Σ False positive} \\ \mbox{Σ Condition negative} \end{array}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$	F ₁ score = 2 · <u>Precision · Recall</u> Precision + Recall
	False negative rate (FNR), Miss rate = $\frac{\Sigma}{\Sigma}$ False negative Σ Condition positive		Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$		

$$\mathsf{FPR} = \frac{\mathsf{FP}}{\mathsf{FP}+\mathsf{TN}}$$

	True condition				
Total population	Condition positive	Condition negative	$\frac{Prevalence}{\Sigma \text{ Total population}} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative $\overline{\Sigma}$ Predicted condition negative	$\frac{\text{Negative predictive value (NPV)}}{\Sigma \text{ True negative}} = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
	$\label{eq:constraint} \begin{array}{l} \mbox{True positive rate (TPR),} \\ \mbox{Recall, Sensitivity,} \\ \mbox{probability of detection} \\ \mbox{\underline{\Sigma} True positive} \\ \mbox{\underline{\Sigma} Condition positive} \end{array}$	$\begin{array}{l} \mbox{False positive rate (FPR),} \\ \mbox{Fall-out,} \\ \mbox{probability of false alarm} \\ \mbox{probability of false positive} \\ \mbox{Σ False positive} \\ \mbox{Σ Condition negative} \end{array}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio	F ₁ score =
	False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$		Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	$=\frac{LR+}{LR-}$	2 · Precision + Recall

Accuracy =
$$\frac{TP+TN}{TP+FP+TN+FN}$$

	True condition				
Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\Sigma \text{ fotal population}} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ fotal population}}$	Acc <u>Σ True posi</u> Σ Τα	tive + $Σ$ True negative tive + $Σ$ True negative tal population
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
	$\begin{array}{l} \mbox{True positive rate (TPR),} \\ \mbox{Recall, Sensitivity,} \\ \mbox{probability of detection} \\ \mbox{\underline{\sc strue positive}} \\ \mbox{\underline{\sc strue positive}} \end{array}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ false positive}}{\Sigma \text{ condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio (DOB)	F ₁ score =
	False negative rate (FNR), Miss rate = $\frac{\Sigma}{\Sigma}$ False negative Σ Condition positive	$ \begin{array}{l} \mbox{Specificity (SPC), Selectivity,} \\ \mbox{True negative rate (TNR)} \\ \mbox{=} \frac{\Sigma \mbox{True negative}}{\Sigma \mbox{ Condition negative}} \end{array} $	Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$	$= \frac{LR+}{LR-}$	2 · Precision + Recall

$$F1$$
-score = $2 \frac{Precision*Recall}{Precision+Recall}$

Métricas de desempenho no caso de múltiplas classes

Let TP_j , FP_j , TN_j , FN_j , for each j (class j against the rest)

Micro-averaging

- Compute $TP = \sum TP_j$, $FP = \sum FP_j$, $TN = \sum TN_j$, $FN = \sum FN_j$
- Compute the performance metrics from TP, FP, TN, FN

Macro-averaging

- Compute the performance metrics for each class, from *TP_j*, *FP_j*, *TN_j*, *FN_j*
- Compute the mean of each metric

Métricas de desempenho no caso de múltiplas classes

Let TP_j , FP_j , TN_j , FN_j , for each j (class j against the rest)

Micro-averaging

- Compute $TP = \sum TP_j$, $FP = \sum FP_j$, $TN = \sum TN_j$, $FN = \sum FN_j$
- Compute the performance metrics from TP, FP, TN, FN
- assigns same importance to all examples → larger classes dominate

Macro-averaging

- Compute the performance metrics for each class, from *TP_j*, *FP_j*, *TN_j*, *FN_j*
- Compute the mean of each metric
- assigns same importance to all classes

(There is no consensus about which is the right one)

TP, FP, TN, FN depends on the threshold T

$$\hat{y}^{(i)} = \left\{ egin{array}{cc} 1, & ext{if } h(\mathbf{x}^{(i)}) \geq T = 0.5, \\ 0, & ext{otherwise.} \end{array}
ight.$$

One can choose other values than 0.5 for the threshold T

Often we would like to maximize the true positives (TP) at the same time we would like to minimize the false positives (FP)

ROC curve and PR curves (shown next) are often used as tools to compare different classification approaches

ROC : Receiver operating characteristic

www.kdnuggets.com/2018/07/receiver-operating-characteristic-curves-demystified-python.html

 $T = 1.0 \implies$ all input are classified as negative (TP=0% and FP=0%)

 $T = 0.0 \implies$ all input are classified as positive (TP=100% and FP=100%)

As we vary T from 1.0 to 0.0

- Perfectly separated classes: TP will reach 100% while FP stays at 0%, and only after that FP will start to increase
- General case: TP will start to increase but so does FP too.

analyticsindiamag.com/beginners-guide-to-understanding-roc-curve-how-to-find-the-perfect-probability-threshold/

PR: precision-recall

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = TPR = sensitivity = \frac{TP}{TP + FN}$$

PR curves são mais apropriados quando as classes são altamente desbalanceadas (no exemplo abaixo à direita, muito mais negativos)

https://acutecaretesting.org/en/articles/precision-recall-curves-what-are-they-and-how-are-they-used

ROC x Precision-recall curve

ROC pode fornecer uma percepção incorreta quando classes estão desbalanceadas.

https://acutecaretesting.org/en/articles/precision-recall-curves-what-are-they-and-how-are-they-used

So far, we have discussed some performance measures

Now we will discuss how to compute this measures and how statistically significant they are

Regarding data, all we have is a dataset D

Some measures we have seen:

- E_{in} in-sample error
- *E_{out} out-of-sample error* (unknown, no way to compute it)
- TP, FP, TN and FN : from these, several performance metrics such as accuracy, recall, precision, F1-score, AUC, ... are computed

We have seen that E_{in} is computed over the training set

 E_{in} is a (super)optimistic estimate of E_{out}

 $E_{out} = E_{in} + \text{generalization_error}$

Minimizing only *E*_{in} will lead to overfitting

How to find a more realistic estimate of E_{out} ?

Partition the existing dataset into two subsets:

 $D = D_{train} \cup D_{val}$

 D_{train} is used for training and for computing E_{in}

 D_{val} is used to compute E_{val} , an unbiased estimate of E_{out}

Drawbacks of the holdout method

Let the size of the sets be:

- $|D_{train}|$
- $|D_{val}|$
- $|D| = |D_{train}| + |D_{val}|$

Potential problems:

- large $|D_{val}| \rightsquigarrow$ small $|D_{train}|$ (small amount of training data)
- small $|D_{val}| \rightsquigarrow E_{val}$ hardly will be a good estimate of E_{out}
- when D_{train} and/or D_{val} have some bias

General idea:

 repeat the holdout method several times, using different D_{train} and D_{val} sets sampled from D → multiple values for E_{val}

• Compute the mean validation error \overline{E}_{val} , which should be a more robust estimator of E_{out}

Leave-one-out cross-validation

Training is repeated |D| times At training round *i*, $D_{train}^{(i)} = D \setminus {\mathbf{x}^{(i)}}$ and $D_{val}^{(i)} = {\mathbf{x}^{(i)}}$

Cross-validation error:
$$E_{cv} = \frac{1}{|D|} \sum_{i=1}^{|D|} E_{val}^{(i)}$$

cements

$$E_{\rm cv} = \frac{1}{3} \left(\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 \right)$$

18/22

k-fold cross validation

Divide *D* into *k* parts D_1, D_2, \ldots, D_k of approximately equal sizes Repeat the training *k* times At training round *i*, $D_{train}^{(i)} = D \setminus D_i$ and $D_{val}^{(i)} = D_i$

Example with k = 5 (five folds):

Cross-validation error:
$$E_{cv} = \frac{1}{k} \sum_{i=1}^{k} E_{val}^{(i)}$$

• for the holdout method a common proportion is $70\% \sim 80\%$ for training and $20\% \sim 30\%$ for validation

• for k-fold cross-validation, usual value of k is 5 or 10

leave-one-out is just k-fold cross-validation, with k = |D|
 Requires |D| training rounds → computationally intense
 For small |D| it could be the best option

 holdout should be sufficient if both D_{train} and D_{val} are large and representative enough of the true distribution (this usually is not the case in practice)

• k-fold cross-validation is largely used

Since we are considering estimators of E_{out} (such as E_{val} or E_{cv}), one of the interests is on their statistical properties

- **bias**: how much the expected value of the estimate differs from the true value
- variance: how spread are the estimates

Short text that helps to quickly review these concepts:

https://www.cs.utah.edu/~jeffp/teaching/cs3130/lectures/L13-Estimation.pdf

What can we say about the statistical properties of these estimators $\ensuremath{?}$

Analyzing the estimate

On out-of-sample point (\mathbf{x},y) , the error is $\mathbf{e}(h(\mathbf{x}),y)$

Squared error: $\left(h(\mathbf{x}) - y\right)^2$ Binary error: $\llbracket h(\mathbf{x}) \neq y \rrbracket$

 $\mathbb{E}\left[\mathbf{e}(h(\mathbf{x}), y)\right] = E_{\text{out}}(h)$ var $\left[\mathbf{e}(h(\mathbf{x}), y)\right] = \sigma^2$

From a point to a set

On a validation set $(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_K, y_K)$, the error is $E_{\mathrm{val}}(h) = \frac{1}{K} \sum_{k=1}^K \mathbf{e}(h(\mathbf{x}_k), y_k)$

$$\mathbb{E}\left[E_{\text{val}}(h)\right] = \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\mathbf{e}(h(\mathbf{x}_{k}), y_{k})\right] = E_{\text{out}}(h)$$

$$\text{var}\left[E_{\text{val}}(h)\right] = \frac{1}{K^{2}} \sum_{k=1}^{K} \text{var}\left[\mathbf{e}(h(\mathbf{x}_{k}), y_{k})\right] = \frac{\sigma^{2}}{K}$$

$$E_{\text{val}}(h) = E_{\text{out}}(h) \pm O\left(\frac{1}{\sqrt{K}}\right)$$

Chapter 5 of the book "Machine Learning", by Tom Mitchell shows how to compute a confidence interval for E_{out}

That is, an interval $E_{val} \pm \Delta$ that contains E_{out} with high probability ($\Delta = O(\frac{1}{\sqrt{K}})$)

Large $K = |D_{val}|$ yields a good estimate of E_{out} (small variance) but at the same time, with less training data, E_{out} tend to be larger than when using the whole dataset

 $K = |D_{val}|$

$$E_{out} \leq E_{val} + O(rac{1}{\sqrt{K}})$$

k models \rightsquigarrow k values for $E_{out} \rightsquigarrow$ average \overline{E}_{out}

It can be demonstrated that E_{cv} is an unbiased estimator of \overline{E}_{out}

The variance of E_{cv} can not be easily computed

Empirically, it has been observed that E_{cv} is a good estimator of \overline{E}_{out}

Further reading:

- Dietterich, Thomas G., Approximate statistical tests for comparing supervised classification learning algorithms, Neural Comput., 10(7), p.1895-1923, 1998
- Chapter 7 of "The Elements of Statistical learning", by Hastie et al.

Can we do better ?

There are a lot of discussions in literature about how to get unbiased estimates of E_{out} with small variance, etc

Further reading:

- Dietterich, Thomas G., Approximate statistical tests for comparing supervised classification learning algorithms, Neural Comput., 10(7), p.1895-1923, 1998
- Chapter 7 of "The Elements of Statistical learning", by Hastie et al.

- we have seen some performance metrics
- we have seen some techniques for estimating these metrics
- we have seen some algorithms, and we should be able to obtain multiple models by training these algorithms under distinct training setups

What's next ? How do we choose a model ?

Here we call as **model** any specific hypothesis h in the hypothesis space $\mathcal H$ that resulted after training

For example, after doing logistic regression we have a weight vector ${\bf w}$ which characterizes the learned classifier (the model)

As we have seen, we can compute $E_{val}(h)$ over a validation set

Suppose you have two models, h_1 and $h_2,$ as well as $E_{\mathit{val}}(h_1)$ and $E_{\mathit{val}}(h_2)$

If $E_{val}(h_1) < E_{val}(h_2)$, would you choose h_1 without hesitation ?

What if $E_{val}(h_1) = E_{val}(h_2)$?

Based on validation or cross-validation error

Usually the one with smallest validation error is chosen

Statistical tests can be applied to test whether $E_{val}(h_1) = E_{val}(h_2)$ or not

Holdout error: <u>Hypothesis test</u> (see for instance Chapter 5 of the book "Machine Learning", by Tom Mitchell)

Cross-validation error: paired t-test (see Dietterich, Thomas G., Approximate statistical tests for comparing supervised classification learning algorithms)

The result

without validation

with validation

The process of model selection and performance evaluation

- 1. Divide the dataset D into $D_{train+val}$ and D_{test}
- 2. Isolate *D_{test}* (put it under quarantine ...)
- Use D_{train+val} for training and choosing a model Depending on the selection technique different partitions of D_{train+val} will be used for training and for error estimation
- the chosen model can be retrained using the whole dataset
 D_{train+val}
 (adverture is that we have more training data)

(advantage is that we have more training data)

5. Having the final model, compute E_{test} over D_{test} E_{test} would be a less biased estimator of E_{out} than E_{val} and E_{cv} (since these last two would be an optimistic estimate) In many situations, we just want to choose the best model

We do not need to have an estimate of E_{out}

In such situation, it is common to not consider D_{test} (the whole set D is used for training and model choice only)

Obviously, the validation error of the chosen model is biased (because we chose the model with minimum E_{val} value)

The same observation holds with respect to any of the metrics computed on D_{val} , after a model is chosen based on its E_{val} value

Summary of what we have discussed

- Performance metrics: *E_{in}*, *E_{out}*, accuracy, precision, recall, etc
- Estimation of *E*_{out}: *E*_{val}, *E*_{cv}
- *E_{val}*, *E_{cv}* are used for model selection
 Thus they are no longer an unbiased estimator of *E_{out}*
- validation set: it is used in the learning/model selection process
- test set: it is totally independent of the learning/model selection process; used to obtain an unbiased estimate of *E_{out}*

Section 4.3 of "Learning from data" by Mostafa et al.

There are references at:

 $\tt https://stats.stackexchange.com/questions/18348/differences-between-cross-validation-and-bootstrapping-to-estimate-the-prediction-and-bootstrapping-to-e$

Chapter 7 of "The Elements of Statistical learning", by Hastie et al.

Chapter 5 of "Machine Learning" , by Tom Mitchell

Steven L. Salzberg, On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach, Data Min. Knowl. Discov., 3, pp.317-328, 1993

Dietterich, Thomas G., Approximate statistical tests for comparing supervised classification learning algorithms, Neural Comput., 10(7), p.1895-1923, 1998.