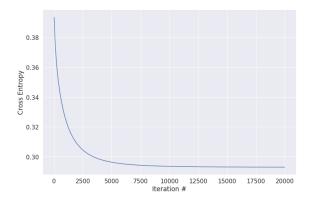
Overfitting

During training, we optimize a cost function \boldsymbol{J} with respect to the training data

The cost computed on the training data is denoted E_{in} (in-sample error) by prof. Mostafa

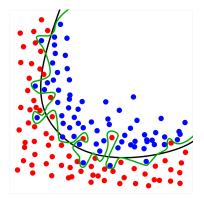
 E_{in} (loss / cost) usually decreases along the iteration (for instance, when we are employing *gradient descent*)



How eagerly should we try to optimize E_{in} ?

Is bringing E_{in} down, as closely as possible to 0, always a good thing ?

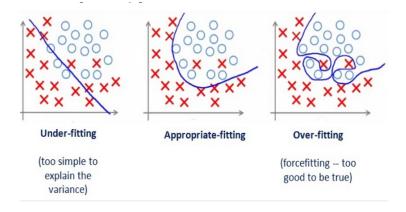
Overtraining may result in overfitting



green illustrates overfitting

Fonte: Wikipedia

It is not just about number of iterations. It is also related to model complexity



The error that really matters is E_{out} (the error computed over the entire domain) – *out-of-sample error*

Generalization: We minimize E_{in} hoping to also minimize E_{out} (ou-of-sample error). We would like to have E_{out} as close as possible to E_{in}

In general, the following equality holds:

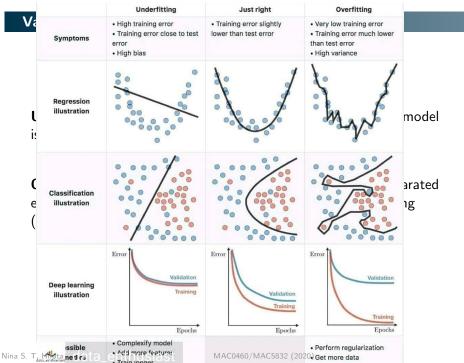
 $E_{out} = E_{in} + \text{generalization_error}$

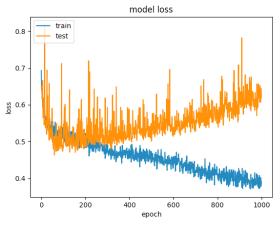
Since in practice we can not compute E_{out} , we can use an independent set of examples (validation set) and compute the cost on it, E_{val}

 E_{val} can be thought as a proxy of E_{out}

Underfitting: large E_{in} and E_{val} indicate strong model *bias* (model is too constrained)

Overfitting: when the curves of E_{in} and E_{val} start to get separated each other along the iterations, it is an indication of overfitting (model is too sophisticated)





Learning curve in many practical situations (test = error on validation set)

MAC0460/MAC5832 (2020)

How to deal with overfitting (prof. Mostafa's view):

- regularization add a penalty term (contra-peso) in the cost function (to be seen later)
- validation error on the validation set, E_{val}, can be used to choose a family of hypotheses H of "right complexity"

Validation versus regularization

In one form or another, $E_{\rm out}(h) = E_{\rm in}(h) +$ overfit penalty

Regularization:

$$E_{\rm out}(h) = E_{\rm in}(h) + \underline{\text{overfit penalty}}$$

Validation:

$$\underline{E_{ ext{out}}(h)} = E_{ ext{in}}(h) + ext{overfit penalty}$$

validation estimates this quantity

C M Creator: Yaser Abu-Mostafa - LFD Lecture 13

Overfitting – Lecture 11 Mostafa

Validation – Lecture 13 Mostafa

For now, we will consider E_{val} as a means to evaluate the performance of the models

Later we will look at it from the perspective of generalization error.