
1Scientific Reports |         (2020) 10:5834  | https://doi.org/10.1038/s41598-020-62773-7

www.nature.com/scientificreports

Neuro-Musculoskeletal Mapping for 
Man-Machine Interfacing
Tamas Kapelner1, Massimo Sartori2, Francesco Negro3 & Dario Farina   4*

We propose a myoelectric control method based on neural data regression and musculoskeletal 
modeling. This paradigm uses the timings of motor neuron discharges decoded by high-density surface 
electromyogram (HD-EMG) decomposition to estimate muscle excitations. The muscle excitations 
are then mapped into the kinematics of the wrist joint using forward dynamics. The offline tracking 
performance of the proposed method was superior to that of state-of-the-art myoelectric regression 
methods based on artificial neural networks in two amputees and in four out of six intact-bodied 
subjects. In addition to joint kinematics, the proposed data-driven model-based approach also 
estimated several biomechanical variables in a full feed-forward manner that could potentially be useful 
in supporting the rehabilitation and training process. These results indicate that using a full forward 
dynamics musculoskeletal model directly driven by motor neuron activity is a promising approach 
in rehabilitation and prosthetics to model the series of transformations from muscle excitation to 
resulting joint function.

State-of-the-art upper limb prostheses receive control commands from the user through a myoelectric interface. 
With this interface, the muscle fiber electrical activity in the residual limb is detected by recording surface elec-
tromyograms (sEMG), which are used to predict the user’s motor intent and to control a prosthesis accordingly. 
Most devices use two electrode systems over an antagonist muscle pair to proportionally control one degree of 
freedom (DoF), e.g. hand open/close1. Actuating more than one DoF requires a switching mechanism that leads 
to a slow, sequential, and unintuitive control of a maximum of two DoFs2. This limited functionality in conjunc-
tion with the required extensive training leads to high abandonment rates of these prosthetic devices3,4.

To overcome this limitation and to provide natural control, classification methods have been proposed to 
estimate the movement of the wrist and hand from EMG features5. Similarly, regression methods have been 
developed to continuously estimate kinematic variables (i.e. angular position or velocity of the joints), so that the 
user can actuate multiple DoFs concurrently6,7. Both classification and regression approaches outperform conven-
tional control methods in complex tasks, in terms of both speed and accuracy, providing a promising direction 
for advanced myoelectric control8–11.

Further improvement of regression methods might be facilitated by extracting the neural information embed-
ded in the EMG. The neural drive to a muscle is the ensemble of discharges of its innervating motor neurons12,13. 
Recent advances in the decomposition of the surface EMG allows for accurate decoding of the neural drive14–16.

Previously, we demonstrated that it is possible to extract neural information from high-density, multi-channel 
EMG used for myoelectric control in intact-bodied subjects and transradial amputees and in patients following 
targeted muscle reinnervation17–19. The application of such information for control showed that neural infor-
mation outperforms conventional EMG features20. However, current machine learning approaches for regres-
sion estimate kinematic information using generic model-free learning algorithms, reducing the underlying 
neuro-musculoskeletal processes involved in the motor task to a single regression function. Such approximations 
might fail to capture the complexity of the neuro-mechanical transformations, limiting the intuitiveness and 
robustness of these methods6,21–23.

A promising alternative is to employ a biomechanical modeling approach as we have recently demon-
strated24–26. In this context, a neuro-musculoskeletal (NMS) model is used to translate neuromuscular activ-
ity into the resulting mechanical function26,27. In the context of prosthesis control, this model would realize a 
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mapping from the EMG into prosthesis commands24. Although using global EMG features as an input for such 
models proved to be feasible25, the estimation of the full neuro-mechanical transformation chain may be further 
optimized by decoding the neural drive to muscles and using it as input for a muscolo-skeletal simulation28.

In this study, we propose a control strategy for amputees based on NMS modeling24,25 with the addition of 
motoneuron activity as input. The proposed control strategy would combine a mapping of neural activity into 
muscle excitations, and a musculoskeletal mapping of the muscle activations into wrist kinematics, in order to 
model the whole neuro-mechanical transformation chain. We present a proof of concept of this novel prosthesis 
control method by extracting neural information from high-density surface EMG using blind source separation, 
mapping the neural information to muscle excitations using robust linear regression, and predicting joint angles 
from estimated muscle excitations using biomechanical modeling. We demonstrate the feasibility of offline wrist 
kinematics prediction with the proposed method in single DoF tasks and show that it outperforms state of the 
art regression methods. We show for the first time a successful application of a musculoskeletal model driven by 
neural information for prosthesis control strategies in transradial amputees.

Results
The decomposition identified on average 19 ± 7 motor units per DoF, corresponding to 63 ± 16 motor units per 
subject (Fig. 1, Table 1). The results of the assignment of these spike trains to muscles by the NMS model, as 
described in Methods, is detailed in Table 2.

The proposed NMS model based on the Decomposed Spike Count feature (DSCNMS) produced notably differ-
ent kinematics estimations than the two other investigated approaches (Fig. 2). Most notably, DSCNMS exhibited 
a smaller amount of spurious activations, smoother signal characteristics for increasing wrist angles, and more 
abrupt changes when returning to the rest position.

The statistical analysis for the two considered performance metrics yielded similar results (Fig. 3), thus in the 
following we only report the analysis on the R2 value. showed no significant difference between groups (p = 0.06), 
and significant differences between features (p = 0.01) and subjects (p < 0.01), as well as a two-way interaction 
between subjects and features (p < 0.001). Therefore, we repeated the analysis for each subject individually, as 
described in Methods (Fig. 3). On average, the R2 value of the able-bodied subjects was 0.77 for Time Domain 

Figure 1.  Representative example of the decomposition results, the captured kinematics and the raw recorded 
EMG.

DoF1 DoF2 DoF3 DoF12 DoF13 DoF23 DoF123 Total

A1 16 16 30 0 0 3 0 65

A2 7 17 9 3 0 4 1 40

A3 23 21 11 2 2 1 0 60

A4 18 30 22 4 0 0 0 74

A5 4 12 18 3 1 4 0 42

A6 19 29 25 1 1 5 0 80

D1 23 29 24 2 3 6 1 87

D2 17 24 14 1 0 0 0 56

Table 1.  The number of decomposed spike trains per DoF for each subject. DoF1 was flexion/extension, DoF2 
was radial/ulnar deviation, and DoF3 was Pronation/Supination. Columns with more than one index contain 
spike trains detected in more than one DoF, e.g. DoF123 contains spike trains of motor units active during all 
DoFs.
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features (TD), 0.79 for Time Domain features combined with DSC (TD + DSC) and 0.8 for DSCNMS, correspond-
ing to performance increases of 2.6% and 3.9% over TD respectively. For the transradial amputees, the mean R2 
values were 0.58, 0.58 and 0.73, corresponding to a 25.9% increase in performance of DSCNMS over TD (52.1% 
for D1 and 7.5% for D2).

The post-hoc tests showed that DSCNMS outperformed TD in four of six intact-bodied subjects, and in both 
transradial amputees. For three subjects, there was no statistically significant difference between TD + DSC and 
DSCNMS, in the other cases, the proposed method outperformed TD + DSC significantly. TD + DSC outper-
formed TD in three subjects, there was no statistically significant difference in three cases including D1, and TD 
outperformed TD + DSC for A1 and D2.

Discussion
We investigated an extension of neural regression with biomechanical modeling for myocontrol24,25. In this way, 
we reduced the complexity of the regression task by estimating muscle excitations instead of wrist kinematics 
directly. Then, we used a musculoskeletal model driven by the estimated muscle excitations for estimating the 
control output.

We observed that the proposed method outperformed state of the art Artificial Neural Network (ANN) 
regression in most intact-bodied subjects and in both transradial amputees tested. The NMS estimation was also 
more accurate than using an ANN with the TD + DSC feature set for most subjects, showing the benefit gained 
by the explicit definition of the musculoskeletal system in the control scheme.

The estimation results of the NMS model were not just more accurate (Fig. 3), but also steadier, with less 
sudden changes in direction or speed (Fig. 2). This might indicate that the superior performance of the NMS 
model was due to the smoothness of the estimate, in which case a simple low-pass filter could provide the same 
results. However, both TD and TD + DSC were low-pass filtered after estimation as well, meaning that in our 
experiments we were not able to improve the performance of pure ANN regression alone to the same level using 
low-pass filtering.

The relative performance of TD and TD + DSC might be explained by the difficulty of ANNs in processing 
missing spikes or spike trains in the same way mathematical viscoelastic muscle models do. We previously showed 
that in dynamic voluntary contractions, EMG decomposition might contain only a few spikes below 20% of the 
maximal angle in all DoFs and that most spike trains are not present in all repetitions of a given movement12. This 
was also confirmed in this dataset (Fig. 1, Tables 1 and 2). Notably, this missing information did not influence 
the performance of DSCNMS in the same cases, due to the robustness of the neural regression sub-model (Section 
IV.D.2). This result indicates that despite the dependency of EMG decomposition accuracy on the thickness and 
type of subcutaneous tissue, the morphology of the muscles, training level, etc., a robust modeling scheme might 
be able to overcome many of those issues.

Although the performance gain for able-bodied subjects was only 3.9%, the gain for the transradial amputees 
was greater, especially for subject D2 (52.11%). This indicates that for able-bodied subjects the (nonlinear) map-
ping of EMG activity to wrist kinematics is less challenging, whereas at least for some transradial amputees, such a 
mapping can be substantially improved using motor-unit level information, for which case the NMS model might 
deliver better performance.

The number of spike trains decomposed with this method was comparable to decomposition results in iso-
metric and non-isometric contractions14,17,29,30, with only a few decomposed spike trains in more than one DoF 
(Table 1). This was unexpected due to the nature of the tasks, which prompted the activation of the same muscles 
in different DoFs, e.g. m. flexor carpi radialis during flexion and radial deviation. Such common motor units 
might have been missed by the decomposition due to changes in the motor unit action potential waveform dur-
ing voluntary contractions, meaning that EMG decomposition methods developed for such conditions might 
improve the performance of decomposition, and thus that of prosthesis control17,31.

The assignment of the decomposed spike trains to muscles resulted in either uniquely assigning them to either 
musculus pronator teres (PT) or musculus suplinator (SUP), or to multiple other muscles simultaneously (Table 2). 
This distribution can be attributed to the decomposition results. Since the same muscles were active during differ-
ent DoFs, a unique identification was only possible for spike trains detected in both DoFs. Because this was only 
observed for a small number of spike trains, the unique assignment was not possible in most cases (Table 2). It 

SUP ECRL ECU FCR FCU PT Not assigned

A1 14 ± 0 (0) 12 ± 1 (9 ± 3) 16 ± 1 (16 ± 1) 11 ± 3 (11 ± 3) 18 ± 0 (18 ± 0) 13 ± 0 (0) 5 ± 1

A2 5 ± 1 (1 ± 0) 18 ± 1 (14 ± 1) 12 ± 1 (12 ± 1) 12 ± 1 (11 ± 1) 9 ± 1 (9 ± 1) 4 ± 0 (1) 3 ± 1

A3 5 ± 1 (0) 23 ± 1 (23 ± 1) 21 ± 1 (20 ± 1) 21 ± 1 (17 ± 1) 16 ± 1 (14 ± 1) 5 ± 1 (0) 5 ± 1

A4 7 (0) 16 ± 0 (11 ± 5) 18 ± 0 (18 ± 1) 24 ± 5 (23 ± 5) 31 ± 1 (29 ± 1) 14 (0) 1 ± 1

A5 14 ± 0 (0) 5 (5) 13 ± 0 (11 ± 0) 5 (5) 11 ± 0 (11 ± 0) 3 (0) 5 ± 1

A6 10 ± 1 (1) 28 ± 2 (17 ± 6) 20 ± 1 (20 ± 1) 11 ± 6 (11 ± 6) 15 ± 1 (13 ± 1) 10 ± 3 (1) 15 ± 3

D1 8 ± 1 (0) 29 ± 1 (27 ± 2) 17 ± 1 (17 ± 1) 33 ± 2 (32 ± 2) 22 ± 1 (22 ± 1) 13 ± 1 (0) 13 ± 2

D2 8 (0) 19 ± 0 (19 ± 1) 20 ± 1 (20 ± 1) 17 ± 1 (17 ± 1) 19 ± 1 (18 ± 1) 5 (0) 2 ± 1

Table 2.  The average number of spike trains assigned to each muscle in the NMS model, for each subject. The 
table also shows the number of units among these assigned to other muscles (in brackets), because the NMs 
model allows for one spike train to estimate the excitation of multiple muscles.
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has to be noted that physiologically both PT and SUP have flexion and deviation moments, but in our Computed 
Muscle Control (CMC) calculation, their contribution was negligible.

Despite the small number of uniquely identified spike trains, the NMS model provided an accurate 
feed-forward estimation of the muscle excitations (Fig. 3A). This estimation could also be useful for several other 
purposes than prosthesis control, such as diagnosing or monitoring muscle weakness after amputation or sup-
porting the process of prosthesis training.

Based on the muscle excitations, the NMS model identified actuated DoFs (Fig. 3A). This allowed the elimi-
nation of unwanted activations of other DoFs, which were present for other methods (Fig. 3B), while maintain-
ing the potential capability to estimate movements in multiple DoFs simultaneously – although such a scenario 
was out of scope for this study. The superior performance was achieved using a generic biomechanical model, 
without scaling it to the individual physiology of the subjects. Although subject-specific scaling of the models is 
crucial for general biomechanical modeling22,32,33, the scaling step is problematic for transradial amputees due 
to the missing limb. Our finding that a single general anthropometry was robust enough across subjects might 
indicate that for this application, the calibration of the model is not as critical as for other scenarios. This feature 
is an important potential benefit for clinical applications since long fitting and training times are associated with 
prosthesis abandonment3.

Prosthesis training could also be supported by biomechanical variables estimated by the NMS model, such as 
joint velocity or muscle excitation. Such knowledge could potentially reduce training time and facilitate a better 
understanding of prosthesis function by the patients, by showing the parameters to change during training to 
improve prosthesis control. This is a clear advantage of the NMS model over the low-level control schemes used 
in commercial prostheses, as well as over black-box machine learning approaches used in academia. In this con-
text, the proposed scheme can be further extended and integrated with next-generation neuro-musculoskeletal 
modeling formulations based on the three-dimensional morphological representation of muscle fibers and series 
elastic tendons33.

Figure 2.  Representative example of the estimation results. (A) The muscle excitation estimations of the 
neuromuscular regression model compared to the excitations estimated by inverse kinematics and CMC. Note 
that in the CMC calculation non-agonist muscle excitations at increasing wrist angles are restricted to zero. (B) 
The kinematics estimation performance of the three methods (colored) compared to the measured kinematics 
(black).

Figure 3.  Regression accuracy of the investigated features for all subjects. The asterisks represent statistically 
significant differences. Note that for the R2, larger values correspond to better performance, whereas for the 
RMSE, smaller values are better.
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There are two main limitations of this study. First, our approach is based on open-loop forward dynamics 
trained on a single task type and velocity, which might limit its generalization capability to other tasks, and might 
account for the robustness of the model even without scaling28,34. The aim of this proof of concept study was, 
however, to assess the feasibility and the performance of such an approach in simplified conditions. A thorough 
validation of such an approach would have to be performed online35, with real-time EMG decomposition meth-
ods for dynamic contractions17, which are not currently available, although there is considerable research in this 
direction31,36. While differences in offline scenarios might disappear in online testing35, the significant difference 
in performance for transradial amputees suggests that there is indeed a functional gain using NMS modeling, at 
least for some patients.

Second, the proposed model was not compared with state of the art EMG-based musculoskeletal models, 
which require targeted electrode placement over specific muscles27,37. Since EMG decomposition required 
high-density recordings, the assignment between channels and muscles was unknown, and additional targeted 
EMG placement was not feasible, especially for transradial amputees.

In conclusion, we showed that it is possible to outperform state of the art nonlinear regression using EMG 
features by using an NMS model driven by neural information decomposed from the surface EMG, in both 
intact-bodied subjects and transradial amputees, in an offline setting. The NMS regression method proposed 
in this study was able to accurately estimate muscle excitations during voluntary contractions and to track the 
kinematics more accurately than ANN regression, regardless of using TD features alone or together with neural 
information. This suggests that the increase in performance was not only due to neural information but also to 
the robust estimation of muscle excitations and biomechanical variables during movement. In addition, the pro-
posed method might facilitate prosthesis training and the understanding of prosthesis function by patients. Our 
results indicate that using neural information for prosthesis control is a promising approach to provide a natural 
and intuitive control interface for patients with limb deficiency with application in the broad domain of wearable 
robotics38.

Methods
The control method proposed in this study consists of three steps (Fig. 4). First, motor unit action potential trains 
are decomposed from the recorded high-density EMG using convolutive blind source separation techniques. 
Then, a neural regression model is used to estimate muscle excitations based on the features extracted from the 
decomposed spike trains. The resulting muscle excitations are then used to simulate the wrist kinematics via a 
musculoskeletal model. This section describes each step of the method, the calibration of the used models, as well 
as the experiments used to calibrate and validate the method.

Subjects.  Six intact-bodied subjects (A1–6, 30 ± 6 years) and two transradial amputees (D1 and D2, 57/37 
and 43/43 years/years-since-amputation respectively) participated in this study. Both amputees were daily pros-
thetic users. The University Medical Center Göttingen Ethical Committee approved all experimental procedures 
(Ethikkommission der Universitätsmedizin Göttingen, approval numbers 9/2/12 and 11/10/14) and all exper-
imentation was performed in accordance with the relevant guidelines and regulations. All subjects signed an 
informed consent form.

Data acquisition.  We recorded surface EMG signals using high-density electrode grids (ELSCH064NM3, 
OT Bioelettronica) mounted around the residual limb, or for intact-bodied subjects around the proximal third 
of the forearm of the dominant hand (2 or 3 grids). The 8 × 8 grids had an inter-electrode distance of 1 cm. The 
electrode grids were connected to a 256-channel EMG amplifier (EMGUSB2, OT Bioelettronica). The recorded 

Figure 4.  Block diagram of the proposed method. The input of the framework is the recorded multi-channel 
EMG signal, which is decomposed into motor unit spike trains (A). Features extracted from these trains are 
used to estimate muscle excitations (B), which are then used to simulate wrist kinematics using a biomechanical 
model (C). During the calibration phase (blue arrows), the biomechanical model is used in the inverse direction 
to compute the muscle excitations based on the recorded wrist kinematics. The computed muscle excitations 
are then used to calibrate the neural regression model (B). (C) has been obtained using the OpenSim software. 
OpenSim is an open-source software based on the Apache License, Version 2.0 (http://www.apache.org/
licenses/LICENSE-2.0), which allows free publishing of OpenSim-generated figures and materials.
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EMG signals were band-pass filtered between 3–900 Hz, and A/D converted using a 12-bit converter at a sampling 
rate of 2048 Hz.

To capture the joint angles of the wrist during the tasks and to provide visual feedback, three motion capture 
pods (MTx, Xsens) were applied on the palm, wrist and upper arm directly above the elbow, on the dorsal side for 
each location. For intact-bodied subjects, the motion capture pods were placed on the dominant arm, for trans-
radial amputees on the contralateral arm.

Experiment protocol.  Subjects were seated in front of a monitor that provided visual feedback based on the 
captured intact wrist kinematics. First, subjects were asked to keep the arm fully relaxed at rest, and to position 
themselves on the chair so that the hand could move freely in any direction with the elbow relaxed, fully extended. 
During the recording, they were instructed to follow an arrow-shaped visual cue, which prompted movements 
along one DoF at a time. Horizontal movements of the arrow corresponded to flexion/extension, vertical move-
ments to the ulnar/radial deviation, and rotation to pronation/supination. During the movement in each DoF 
separately, the wrist angle increased linearly from rest position to the maximum range of motion in 1 s, and then 
back in the same fashion after a 500 ms pause (Fig. 5).

Transradial amputees were also instructed to perform mirrored bilateral movements, matching the movement 
of the phantom limb to the contralateral side. For intact-bodied subjects mirrored movements were not needed as 
previous studies found no difference in myoelectric control performance between the ipsi- and contralateral sides 
in this group27,32. After a familiarization session and adjusting the range of the feedback to the subjects’ range of 
movement, each subject performed three repetitions of each direction of each DoF in a randomized order.

Neuro-musculoskeletal mapping.  Features were extracted from the decomposed spike trains, which 
served as the input signal of the control system. The framework consists of two sub-models (Fig. 4B,C): a neural 
regression model to estimate muscle excitations based on the extracted neural features, and a musculoskeletal 
model to estimate wrist kinematics from the estimated muscle excitations. In the following, we describe all three 
parts of the DSCNMS framework.

EMG decomposition and feature extraction.  The neural information was extracted from the high-density EMG 
signal using a decomposition method for convolutive mixtures14, as described in29. The silhouette (SIL) metrics 
was used as reliability measure for each individual motor unit spike train. Only motor unit spike trains with a SIL 
value higher than 0.8 were used for the analysis14.

The feature used as model input was the number of discharges of each decomposed spike train, calculated for 
each train within 100-ms observation sliding windows, with 10-ms overlap between consecutive windows. This 
feature set is referred to in this report as DSC.

Neural mapping.  The discharge rate of a motor unit is determined by the net excitatory synaptic input 
(shared39–41 and independent) received by the motor neuron41–43. This relation was modeled for each spike train 
of a muscle by estimating the muscle excitation using the DSC as the input of a linear model with intercept. The 
ensemble muscle excitation was then calculated from the individual estimates by taking their median.

Figure 5.  The recording setup, experimental protocol, and data processing. The EMG was recorded using 
high-density surface EMG (A) and the kinematics of the wrist were captured by motion capture pods (B). The 
subjects followed triangular joint angle profiles in three degrees of freedom separately (C). The recorded EMG 
was then decomposed (D) and used to drive a biomechanical model to estimate the recorded kinematics (C). 
The visual feedback shown to the subjects during the tasks was an arrow shaped cue (E), which they had to 
follow by controlling another arrow of the same size and different color with the movement of their wrist.
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If there were no spike trains active in a given window, we used ANN regression to estimate the muscle excita-
tions from TD features. This was done using one dedicated ANN for each muscle with the same parameters and 
training method as described in Section IV.E.2.

Musculoskeletal mapping.  We used a generic musculoskeletal model of the arm available in OpenSim44,45. We 
reduced the model to the wrist joint and the following muscles acting on it: musculus flexor carpi ulinaris (FCU), 
musculus flexor carpi radialis (FCR), musculus extensor carpi ulnaris (ECU), musculus extensor carpi radialis lon-
gus (ECRL), musculus pronator teres (PT), musculus supinator (SUP).

In the muscle models, maximal isometric muscle forces were modified so that the numerical values of the 
muscle excitations were zero at the rest position of the wrist. This removal of the excitation offset was necessary 
because of the used muscle model, which cannot handle zero excitation values.

The excitations estimated by neural regression were used in an open-loop forward dynamics formulation to 
predict joint angles. For this purpose, excitations drove Hill-type muscle models to produce force profiles, which 
were projected onto a musculoskeletal model to produce joint moments and accelerations. Accelerations were 
then forward integrated to produce joint angular velocity and position for flexion/extension, ulnar/radial devi-
ation, and pronation/supination. These single DoF joint angles variables constituted the output of the DSCNMS 
framework.

Recent results showed that simultaneous and proportional control methods may have limited accuracy when 
controlling single DoF movements46. Thus, we refined the model to allow for precise single-DoF movements 
using the available biomechanical information, by only estimating a DoF if it was actuated by all (active) agonist 
muscles. For example, detecting activity in both FCU and FCR was interpreted as a flexion and only flexion/
extension was estimated (the other DoFs were set to zero), whereas if any of the above muscles was active alone, 
both flexion/extension and radial/ulnar deviation were estimated.

Model calibration.  Calibration of the model was necessary for two reasons. First, the recorded kinematics had 
to be scaled to the boundaries of the biomechanical model. This was needed because in a prosthesis control con-
text, fitting the model parameters to physiological markers to account for differences in ranges of motion was 
not feasible due to the unknown parameters of the missing limb. The output of the biomechanical model was 
rescaled accordingly. Second, the neural regression models had to be trained for each decomposed spike train. 
For this purpose, we operated the biomechanical model using a closed-loop formulation (Fig. 4, blue arrows). We 
estimated muscle excitations from measured kinematics taken from a training dataset via CMC in OpenSim47. 
CMC tracks the experimentally recorded reference joint kinematics (Section II.C) by computing the underlying 
muscle excitations needed to drive the joint angles of the model. The muscle redundancy problem is solved using 
static optimization3.

To promote solutions that best fit the decomposed spike train patterns, we restricted antagonist muscle acti-
vations to zero when the absolute angle of the actuated DoF increased. This resulted in solutions with minimal 
co-excitation across agonist and antagonist muscle groups. The resulting muscle excitations were then used to 
train the neuromuscular regression model (Section IV.D.2), i.e. to establish a model between the input neural 
features and the excitations across all calibration trials (Fig. 2 in Results), in the following two steps.

The first step was to determine the location of the motor units in the different muscles. Indeed, since the neu-
ral information was obtained through blind source separation of the EMG, we could not assign the decomposed 
spike trains to a specific muscle-tendon unit in the model a priori. We assigned a motor unit to a muscle-tendon 
unit in the OpenSim musculoskeletal model, if the muscle excitation was greater than zero at the time of at least 
80% of decomposed discharges. If this criterion corresponded to more than one muscle-tendon unit, the motor 
unit was assigned to all identified muscle-tendon units. Although this assignment did not reflect physiological 
conditions, it was necessary to populate all muscle-tendon units with spike trains in the redundant wrist-hand 
system.

In the second step, the relation between the firing statistics of individual spike trains and the muscle excitation 
was established. A robust linear estimator of muscle excitation was trained using the DSC of each spike train as 
input, for each observation window containing spikes. The linear fitting method employed iteratively reweighted 
least squares using the bisquare weight function48.

After calibration, the model operated in a purely open-loop way, i.e. without control mechanisms to compen-
sate for kinematic drift. The feasibility of the approach was assured by the fact that CMC generates dynamically 
consistent excitation profiles. Because of this property, if the estimated excitations matched the ones generated 
by CMC during calibration, then the resulting model kinematics would match the profiles tracked by CMC, and 
therefore could be used in an open-loop forward dynamics formulation.

Comparison with the state of the art.  State of the art myoelectric control methods extract features from 
the interference EMG directly, and use machine learning techniques to estimate the joint angles continuously 
during movement. For comparison with our modelling approach, we implemented an ANN that is considered 
the currently best performing method according to6,35.

Feature extraction.  The rectified EMG signal was digitally band pass filtered with a 4th order Butterworth filter 
with cut-off frequencies 20 and 500 Hz35. In the same observation windows as used for the DSC feature set, we 
calculated the following TD features of the signal for each channel: root mean square, slope sign changes, zero 
crossings, and waveform length5,49. We then reduced the dimensionality of the data using principle component 
analysis (PCA) so that the resulting signal retained 98% of the original variance. The loadings were calculated 
using the whole training data, and the scores were extracted from the multichannel signal during estimation using 
these loadings.
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Myoelectric regression.  We implemented nonlinear regression with the neural network toolbox of MATLAB, 
using one separate network for each DoF and three neurons in one hidden layer per network, as suggested in6,49. 
The training was done using the Levenberg-Marquardt back-propagation algorithm. For each fold, we trained 50 
ANNs using two repetitions of each DoF, and only the network with the best performance was used for further 
comparisons, as suggested in50.

To evaluate whether there was an increase in ANN regression performance due to including neural informa-
tion in addition to the interference EMG features, we introduced a third feature set containing both the TD and 
the DSC features used as input for ANN regression. These were concatenated before the PCA, and then the same 
dimensionality reduction and regression training were applied as for TD.

Statistical analysis.  We used three-fold cross-validation to assess the regression performance for both the 
ANN and the NMS regression. From the three repetitions that the subjects performed, we randomly labeled 
two repetitions of each direction of each DoF as part of the training set. The testing set consisted of the remain-
ing repetition of each direction of each DoF. The performance measures were the R2 value and the Root Mean 
Squared Error (RMSE) of the fitting between the estimated and the captured wrist kinematics. We repeated the 
cross-validation 10 times for both methods. For statistical analysis, we used an ANOVA model with the fixed 
factor “Feature” and the random factor “Subject”, which was nested within the fixed factor “Group” (with lev-
els “Intact-Bodied” and “Transradial Amputees”). Individual analyses were carried out using one-way repeated 
measures ANOVA for each subject individually with the fixed factor “Feature”. Post-hoc tests were performed 
using the Bonferroni correction and significance was reported at p < 0.05. Means and standard deviations are 
reported. We performed the analysis on both performance measures separately.
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