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INTRODUCTION 

In rare cases behavioral research provides results that are clearcut and easy 
to interpret, but in most cases things aren't so easy. Behavior is complex 
and highly variable even in the simplest of situations, so people who study 
the behavior of animals need tools to help them with their hypothesis 
testing. Statistical analysis is one of the most important and most frequently 
used items in the behavioral toolbox. For this reason, it is important for 
students of animal behavior to have some knowledge and understanding 
of statistics. 

Simply put, a statistic is a number that summarizes information about 
a group of numbers. For example, if you measured the body lengths of all 
the spring peeper frogs (Hyla crucifer) in Clear Lake, you could summarize 
their lengths by listing the length of each frog, or, alternatively, you could 
give their average length. The average (or mean) is an example of a 
descript ive statistic, a single number that summarizes information about 
a group of numbers and is used to describe that group. Descriptive statistics 
are used to summarize information about (1) the sample of data that you 
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observed and (2) the total population from which the data were drawn. 
Consider the following example. 

Suppose there are 100 adult male spring peepers in a small lake named 
Clear Lake. You are interested in knowing the mean length of male frogs 
in this entire adult population. You could measure the total adult male 
population, but this would be impractical and probably impossible. Instead, 
you would have to restrict your observations to a subset (that is, a sample) 
of the total population. When you measure a sample of 18 males, the mean 
and other descriptive statistics that you calculate from this sample constitute 
sample statistics. Sample statistics enable you to make precise descriptions 
of your sample. 

But the population of all adult males in the lake cannot be described 
precisely from the statistics that you derived from your sample. Remember 
that although you measured only 18 animals, you really wanted to know 
about the lengths of the entire population in the lake. The population of 
all 100 adult males in the lake is your statistical popula t ion ,  the collection 
of all elements about which you seek information. Had you measured the 
lengths of all the adult males in the lake, you could have calculated the 
p a r a m e t r i c  m e a n m t h e  mean for the entire population. The parametric 
mean is an example of a popu la t ion  paramete r ,  which is simply a 
descriptive statistic that is derived from the entire population of interest 
(the statistical population). 

For example, the mean length from your sample of 18 males is an 
estimate of the mean for the 100 males in the Clear Lake population. The 
mean and other parameters of the total population may differ from the 
descriptive statistics of a sample of the population because by chance you 
may have sampled lots of really large males (or lots of really small ones). 
Although what you really want to know are the population parameters, 
what you usually have are sample statistics, which are only estimates of the 
parameters. But the sample statistics become better and better estimates of 
the population parameters as the sample size is increased. For example, 
you would get a much better estimate of the population parameters if you 
measured and observed 50 males instead of 18. In this case, if you took 
your data correctly, then your sample statistic should be a good represen- 
tation of the population as a whole. 

The preceding example demonstrates the two purposes for which sta- 
tistics are computed from data: (1) to describe the data obtained in a sample, 
and (2) to make inferences about the characteristics of a population on the 
basis of a sample of observations drawn from that population. The calcu- 
lation of the mean from a sample is an example of statistical description. 
The use of the sample mean as an estimate of the population mean (a 
parameter) is an example of statistical inference. Descriptive and inferential 
statistical analyses are discussed in further detail in the sections that follow. 
But the first step in data analysis is to summarize your data. 
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SUMMARIZlN6 DATA 

You can tell little from one observation (one datum) of some phenomenon. 
Therefore, you always want to summarize data from many different indi- 
viduals or observations.You must use the right kind of summary for the 
data that you have collected. 

ways To Express Data 

Frequency 

The absolute  f r equency  is the total number of times you observed 
some characteristic or phenomenon (e.g., number of hops or number of 
frogs); the f r equency  is the number in a unit of time (e.g., hops/minute; 
also called a rate) or space (e.g., frogs/puddle; also called a density).  

Percentage 
The absolute frequency divided by the total number of observations 

times 100 is the p e r c e n t a g e  at which some observation occurred. 
Percentages can range from 0 to 100%. 

Probability 

The p robab i l i t y  is the absolute frequency divided by the total number  
of observations (it is also called the relat ive f requency) .  Possible prob- 
abilities range from 0 to 1. If every time your professor goes near your 
animal, it hides, you could say that the chances are 100% that it will 
happen again or that it happened 10 out of  10 times or that the probability 
of its happening again is 1. If 75 times out of  100, your animal turned 
black when you turned on the light, you could say that the chance of  
such an occurrence happening again is 75% or that the probability is 
0.75. 

Presenting Data 

Tables 

A table presents the detailed numerical findings of a study, but it never 
presents raw data (unless it is in an appendix). Every table must have (1) 
a descriptive title at its top, (2) headings to all rows and columns (including 
units), and (3) the summarized data (such as descriptive statistics) that make 
up the body of the table. Tables are numbered sequentially in the order 
in which you refer to them in the text. You want to present a summary 
that includes some measure of central tendency and the amount of variation 
(see the explanation that follows). A helpful "rule of thumb" is that a table 
is something that you could make with an ordinary typewriter. 
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Figures 
The clearest and easiest way to get the reader to understand your 

important findings is to present your data in a graphical form (where you 
may present either raw or summarized data). In scientific writing, graphs, 
photographs, maps, drawings, and any other illustrations are called figures 
and are numbered sequentially in the order in which you refer to them 
in the text. Several kinds of graphs, such as bar graphs, histograms, scat- 
terplots, and box-and-whisker plots, are commonly used in animal behavior. 
Others kinds, such as pie charts, are not typically used. 

When  you make a graph, you should follow these rules: (1) Plot the 
independent variable on the x-axis and the dependent variable on the y-axis. 
(2) Always plot your data in such a way as to maximize the chances that 
the reader will see the point you are trying to make. (3) Use the proper 
scale for the d a t a ~ f o r  example, a log scale for growth data. (4) Always 
include clearly labeled axes with the units you used. (5) For every figure, 
be sure you have an explicit and clear title placed below the figure. 

You may be tempted to present the same data in both tables and figures, 
but you should avoid this temptation. Data should be reported only once (in 
a table or in a figure, but not in both), so you must think carefully about the 
most effective way to present them. Unless you have limited data to present, a 
good figure is usually more effective than a table. One guideline to consider 
when you design a table or a figure is to present it in such a way that it can 
stand alone. In other words, someone should be able to understand the infor- 
marion given in your table or figure by reading it and nothing else. This means 
that axes and legends must be clearly labeled and that tides may need to be 
fairly detailed, including names of species and sample sizes, where these are 
not obvious from the data presented. 

DESCRIPTIVE STATISTICS 

As the name implies, descriptive statistics are used simply to describe a 
group of numbers. Suppose that you are doing a study of courtship patterns 
in male spring peepers in Clear Lake.You successfully trapped, measured, 
and individually marked 18 of the 100 males in the lake. Say you also 
followed each marked male for one night and determined the number of 
times that each animal called during the night. These hypothetical data are 
presented in Table C. 1. 

Before calculating any statistics, it is often wise to plot the data. To plot 
the frequency of numbers of calls, simply plot the number of frogs that 
called 1, 2, 3, etc. times per night, as shown in Figure C.1 (i.e., plot the 
number of frogs that fall into each category of calling). This figure is called 
a ba r  graph.  Note that the bars do not touch each other because the 
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Table C1 Hypothetical data on male spring peeper (Hyla 
crucifer) calling frequency. 

Frog I.D. Number of Calls 

1 9 

2 10 
3 6 
4 7 
5 5 
6 11 
7 8 
8 10 
9 9 

10 6 
11 7 
12 8 

13 8 
14 9 
15 9 

16 7 
17 10 
18 9 
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Figure C1 Hypothetical data for the number of calls per night 
by male spring peepers (Hyla crucifer) in Clear Lake. 
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distribution is discrete (i.e., a frog can call 1 time or 2 times a night, but 
it cannot call 1.5 times in a night). If we had plotted cont inuous  data 
(e.g., length or speed), then we would have used a h i s t og ram in which 
the bars touch each other, with each bar representing the frequency of 
occurrence within a range of possibilities (e.g., the number of frogs between 
3 and 4 centimeters in length). 

Figure C.1 is a f requency  dis t r ibut ion,  a graph of the distribution of 
data points that represents how often each value occurred in the sample. 
To describe your data with descriptive statistics alone, you need to find a 
way to capture the shape of the frequency distribution. A complete descrip- 
tion of the frequency distribution must include a description of both the 
center of the curve (distribution) and its width. That is to say, when you 
characterize your data, you must use two descriptive statistics: one that 
measures the central tendency (location) and one that measures the 
variability (dispersion) in your data. 

Measures of Central Tendency 

Measures of central tendency are descriptive statistics that represent the 
common values in the distribution. Each statistic of central tendency is a 
single number that represents the value of the variable where the majority 
of the data lie (the center of the distribution). 

Mean 
w 

The arithmetic mean, or average, X(pronounced "ex bar"), is calcu- 
lated by taking the sum of the values obtained, ]EX, and dividing by the 
total number of values, n. For example, the mean number of frog calls is 
8.22 (from data in Table C.1; see Figure C.1). Calculate the mean as 
follows: 

n = 1 8  

E X = 9 +  1 0 + 6 + 7 + 5 +  11 + 8 +  1 0 + 9 + 6 + 7 + 8 + 8  

+ 9 + 9 + 7 +  10+9 = 148 

E X  = 148 

- 2 ;  X = X/n = 148/18 = 8.22 

Median 

The median is the value that divides a frequency distribution into two 
equal halves such that the same number of items fall on each side of the 
median value. For example, in the series 1, 2, 3, 4, 5, the value "3" divides 
the data such that there are the same number of points, 2, on either side. 
If there are an even number of values, you must take the mean of the 
middle two values. Thus, in the series 3, 4, 5, 6, 7, 8, the median is 5.5. 
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Similarly, the median number of frog calls is 8.5 (from the series in Table 
C.1 of 5, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 11; see Figure C.1). 

Mode 

The m o d e  is the most common value in a series. In a frequency 
distribution, the mode is the value of the variable at which the distribution 
peaks. For example, the modal number of frog calls is 9 (see Table C. 1 and 
Figure C. 1). 

In a synn~e t r i c  dis t r ibut ion (one in which the left and right sides are 
mirror images of each other), the mean, median, and mode are identical. In 
such cases we typically use the mean as the measure of central tendency. In 
contrast, the three measures of central tendency differ when a distribution is 
asynmletr ic .  Suppose you had a distribution that was skewed to the right 
(in other words, one with a big "hump" on the left-hand side and a long 
"tail" on the right-hand side). What do you think would be the left-to-right 
order of the three measures of central tencency? It would be mode < median 
< mean, but can you figure out why? Here is a hint: Why is the mean to the 
right of the median in this case? (That is, why is it closer to the side with the 
long tail?) How can you remember this order? It's alphabetical from the side 
with the long tail, which is also the side toward which the distribution is said 
to be skewed. 

Measures of Variability 

Measures of variability or dispersion are descriptive statistics that repre- 
sent the spread of values in the distribution on either side of the center. 

Range 

The range is the difference between the largest and smallest values. It 
represents the maximum spread in the data. For example, for the series 21, 
15, 13, 24, 18, 19, the range is 2 4 -  13 = 11. Similarly, the number of frog 
calls (Table C. 1) spanned from 5 to 11, so the range is 11 - 5 - 6. Note that 
it would be incorrect in these two examples to say that the range was 13-24 
or 5-11 (that is, the range is the difference between the minimum and maximum 
values, not the minimum and maximum values themselves). 

Variance 
2 

The var iance,  s ,  measures the amount of  variability in your sample. 
Variance differs from the range in that the variance takes into account the 
distribution of all data points, whereas the range simply describes the 
distance between the lowest and highest extremes. For example, imagine 
that you have the following two sets of  data: 

Dataset A: 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 11 

Dataset B: 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11 
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In both sets, the lowest value is 5 and the highest value is 11 (range = 6). 
But in Dataset A, the values are all clustered around 8 and 9, except for 
the two odd points, 5 and 11, whereas the data are spread widely through 
the entire range in Dataset B. Clearly, Dataset B with its many dissimilar 
values is far more variable than Dataset A, with its cluster of data between 
8 and 9.Variance is a way of comparing the degree of variability among 
different sets of  data. 

To calculate variance, take the dev ia t ion  (or difference) of each value, 
X, from the mean, X (that is, calculate X - X  for each value). Then 
calculate the squared  devia t ion  by squaring each deviation [ (~7-X)  2 for 
each value], to eliminate any negative signs. Add all the squared deviations 

is, compute s  ] to calculate the s u m  o f  squares,  together [that" - 2 

and divide by the number of values minus one (n - 1), which is called 
the degrees  o f  f r e e d o m .  In other words, 

2 
S = 

s  -- X )  2 

n - 1  

An easier but equivalent formula is 

X __ 
( s  2 

2 n 
s = 

n - 1  

For example, the variance in the number of frog calls can be calculated 
from Table C.1 as follows: 

Z 

s 

X 2 = 9 2 + 10  2 + 6 2 + 7 2 + 5 2 + 112 + 8 2 + 10  2 + 9 2 + 6 2 + 7 2 

+ 8 2 + 8 2 + 9 2 + 9 2 + 7 2 + 10 2 + 9 2 

= 8 1 + 1 0 0 + 3 6 + 4 9 + 2 5 + 1 2 1 + 6 4 + 1 0 0 + 8 1 + 3 6 + 4 9  

+ 6 4 + 6 4 + 8 1  +81 + 4 9 +  100+81 

X 2= 1,262 

= (148) 2 = 21,904 

1,262 - 21,90_.__.4 
2 18 s = = 2.65 

1 8 - 1  

Similarly, Dataset A in the preceding example has S 2 - -  1.31, whereas for 
Dataset B, S 2 - -  3.82. 

Standard Deviation 

The variance is based on the sum of the squared deviations and so has 
units of  measure that are squared. To convert this measure of dispersion 
to one that uses the original unit of  measure, we could take the square 
root of  the variance. That is how to calculate the s t a n d a r d  dev i a t i on  
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(s, where s = 4s 2). Another advantage of the standard deviation emerges 
if your data conform to a n o r m a l  d is t r ibut ion,  familiar to most as 
symmetric, bell-shaped curves around the mean. In a normal distribution, 
about 95% of the values fall within 2 standard deviations on either side 
of the mean. 

Percentile 

Percentiles are points that divide the distribution of the data into 
hundredths. The 95th percentile is the point on a distribution below which 
95% of the data fall. 

INFERENTIAL STATISTICS 

Experimental Design 

Sampling 

According to Webster, to infer means "to derive as a conclusion from 
facts or premises." For example, when you see a person driving a police 
car, you may infer that the person is a police officer. In this example, you 
made conclusions about a person's employment and lifestyle on the basis 
of one observation of the vehicle being driven. In statistical inference, you 
draw conclusions about a large number of events on the basis of your 
observations of a subset of them, your sample. 

Suppose that you sampled two sets of 18 male spring peepers in Clear 
Lake rather than just one as described earlier. Let's say that one sample 
had a mean of 8.2 calls and the second sample had a mean of 8.8. Both 
samples came from the same population of adult male frogs in Clear Lake, 
so why do the two samples differ? There are several possible reasons. 

Biased Samples 

One reason for the difference might be that different selection criteria 
were used to choose study animals for the two samples. An example of 
such biased sampl ing  would be if, for your first sample, you selected 
small males that call rarely, whereas for your second sample, you selected 
large males that call frequently. In this example, rather than being estimates 
of the total adult male population, your first sample would be an estimate of 
the population of small adult males, and your second sample an estimate of 
the population of large adult males, in Clear Lake. Had you selected small 
males for both samples, you would still not have a good estimate for the 
total male population, but only an estimate for small males. Why would 
someone choose to gather biased samples? It usually occurs by accident. 
For example, perhaps the first sample was gathered near shore and the 
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second from deeper water. It just so happened that small, quiet males were 
hanging out in shallow water and big noisy males in deeper water. Unin- 
tended bias in sampling is a serious problem. Proper sampling methods are 
designed to avoid it, among other things. 

Random Samples 

Another reason for the differences between your two samples might be 
that by chance alone, your first sample happened to consist of animals that 
called infrequently, whereas your second sample happened to consist of 
animals that called frequently. This would be an unlikely outcome if chance 
differences were the only differences between your samples. If you looked 
at more samples, and the samples were random, differing only by chance, 
then the calling rates in most samples would be fairly similar, although a 
few would be quite different. When you do a study, what you want is to 
have r a n d o m  samples.  In your study of frog calls, to make sure that the 
differences between the means of the two samples are the result of chance 
alone, you must choose the sample males randomly by applying objective, 
preset criteria for selecting the animals (rather than choosing the easiest 
ones to catch or the loudest callers). 

To do any type of statistical inference, it is essential that the sample be 
random so that it will be truly representative of the population. To ensure 
randomness in the sampling procedure, make all decisions about the exper- 
iment before the experiment begins. Before beginning the experiment, 
you must decide (1) what individual animals you will use for the experi- 
mental and control groups, and (2) what data you will take and how you 
will take them.You must be very careful not to say, "Oh, this looks like a 
nice aggressive animal, so I'll test this one" or "I didn't quite see what 
happened that time, so I'll use it as a control." 

How do you randomize the collection of data? You have to apply preset, 
objective, and clearly specified criteria to obtain a random sample. This 
may involve assigning numbers to your animals and treatment groups and 
using a table of random numbers to assign the animals to the different 
treatment groups. 

Data Independence 

I n d e p e n d e n t  data are those in which the presence of one value or 
data point has not influenced the presence of another value in your sample. 
Within any sample, the data must always be independent. For an example 
of nonindependent data, imagine that you watched a frog in an aquarium 
and recorded at 15-second intervals where the animal is located.Your data 
were not independent because the position of the animal in the previous 
15 seconds drastically influenced where it was in the following 15 seconds. 
Similarly, if you always present the animal with a red stimulus after a blue 
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one, then your data will not be independent because the blue stimulus 
may influence the response to the red one. Your data are useful only when 
they are independent. 

The most common way in which data independence is a problem is 
through the pool ing fallacy, which is sometimes called pseudoreplicat ion.  
We often treat repeated observations of the same individual as though they 
were independent. This is incorrect. To make repeated observations on one 
individual is not a substitute for making observations on many individuals. 
All that these repeated observations of one individual do is increase your 
knowledge about that one individual. In other words, one individual is 
one data point, and by observing the same individual over and over, you 
simply increase the reliability of your estimate of that one data point. For 
example, suppose you want to know if ponds next to highways have fewer 
frogs than ponds far from highways.You could pick two ponds, one by a 
highway and one far from any highways, and count the number of frogs 
in the two ponds once a month for 6 months. This is an example of 
pseudoreplication. You would generate lots of data, but at the end of the 
study, all you would know would be whether these two particular ponds 
differed. You would not know whether the differences had anything to 
do with being near or far from highways. To avoid pseudoreplication, a 
better experimental design would be to pick a bunch of different ponds, 
half near highways and half far from highways. You would want to pick 
ponds that were as similar as possible (in size and vegetation type, for 
example) and differed mainly in their proximity to highways. You could 
then count the frogs in each of these ponds and compare the counts in 
ponds near highways to those in ponds far from highways. This experi- 
mental design would enable you to draw conclusions about the relationship 
between proximity to highways and number of frogs in ponds. 

Independent and Dependent Variables 

The goal of many scientific investigations is to determine whether 
changes in some condition(s) (the i ndependen t  variable) result in dif- 
ferent effects (the dependen t  variable). The dependent variable is the 
score that you measure for each of your study subjects. For example, you 
might want to know whether frog calling rate (dependent variable) depends 
on distance from highways (independent variable). You might start by 
simply measuring the calling rates of frogs at ponds adjacent to highways 
vs those 4 kilometers from highways. Here, your independent variable would 
include two c o m p a r i s o n  ( " t r e a t m e n t " )  groups,  adjacent to highways 
and 4 kilometers from highways. Such an observat ional  c o m p a r i s o n  
would not involve any experimental manipulation. Next, you might con- 
duct a control led  expe r imen t ,  in which you manipulate the location of 
the frogs. For example, you might randomly assign equal numbers of frogs 
to the following three treatment groups: aquaria adjacent to a highway, 
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aquaria 4 kilometers from a highway, and "control" aquaria at the same 
distance (such as 2 kilometers) from a highway as was the pond from which 
all the frogs originally were captured. 

Observational Comparisons 

To make an observational comparison, a researcher simply compares two 
or more groups that already exist naturally and measures some dependent 
variable to see whether it differs among these comparison groups. In other 
words, these are observations that do not involve any experimental manip- 
ulation of the independent variables. Examples include comparing the 
calling rates of frogs in ponds near and far from highways, or calling rates 
by frogs with different skin colors (certain colors may provide better cam- 
ouflage so that cryptic frogs may call more because of lower risk of being 
killed by predators). Observational comparisons are often made at the 
beginning of a study to detect possible relationships. With such observa- 
tions you can detect potentially interesting relationships for further study, 
but they do not enable you to make conclusions about what caused an 
observed relationship. To identify causes requires controlled experiments. 

Consider the following example of an uncontrolled observation. Let's 
say that from your initial investigations of the effects of  highways on frogs, 
you hypothesized that there were fewer frogs near highways because oil 
from the highways was affecting the hatching success of the frogs' eggs. 
You then revisited your bunch of ponds that were near and far from 
highways, this time measuring the amount of oil on the water and the 
hatching success of  frog eggs. If you found that fewer eggs hatched in 
areas with high amounts of oil than in areas with low amounts of oil, 
you might be tempted to conclude that the oil caused low hatching success. 
But such a conclusion would be valid only if you had controlled for all 
other factors. In the case just described, you did not control for all other 
factors. Thus, although it might be that oil caused low hatching, the low 
hatching in oily ponds could just as easily have been caused by some other 
factor (a c o n f o u n d i n g  factor)  that you did not measure. For example, 
it might be that the ponds that had more oil in them also happened to 
have higher levels of  lead in them. Perhaps the lead was what was killing 
the eggs. Or  perhaps the ponds that had more oil in them happened to 
be in more open areas such that the water received more sunlight. High 
light levels and/or  higher water temperatures, rather than oil, might have 
been responsible for lower hatching success in these ponds. Your obser- 
vation that fewer eggs hatched in ponds with more oil is still useful in 
that it indicates that there might be a relationship between oil and hatching 
success. Such uncontrolled observations are a good first step in figuring 
out what is going on. But in order to find out what actually caused the 
reduction in hatching success in oily ponds, you must do a controlled 
experiment. 
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Controlled Experiments 

To do a controlled experiment, the researcher manipulates a factor of 
interest and holds all other factors constant (the rule o f  one variable 
or one difference among treatment groups). Often, these independent 
treatment groups include a control  group that experiences normal con- 
ditions, plus one (or more) exper imen ta l  group(s) that receive(s) some 
manipulation. 

To keep all other factors as constant as possible, the researcher should 
conduct a labora tory  exper iment ,  which results in high internal  valid- 
ity (i.e., if there is an effect, you know exactly what caused it). But 
laboratory conditions can be so artificial that their results may not be 
generalized to the real world (a lab experiment has low external  validity). 
Clearly, then, a researcher cannot achieve both high internal validity and 
high external validity~these 2 characteristics of experimental design 
"trade-off" against one another.As a compromise, a researcher may choose 
to do a field expe r imen t  by observing organisms in their natural habitat 
while manipulating some factor of interest (such an experiment would 
have moderate internal and external validity). The following are examples 
of a field experiment and a laboratory experiment that you might choose 
to do to find out whether oil really caused the reduction in hatching 
success of frog eggs that you observed in the uncontrolled observation 
described above. 

As a field experiment, you could pick a set of ponds that have either 
no oil or very similar, low levels of oil. The ponds should also be very 
similar in other potentially important respects, such as size, water temper- 
ature and chemistry, and vegetation along shore. Best would be ponds that 
also had similar hatching success of frog eggs. You could then randomly 
assign half of the ponds to be the experimental group, which would receive 
a certain dose of oil, and assign the other ponds to the control group. 
Control ponds could receive pond water instead of oil, to control for any 
effects of disturbance by experimenters. If you then found that more eggs 
hatched in the ponds with no oil (control group) than in the ponds that 
received oil (experimental group), you could conclude that oil caused the 
reduction in hatching success. Concluding that oil caused the difference 
is reasonable because other differences between the two sets of ponds were 
controlled by random assignment of treatments. If the two sets of ponds 
were otherwise identical, then the conclusion that oil caused the difference 
is valid. Keep in mind that if you actually planned to conduct such an 
experiment that involves adding a pollutant like oil, you would need to use 
the lowest appropriate dose, for example, similar to that released by roadsides. 
By doing so, you will not only make your results applicable to your question 
about the effects of roadside oil, but also minimize harm to the pond 
organisms. Exposing organisms to deleterious conditions like these may 
be necessary to advance knowledge needed to reduce harm from pollution, 
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but must also minimize suffering in experimental animals. Of  course you 
would not conduct a field study like this in an ecologically sensitive area 
that contained locally rare organisms! 

The difficulty with field experiments is that you can never find situations 
in the field where all other factors are truly identical. There are sure to be 
some variations among your ponds, some of which might have influenced 
hatching success. If, despite random assignment, the experimental group 
happened to have more ponds with higher temperatures than the control 
ponds, then your conclusion that oil caused lower hatching would be 
questionable; high temperatures might have been the cause. But if you 
pick large enough samples~that  is, if you do the experiment with a large 
enough number of different p o n d s ~ a n d  if you assign ponds randomly to 
treatment groups, the chances are that differences among the ponds will 
appear equally in both the control group and the experimental group. For 
example, if you picked enough ponds and if your assignment of treatments 
was unbiased, then there would be about the same number of warm and 
cold ponds in both the experimental group and the control group. In this 
situation, average temperatures would be the same in both groups, so tem- 
perature differences would not be a possible explanation for lower hatching 
success in the experimental group. With large enough samples, you could 
reasonably conclude that oil caused the low hatching success. But what if 
getting large samples is impractical or you cannot make your control and 
experimental groups similar to each other in all factors other than the one 
you are manipulating? In this situation, you need a laboratory experiment. 

As a laboratory experiment, you could set up in your lab a bunch of 
aquaria that all had identical conditions. You could then put an equal 
number of fertilized, healthy frog eggs into each aquarium. You could then 
randomly assign half of the aquaria to be the experimental group, giving 
each a prescribed dose of oil. The other aquaria would be assigned to be 
the control group and would receive no oil (but you could add an equal 
volume of aquarium water instead). Because you were doing this in your 
laboratory, you would have (at least theoretically) complete control over 
all of the variables, so you could set up the experiment in such a way as 
to be sure that the only difference between the control and experimental 
aquaria was the presence or absence of oil. If you found that hatching 
success was higher in the control aquaria than in the experimental aquaria 
to which oil was added, you could conclude that the oil caused the observed 
reduction in hatching success. However, it is risky to assume that you have 
controlled all the factors except the one of interest. Even in the laboratory, 
you might have overlooked a factor that might affect the outcome of your 
experiment. For example, if you put all your experimental tanks along the 
window and all your control tanks along the wall, you would have uncon- 
trolled differences in light levels and temperature (confounding factors) 
between the two groups. The higher light or temperature levels in the 
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tanks along the windows might have caused lower hatching success in the 
experimental tanks. In a room without windows, tanks might still expe- 
rience differences in air currents or noise levels if some tanks were placed 
near air ducts or doors and others were far from such passageways.To avoid 
these problems, you must be sure that an equal number of tanks in the 
experimental and control groups are near ducts or doors and that an equal 
number are far from ducts and doors. In short, the mere fact that you are 
working in a laboratory does not mean you automatically have controlled 
conditions. Be aware of easily overlooked differences in variables such as 
light levels, air currents, noise levels (some walls may be near machine or 
construction noises), background complexity or color (which might affect 
animal behavior), and temperature differences along inner and outer walls. 
The easiest way to avoid these confounding factors is to assign aquaria 
randomly to control and experimental groups. 

The Logic of Hypothesis Testing 
Statistical inference is used most frequently to test hypotheses .  When 

studying animal behavior, we seek explanations for the patterns that we 
observe. We learn about the patterns by forming hypotheses and testing 
specific p red ic t ions  that are based on the hypotheses. For example, 
suppose we are interested in finding out why male frogs call. We may 
hypothesize that one func t i on  of calling by male frogs is to attract females. 
From this general, b io log ica l  hypothes is ,  we can deduce specific, test- 
able predictions. Some of these predictions may involve observations of 
undisturbed animals, whereas others may involve field or laboratory exper- 
iments. For example, one prediction of this hypothesis might be that 
among undisturbed animals in the field, more females will be found near 
males that called than near males that did not call. Another prediction 
might be that fewer females will be found near experimentally muted 
males than near sham-operated, unmuted males (the control treatment). 
(Similar field experiments involving temporary muting are relatively easy 
to conduct with songbirds but may be impossible to do with frogs. Keep 
in mind that the frog study in this handout involves hypothetical examples, 
not real data.) 

To discuss the validity of our biological hypothesis (here, that male calling 
attracts females), we must first determine which (if any) of the predictions 
are correct. To test each prediction, we must collect data and determine 
whether the data fit the prediction. If all the predictions are correct, we 
may conclude that the data support the hypothesis. (Note that we can 
never say that the data prove the hypothesismwe encourage you to declare 
a moratorium on use of the word prove.) If the data do not support one or 
more of the predictions, then we must conclude that the data do not support 
the hypothesis, and thus we reject it. To understand the phenomenon,  
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we will have to form a new hypothesis or modify the old one and then 
start all over again by designing new experiments and collecting new data 
to test the predictions of the new or revised hypothesis. 

How do we decide whether our data meet our prediction? How can 
we tell whether  the experimental differs from the control? For example, 
say that in testing the hypothesis that male calling attracts female frogs, you 
operated on 20 frogs.You muted 10 so that they could not call for a few 
weeks. You did a sham operation on the other 10, your control, so that 
they experienced surgery but were still able to call following the procedure. 
After you released the animals, you found that there were an average of  
1.3 + 0.24 (mean + 1 standard deviation) female frogs within 5 meters of  
muted males, whereas there were an average of 3.2 + 1.4 females within 
5 meters of  unmuted males. 

From these results, you might be tempted to say that there were more 
females around males that could call than around those that could not. But 
remember that two groups can differ by chance alone. H o w  can you tell 
whether the apparent differences between two groups are due to real 
differences rather than to chance alone? H o w  can we tell whether  a mean 
of 1.3 females is really different from a mean of 3.2 females? This is where 
statistics are used in testing hypotheses. Statistical inference tests determine 
how large the observed differences must be before we can be reasonably 
sure that they represent real differences in the populations from which only 
a few events were sampled. We can never be certain that two groups differ, 
but we can use inferential statistics to find out how likely (how probable) 
it is that the differences represent real differences between the groups rather 
than differences based on chance alone. 

Null and Alternative Hypotheses 

All statistical tests involve discriminating between pairs of alternative 
hypotheses (note that these stat ist ical  hypo these s  are distinct from our 
original, biological hypothesis, which we are attempting to test). The nul l  
hypo thes i s  is that there are no differences among groups or no ef fec ts~  
that is, any apparent differences are the result of chance alone. The a l ter-  
nat ive hypo thes i s  (the alternative to the null) is that there are differences 
or effects. The alternative hypothesis includes all possible alternatives to 
the null. Because only one of the two hypotheses can be true, we call 
these hypotheses m u t u a l l y  exclusive. W h en  testing these hypotheses, we 
accept the simpler, null hypothesis unless there is good reason to reject it. 
Therefore, when we are doing a statistical test, we usually say that we are 
testing the null hypothesis. The goal of  such testing is to figure out how 
likely it is that our study would produce our results when the null hypoth- 
esis is true. 

How are the null and alternative hypotheses related to our original bio- 
logical hypothesis and its predictions? The null and alternative hypotheses 
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are simply ways of  restating one prediction of  a biological hypothesis. 
There are separate null and alternative hypotheses for each test of  each 
prediction. For example, in testing the biological hypothesis that male 
calling attracts female frogs, several experiments might be conducted. For 
each experiment,  we can make one or more prediction(s) about what  the 
outcome would be if the biological hypothesis were correct. To do a 
statistical test of  each prediction, we first must restate each prediction in 
the form of  a null and alternative hypothesis. We then conduct the statistical 
test, which is actually a test of  whether  we should accept or reject the null 
hypothesis. 

The  following examples are null (H0) and alternative (Ha) hypotheses 
for the prediction that more females will be near unmuted  than will be 
near muted male frogs. There are two forms for these hypotheses: one-- 
ta i led  and two-tailed. 

Two-Tailed Hypotheses 
H0: There is no difference between the numbers of females near 

unmuted  and muted male frogs. 

Ha: There is a difference between the numbers of  females near 
unmuted  and muted male frogs. 

A two-tailed hypothesis does not specify the direction of  the difference; 
thus a difference toward either tail of  the distribution means H0 is rejected. 
Reject ion of the null hypothesis simply means that two groups differ. Two- 
tailed hypotheses are the most appropriate to use when  you have reason 
to expect groups to differ but have no reason to expect the difference to 
be in a particular direction. 

One-Tailed Hypotheses 
H0: There are not more females near unmuted  than near muted male 

frogs. 
Ha: There are more females near unmuted  than near muted male 

frogs. 

W h e n  you have good reason to expect groups to differ in a particular 
direction, a one-tailed hypothesis is appropriate. In our example, rejection 
of  the 1-tailed null hypothesis means that there are more females near 
unmuted  than near muted male frogs. Failure to reject the null means 
either that (1) there were similar numbers of  females near unmuted  and 
near muted males or that (2) there were more females near muted than 
near unmuted  males.We cannot distinguish between these two possibilities 
if we failed to reject the one-tailed null hypothesis. Had we done a two- 
tailed test, we would have detected a difference if there had been more 
females near muted than near unmuted  males.The selection of  a one-tailed 
test must be based on a good reason for expecting differences in a particular 
direction, such as past studies of  the same or related species showing 
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differences in one direction. (A one-tailed test may also be appropriate if 
you are testing a prediction of a theoretical model that exists in the literature 
and the predicted differences must be in one direction for the model to 
be valid.) 

Suppose that you tested the foregoing one-tailed hypothesis and discov- 
ered that there appeared to be more females near muted than near unmuted 
males. Could you switch to a two-tailed hypothesis "after the fact"? No, 
absolutely not. The null and alternative hypothesis and whether  they 
involve one or two tails must be stated before doing the statistical test. In 
other words, just as in a conversation, you must ask the question before 
you can answer it. The  set of  statistical hypotheses to be tested must be 
chosen before, not after, the analysis and final decision. 

Significance Level 

R e m e m b e r  that when  we have not actually measured the entire popu-  
lation, we do not know which is true, H 0 or H a. We may decide to accept 
H 0 when it is true (a correct decision) or when it is false (an incorrect 
decision). Alternatively, we may decide to reject H 0 when it is true (an 
incorrect decision) or when it is false (a correct decision) . These possibilities 
are listed in Table C.2. 

Table C.2 illustrates the two types of mistakes that we might make when 
we decide whether to accept or reject H 0. Accepting a null hypothesis when 
it is actually false is a type  1I error ;  rejecting a null hypothesis when it is 
really true is a t y p e  ! er ror .  We try to minimize both types of errors. 
Type II errors are minimized by increasing our sample size. When  we fail to 
reject the null hypothesis but have only a small sample, we must consider 
the possibility that a larger sample would have caused H 0 to be rejected 
(statisticians call it a lack of statistical power).  

Statistical inference tests are designed to calculate the probability (P) 
that chance alone produced your  results if the null hypothesis is true. 
A P-value equal to 0.05 means that the likelihood of  a type I error is 5%. 
In other words, if you took 100 samples, in 5 of  the 100 you might, by 
chance alone, incorrectly reject H 0 even though H 0 is actually correct. 

Table C.2 Results of decisions to accept or reject the null (Ho) 
and alternative (H a ) hypotheses. 

Actual Condition in Nature 

Your Decision H o is Really True H a is Really True 

Do not reject H o (i.e., accept Ho) Correct decision Type II error 

Reject H o (i.e., accept H~) Type I error Correct decision 
(a level) 
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To decide whether  a particular result supports H0, the calculated P-value 
(type I error) is compared with a predetermined maximal level called the 
s igni f icance  level or a lpha  (0~) level. Typically in animal behavior, 0~ = 
0.05; we will use o~ = 0.05 in this manual. 

The  significance level is what you use to assess how confident you can 
be that you are making a correct decision when  you reject H 0. Wi th  an 
o~ of  0.05, you can have 95% confidence that your decision is correct. 
Similarly, with o~ = 0.01, you can have 99% confidence that your decision 
is the correct one. Because 99% confidence seems better than 95%, and 
99.9% is better still, why use 95%? It's because of  another trade-off, this 
time between type I and type II error (/3). The  higher our confidence 
that we will not  incorrectly reject the null hypothesis (that we will not 
make a type I error), the more likely it is that we will incorrectly accept 
the null hypothesis (make a type II error). In other words, you can't have 
it both ways. An o~ of  0.05 is a good compromise between the two kinds 
of  error. 

Test Statistic 

After stating our hypotheses and selecting an o~ level, we must select and 
carry out the appropriate statistical test (see the next section). By plugging the 
values of our sample into a formula for the test statistic (some common ones 
are t, F, and Z2), we end up with one number that summarizes the sampled 
data. To make our decision, we need the P-value associated with this number 
(such as the value of t, F, or Z2). If we knew how, we could use integral 
calculus to figure out the P-value. Luckily for those of us who are somewhat 
calculus-impaired, we can also look up the P-value in a published table. There 
is one slight difficulty, however. For any test statistic that we may wish to look 
up in a table of P-values, there are an infinite number of test statistic values 
and P-values. Unfortunately, there aren't any publishers who are willing to 
print a table of infinite length. Instead of all of the values, only a few, repre- 
sentative ones are tabulated. These tabulated values are called cri t ical  values. 

For a particular test statistic, one critical value is associated with a particular 
P-value and sample size. Thus, to compare the numbers of females near muted 
and near unmuted male frogs, you would look up the critical value for the 
test statistic when P = 0.05 and sample size (n) = 10.Why look for the critical 
value corresponding to P = 0.05? Because your level of significance (a)  was 
0.05, and you are tying to decide whether your results are significant or not 
significant at that level. 

Some test statistics make use of degrees of freedom (abbreviated "d.f.") 
instead of sample size (n). Degrees of  freedom vary with sample size. Critical 
values for these test statistics are uniquely associated with a particular P-value 
and d.f. To calculate degrees of freedom, see your instructor or a statistics 
book. 
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To say that there is only one critical value for each P-level is not quite 
correct. Although there is only one value per P-level listed in a statistical 
table, for most test statistics, critical values actually come in pairs that have 
the same absolute value but are opposite in sign. Thus, even though only 
the absolute value is listed in a table of statistics, there are really two critical 
values, one positive and one negative, for each combination of  P-level and 
sample size. 

The absolute value of the critical value is the largest value of  the test 
statistic that you should expect to observe if H 0 is true. Observed values 
larger than the critical value mean that H a is probably true. 

Decision Rule 

We are finally ready to make a decision about whether  to accept or 
reject H 0. To do this, we use the following dec i s ion  rule:  

If the observed test statistic >_ the critical test statistic, then you 
should reject H 0, accept H a, and conclude that your results are 
significant at the 6z = 0.05 level. 

If the observed test statistic < the critical test statistic, then you 
have failed to reject H0 and should either (1) conclude that the results 
were no different from random, or (2) suspend judgment  because 
your sample sizes were too small to reject H 0. 

Exceptions: In some statistics books (e.g., Seigel 1956 but not Sokal 
& Roh l f  1981), the instructions for the Wilcoxon matched-pairs test 
and the Mann-Whi tney  test (see below), call for rejecting H 0 when 
the observed test statistic is less than or equal to the critical value. 

When  calculating correlations, in addition to determining the 
statistical significance, you must look at the value of the correlation 
coefficient (r), which describes the strength of the association. You 
can conclude that you have a high correlation (a strong association) 
if the correlation is statistically significant and r > 0.7.You should be 
aware that if you have a sufficiently large sample size, you might get 
statistical significance even if r < 0.2, which you should interpret as 
a negligable relationship (Martin & Bateson 1993). 

These days most students have access to computer programs that do 
statistical analyses. Some examples of such statistical software are SPSS, 
SAS, SYSTAT, Statview, and JME The common  spreadsheet program 
EXCEL also does statistical analyses, although recent reports claim that the 
results are sometimes incorrect. It's a good idea to try an example with a 
known answer (such as a worked-out  example from a textbook) to test a 
particular calculation. The great advantage of  most computerized statistical 
tests is that they automatically compare the observed value of  the test 
statistic to the critical value. In other words, you don't have to use a table 
to figure out the P-value. 
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The computer program reports as the P-value the probability that the 
observed value of the test statistic will lead you to reject H0 when H 0 is 
actually true (type I error).You want to keep your chances of making this 
type of mistake low, so you want P < 0.05, which allows you to be at least 
95% certain that your decision to reject H0 is correct (i.e., a = 0.05).Thus, 
when using a computer, we use the following decision rule: 

If the computer produces from your data an observed P _< 0.05, 
then you should reject H0, accept Ha, and conclude that your results 
are significant at the a = 0.05 level. 

If the computer produces from your data an observed P > 0.05, 
then you have failed to reject H 0 and should either (1) conclude that 
the results were no different from random, or (2) suspend judgment 
because your sample sizes were too small to reject H 0. 

Choosing the Appropriate Statistical Test 
Although they all do basically the same thing, which is help you decide 

whether to accept or reject H0, there are many different kinds of test 
statistics. Each is created by a mathematical formula that produces one 
number from the set of values in your sample. Each test (with rare excep- 
tions) uses the logic outlined in the preceding sections. The steps that you 
follow, from forming your general hypothesis through the final decision 
whether to accept or reject H 0, will be the same for all the tests that you 
will normally encounter. All the tests provide a way of deciding whether 
differences in samples result from real differences or from chance alone, 
on the basis of how likely it is that the value of the test statistic that you 
observed from your sample(s) could have been produced by chance. 

With so many tests to choose from, how can you decide which test is 
the most appropriate for your data? The choice depends on the type of 
question you are asking and on the way your data will be measured. These 
topics are discussed in the sections that follow. 

Type of Question 

Statistical questions can be divided into four basic groups: (1) questions 
about one sample, (2) questions about two or more related samples, (3) 
questions about two or more unrelated ("independent") samples, and (4) 
questions about correlation and regression. 

Questions about a single sample concern whether a particular sample 
could have come from some specified population. One-sample statistical 
tests answer questions such as the following: Is it likely that the sample 
was drawn from a population with a particular distribution (e.g., normal, 
Poisson, binomial). Is there a significant difference between the observed 
frequencies and the frequencies that we would expect on the basis of some 
principle, such as expectations from transmission genetics or from events 
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occurring at random? For example, you might ask whether the sex ratio 
of frogs in Clear Lake is 50:50, as expected by chance. To find the answer, 
you could capture a single sample of 30 adult frogs, count the males and 
females in the sample, and use a statistical test to decide whether the 
difference in the numbers of males and females in your sample was signif- 
icantly different from 50:50. 

In contrast, we might ask questions about differences between two or 
more comparison groups: Is there a difference between the effects on the 
treatment and control groups? Is one treatment better than the other(s)? 
Does the effect differ among different types of observational groups? To 
answer these questions, we must sample from different groups, so we refer 
to each group as a different sample. The samples may be related to each 
other (dependent) or unrelated to each other (independent). 

Questions about two or more related samples arise from experimental 
designs in which the same individuals are measured more than once.When 
the same individual is exposed to two treatments at different times, we say 
that the two samples are related or ma tched .  For example, you would 
have two related samples if you compared the calling rates of 20 male frogs 
before and after they were confined in buckets. The two samples would 
be (1) before confinement and (2) after confinement. The samples are 
related because the same individuals are used in both samples. If the same 
individuals are measured more than twice, the design is usually called a 
r epea ted-measures  design. Occasionally, samples are matched by other 
criteria, such as body length, past experience, or age. 

When different, unrelated individuals are used in each comparison 
group, we say that the two samples are independent .  Such designs lead 
us to ask questions about two or more unrelated ("independent") samples. 
For example, all the unmated male frogs and all the unmated female frogs 
in Lake Minnetonka belong to two independent groups because different, 
unrelated individuals are in each group. This example specifies unmated 
frogs because, for some questions, members of mated pairs would have to 
be considered related, not independent. 

Clearly, samples (the treatment or comparison groups that are the inde- 
pendent variables) can be related to or independent of one another. But 
remember that within any one sample, each data point that you measure 
must always be independent of every other data point (see the foregoing 
"Experimental Design" section for a discussion of independent data). 

Questions about cor re la t ion  and regression concern whether one 
type of score that you measured varies with another type of score. These 
questions ask whether there is some sort of relationship between the two 
types of scores, which must both vary continuously rather than being 
measured in discrete categories. Although they seem quite Similar, the 
questions asked by correlation and regression analyses are actually very 
different, and you should be very careful in choosing one or the other. 
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We may ask whether two types of scores vary together in a systematic way. 
In other words, are two variables corre la ted  (associated)? For example, 
you might compare the body sizes of male frogs to their calling rates. If 
you found a significant positive corre la t ion  between body size and rate 
of calling, you could conclude that big frogs call more than little frogs. 
Or, if you found a significant negative correlat ion,  you could conclude 
that big frogs call less than little ones. It is very important to note here, 
however, that correlation does not imply causation. In other words, you could 
not say that large size causes high calling rates; there may be a third factor 
that affects both size and calling. If calling takes a lot of energy, then frogs 
that are eating well might be able to call more often, and would attain 
larger size, than those catching fewer, poorer-quality prey. In this example, 
the third, causal factor would be caloric intake. For another example, a 
positive correlation between countries in which food is spicy and countries 
where there are frequent earthquakes would not mean that eating spicy 
food causes (external) earthquakes! You may laugh, but there are examples 
almost as naive in the biological literature, some current. So be careful about 
what you infer from correlation. 

In contrast to correlation, regression analysis tests for a functional rela- 
tionship between an independent variable, x, and a dependent variable, y 
(i.e., y = f (x ) ) .  Note that in both correlation and regression analysis, we 
are measuring a pair of continuous variables to determine whether they 
vary together in some way. But in correlation analysis, we cannot say which 
variable is dependent and which is independent. By contrast, in regression 
analysis we explicitly test whether one type of score, the dependent variable, 
depends on the other, independent variable. 

In regression analysis, functional relationships can take on many shapes. 
In this manual, we introduce the simplest form of this type of analysis by 
asking whether the relationship is linear.You may remember the following 
equation from high school: y = m x  + b, where m is the slope (rise/run) 
and b is the y-intercept. For some reason unknown to us, however, 
statisticians write the same equation as: y = bx + a, with b for the slope 
and a for the y-intercept. For example, we might shine light of 10 different 
intensities on 10 different tadpoles (larval frogs), measure the amount of 
growth of each tadpole, and ask whether tadpole growth is a function of 
light intensity (it doesn't make sense to say it the other way around). Here, 
light intensity is the independent variable, plotted on the x-axis, and 
tadpole growth is the dependent variable, plotted on the y-axis. If we were 
to find a significant regression, we would say that tadpole growth is a 
function of light intensity. The relationship could be positive (as indicated 
by a positive slope), meaning that tadpoles grow more rapidly with brighter 
light, or negative (negative slope), meaning that tadpoles grow more slowly 
with brighter light. Note again that saying that y is a function of x almost 
seems like saying x causes 1,, but we are not necessarily justified in inferring 
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a causal relationship.We would need to do a controlled experiment to test 
for causation. 

Levels of Measurement 

All kinds of (independent and randomly obtained) data are useful and 
interesting, but different kinds of data require different techniques for 
presentation and analysis. 

N o m i n a l  data  result when the dependent variable is a measure that 
simply classifies objects or characteristics into separate categories, but the 
categories cannot be ranked in any particular order. For example, the sex 
of a spring peeper and the kind of marsh plant on which these frogs can 
be found are nominal variables. The categories male and female cannot be 
ranked, and cattails, reeds, and sedges could be placed in any order with 
equal validity. Nominal measurement variables are somewhat uncommon 
in animal behavior, but we often use nominal categories as a classification 
variable  (that is, to identify comparison groups). 

In the two-sample example that follows, imagine that you wanted to 
compare two groups to find out whether frogs belonging to one group 
generally occurred on different types of marsh plants than frogs belonging 
to the other group. To answer this question, you recorded the capture 
location (plant type) of eight frogs belonging to two different groups, 
where group 1 and group 2 could be males and females (or drug A vs 
drug B, or large frogs vs small frogs).You recorded the following data: 

Group 1 Group 2 

cattails cattails 
reeds cattails 
sedges cattails 
sedges cattails 

Here the independent (classification) variable is group (1 vs 2) and the 
dependent (measurement) variable is plant type (cattails, reeds, sedges). 
Once again, because the scores for the dependent variables cannot be 
ordered or ranked, these are nominal data. 

Ord ina l  data  are collected when the dependent variable is a measure 
that classifies objects or characteristics into mutually exclusive categories, 
and these categories can be put in a ranked order.You can think of ordinal 
as meaning "ordered" (ranked). For a one-sample example, imagine that 
you wanted to find out how attractive spring peeper calls are to females. 
You captured a bunch of females and observed their responses to calls 
played from a tape recorder. Some females showed no reaction, and a few 
tried to climb onto the tape recorder. Some others turned toward the 
sound but did not approach it, whereas others hopped toward the source 
of the calls. It would be reasonable to rank these responses in the following 
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order: (1) no reaction, (2) orient toward call, (3) approach call, (4) mount 
speaker. Although we gave these categories numbers (1-4), they are really 
ordinal values (first, second, third, fourth) rather than integers. Because 
the categories can be ranked, these are called ranked, or oMinal, data. 

In the two-sample example that follows, imagine that you wanted to 
compare 2 types of spring peeper calls to find out whether one is more 
attractive to females than the other. To answer this question, you observe 
the responses of five females to call type 1 and of five others to call type 2. 
You recoMed the following data: 

Call Type 1 Call Type 2 

1 3 

1 4 
2 4 
3 3 
1 2 

In this case the independent (classification) variable is call type (1 vs 2) 
and the dependent (measurement) variable is female response (1 = no 
reaction, 2 - orient toward call, 3 = approach call, 4 = mount speaker). 
Once again, because the scores for the dependent variable can be ordered, 
these are ordinal data. 

Although there are more precise mathematical definitions of interval  
data  and ratio data, you will have these types of data when the dependent 
variable consists of numbers that can be ranked (such as ordinal data) and 
when, in addition, the distance between each number and the next is of 
known size. With interval and ratio data, you can associate each object 
with a unique number along some continuous measurement scale. Mea- 
surements such as length, height, weight, volume, temperature, and time 
are continuous variables because theoretically, if you could measure accu- 
rately enough, an infinite number of measurements would be possible 
between any two measurements. Rates, such as the number of events per 
unit time or per bout of behavior, can also be treated as interval/ratio data. 

For example, imagine that you wanted to find out whether certain sizes 
of male spring peepers were more common than other sizes. For a one- 
sample example, let's say you measured the body lengths of nine frogs as 
follows: 2.42, 2.43, 2.50, 2.51, 2.52, 2.55, 2.57, 2.60, and 2.65 centimeters. 

Had you measured less accurately, or if you combined these lengths into 
categories, your data table might look like this: 

Frog Body Length (cm) Number of Frogs of that Length 

2.4 2 
2.5 3 
2.6 4 
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Note that when you measure less accurately or when you combine more 
accurate measurements into categories, it may not look as though there is 
a unique number associated with each object (here, each frog). But in 
theory you could always associate a unique number with each object. 

In the two-sample example that follows, imagine that you wanted to 
compare two groups to find out whether frogs belonging to one group 
had a different body length than frogs belonging to the other group. To 
answer this question, you recorded the body lengths of 10 frogs belonging 
to two different groups, where group 1 and group 2 could be males and 
females (or drug A vs drug B, or heavy frogs vs light frogs).You recorded 
the following data: 

Group 1 Group 2 

1.80 1.98 
1.90 2.08 
2.40 2.19 
2.38 2.28 
2.30 2.42 

Here, the independent variable is group, and the dependent variable is 
body length. Once again, because the scores for the dependent variables 
can be ordered along a continuous scale, with known distances between 
each number and the next, these are interval/ratio data. 

CHANGING NOMINAL DATA INTO ORDINAL DATA 

When you have data that are counts of how many times each subject 
reacted to mutually exclusive treatments, you may be tempted just to count 
how many individuals reacted to each treatment. You would then have 
e n u m e r a t i o n  data  (counts) that you would analyze with a chi-square 
type of test (see below). But by just counting how many individuals reacted, 
you will lose considerable information. Martin & Bateson (1993 pp. 72-73) 
suggest two more powerful ways to handle these types of da ta~methods  
that you can use whenever you can associate specific reactions with specific 
individuals. The following example illustrates these different ways. 

Example 

You put peanuts without shells and M&Ms in a pile and use the raw 
data table that follows to record each peanut and M&M taken by each 
individually identifiable squirrel. You want to know whether squirrels show 
a preference for one of these food types. 



Introduction to Statistics 4 4 " 1  

Squirrel Name Peanuts M&Ms 

Unmarked A 0 1 
Two-nicks 1 0 
Two-nicks 1 0 
Two-nicks 0 1 
Broken-paw 1 0 
Scar-face 1 0 
Scar-face 1 0 
Broken-paw 1 0 
Two-nicks 1 0 
Two-nicks 0 1 
Broken-paw 1 0 
Unmarked B 0 1 
Unmarked B 0 1 
Unmarked B 1 0 
Unmarked C 1 0 
Unmarked C 1 0 

TOTALS 11 5 

Possible Analyses 
You could analyze these data with a chi-square goodness-of-fit test by 

pooling all the squirrels, but with this approach, information about the 
behavior of  individuals is lost and you face problems of  pseudoreplication. 
Because you know the number  of nuts taken by each individual squirrel, 
you can use the following methods to explore the data more thoroughly. 

Absolute Differences 

In this method, for each subject you subtract the response to treatment 
2 (M&Ms) from the response to treatment 1 (peanuts). To do this for the 
raw data given earlier, you would need to sum the scores for each indi- 
vidual squirrel (see below) and then calculate di, the difference of  the total 
M&Ms - total peanuts taken by each squirrel. 

Squirrel Name Peanuts M&Ms d i Unsigned Rank Signed Rank 

Unmarked A 0 1 -1 2 -2 
Two-nicks 3 2 1 2 .+2 
Broken-paw 3 0 3 6 +6 
Scar-face 2 0 2 4.5 +4.5 
Unmarked B 1 2 -1 2 -2 
Unmarked C 2 0 2 4.5 +4.5 

Analyze these data with the Wilcoxon matched-pairs signed-ranks test by 
ranking the differences (di) and following the instructions given for this test. 
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For example, for these data: sum + = 17 (that is, the sum of  all ranks wi th  

positive signs is 17), s u m -  = 4 (the sum of  all ranks wi th  negative signs 

is 4), and T - smaller of  these sums of  l ike-signed ranks, so T = 4. For 

n = 6, P < 0.05, T(critical) = 0. Because T(observed) > T(critical), conclude 

that the differences are not  significant (NS). (In the statistical tables from 

Siegel 1956 used for this example, Wi lcoxon  has the atypical decision rule: 

reject H0 when  T(observed) < T(critical). 

Response Ratios 

In this method,  first sum the scores for each individual squirrel, as you 

did above. Then  let the response ratio = response to t reatment  1/(response 

to t reatment  1 + t reatment  2) as follows: 

Squirrel Name Peanuts M&Ms Response Ratio 

Unmarked A 0 1 0 
Two-nicks 3 2 0.6 
Broken-paw 3 0 1 
Scar-face 2 0 1 
Unmarked B 1 2 0.33 
Unmarked C 2 0 1 

To analyze the data w h e n  you have just  two t rea tment  groups, as here, 

you would  use the W i l c o x o n  matched-pa i rs  s igned-ranks test to compare  

the observed response ratio to the chance level of  response of  0.5. Be 

careful, especially if  you do your  analysis on computer ,  that you analyze 

the response ratios compared  to the chance response values, as given below. 

Do  not analyze the actual scores of  n u m b e r  of  peanuts and M & M s  taken. 

Response Chance Unsigned 
Squirrel Name Ratio Response 4 Rank Signed Rank 

Unmarked A 0 0.5 -0.5 4.5 -4.5 
Two-nicks 0.6 0.5 +0.1 1 +1 
Broken-paw 1 0.5 +0.5 4.5 +4.5 
Scar-face 1 0.5 +0.5 4.5 +4.5 
Unmarked B 0.33 0.5 -0.2 2 -2  
Unmarked C 1 0.5 +0.5 4.5 +4.5 

In this case, sum + = 14.5, s u m -  = 6.5, T = smaller of  these sums = 6.5. 

For n = 6, P < 0.05, T(critical) = 0. Because T(observed) > T(critical), 

conclude that the differences are NS. (Remember ,  in the tables used for 

this example,  W i l c o x o n  has the odd decision rule: reject H0 w h e n  

T(observed) < T(critical). 
Because results ob ta ined  using absolute differences may differ f rom 

those obta ined  using response ratios, you should use bo th  methods  to 
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analyze your data (Martin & Bateson 1993). If results are contradictory, 
be sure to discuss reasons that could explain the contradiction. No te  
also that analysis of  absolute differences is more sensitive to individuals 
who  respond strongly to a treatment.  Analysis of  ratios is more sensitive 
to variation wi thin  individuals (Martin & Bateson 1993). These sensi- 
tivity differences might  help explain contradictory results of  these tests. 

SUMMARY OF STATISTICAL PROCEDURES 

Before Data Collection 

1. State the biological question or hypothesis. 

2. Make specific predictions of  what will happen if this hypothesis is 
correct. 

3. Design experimental or observational comparisons to test each 
prediction.You must collect separate data and do a separate statis- 
tical test for each prediction. R e m e m b e r  that for each test, the 
data must be independent and sampling must be random. The steps that 
follow assume you are testing a single prediction. 

4. Set up the H 0 (null) and H a (alternative) hypotheses for your 
prediction. 

5. Decide whether  the test will be one-tailed or two-tailed. (Make 
H0 and H a consistent with your decision about the number of tails. 
That is, if you decide to do a two-tailed test, make sure that both 
H0 and H a a r e  phrased as nondirectional, two-tailed hypotheses.) 

6. Determine whether  your question involves (a) one sample, (b) two 
related samples, (c) two unrelated samples, (d) k related samples, 
(e) k unrelated samples, (f) an association (correlation), or (g) a 
regression. 

7. Determine what level of measurement you will use. That is, decide 
whether  your data are nominal, ordinal, or interval/ratio. 

8. Decide what statistical test you will use. Use Table C.3 to pick possible 
tests, and then determine which is most appropriate. Where  more 
than two tests are listed for the same type of data, the more 
powerful (and therefore preferable) test is underlined. Additional 
nonparametric tests are discussed in Siegel & Castellan (1988) and 
in Conover (1980). If your data are interval/ratio, you must decide 
whether  to use a parametric or a nonparametric test. You should 
use a parametric test if the data meet the assumptions of  such tests; 
otherwise, use a nonparametric test. Additional parametric tests 
are presented in Sokal & R o h l f  (1981). 

9. Specify a significance (a)  level. Published studies of  animal behav- 
ior generally use a = 0.05. 
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Table C3 Choosing a statistical test. 

Type of Data Statistical Test 

One sample 
Nominal  
Ordinal or interval/ratio 

Two related samples 
Nominal 
Ordinal or interval/ratio 
Interval/ratio only* 

Two unrelated samples 
Nominal  

Ordinal or interval/ratio 

Interval/ratio only* 

k related samples 
Nominal 
Ordinal or interval/ratio* 
Interval/ratio only* 

k unrelated samples 
Nominal 
Ordinal or interval/ratio 
Interval/ratio only* 

Association (correlation) 
Nominal 
Ordinal 
Interval/ratio* 

Functional relationship 
Interval/ratio only* 

2 '2 goodness-of-fit test, binomial test 
Kolmogorov-Smirnov one-sample test 

McNemar  test for significance of  changes 
Sign test, Wilcoxon matched-pairs test 
Student's t test for matched samples 

2 
Z test of  Independence (of two samples) 
Fisher exact test 
Mann-Whi tney  U Test 

(to detect differences in central tendency 
such as means, modes) 

Kolmogorov-Smirnov two-sample test 
(to detect any differences, including difference 
in variability) 

Student's t test for independent samples 

Cochran Q test 
Friedman two-way analysis of  variance 
Two-way analysis of  variance without replication 

2 
Z test of  independence (of k samples) 
Kruskal-Wallis test 
One-way analysis of  variance (ANOVA) 

2 
Z test of  independence (of k samples) 
Spearman rank correlation 
Pearson correlation coefficient 

Least-squares regression 

*Tests marked "Interval/ratio data only" are parametric tests, which should be used only if sample sizes are 
large (n > 30) and meet the assumptions of parametric tests, especially the assumption that the data are normally 
distributed. All other tests in this table are nonparametric tests, which are more appropriate than parametric 
tests when sample sizes are small and avoid the restrictive assumptions of parametric tests. Note that 2 '2 tests 
for nominal data can be used for all other types of data, but they are not as powerful and so are less likely to 
detect significant differences when such differences are real. 
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During Data Collection 

Be sure data are independent and sampling is random. 

After Data Collection 

1. Summarize the data by computing descriptive statistics (e.g., mode, 
mean, standard deviation) and graphing. The appropriate descrip- 
tive statistics and graphical methods for various levels of measure- 
ment of data are as follows: 

Type of Data 
Measure of Central Measure of 

Tendency Dispersion Type of Graph 

Two or more samples 
of data that are 

Nominal 
Ordinal 

Interval or ratio 

Measures of 
association 

Measures of functional 
relationship 

Mode 
Median 

Mean 

None 
Percentiles 
Range 
Standard 

deviation 
Variance 

(percentile, 
range) 

Bar graph (frequency or %) 
Bar graph (frequency or %) 

Frequency distribution 

Probability distribution 
Box-and-whisker plot 

Scatter plot (of data points) or 
point graph (medians or means) 

Scatterplot (of data points) with 
or without regression line 

2. Do the statistical test (compute the value of the test statistic). 

3. Decide whether to accept or reject the null hypothesis (H0). To 
make this decision, use the decision rule that is associated with 
the statistical test that you used. 

In most but not all tests, the decision rule is 

If the observed test statistic ___ the critical test statistic, then reject 
H 0, accept Ha, and conclude that your results are significant. 

If the observed test statistic < the critical test statistic, then either 
(1) accept H 0 (reject Ha) and conclude that your results are not 
significant or (2) suspend judgment  if you believe that the sample 
sizes were too small. 

Two exceptions are theWilcoxon matched-pairs test and the Mann-  
Whitney U test, for which some statistics books call for rejecting 
H0 when the observed test statistic is less than or equal to the 
critical value. 
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When calculating correlations, you can conclude that you have a 
high correlation (a strong association) if the correlation is sta- 
tistically significant and the correlation coefficient (r) is greater 
than 0.7. Beware: with large sample size, you might get statistical 
significance even if r < 0.2, which you should interpret as a 
negligible relationship (Martin & Bateson 1993). 

For computer-based analyses, the decision rule is 

If the computer gives a P-value _< 0.05, then reject H0, accept H~, 
and conclude that your results are significant. 

If the computer gives a P-value > 0.05, then either (1) accept H 0 
(reject Ha) and conclude that the results are not significant, or (2) 
suspend judgment  if you believe that the sample sizes were too 
small. 

4. Repor t  the results of your statistical test. Use an appropriate stan- 
dard format, which includes a verbal description of the observed 
pattern (in the past tense) and a parenthetical statement that 
includes the value of the test statistic that you calculated from your 
data, the sample size or degrees of freedom, and the P-value 
associated with your test statistic. For example, you might write, 
"Tadpole growth rates increased significantly with increasing light 
intensity (Spearman r = 0.79, n = 68, P < 0.0001)" or "Female frogs 
were significantly larger than male frogs (Mann-Whitney U = 130.5, 
n = 49, P = 0.001)." 
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