Microestruturas de Deformação em Fadiga PMT5860 – Teoria da Plasticidade e da Fratura dos Materiais

Cláudio Geraldo Schön

Departamento de Engenharia Metalúrgica e de Materiais

Escola Politécnica da Universidade de São Paulo

Bibliografia

Baseado em

- **KWL-I** D. Kuhlman-Wilsdorf, C. Laird, Dislocation behavior in Fatigue, *Mater. Sci. Engng.* **27** (1977) 137 – 156.
- KWL-II D. Kuhlman-Wilsdorf, C. Laird, Dislocation behavior in Fatigue II. Friction stress and back stress as inferred from an analysis of Hysteresis loops, *Mater. Sci. Engng.* 37 (1979) 111 – 120.
- KW-III D. Kuhlman-Wilsdorf, Dislocation behavior in Fatigue III. Properties of the loop patches Do they participate in fatigue cycling?, *Mater. Sci. Engng.* 39 (1979) 127 139.
- KW-IV D. Kuhlman-Wilsdorf, Dislocation behavior in Fatigue IV. Quantitative interpretation of friction stress and back stress derived from hysteresis loops, *Mater. Sci. Engng.* **39** (1979) 231 245.
- KWL-V D. Kuhlman-Wilsdorf, C. Laird, Dislocation behavior in Fatigue V. Breakdown of loop patches and formation of persistent slip bands, *Mater. Sci. Engng.* 46 (1980) 209 – 219.

Bibliografia

Baseado em

- Laird C. Laird, P. Charsley, H. Mughrabi, Low energy dislocation structures produced by cyclic deformation, *Mater. Sci. Engng.* **81** (1986) 433–450.
- Huang-I H. L. Huang, A study of dislocation evolution in poly crystalline copper during low cycle fatigue at low strain amplitudes, *Mater. Sci. Engng. A* 342 (2003) 38 43.
- Huang-II H. L. Huang, N. J. Ho, The observation of dislocation reversal in front of crack tips of polycrystalline copper after reducing the maximum load, *Mater. Sci. Engng.* A345 (2003) 215 – 222.
- Huang-III H. L. Huang, J. L. Ho, T. L. Hu, Estimating the amplitude of plastic strain from the distribution of the dislocation morphologies in front of the crack tips *Mater. Sci. Engng.* A386 (2004) 112 – 117.
- Huang-IV H. L. Huang, D. L. Ho, The observation and analysis of the dislocation morphology of fatigue crack tips at steady state propagation rates subject to a single peak load *Mater. Sci. Engng. A*298 (2001) 251 – 261.

Nome dado ao campo de pesquisa de fadiga onde as tensões máximas são comparáveis ao limite de escoamento → deformação plástica macroscópica no ciclo.

Sinônimo para fadiga em controle de deformação.

FBC - ciclo de histerese

Material: Cu, monocristal, $\Delta \gamma_p = 0.003$, R = -1H. Mughrabi, *Mater. Sci. Engng.* **33** (1978) p. 207ff.

- O ciclo de histerese não é imediatamente estável → há um fenômeno transiente.
 - Endurecimento cíclico.
 - Amolecimento cíclico.
- Após o transiente atinge-se o estádo estacionário, caracterizado por um ciclo de histerese limite.

Da lei de Taylor temos:

$$\tau \propto \sqrt{\rho_d} \Rightarrow (\rho_d)_{\max} = \text{const.}$$
 (1)

Portanto após a saturação a densidade de discordâncias se estabiliza, mesmo acomodando a deformação total do ciclo. O problema é entender como isto ocorre.

FBC - análise do ciclo de histerese

 $\tau_S =$ limite de escoamento, $\tau_E =$ tensão máxima, $\tau_B =$ contratensão (*backstress*), $\tau_F =$ tensão de fricção, $\Gamma = 2\Delta\gamma_p =$ amplitude de deformação plástica.

FBC - análise do ciclo de histerese

Relações entre τ_B , τ_F , τ_S e τ_E (Cottrell, 1956):

$$\tau_F = \frac{(\tau_E + \tau_S)}{2} \tag{2}$$

$$\tau_B = \frac{(\tau_E - \tau_S)}{2} \tag{3}$$

Válido quando o comportamento das discordâncias, as tensões e as deformações residuais são invariantes:

- a. em ciclos subseqüentes e
- b. no semi-ciclo direto e reverso (exceto pela mudança de sinal).

FBC - análise do ciclo de histerese

Dependência de τ_E (a) e τ_S (b) para monocristais de cobre em função da deformação plástica acumulada, como obtido por diversos autores para três amplitudes de deformação (• $\rightarrow \Delta \gamma_p = 0.01$, $\times \rightarrow \Delta \gamma_p = 0.005$, $\circ \rightarrow \Delta \gamma_p = 0.003$)

- . $\tau_B \in \tau_F$ tem natureza física real
- 2. au_F é composta de duas parcelas claramente distingüíveis
- 3. a maior parcela de τ_F é idêntica a τ_B, porém uma parcela menor tem uma dependência completamente diferente com a deformação plástica acumulada e satura num valor muito menor que τ_B ⇒ orígem física distinta

Ou seja, $\tau_B \in \tau_F$ dependem do desenvolvimento da estrutura de discordâncias.

Estrutura de discordâncias em FBC

Hierarquia com o aumento da amplitude de deformação/aumento do tempo de ensaio:

- Uma estrutura composta por resíduos da mútua, porém imperfeita, aniquilação de discordâncias de sinais opostos, composta de um grande aglomerado de aneis dipolares de discordâncias em cunha (*loop patches*)
- Veios (*veins*) alongados compostos por dipolos de discordâncias em cunha separados por canais com densidade reduzida de discordâncias.
- Bandas persistentes de deformação (PSBs).
- Células de discordâncias.

Interpretação quantitativa de τ_B e τ_F

Doris Kuhlman-Wilsdorf (em KW-III e KW-IV) desenvolve um modelo microscópico da resposta mecânica baseado na estrutura de deformação induzida no cobre monocristalino durante FBC. Neste modelo os *loop patches* apresentam baixa resistência ao escorregamento e reagem rápidamente às tensões geradas pela imposição da amplitude de deformação → Os *loop patches* formam uma estrutura similar a um reticulado de Taylor (representado abaixo nas duas polaridades, "esquerda" e "direita").

Propriedades do reticulado de Taylor

 $\tau_{TL} = \tau_B$ tensão de reação do ret. de Taylor a uma tentativa da deslocamento da camada superior em relação à camada inferior, τ_{LF} = tensão que causa a inversão da polaridade do ret. de Taylor.

Propriedades do reticulado de Taylor

Propriedades do reticulado de Taylor

Curva $\tau \times \gamma$ teorica para um material contendo 50% de *loop patches* e 50% de canais isentos de discordâncias em volume. Os números representam $\frac{s}{d_f}$. A linha tracejada indicada como "Observed" corresponde à inclinação da curva de histerese do cobre monocristalino no momento da inversão do ciclo.

O resultado mais impressionante da análise em KW-IV é a previsão de uma regra de similaridade para as curvas de histerese correpondentes aos ciclos N^* e N^{**} :

$$\tau^{**} = \tau^* \sqrt{\frac{N^{**}}{N^*}}$$
 (4)

para

$$\gamma^{**} = \gamma^* \sqrt{\frac{N^{**}}{N^*}} \tag{5}$$

Interpretação quantitativa de $\tau_B e \tau_F$

O modelo prevê, portanto, que a origem da contra-tensão é a resistência que o reticulado de Taylor exerce sobre a tentativa de inversão da deformação no início do descarregamento, e mais, prevê ainda que a tensão de fricção é composta da soma da contratensão mais uma tensão de fricção verdadeira, que provêm de fenômenos como arrastamento de *jogs* e endurecimento por defeitos puntiformes sobre a movimentação das discordâncias em hélice que deslizam nos canais.

O modelo de KW, apesar de bem sucedido em descrever de forma adequada a evolução das curvas de histerese em função da estrutura de discordâncias, ainda não permite compreender um aspecto relevante da FBC: O colapso dos *loop patches* e dos veios e a formação das PSBs. Isto será estudado na próxima aula.

Curva tensão-deformação cíclica do Cobre

Cobre monocristalino orientado para monodeslizamento (fonte: Laird).

Loop patches

Estágio inicial da formação de *loop patches* (região A da curva tensão-deformação cíclica).

Loop patches

Loop patches desenvolvidos, aspecto tridimensional. Os canais, aparentemente isentos de discordâncias, na verdade são ocupados por uma baixa densidade de discordâncias em hélice.

Loop patches

Imediatamente antes do Plateau, os LP ocupam cerca de 50% da microestrutura e os canais tornam-se mais sinuosos, permannecendo, porém, interconectados. Em (a) a amostra foi retinada de uma lâmina paralela ao plano de deslizamento (111), em (b) vista a partir da direção $[1\overline{2}1]$, isto é, perpendicular ao plano de escorregamento e ao vetor de Burgers primário, respectivamente (111) e [101]. Nota-se nesta última figura que os LP se distribuem uniformemente e que há canais livres entre eles com ângulos de cerca de 20° a 35° com respeito ao plano de escorregamento primário.

A região do Plateau

Na primeira parte do Plateau (até aproximadamente 2×10^{-3}) formam-se as PSBs, com o aspecto caracteristico de "escada" (em inglês, *ladder*). Os degraus da "escada" são compostos por paredes dipolares e os canais são percorridos por discordâncias em hélice durante o ciclo. A Fração de PSBs aumenta constantemente ao longo do plateau \rightarrow modelo das duas "fases" (fase "dura" = LP, fase "mole" = PSB).

Segundo KW-V, a transformação dos LPs em PSBs seria conseqüência da ativação de um sistema de escorregamento secundário, que levaria ao colapso dos *loop patches*.

A região do Plateau

Esta figura é usada por KW-V como evidência da transformação gradual dos LP em PSBs.

A região do Plateau

Modelo da estrutura dos LP (representados como "veios", *veins*, na figura) e das PSBs, proposto por P. Neumann, *Mater. Sci. Engng.* **81** (1986) 465 – 475.

Modelo de KW-V para a estrutura das PSBs, seis possiveis configurações que poderiam acomodar a deformação de ciclica nos canais. Segundo a autora, a configuração "a" é instável, pois as discordâncias postas se aniquilariam no primeiro ciclo, "b" e "c" são energeticamente desfavoráveis, pois não mantém o carater dipolar da discordância da parede que está deslizando.

Segundo Laird, o modelo de duas fases é muito simplista, ignorando a ampla dispersão da magnitude da deformação localizada em diferentes PSBs. Para deformações maiores que 2×10^{-3} a estrutura de discordâncias muda \rightarrow estrutura tipo "labirinto" (ou *maze*).

A região do Plateau

Estruturas de "labirinto" formadas em liga cobre-niquel policristalina (a) e em cobre monocristalino ciclado até 5×10^{-3} e observado na seção $(1\overline{2}1)$. Note que a presença de dois tipos de paredes dipolares no *maze* requer a contribuição de um sistema de escorregamento secundário.

A estrutura pós-Plateau

Após o Plateau desenvolve-se uma estrutura celular de discordâncias (note que na seção (111) ela ainda se assemalha a uma PSB) com o aumento da contribuição de sistemas de escorregamento secundários. Huang-l apresenta uma análise da variação da estrutura de deformação de cobre policristalino quando a amplitude de deformação é reduzida durante o ensaio.

Estruturas de discordâncias 10000 ciclos após a redução da amplitude de deformação de 0.003 para 0.001. Condição (a) Plano da lâmina fina B = (011) e direção do feixe de elétrons g = [200], (b) B = (011) e $g = [\overline{1}1\overline{1}]$. GB indica a posição do contorno de grão.

Estruturas de discordâncias 20000 ciclos após a redução da amplitude de deformação de 0.003 para 0.001. Condição (a) Plano da lâmina fina B = (011) e direção do feixe de elétrons g = [200], (b) B = (011) e $g = [\overline{1}1\overline{1}]$. GB indica a posição do contorno de grão.

Estruturas de discordâncias 20000 ciclos após a redução da amplitude de deformação de 0.003 para 0.001. Condição (a) Plano da lâmina fina B = (011) e direção do feixe de elétrons g = [200], (b) B = (011) e $g = [\overline{1}1\overline{1}]$. GB indica a posição do contorno de grão, (c) B = (011) e direção do feixe de elétrons g = [200], (d) B = (011) e $g = [\overline{1}1\overline{1}]$. GB indica a posição do contorno de grão.

Condição de estado estacionário: $\dot{a} = 2.0 \times 10^{-5}$ mm ciclo⁻¹ com carga máxima de 320 Kgf. Células desenvolvidas ocupam todo o grão onde a trinca está se propagando.

Condição após a redução da carga máxima para 112 Kgf (a) após 3.0×10^5 ciclos as células aumentaram de tamanho, (b) após 4.0×10^5 ciclos as células desapareceram e foram substituidas por *loop patches*, (c) após 7.0×10^5 ciclos novas células se formaram, assim como paredes dipolares e PSBs e finalmente (d) após 9.0×10^5 ciclos novas células se novas células se desenvolvem completamente e a trinca retoma a propagação.

Estrutura de discordâncias à frente de uma trinca propagando a uma razão de 5×10^{-6} mm ciclo⁻¹ (a) baixa magnificação e (b) alta magnificação.

Estimativa da distribuição de amplitudes de deformação (a) e de tensão (b) à frente de uma trinca propagando a 10^{-6} mm ciclo⁻¹.

Os resultados anteriormente descritos podem ser complementados pelas observações contantes em Huang-IV (apesar deste artigo ser, a rigor, mais antigo que os demais). Neste artigo os autores estudam a evolução da microestrutura de deformação à frente da ponta da trinca após um pico de sobrecarga (*overload*) ou de subcarga (*underload*). Propagação em estado estacionário (de 10^{-8} a 10^{-6} mm ciclo⁻¹) \rightarrow hierarquia de estruturas à frente da ponta da trinca:

- Células com um diâmetro médio de 0.7 μ m,
- Paredes dipolares (condensed walls)
- PSBs multidirecionais
- PSBs unidirecionais
- Veios e loop patches

Microestrutura desenvolvida na ponta de uma trinca propagando a 10^{-6} mm ciclo⁻¹ submetida a um pico de sobre-carga (*overload*) \rightarrow a microestrutura alterou para veios e *loop patches* e aproximou-se da observada para propagação a 10^{-7} mm ciclo⁻¹.

Microestrutura desenvolvida na ponta de uma trinca propagando a 3×10^{-7} mm ciclo⁻¹ submetida a um pico de sub-carga (*overload*) \rightarrow a microestrutura continua apresentando células, porém ocupando um volume maior \rightarrow aceleração.

Representação esquemática da evolução da microestrutura de deformação à frente da ponta da trinca (a) com propagação em estado estacionário e (b) após um pico de sobre-carga (*overload*).

Representação esquemática da evolução da microestrutura de deformação à frente da ponta da trinca (a) com propagação em estado estacionário e (b) após um pico de sub-carga (*underload*).

- Há uma correspondência entre as microestruturas de deformação macroscópicas me FBC e as microestruturas observadas à frente de uma trinca em propagação estacionária → Método *rainflow*.
- Há evidências de que o desenvolvimento de uma microestrutura celular de discordâncias é essencial para manter a propagação da trinca → papel do polideslizamento na propagação da trinca.