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SUMMARY 

BEFORE catastrophic fracture occurs, certain changes in the distribution of the plastic strain near 
the crack-tip seem to take place. These changes make crack growth possible but contribute to a 
gradually increasing screening of the energy flow through the plastic region towards the crack-tip. 
Stable crack growth results. This phenomenon appears to be a feature common to almost all 
fractures. Therefore, a unitied theory may be developed to describe fracture at both small-scale 
and large-scale yielding as well as stable crack growth which is accompanied by plastic collapse 
rather than being superseded by catastrophic fracture. In the present paper, an attempt is made to 
show how such a unified theory would work. 

1. INTR~DUC~~N 

As HAS been discussed earlier by the writer (BROBERG, 1968, 1971), processes taking 
place in a certain region of material instability (or necking in cases of thin sheets) 
near a crack-tip play a dominant role in the initial growth of the crack. Under 
certain, rather general, conditions the state of this region at the critical load is a 
material property, and is thus independent of the crack length and the load distri- 
bution. Then, only one variable is needed to specify when the region of material 
instability (or necking), called the end-region, reaches the critical state. It has been 
shown by BROBERG (1971) that the J-integral (RICE, 1968) is a very suitable variable 
to effect this specification, but, naturally, other variables (such as some C.O.D.- 
measure) could in principle be used just as well. The advantages of using the 
J-integral and the limitations of the one-parameter approach have been recently 
discussed by BROBERG (1973). 

However, as the J-integral criterion (or some other one-parameter criterion) is 
one of initial crack growth only, it cannot be used in a complete description of the 
fracture process when stable crack growth (SCG) occurs. From recent theoretical 
investigations (ANDERSSON, 1973b) as well as experimental ones (ROBINSON and 
TETELMAN, 1973) it has become apparent that SCG is a phenomenon that is much 
more common than has been previously understood to be the case. Thus, it has 
been expected that SCG is practically absent in cases where linear fracture mechanics 
is applicable. It is certainly true that, in these cases, the extent of SCG itself is much 
smaller than the original length of the crack, but SCG may nevertheless start at a 
load well below the load at which catastrophic@acture occurs. 

Assuming that the end-region properties are conserved during SCG (i.e. that they 
are properties of the material, but not of crack length and load distribution) an 
energy criterion can be applied. Then, it is necessary to calculate the energy flow @ 
to the end-region per unit of crack growth. It appears (ANDERSSON, 1973b) that in 
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small-scale yielding, tf, appro~ately equals the energy flow to the plastic region 
per unit of crack growth only at the very start of SCG. During the subsequent 
SCG the plastic region outside the end-region gives rise to a gradually increasing 
screening action, i.e. CD will then be smaller than the energy flow to the plastic region 
per unit of crack growth. The same kind of screening action takes place even if the 
plastic region is not very small compared to the crack length, The difference between 
this case and the case of small-scale yielding is mainly that cf, will be noticeably 
smaller than the energy flow to the plastic region already from the start of SCG. 
This natural difference does not seem to be important. The similarity in the behaviour 
as regards the gradual increase of the screening action of the plastic region is more 
interesting and explains the mecha~sm of SCG both at small-scale and large-scale 
yielding. 

As the complete fracture problem involves incipient crack growth, SCG and 
catastrophic fracture, a one-parameter approach is in principle not possible. Never- 
theless, such an approach may be used in engineering applications in the case of 
small-scale yielding. In this case, SCG is negligible compared to the length of the 
crack, and therefore, when completely developed, the screening action of the plastic 
region is rather independent of crack length and load distribution, i.e. it is a material 
property. Then, simply, when catastrophic fracture occurs, the energy flow 4, to 
the end-region equals a certain (material-dependent) fraction of the energy flow to 
the plastic region. Thus, the energy flow to the plastic region may be taken as the 
sole critical quantity in cases of small-scale yielding. This point of view provides 
an explanation for the success of methods used in so-called linear fracture mechanics. 

2. THE END-REGION AT THE CRACK-TIP 

The existence of a region of material instability, called the end-region, the size 
of which is given by the distance between inhomogeneities (e.g. atoms in a purely 
brittle fracture or inclusions in a dimple-type fracture) can be suggested from two 
different points of view. One argument (BROBERG, 1968) is based on simple dimen- 
sional considerations. It is known from tests that there exists a critical crack length 
in the case of a crack in a large body if the remote stresses are given. Therefore, a 
characteristic length parameter is needed, but there is no such parameter to bt 
found for a homogeneous continuum and so the inhomogeneities have to be con- 
sidered. The other argument (BROBERG, 1971) is based on the fact that a realistic 
solution to the crack problem is impossible if the material is regarded as a stable 
continuum (doij daij 2 0, where bij and Eij are the stress and the strain tensors) 
throughout, because this would imply “infinite” strains at the crack-tip. Therefore, 
material instability has to occur, the spatial extent of which is easily understood 
to be given by the distance between inhomogeneities. Both arguments can be used 
to suggest that the end-region may be characterized by necking, controlled by the 
sheet thickness in thin sheets. 

3. THE ENERGY FLOW TO THE; END-REGION 

The only existing analytical solution to the problem of a (slowly) moving crack-tip 
in an elastic-plastic solid is restricted to the extensional mode, plane stress conditions, 
perfect plasticity, and the Tresca yield condition (DRUCKER and RIC& 1970). In 
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this case, a Dugdale zone develops (DUGDALE, 1960). The energy flow to the crack-tip 
per unit of crack growth is finite. For a Dugdale crack of finite length in a large 
sheet one finds from successive equilibrium solutions that the energy flow to the 
crack-tip per unit of crack growth increases with the crack growth at constant values 
of remote stresses. Thus, SCG is not possible when the whole plastic region is 
confined to a Dugdale zone. The opposite conclusion reached by CHERJZPANOV (1969) 
seems to be based on an underestimation of the original crack length at a given 
energy flow to the crack-tip. 

Besides the Dugdale treatment there exist some other attempts to obtain a 
solution to the problem of a steadily moving crack in a perfectly-plastic material. 
The results of these attempts show a logarithmic strain singularity at the crack-tip. 
This implies zero energy flow to the crack-tip. As the material properties near the 
end-region in a real case should be similar to those of a perfectly-plastic solid, this 
result would indicate that crack growth could hardly take place, a conclusion which, 
of course, contradicts experimental evidence. However, existing solutions showing 
logarithmic strain singularities seem to be in error. The most elaborate one is given 
for the anti-plane mode by CHITALEY and MCCLINTOCK (1971), but they did not 
consider the displacement condition, which is not satisfied by their solution. A 
detailed study of their problem (see Appendix I) suggests that the assumption of 
a shear stress field with centered fan characteristics has to be removed. The only 
possible alternative seems to be the inclusion of a Dugdale-type zone inside a plastic 
region. Then, the energy flow to the crack-tip will be non-zero?. The situation may 
be similar in the extensional mode under plane stress conditions even for a non Tresca 
material. 

In the extensional mode under plane strain conditions, a Dugdale-type zone 
does not seem to be possible for kinematic reasons in a stable homogeneous con- 
tinuum. However, a similar zone can be developed from the original end-region, 
the region of material instability. This zone will be of the more general Barenblutt- 
type (BARENBLATT, 1959). Unlike the Dugdale zone, it will not be characterized by 
the fulfilment of a plastic flow condition, but by the occurrence of separations in the 
material (such as the opening of holes and quasi-cleavage). In terms of engineering 
stress and strain across the zone it will be characterized by decreasing stresses at 
increasing strains. A progressing Barenblatt-zone implies energy flow to the end- 
region at crack growth. 

In view of the circumstances discussed in this section, the calculations by 
ANDERSKJN (1973b), briefly discussed in the Introduction, seem to provide the best 
basis for a further discussion. 

At incipient crack growth the J-integral criterion may be used (BROBERG, 1971). 
Then, Cp equals J at the start of SCG. This can be understood by comparing the 
real case with a hypothetical case where the material outside the end-region is non- 
linearly elastic, the stress-strain relations being the same as for the real material 
under loading conditions. The very first movement of the end-region (at incipient 
SCG) is then governed by the same boundary conditions in both cases. With pro- 
gressing SCG, according to the investigations by ANDERSSON (1973b), @ will tend 

t According to a recent study made by Dr. H. ANDEIWON (unpublished work, 1974) the energy 
flow to the crack-tip will be about one-fourth of the energy flow to the plastic region in this case. 
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towards a certain fraction of J, say 

@=X7, @<I. (1) 

The screening action of the plastic region ought to be fully developed after compietion 
of the rearrangements inside the plastic zone which take place when Dugdale-type 
or Barenblatt-type zones are formed. 

4. APPROXIMATE PROCEDURE FOR PLANE STRESS 

As it may be difficult to understand the mechanism of SCG from finite element 
c~culations only, an approximate anal~ical method will be developed here. Possibly, 
also, this method could be used in engineering applications. 

The results for plane stress given by ANDERSSON (1973b), discussed in Sections 1 
and 3, can be approximateIy represented by 

CD = J[or+(l -a) exp { -/3arz(a-a,)/BJ}J, (2) 

where p is a numerical constant, fly is yield stress, (a-a,) is crack growth and E is 
Young’s modulus. The exponent is given from dimensional considerations. 

Equation (2) will now be used even in cases where the original crack length 
parameter a0 (usually the length or half-length of the crack) is not necessarily much 
larger than the linear extension of the plastic region. Then, we put 

J = J(Q, a), (3) 

where Q is the applied load and J is calculated as for a crack with constant length 
parameter a. 

Adopting an energy criterion for fracture, viz. 

cf, = J,, (4) 

one finds the relation between the load Q and the crack growth (a-ao) from 

(2) to (4). 
Approximately, the displacement 6 under the loud Q can be given by a relation 

6 = W, a), (5) 

where 6 is calculated as for a crack with constant length parameter a. Then, it is 
possible to determine eq~~b~urn values of Q and 6 as functions of CI. Similarly, 
we write 

Q = Q@, ~1, (6) 

where Q is calculated as for a crack with constant length parameter a. Under fixed 

grip conditions SCG ceases when 

dL3 

da= 0, (7) 

and under fixed load conditions it ceases when 

dQ 
x = 0. @> 
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Relation (5) can be derived from (3), or vice versa, by means of 
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S(Q, a) = S(Q, 0) + t i aJ(fi “I da', 

Qat& a) 
WQ, 4 = j .& dQ', 

0 
where t is the thickness of the body. For Q = Q(J, a), one finds 

Q(d, a) = Q@, 0) - t j a_ da’, 

* a& a) 
t&5, a) = - j a_’ dd'. 

0 

(9) 

(10) 

(11) 

(12) 

Relations (9)-(12) are variations of relations used in connection with KC-calibra- 
tion. They follow from the fact that in a (non-linear) elastic material the energy 
flow to the crack-tip during a crack growth from a to a + da must equal the difference 
in energy supplied during loading at constant crack length for the cases where the 
crack length is (I and a + da. 

It was noted by ANDERSON (1973a) that a simple fracture criterion containing 
only one critical quantity (here given by (4)) is not obvious for a growing crack. 
However, combining (2) and (4), one finds that this difficulty may be met by a proper 
choice of 2 in the present approximate procedure. 

The approximate procedure for plane stress will be demonstrated in Section 5 
by means of an example. 

5. CENTRE-CRACKED SHEET 

In this section a centre-cracked sheet will be considered (see Fig. 1). 
The following formula is known to be rather accurate if the plastic zone is fairly 

small (FEDDERSEN, 1967) : 

J = (nQ2a/4Eb2t2) set (7ra/2b), (13) 
where b is the half-width and t the thickness of the sheet. The following non-dimen- 

- 

2b 
I 

FIG. I. Centre-cracked sheet. 
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sional variables and parameters are introduced : 

EJ/cr,‘b = S, (a-%)/% = x, Q/2a,bt = r, E8Ia,L = u, 

EJ,/oy2b = S,, a,/b = k, 2blL = w, 

where L is the length of the sheet. With use of these non-dimensional quantities, 
equations (4), (7), (8) and (13) become 

S[cl + (1 -a) exp (- flkK/S)] = S,, (14) 

d” 0 z= ’ 

dr 

z-- 
- 0, 

(15) 

S = 7v2k(x + 1) set [&(K + l)]. (17) 
From (9) and (13), 

( 

2w -t=kfK+ 1) 
u=r l+- 

71 s 
C set 5 dC 

0 > 

, (18) 

since 

S(Q, 0) = QL/2Ebt. 

Combination of (14), (17) and (18) gives the relation between non-dimensional 
load r and non-dimensional displacement under the load u during SCG. Naturally, 
before the start of SCG, the relation between r and u is given by 

u=r 1 (19) 

Very extensive experimental work on SCG has been carried out by D. Broek on 
aluminium plates. In order to make a comparison with certain of his experiments 
(BROEK, 1968a), the extent of SCG and the loads at the start and the end of SCG 
have been calculated as functions of the original crack length. With suitable choice 
of the parameters S,, ~1, /3, satisfactory agreement is obtained as seen in Figs. 2 and 3. 
The scatter of the results, as regards the extent of SCG, seems to be caused by the 
weak condition of instability. The weakness depends on the fact that the maximum 
of u with regard to K (which in the calculations is sought through (15)) is rather flat. 
Therefore, though U, and then also r, can be determined rather accurately, rc will be 
very sensitive to small changes in the experimental conditions. 

BROEK (1973a) has also considered catastrophic failure after crack growth pro- 
duced by sawing under a constant load, about equal to that giving incipient crack 
growth. He finds that catastrophic failure then occurs at a crack growth which is 
substantially larger than the one observed when crack growth is produced by increas- 
ing the load (i.e. SCG). 

In the case of sawing, 

S[a +(I -a> exp (-/3krclS)] I S,, (20) 

S = rcr’k(rc+ 1) set [+ck(rc+ l)], (21) 

where the equality sign in (20) is valid at the start and at the end of sawing and the 
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Experimental points 
o Start SCG(O=2 coinciding poinh) 
xEnd SCG 

t 

x Experimental points 

0 15 -Theoretical curve 

k,4 
b 
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I%+. 2. SCG for 600 mm wide Al 2024-73 sheet. Experimental data are given by BROEK (1968a). 
Theoretical curves are obtained by choosing S, = 0.1, a = 0.17, /I = 14. Upper diagram shows 

stresses at start and end of SCG; lower diagram shows extent of SCG. 
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Experimental points 
0 Stort SCG 
xEnd SCG 

-Theoretical curve 

Start SCG 

t 

X Experimental points 
040 -Theoretic@ curve 

FIG. 3(c). 

FIG. 3. SCG for Al 707%T6 sheets. Experimental data are given by BROEK (1968a). Theoretical 
curves are obtained by choosing a = 044, jl= 8, S, = 0.0375 x 600/26 where 26 is the sheet 
width in mm. Upper diagrams, stresses at start and end of SCG; lower diagrams, extent of SCG. 

Sheet width: (a) 600 mm, (b) 300 mm, (c) 150 mm. 

16 
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non-dimensional load r is a constant given by setting IC = 0 so that 

dk set (+ck) = S,. (22) 

The value of krc at catastrophic failure has been calculated and compared with 
Broek’s results (see Fig. 4). The plate material and dimensions are the same as in 
the case illustrated in Fig. 3(b). Therefore, the same values of the parameters S,, c(, j? 
have been used as when calculating the relations shown in Fig. 3(b). 

x Expenmenlol points 
- Theoretxal curve 

FIO. 4. Extent of crack growth produced by sawing. Experimental data by BROEK (1973a) for 
Al 7075-T6 sheet, width 300 mm. Theoretical curve obtained by choosing SC = O-075, a = 044, 

B = 8 as in the case shown in Fig. 3(b). 

6. APPROXIMATE PROCEDURE. PLANE STRAIN 

In the case of plane strain the idea of a Barenblatt-type zone rather than a Dugdale- 
type zone leads to a relation between J, CY, J, that is somewhat different from that 
for the case of plane stress. As the size of the Barenblatt-type zone in plane strain 
is associated with microstructural properties, the relative extent of SCG ought to be 
expressed by comparing (U-Q) with EJC/oy2 rather than with EJ/oy2 as in (2). 
Instead of (2) we put 

J[a+(l -CC) exp { -/ky2(a-a,)/EJ,}] = J,. (23) 

7. THREE-POINT BEND TEST SPECIMEN 

In this section a three-point bend test specimen will be considered. The height 
is h, the length is 8h, and the thickness is _th. If the original crack-length a is larger 
than a certain length, then unstable crack growth would never occur under fixed 
grip conditions (not even in the Griffith theory) because in the linear elastic case 
iYJ(S, a)/&~ < 0 if c( is larger than a certain value, approximately $h, which happens 
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to be a value commonly used in fracture toughness tests (see Appendix II). One 
reason why unstable crack growth is known to supersede SCG in most fracture 
toughness tests with this specimen might be the presence of springiness in the loading 
system. This springiness should therefore be taken into account in an analysis of 
fracture toughness tests. 

Here, we assume an extra springiness of about the same magnitude as the springi- 
ness of a test-piece without a crack. Then, for u,, = $h, we may write approximately 
(see Appendix II) 

S[R + (1 -a) exp ( -/I&)] = S,, (24) 
S = O*O025u2(1 -2rc)/[(l-2@ +(0~013~)~]*, (25) 

r = 0~00114u(1-2fc)~/[(1- 1+35rc)2+0~0013u2]~, (26) 
in nondimensional form, where 

S = EJlr+‘h, S, = EJ&‘h, ic = (a - a,)/h, 

u = E6/u,h, r = Q/arh2. 

From (24) to (26) the relation between non-dimensional load r and non-dimen- 
sional displacement under the load u (including the displacement due to the springi- 
ness of the loading system) can be calculated. Under tied grip conditions (referring 
the grips to the stiff parts of the loading system), SCG ceases when 

(27) 

Figure 5 shows examples of the calculations for certain values of the parameters 
S,, a, /3. For comparison, experimental results are also shown in the Figure. When 
using the smallest test-piece the deviation from plane strain conditions is substantial. 
This deviation can be judged from Fig. 6 which shows the extension of SCG over 
the cross-section of the test-piece somewhat before catastrophic fracture occurs when 
the test was interrupted. 

It should be observed that Fig. 5 covers a range not very far removed from the 
linear fracture mechanics range (Fig. 5(a)) to nearly plastic collapse without catas- 
trophic fracture (Fig. 5(d)). The non-dimensional displacement u refers to displace- 
ment under load, not to clip-gauge measured displacements. As curves obtained by 
using clip-gauges are probably more familiar, the results of the calculations are also 
shown in Fig. 7 with clip-gauge measured displacement on the horizontal axis. 
The curves in Fig. 7 are derived from the curves in Fig. 5 by means of an estimate 
of the relation between clip-gauge measured displacements and displacement under 
load. 

The parameters used for determining the curves shown in Fig. 5 are 

J,=5860Nm-‘, or = 620 MN me2, E = 2.1 x lo5 MN mm2, 

a = 0.1, /? = 25. 

With these values the linear fracture toughness (cf. equation (31)) is found to be 

KI, E 110 MN rns312. 

According to ASTM recommendations, for a test within the linear fracture mechanics 
range, a test-piece with minimum height h = 5K1~2/oY2 % 160 mm and the minimum 
width t = 2.5KIc2/oy2 z 80 mm would have been needed. Here, a fair determination 
of Krc is made with a test-piece with a height of only 10 mm. 
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0.020 
t 

Experimental curve 
(meon cf 3 experlmenls) 

r 
Experimental curve 

(mean of 3 experiments) 

Experimental curve 
(neon of 3 experiments) 

0 025 
1 Theoretical cyve 

FIG. 5. Load-displacement curves for three-point bend test bars. Experimental data are obtained 
for steel DOMEX 450 at -100 C. Displacement measured under the force. Choice of parameters 
is o[ = 0.1, /I = 25, S, = 004 x SO/h where h is beam height in mm. The very good agreement 
between experimental and theoretical curves is somewhat illusory because these experiments were 
used as a check when establishing the relation (26). (a) h = 80 mm, (b) h = 40 mm, (c) h = 20 mm, 

(d) h = 10 mm (test-piece width 10 mm). 

Caiastrophic 
fracture 

SCG 

Fatigue 
Crack 

Catastrophic 
fracture 

SCG 

Fatigue 
UQCk 

FIG. 6. SCG (determined by interrupting a test just before catastrophic fracture is expected and 
then placing the test-piece in a liquid with a dye in suspension) in test-pieces 10 mm high. The 
width 5 mm (left-hand diagram) is obviously too small to give fairly plane conditions, whereas 

width 10 mm (right-hand diagram) is acceptable. 
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0.020 Tbe~eijcai fmve 

0,015 Experimental 

~ 

curve 

0.010 

0,005 

0 I 2 3 4 5 

FIG. 7, Load-displacement curves as in Fig. 5, but with clip-gaup measured displament. 

It should be observed that a test within the linear fracture mechanics range 
according to ASTM specifications would have been impossible in the case studied. 
The plate material is rolled to 40 mm thickness which is therefore the maximum 
obtainable test-piece width. It cannot be expected that a plate rolled to about 80 mm 
thickness exhibits the same fracture toughness. 

8. COMPARISON WITH OTHER RESULTS 

BEGLEY and LANLXZS (1972) and LANDES and BEGLEY (1972) tried to verify experi- 
mentally a J-integral criterion of crack initiation. According to their investigations, 
crack growth was initiated when the load reached a maximum. This appears to be 
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erroneous. A sharp maximum of the lo~~spla~n~ent curve (as in tests within the 
linear fracture mechanics range) is related to catastrophic fracture. In such a case, 
SCG may have started at a substantially smaller load, A smooth maximum of the 
load-displacement curve (as in tests far within the non-linear fracture mechanics 
range) is a very strong indication of the occurrence of preceding SCG. Moreover, 
for some steels and specimen geometries the load-displacement curve shows a very 
flat maximum. A very small change in the original crack-length can considerably 
move the position of the maximum. The maximum of the load-displacement relation 
(or, more generally, a certain position on the load-displacement curve) seems to 
have little to do with the initiation of crack growth. The excellent agreement between 
theory and experimental results obtained by Begley and Landes is therefore quite 
~to~s~ng and probably coinciden~l. 

Methods using the R-curve concept are not directly comparable to the method 
presented here although they are energy methods. The R-curve (SRAWLEY and 
BROWN, 1965) gives the “resistance” to crack growth as an energy-rate quantity, 
varying with crack growth but not with load or body geometry. This “resistance” 
is compared with an energy “release” rate at fixed load. Instability is found to occur 
when these two energy-rates (viz. the “resistance” rate and the “release” rate) are 
equal in magnitude and in derivative with respect to crack-length. The R-curve 
concept does not recognize the difference between energy expended in the end- 
region and the energy which is dissipated in the plastic region outside the end-region. 
As the end-region ought to be fairly autonomous at critical states (i.e. during SCG), 
whereas the plastic region depends on specimen geometry, load dist~bution and 
crack-length, the R-curve concept does not seem to be well enough defined for 
general applications. 

9. THE STRUCTURE OF THE LINEAR FRACTURE TOUGHNESS 

The linear fracture mechanics range is characterized by an almost linear relation 
between load and displacement until catastrophic fracture occurs. The displacement 
may be measured under the load or between the crack surfaces by means of clip- 
gauges. From empirical results the following relation has been suggested (BROWN 
and SRAWLEY, 1967) to specify this range for plane strain: 

by%OfKr~= 2 25. (28) 

Supposing the stress-strain relation for the material to be linear in the elastic 
region, the deviation from linearity is caused by plastic flow near the crack-tip and 
by SCG. Both the plastic region dimensions and the extent of SCG are small com- 
pared to the length of the crack when relation (28) is satisfied. Therefore, the devia- 
tion from linearity is hardly noticeable. The plastic flow starts at a very small load, 
whereas SCG starts at the load for which 

4% Qo) = J,. (29) 

Catastrophic fracture occurs when the value of the exponential function in (23) is 
very small, i.e. when 

JfQ, ad it J,b. 130) 



On stable crack growth 

Thus, the linear fracture toughness for plane strain is given by 

Kr, = [EJ/( 1 - v”)] 1’2 = [EJJ( 1 - v2)z-J 1’2, 

where v is Poisson’s ratio. 
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(31) 

The right-hand member of (31) shows the structure of the linear fracture tough- 
ness 4,. Each one of the three factors E/(1 - v*), a, J, refers to the properties of a 
certain region of the body, viz, the first refers to the elastic region, the second refers 
to the plastic region outside the end-region, and the third refers to the end-region. 
The first two factors are properties of a homogeneous continuum for which 
da, d&~j 2 0. The third factor J,, which is the only critical quantity, is a micro- 
structural property, It is associated with material instability, caused by separations 
occurring in the material. In terms of engineering stress and strain across the end- 
region, it is associated with decreasing stress at increasing strain. 

From the results of ordinary tests within the linear fracture mechanics range, 
J, and of cannot be determined separately, but only their quotient J,fa, according 
to (30). From results of similar tests within the non-linear fracture mechanics range, 
a determination of J, and a separately is possible, although their quotient J,fa will 
be determined with better accuracy (cf. Fig. 5). 

In tests made on thin plates, it is sometimes possible to observe directly the start 
of SCG (cf. BROEK, (1968a)). Then, J, will be obtained, but not Kc which for plane 
stress would be written 

K, = (EJJa)1’2. (32) 
Direct detonation of lu, could be achieved only in a test where the extent of 

SCG is much smaller than the length of the crack. Very long cracks would then be 
needed in some cases (such as those with the thin plates used by Broek). 

Direct observation of the start of SCG in cases of plane strain (where SCG 
generally is very small) may be possible by using advanced experimental techniques 
(cf. ROJHNSON and TETELMAN, (1972)). Then, J, may be determined separately. 

Some attempts have been made to express linear fracture toughness in terms of 
the yield stress and the mean distance between inclusions (for dimple-type fractures) 
but without considering the factor CI in (31). These attempts then fail to explain the 
dependence of K,, on different degrees of strain-hardening. 

10. COMMENTS ON SCG AT SMALL-SCALE YIELDING 

It seems to be a common belief that SCG is not present at small-scale yielding. 
A simple argument, however, shows that the scale of yielding has very little to do 
with the phenomenon of SCG. For a given material very small scale yielding occurs 
(by implication of the concept itself) when the linear dimensions of the plastic region 
are much smaller than the length of the crack, whereas very large scale yielding 
occurs when the linear dimensions of the plastic region are at least of the same 
order of magnitude as the length of the crack?. At critical states, the plastic region 
is roughly the same in small-scale yielding as in not too large scale yielding. Thus, 
in a given material, the main difference between small-scale and large-scale yielding 

t The division between small-scale and large-scale yielding may be assumed to occur at plastic 
zone sizes of 5 to 10% of the crack-length, as then there is just an obvious (though not very pro- 
nounced) deviation from linear elastic behaviour in the relation between applied load and clip-gauge 
measured displacement. 
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is not to be found in the plastic zones but simply in the crack-lengths (Fig. 8). 
(Taking, also, more large-scale yielding into consideration shows essentially the same 
result if one does not compare the entire plastic zones but only their inner parts.) 
This means that the fracture process, including SCG, is essentially the same in small- 
scale and large-scale yielding, whereas the response of the body is quite different. 
Naturally, Fig. 8 oversimplifies the matter as the plastic zones ought to be somewhat 
different, but this difference is rather insignificant and concerns mostly the outer parts 
of the plastic zones, where the plastic strain is smaller than the elastic strain. 

End 
SCG 

start 
SCG 

End 
SCG 

FIG. 8. Small-scale yielding (upper diagrams) and large-scale yielding (lower diagrams) at the start 
and at the end of SCG. 

The crack-lengths used by Broek in the experiments on aluminium sheets, referred 
to in Section 5, are too small to comply with small-scale yielding. In fact, the sheet 
width and length and the crack-lengths ought to be increased by a factor of 10 or 
more if a test within the linear fracture mechanics range is desired. Such an increase 
would not appreciably change the absolute extent of SCG in corresponding cases, 
but in relation to the crack length this extent would be lowered in approximately 
inverse proportion to the linear scale. There would be a fairly linear relation, up to 
catastrophic failure, between the applied load and a clip-gauge measured C.O.D. 
SCG would start at a load well below the load at catastrophic fracture. It could 
hardly be detected by studying the load-displacement record. The Kc-value would 
be calculated from the load at catastrophic fracture, not from the load at incipient 
SCG. This would be quite in agreement with the requirements and concepts of 
linear fracture mechanics. Therefore, for “smaller” sheets, such as those actually 
used by Broek, the onset of SCG has nothing to do with the linear fracture toughness 
Kc for the sheet. The same discussion is applicable to plane strain fracture mechanics, 
the main difference being only that crack lengths less than 100 to 200 mm usually 
are sufficient for valid K,,-tests performed under the requirements of linear fracture 
mechanics. 
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Il. COMMENTS ON THE PLASTIC FLOW AT SCG 

The idea of a Dugdale-type or Barenblatt-type region inside the plastic region 
at SCG might explain experimental observations by BROEK (1968b) and Professor 
A. S. TE~ELMAN (unpublished work, 1973) that the crack profile after some extent 
of SCG does not seem to be a result of progressive blunting. Figure 9 shows schema- 
tically crack profiles at different stages of loading. Before SCG, rather extensive 
blunting occurs (cf. RICE and ROSENGREN (1970) and HUTCHINSON (1970)). During 
SCG, a rather sharp crack-tip is advancing. It is tempting to interpret these pheno- 
mena as the result of rearrangements of plastic strain after initiation of SCG. The 
occurrence of a Dugdale-type or a Barenblatt-type region during SCG should change 
the displacement field in the neighbourhood of the crack-tip in such a way that a 
“spearing” rather than a progressive blunting occurs. The basis for such a far-reaching 
conclusion is, however, at present rather uncertain. 

The postulate of a Dugdale-type or a Barenblatt-type region at SCG might also 
shed some light on the mechanism of fatigue at higher load levels. Thus, it does not 
seem to be unreasonable to regard this mechanism as comprising cycles of blunting 
during loading before crack growth, “spearing” during continued loading when 
SCG occurs, and restoration of the stress-strain field during unloading. 

FIG. 9 Crack profiles, showing how a sharp fatique crack at increased loading first becomes 
blunted, whereupon a sharp crack-tip grows. 

12. CONCLUSIONS 

Certain changes in the distribution of plastic strain near a crack-tip take place 

after incipient crack growth. As it appears, these changes favour “spearing”, i.e. 
a fairly sharp crack-tip, rather than a progress of the blunting which occurs before 
crack growth. By such effects, energy flow to the end-region at crack extension is 
made possible, obviously a necessary requirement for crack growth to take place. 
On the other hand, with progressing crack growth, a gradually increasing screening 
of the energy flow through the plastic region occurs, almost always causing SCG, 
controlled by the loading system. The SCG is eventually superseded by catastrophic 
fracture. By consideration of the gradually increasing screening action of the plastic 
region a quantitative interpretation can be made, not only of observations of SCG 
in thin plates, but also of the fracture process in cases of plane strain, where the 
existence and importance of SCG has often been overlooked. 
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The screening action of the plastic region controls, to a certain degree, linear 
fracture toughness. As explained in the introduction (last paragraph), this toughness 
can be directly determined from tests within the linear fracture mechanics range 
without separate determination or consideration of the screening action. This action 
must, however, be observed in interpretations of test results within the non-linear 
fracture mechanics range and in predictions of fracture properties in non-linear 
cases. In fact, analysis of tests even where catastrophic fracture does not occur before 
plastic collapse can give information both about the screening action and the fracture 
toughness. In this way, the whole range from fracture at very small scale yielding 
through fracture within the non-linear region up to plastic collapse can be covered. 

Conditions of plane stress or plane strain have been assumed. Mixed cases (for 
instance, fractures in plates with substantial shear-lip formation) are not included. 
Neither are cases where the crack length is not much larger than the size of the 
end-region. 
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APPE~IX I 

The ~t~-P~~e strain problem of steady crack growth 

CHITALEY and MCCLINTOCK (1971) considered the anti-plane strain problem of 
steady crack growth in a perfectly-plastic solid. They found one primary and one 
secondary plastic zone. In the primary plastic zone (Fig. AI.1) the stresses z,, rYZ 

Secon&lry 
plastic zone I Primary 

ploslic zone 

FIO. kl.1. Steady-state growth in anti-plane strain, according to CHITALEY and MCCLINTOCK (1971). 

are given by 
2,’ + ryZ2 = k2, z,, COS 0 + zyz sin 0 = 0, (AI. 1) 

where k is the yield stress in shear and 0 is the angle between the radius vector from 
the crack-tip and the x-axis. The strains are given by 

Y X.2 = r:, +r!L Yy, = $Z +r& (AI.2) 

Y :, = L/G, r;; = rJG, (AI.3) 

y!Z = i sin 0 In (r/R(O)) + $ g(O), (AI.4) 

r,“, = - i (cos 0 + In (tan j&Y)) In (r/R(O)) - 

where G is the shear modulus, r is the length of the radius from the crack-tip, R(O) 
is the distance from the crack-tip to the elastic-plastic boundary in the direction 0, 
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O,(r, 0) is an angle (see Fig. ALI), and g(0) and h(O) are functions characterized by 

g(0) = h(O) = 0, 0 S OA, (AI.6) 

g’(0) = cos O+sin OR’(O)/R(O), h’(O) = -cot @g’(O), OA I 0 I: O,, (AI.7) 

where O,, 0, are angles shown in Fig. AI.l. 
CHITALEY and MCCLINTOCK (1971) found that the C.O.D. is z O.lSkR(O)/G. 

However, the logarithmic strain singularity at the crack-tip predicts zero C.O.D. 
This contradiction indicates that the displacement condition is not satisfied. In 
fact, as will be shown later, the displacement condition cannot be satisfied by centred 
fan characteristics in the shear field. The obvious alternative, and apparently the 
only possible one, is then a shear field where finite transverse slip is allowed along 
a finite segment of the x-axis, giving characteristic lines as shown in Fig. Al.2. The 

Chorocieristic 
Ime 

FIG. AI.2. Steady-state growth in anti-plane strain, taking a region of discontinuous slip into 
consideration. 

plastic strains are then found to be 

(AM) y& = $ * 
‘m @ In 

r -(dx,/dO) sin 0 

R(O) -(dx,/dO) sin 0 I 

P- --gcos@ln 
I 

r -(dx,fdO) sin 0 
141 R(0) - (~x~~~~) sin 0 1 f d@, ds 

I 81(S, el sin O,.(s sin 0 -(dx,/dO,,) sin’ 0,) 
+ k h(O), (AI.9) 

G 

where q,(O) is the x-coordinate of the intersection between the characteristic with 
slope 0 and the x-axis, O,(r, 0) is an angle shown in Fig. AI.2, and 

g(0) = h(O) = 0, 0 I o,, (AI.10) 

g’(0) = 
R(O) cos Q +R’(O) sin 0, 

R(O) - (dx,/dO) sin 0 

h,(O) 
= -cot @g’(O), OA < 0 I &r, (AI.1 1) 

with OA an angle shown in Fig. AI.2. Further, 

dx,/dO, = d(~~(~~))~d~~. 
The displacement condition can be found from 

+ k, dx + ryz @) = 0, 

(AI.12) 

(A1.13) 
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the integral being taken along the path shown in Fig. 
written 

-g(@) - 
I 

1 = 0. (AI.14) 
0 r elcs,8j sin O,(s sin 0 -(dx,/dO,) sir? Q,) 
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AI.3. The condition can be 

Obviously, a complete solution to the problem requires the matching of the 
plastic zone to the outer field, which in turn is subject to conditions given by the 
remote load. 

Integration along another path C = C, + C, (Fig. AM) gives a special displace- 
ment condition 

- g d sin 0 ~d~o~d~) x 

-(d~o~d~) sin 0 

R(O) - (dx,/dO) sin 0 > I 
- .q(O) 60, (AI.15) 

Fm. AI.3. Path of integration. 

FIG. AI.4. Path of integration. 
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with Ci, C, equal to &L 2 0 2 0, 0 I 0 I +n respectively, where each member 
is equal to the C.O.D. From this relation it is seen that the displacement condition 
cannot be satisfied by x0(O) = 0, i.e. by a shear field with a centred fan of 
characteristics. 

APPENDIX 11 

Approximate e~pre~sio~~ of some properties of a three-point bettd specimen 

The dimensions of the specimen considered are shown in Fig. AII.1. For this 
specimen, BROWN and SRAWLEY (1967) give the following expression for the calcu- 
lation of the stress intensity factor K: 

K = 24(Qa1’2/h2)(1~96-2~75a/h+13~66a2jh2-23~98a3/h3+25~22a4/h4). (AII.l) 

By means of (9) to (12) it is possible to calculate J as a function of the displaee- 
ment 6 under the load and the crack length a. The result is shown in Fig. AII.2. 

I- 8h -ct 

FIG. ATI.1. Dimensions of three-point bend specimen. 

Theoretical 
/curve 

FIG. AII.2. J(6, a) as a function of a. 

It is seen that J(6, u)/S2 decreases with increasing a if a > 0*49/z. As (AII.l) assumes 
plane conditions and the real case should be a mixed case (plane strain near the 
crack-tip and plane stress far from the crack-tip), a K-calibration was performed 
in order to test the reliability of (AII.1). Although the accuracy of such a calibration 
@erformed on a specimen with h = 30 mm and milled slits O-3 mm wide) is much 
poorer than the accuracy of numerical calculations in phine cases, it seems definitely 
to be good enough to confirm the existence of a rna~rn~ of J(c5, a)/S’ for 
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a < O%h. The result of a numerical calculation of the relation J(6, a)/S2 based 
on the experimental data is shown in Fig. AII.2. 

It is obvious that unstable crack growth under fixed grip conditions cannot take 
place at very small scale yielding if the crack length is larger than that for which 
J(6, u)/S2 is a maximum. 

The difficulty of obtaining unstable crack growth under fixed grip conditions is 
reduced if the loading system exhibits a springiness between the grips. It is here 
assumed that such a springiness exists, equal to the springiness of a test-piece with 
a = 0. The relations J(6, a) and Q(& a) are then calculated. In this calculation, 
(AII.1) is used for the small-scale yielding part and Dr. H. Andersson’s (unpublished 
work, 1973) finite element calculations for a = +h for non-linear parts. As regards 
the dependence on a, some consideration of very large scale yielding (through- 
plasticity) as well as experimental results has been used. The final result is given 
by (25) and (26). 


