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Autoimmune diseases have registered an alarming rise worldwide in recent years. Accumulated evidence indicates that the immune
system’s ability to distinguish self from nonself is negatively impacted by genetic factors and environmental triggers. Genetics
is certainly a factor, but since it normally takes a very long time for the human genetic pattern to change enough to register
on a worldwide scale, increasingly the attention of studies has been focused on the environmental factors of a rapidly changing
and evolving civilization. New technology, new industries, new inventions, new chemicals and drugs, and new foods and diets
are constantly and rapidly being introduced in this fast-paced ever-changing world. Toxicants, infections, epitope spreading,
dysfunctions of immune homeostasis, and dietary components can all have an impact on the body’s delicate immune recognition
system. Although the precise etiology and pathogenesis of many autoimmune diseases are still unknown, it would appear from the
collated studies that there are commonmechanisms in the immunopathogenesis of multiple autoimmune reactivities. Of particular
interest is the citrullination of host proteins and their conversion to autoantigens by the aforementioned environmental triggers.
The identification of these specific triggers of autoimmune reactivity is essential then for the development of new therapies for
autoimmune diseases.

1. Introduction

The immune system walks a fine line to distinguish self
from nonself in preserving the integrity of the host [1].
Interference with this fine line can result in overactivity
to self-antigens, leading to autoimmunity. During the past
20 years a significant increase has been observed in the
incidence of autoimmune disease worldwide. The etiology
and pathogenesis of many autoimmune diseases remain
unknown. It does appear that a close interplay between
environmental triggers and genetic factors is responsible for
the loss of immunological tolerance and autoimmunities [2,
3] (Figure 1). Therefore, in relation to the role of heritability
in autoimmunity, genome-wide association studies reported
that genetics only accounted for a minority of autoimmunity
cases, and in many cases disease discordance exists in
monozygotic twins [4]. For this reason, research and publi-
cations dedicated to environmental factors in autoimmunity

have grown by an average of 7% every year since 1997 [2].
This includes toxic chemicals, infections, and dietary com-
ponents. Indeed, detection of reactive antibodies to various
citrullinated peptides and proteins in autoimmune disease is
the best indication for gene-environment interactions [5].

2. Dysregulation of Immune Homeostasis

The full collaboration of both the innate and adaptive
arms of the immune system plays a crucial role in the
promotion or inhibition of autoimmune disease. Generally,
to clear infections the innate immune cells can upregulate
costimulatory molecules and produce a mixture of pro-
and anti-inflammatory cytokines such as interleukin-1-beta
(IL-1𝛽), IL-12, transforming growth factor-beta (TGF-𝛽),
IL-23, tumor necrosis factor-alpha (TNF-𝛼), and IL-6 that
regulate the adaptive arm of the immune system. However,
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Figure 1: The balance of immunity. A combination of host genetic factors and exposure to environmental triggers promote the development
of autoimmune disease. A balance must be maintained between the regulatory T cells and the pathogenic T effector cells.

a dysregulated immune response to environmental triggers,
such as pathogens, microbiota, or toxins, can initiate a
chronic inflammatory response through activation of T-
helper-1 (Th1), Th17, and TNF-𝛼 and the production of IL-
17, IL-22, interferon-gamma (IFN-𝛾), and IL-21, resulting in
inflammation, antibody production and tissue injury [6].

Therefore, a dysregulated adaptive immune system is
at the core of the pathogenesis of autoimmune and other
immune-mediated diseases. Hyperactivation of innate im-
mune response affects the adaptive immune response as well
as development effector T and B cells. Paired with defects
in the regulatory T cells, this results in the breakdown of
immune homeostasis and the development of autoimmunity
[7].

To induce an autoimmune response in the lymph nodes,
effector T cells first have to acquire a defined cytokine
fingerprint and then must migrate to the appropriate target
organs where they initiate tissue inflammation. The effector
cells that participate in the induction of autoimmunities are
IFN-𝛾-producing Th1 cells, IL-17- and IL-22-producing Th17
cells, and IL-21-producing follicular Th cells or TFH cells.
It has been shown that overactivation or expansion of these
newly discovered TFH cells causes antibody production and
the development of lupus-like disease in an animal model
[8]. In fact, high concentrations of circulating T cells that
resemble TFH cells have been detected in a subgroup of
patients with lupus. This increased frequency of TFH cells
correlated with both disease severity and end-organ damage
[9]. Unfortunately, a decrease in frequency and function
of FOXP3+TREG cell is often seen in autoimmune diseases.
This decrease seems to be associated with the inflammatory
environment that contributes to the dysregulation of TREG
cells [7].

In the environment of immune homeostasis, the actions
of autoreactive Th1, Th17, and TFH cells are countered by
FOXP3+ regulatory T cells that produce TGF-𝛽 and IL-
10. But in an inflammatory milieu the deletion of different

transcription factors results in the generation of TREG cells
that are unable to suppress the autoreactive T cells (Figure 2).

Thus, tight control of autoreactive T cells, in particular
TFH cells, by TREG cells is necessary to suppress the develop-
ment of autoimmune lupus-like disease.

In order to induce long-lasting remission of immune-
mediated diseases, two important factors have to be in place:
controlling the inflammatory environment and boosting the
frequency and function of FOXP3+ regulatory T cells.

3. Toxicants and Autoimmunity

A number of experimental studies and clinical reports have
shown that autoimmune reactivity and/or autoimmune dis-
eases are induced in humans and chronic exposure to various
chemicals in animal models. These were summarized by
Bigazzi in 1997 [10]. Furthermore, very recently, this role
of environmental chemicals, in particular, the induction of
autoimmunities by toxicants, was summarized by Pollard et
al. [11] in his paper, “Toxicology of autoimmune diseases.”The
mechanism of toxicant-induced autoimmunity is described
by either toxicant induction of aberrant cell death making
the hidden cellular material available to anti-gen presenting
cells [12, 13] or by immune reactions to xenobiotics through
covalent binding of chemicals or haptens to human tissue
proteins and formation of neoantigens [14] (Figure 3). This
is due to the fact that reactive organic compounds most often
bind covalently; that is, their electrophilic properties enable
them to react with protein nucleophilic groups such as thiol,
amino, and hydroxyl groups. Examples of such reactive, hap-
tenic compounds that frequently lead to sensitization after
dermal contact or inhalation are toluene diisocyanate, trimel-
litic anhydride, phthalic anhydride, benzoquinone, formalde-
hyde, ethylene oxide, dinitrochlorobenzene, picryl chloride,
penicillins, and D-penicillinamine. Sensitizing metal ions
react somewhat differently in that they oxidize proteins or
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Figure 2: Differentiation of naı̈ve T cells into pathogenic effector T cells. APCs can be activated by numerous factors, resulting in the release
of cytokines that promote the differentiation of naı̈ve T cells into various subsets of pathogenic effector T cells that drive inflammation, tissue
injury, and autoantibody production. Segmented filamentous bacteria (SFB) can also promote the development ofTh17 cells and autoimmune
responses in vivo. Proinflammatory cytokines derived from both innate and adaptive immune cells attenuate TREG cell-mediated suppression
of effector T cells.
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Figure 3: Putative mechanism of chemical-induced autoimmunity.

form stable protein-metal chelate complexes by undergoing
multipoint binding with several amino acid side-chains [12].
For example, in regard to nail polish and its association
with primary biliary cirrhosis (PBC), halogenated com-
pounds could bind to mitochondrial proteins, changing their
immunogenicity and inducing antimitochondrial antibodies
[10, 15, 16].

In contrast to haptenic compounds, most xenobiotics
eliciting adverse immune reaction are unable to bind to
proteins when entering the body; however, they can do so
after conversion to reactive metabolites. These xenobiotics
can be considered as prohaptens, which, aftermetabolization,
manage to bind to human tissue proteins and induce antibody
production against both the haptenic chemicals as well as
tissue proteins.

Anothermechanism is the activation of toll-like receptors
by xenobiotics. This predisposes individuals to toxicant-
induced inflammatory cytokine production, which exacer-
bates autoimmune diseases [17].

These and other mechanisms of action were explored in
relation to exposure to organic solvents as a risk factor for
autoimmune disease in a very extensive systemic review of
literature and meta-analysis [18]. After reviewing a total of
103 articles and the inclusion of 33 in the meta-analysis, it
was concluded that (1) exposure to organic solvents was asso-
ciated with systemic sclerosis, primary systemic vasculitis,
and multiple sclerosis (MS) and (2) individuals who carry
genetic factors for autoimmunities should avoid any exposure
to organic solvents in order to avoid increasing their risk for
autoimmune diseases.
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In addition to the above mechanisms of actions (as
shown in Figures 3 and 4), these autoimmune responses and
diseases can be induced by solvents and other environmental
chemicals through a variety of effects at the biochemical and
cellular levels.

(i) Chemicals are capable of altering cellular prolifer-
ation, Th1, Th2, Th3, Th17, apoptosis, and tissue-
specific function.

(ii) Chemicals are capable of inducing protein or lipid
adducts which activate Th17 cells and induce the
production of IL-17 and IL-21.

(iii) Chemicals can activateHSP90 and induce production
of anti-HSP90 autoantibodies.

(iv) Chemicals are capable of inducing DNA-hypermeth-
ylation and change in cellular functions.

(v) Chemicals can increase ROS production and the
induction of DNA-fragmentation.

(vi) Chemicals may compete with thyroid hormones or
interfere with iodine transportation and induce oxi-
dative stress that leads to an inflammatory response
to the thyroid gland.

(vii) Chemicals not only stimulate the release of reactive
oxygen species but also stimulate the synthesis of
nitric oxide by nitric oxide synthase [18].

Finally,modification ofDNAmethylation is an additional
mechanism by which environmental triggers induce changes
in gene expression. For example, environmental pollutants,
cigarette smoke and alcohol consumption have been advo-
cated for autoimmunity incidence due to their links with the
induction of DNA methylation [10, 19].

Overall, the precise mechanisms responsible for the
development of environmentally induced autoimmune disor-
ders are unknown. Additionally, mechanisms involved in the
initiation of a disease process might differ from mechanisms
responsible for exacerbation of the established illness. There-
fore, one or more of these mechanisms either individually
or jointly can have strong effects on the development of

autoimmune reactivity, which may then be followed by
autoimmune disease (Figure 4).

4. Induction of Autoimmunities by Infection

Although some infections can protect individuals from spe-
cific autoimmune diseases, infectious agents play a pivotal
role in the induction of autoimmune disorders. The question
of how infectious agents contribute to autoimmunity has
continued to be of interest to clinical and basic researchers
and immunologists in general [20].

An autoimmune disease can be induced or triggered by
infectious agents, which can also determine its clinical man-
ifestations. Most infectious agents, such as viruses, bacteria,
fungi, and parasites, can induce autoimmunity via different
mechanisms. In many cases, it is not a single infection but
rather the “burden of infections” from childhood that is
responsible for the induction of autoimmunity [20].

Almost every autoimmune disease is linked to one or
more infectious agent. During the past 50 years molecular
techniques have been utilized to explore the interaction
between infections and autoimmunities [20–23]. One of
the classical examples of this relationship is rheumatic
fever, which presents several weeks after infection with beta
hemolytic streptococcus.Molecular resemblance between the
bacterial M5 protein and human 𝛼-myosin results in a break-
down of immunological tolerance and antibody production
against 𝛼-myosin in genetically susceptible individuals [21,
24]. In the case of antiphospholipid syndrome (APS), anti-
cardiolipin and anti-𝛽

2
-glycoprotein I pathogenic (𝛽

2
GPI)

antibodies are detected. Although there ismolecularmimicry
between 𝛽

2
GPI and infections, such as cytomegalovirus,

Haemophilus influenza, Neisseria gonorrhoeae, rubella, toxo-
plasma, and tetanus toxoid, and IgM antibodies against them
have been detected, the direct connection between these
infections and APS has not been established [24]. Another
example of associating infection with autoimmune disease
is type 1 diabetes. Type 1 diabetes is an autoimmune disease
resulting from the destruction of 𝛽-islet cells by autoreactive
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T cells and the concomitant release of various islet cell anti-
gens [21, 25]. The appearance of antibodies against glutamic
acid decarboxylase 65 (GAD-65) and tyrosine phosphatase
precedes the onset of the disease by 5–10 years [26, 27].
Several lines of evidence link infections with type 1 diabetes.

(1) A search on PubMed using the keywords “association
of viruses with type 1 diabetes” produces close to 1,400
manuscripts.

(2) Enteroviruses such as coxsackie B4 virus and rota-
virus, themost common cause of childhood gastroen-
teritis, not only share homology with GAD-65, but
can cause the precipitation of type 1 diabetes when
introduced. Higher levels of anti-coxsackievirus and
rotavirus antibodies are detected in sera frompatients
with recent onset of type 1 diabetes [28, 29].

(3) Using PCR technology, coxsackie B4 virus was
detected in islet cells of 65% of patients versus only
6% of controls [30].

(4) Inoculation of the virus to genetically susceptible
strains of mice resulted in insulitis and diabetes,
fulfilling Koch’s postulates [21, 31, 32].

(5) Both DNA and RNA viruses are capable of initiat-
ing antiviral responses that cross-react with insulin,
GAD-65, and other islet cell antigens [21, 33, 34].

Altering the balance of gut microbiota toward either
a tolerogenic or nontolerogenic state using antibiotics or
probiotics may influence the development of type 1 diabetes
[35, 36]. Therefore, just as with their viral counterparts, there
is sufficient indirect evidence that gut and other microbial
agents, for example, Mycobacterium avium, are potential
triggers for type 1 diabetes [37].

This multifaceted interaction between genetics, immune
dysregulation, various infections, and autoimmune diseases
such as rheumatoid arthritis (RA) and thyroid disease reveals
many possibilities for pathogenic relationships between dif-
ferent species of infectious agents and autoimmunity [20, 38,
39].These infectious agents and their associationwithRAand
thyroid autoimmunity are shown in Tables 1 and 2.

4.1. Mechanisms Responsible for the Induction of Autoimmu-
nity by Infection. Autoimmunity can be induced by infec-
tious agents through the following mechanisms: molecular
mimicry, epitope spreading, standard activation, viral persis-
tence, polyclonal activation, dysregulation of immune home-
ostasis, and autoinflammatory activation of innate immunity
[20]. In some cases, even if infections are not directly
responsible for the induction of autoimmunities, they can
often target the site of autoimmune inflammation and amplify
the autoimmune disease [68]. In this case, infections can have
one of three effects: first, it can exacerbate ongoing disease,
leading to greater severity and duration; second, it can induce
a relapse; and, third, it can lead to chronic progressive disease.

4.1.1. Molecular Mimicry. In the most likely mechanism by
which infection induces autoimmunity, foreign antigens very
oftenmay bear sufficient structural similarity to self-antigens.

Table 1: Infectious agents associated with rheumatoid arthritis.

Infection Reference
Porphyromonas gingivalis Farquharson et al. 2012 [40]
Segmented filamentous
bacteria Wu et al. 2010 [41]

Yersinia enterocolitica Gaston and Lillicrap 2003 [42]
Salmonella typhi McColl et al. 2000 [43]
Shigella flexneri Hannu et al. 2005 [44]
Proteus mirabilis Ebringer and Rashid 2006 [45]
Campylobacter jejuni Pope et al. 2007 [46]

Klebsiella pneumoniae Domı́nguez-López et al. 2000
[47]

Clostridium difficile Cope et al. 1992 [48]
Staphylococcus aureus Liu et al. 2001 [49]
Streptococcus pyogenes Faé et al. 2006 [50]
Candida albicans Hermann et al. 1991 [51]
Leptospira pomona Sutliff et al. 1953 [52]
Chlamydia Carter et al. 2010 [53]
Mycoplasma arthritidis Cole and Ward 1979 [54]
Mycobacterium tuberculosis Kim et al. 2006 [55]
Borrelia burgdorferi Imai et al. 2013 [56]
Parvovirus Kerr et al. 1995 [57]
Epstein-Barr virus Pratesi et al. 2006 [58]

Table 2: Infectious agents associated with thyroid autoimmunity.

Infection Reference
Yersinia enterocolitica Bech et al. 1978 [59]
Epstein-Barr virus Shimon et al. 2003 [60]
Parvovirus Mori et al. 2007 [61]
Hepatitis C Fernandez-Soto et al. 1998 [62]
Mumps Parmar et al. 2001 [63]
Rubella Ziring et al. 1977 [64]
Coxsackievirus Brouqui et al. 1991 [65]
HTLV-1 Kawai et al. 1992 [66]
Human herpes virus types
6 and 7 Leite et al. 2008 [67]

This is called antigenic mimicry or molecular mimicry.
Immune response to microbial antigens could result in
activation of T cells that are cross-reactive with self-antigens.
This is due to the fact that a single T cell can respond to
various peptides with similar charge distribution and overall
shape [20, 69]. Examples of bacterial or viral antigens, their
cross-reactivity with various tissue antigens, and potential
ensuing autoimmune diseases are shown in Table 3.

Mechanisms of infection-induced autoimmunity through
molecular mimicry are shown in Figure 5.

Initiation of immune response to the foreign antigens
such as coxsackievirus that share identical amino acid
residues with self-proteins such as GAD-65 may generate a
cross-reactive antibody response that incorrectly recognizes
the self-protein as a foreign antigen. When the self-antigen is
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Table 3: Examples of bacterial and viral antigens that can cross-react with self-antigens with potentially resultant diseases.

Pathogen antigen Cross-reactive self-antigen Autoimmune disease
Herpes simplex virus Corneal antigen Stromal keratitis
Campylobacter jejuni Ganglioside in peripheral nerve Guillain-Barré syndrome
Coxsackievirus Glutamic acid decarboxylase Type 1 diabetes
Theiler’s murine encephalomyelitis virus Proteolipid protein Multiple sclerosis
Yersinia enterocolitica Thyrotropin receptor Thyroid autoimmunity
Borrelia burgdorferi Leukocyte function associated antigen Lyme arthritis
Salmonella typhi and Yersinia enterocolitica HLA-B27 Reactive arthritis
HHV-6, EBV, Rubeolla, influenza virus, and HPV Myelin basic protein Multiple sclerosis
Streptococcal M protein Myosin and other heart valve proteins Rheumatic fever
Trypanosoma cruzi Cardiac myosis Chagas heart disease

Bacteria-specific
T-cell response

Self-antigen

Self-tissue antigen
specific T cell

Bacterial antigen
with similarity
to self-antigen

Bacteria

APC

Bacteria

Bacteria
Self-antigens

Figure 5: Mechanisms of infection-induced autoimmunity throughmolecular mimicry. Bacterial induction of self-tissue antigen release and
simultaneous presentation of bacterial and self-tissue antigens to T cells; activated T cells can produce antibodies against both bacterial and
self-tissue antigens.

a cell surface molecule such as GAD-65, the antibody- and
cell-mediated immune response can lead to tissue damage
[69].

Given the vast numbers of microbial proteins and
their cross-reaction with human proteins, immune response
against microbial antigens will not always result in autoim-
munity. However, such an initial immune response could
result in epitope spreading or exposure of other regions of
the same self-protein and production ofmore antibodies [69].
The criteria for the mechanism of autoimmunity induction
were reviewed and summarized by Kivity et al. 2009 [20]. In
the classical examples of autoimmunities induced by infec-
tions summarized in Table 3, all these criteria are present.

4.1.2. Epitope Spreading. Epitope spreading is a phenomenon
in which the immune system expands its response beyond
the original epitope recognized by T or B cells to induce the
release of non-cross-reactive epitopes that are recognized by
the immune system later [70]. Epitope spreading can result
from a change in protein structure. One such example is
protein citrullination, the changing of an amino acid from

arginine to citrulline. This can result not only in immune
reaction against the original protein or its citrullinated form,
but also against other citrullinated proteins.

Epitope spreading is demonstrated in rheumatic fever, in
which a chronic autoimmune response against streptococcal
M protein and heart valve tissue can result in immune
response against collagen or laminin. This immune response
against collagen or laminin is no longer specific to the
bacterial M protein or its cross-reactive tissue protein. In
pemphigus, blistering of the mouth precedes blistering of
the skin, and blisters in the mouth are associated with
the presence of antibodies against desmoglein-3 protein,
which is specific to the mouth epithelial cell antigens. It is
only later on when T cells attack skin desmoglein-1 that
autoantibodies are produced against skin-specific antigens,
and skin blistering develops [71]. In a mouse model of
encephalomyelitis, Theiler’s murine encephalomyelitis virus
T-cell response to myelin develops first against dominant
myelin proteolipid (PLP) peptide 139–151. As the disease
progresses, response to the different and less dominant
epitope PLP peptide 178–191 emerges. This mechanism of
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infection-induced autoimmunity through epitope spreading
is shown in Figure 6.

4.1.3. Bystander Activation and Stimulation of Pattern Recog-
nition Receptors. Bystander activation occurs when viral
antigens stimulate toll-like receptors and other pattern recog-
nition receptors become activated in the inflammatory envi-
ronment [72]. This activation of receptors on an antigen-
presenting cell (APC) causes the release of proinflammatory
cytokines which can induce tissue damage and the release of
hidden antigens (Figure 7). The release of tissue antigens can
activate autoreactive T cells that initially were not involved
in the immune reactivity against the original infection [20].
Additionally, virally infected APCs and the concomitantly
released mediators are able to activate autoreactive Th1
or Th17 cells in a bystander manner. Upon recognition
of virally infected tissue cells, viral-specific T cells then
release cytotoxic granules such as granzymes and cytokines
such as TNF-𝛼, IL-17, lymphotoxin, and nitric oxide. This
inflammatory environment can lead to the bystander killing
of uninfected neighboring cells. Microbial superantigens can
induce a broader form of bystander activation by cross-
linking MHC class II molecules to TCRs on APCs and T-
cell activation (Figure 8). T cells that are stimulated in this
manner may contain a subset recognizing specific tissue
antigen [73]. Examples of superantigens are staphylococcal
antigens,mycoplasma antigens, enteric-microbiota LPS, EBV,
retrovirus, and many heat shock proteins. Some of these
superantigens do not cause autoimmune disease but are

involved in the exacerbation of EAE, arthritis, IBD, and other
disorders [1].

4.1.4. Persistent Infection and Polyclonal Activation of B Cells.
In many autoimmune diseases, such as lupus, RA, type 1
diabetes, and MS, B-cell functions are closely correlated
with disease activity. Antibodies produced by B-cell-derived
plasma cells contribute significantly to disease pathogenesis
[69]. In these and other disorders, prolonged infectivity with
a virus such as EBV, viral proteins, or viral genomes can lead
to autoimmunity by the constant activation and proliferation
of B cells.

After a long period of polyclonal B-cell activation, some-
times monospecific clones can emerge, accompanied by
very high levels of antibody production and the formation
of circulating immune complexes. Finally, this mixture of
polyclonal antibodies and immune complexes may cause the
autoimmune disease [74], as shown in Figure 9.

5. Dietary Components and Autoimmunities

It is undeniable that the diet of the industrialized and
urbanized parts of the world today is vastly different from
what it was even two or three decades ago, with a whole
new range of novel food experiences that come from new
food component sources, new breeds of food plants and
food animals, genetic modifications, chemical ingredients,
flavors, and preservatives. Over recent decades, a significant
increase in the incidence of autoimmune diseases such as
diabetes and MS in industrialized countries has led to the
postulation that diet is a potential environmental risk factor
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for such disorders. The link between gluten ingestion and
gluten sensitive enteropathies is already well established and
accepted [3]. High levels of dietary sodium are associated
with raised blood pressure and adverse cardiovascular health
[75] and have been shown to affect the immune system [76].
Low levels of vitamin D have been linked with MS, systemic
lupus erythematosus (SLE), RA, and other autoimmune

disorders [3]. Lactose intolerance is no laughing matter for
those afflicted with it or other milk-related disorders. The
pleasures of a modern diet unfortunately come with caveats
and unexpected catches that urgently need investigation.

5.1. Sodium Chloride in Diet and Autoimmune Diseases. For
the past five decades various studies have been conducted on
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the comparative sodium intake levels in different countries
[75, 76]. Animal experiments, epidemiological studies, and
clinical trials have provided convincing evidence for the
detrimental effect of sodium intake on blood pressure (BP),
coronary heart disease, and stroke, as well as noncardio-
vascular diseases [77–81]. These comparative studies have
shown that generally the simpler and less modernized a
society and culture are, the lower the sodium intake is,
with a concomitant lessening of the associated disorders.
Understandably, the high salt content of the modern Asian
diet is known worldwide, particularly the use of soy sauce as
a seasoning [75, 82]. Indeed, in comparison to home-made
meals, the salt content of fast foods can be many times higher
[75]. The concentration of Na+ in plasma similar to standard
culture medium is about 149mM.The consumption of high-
salt processed foods may increase this concentration to a
higher level and result in a change in physiological conditions.
It has been theorized that the consumption of processed foods
containing high amounts of salt may in part be responsible
for the increasing incidence of autoimmune diseases. In
a recent study it was demonstrated that an excess uptake
of salt can affect the innate immune system, in particular,
macrophage function [83]. However, until very recently little
was known about increased NaCl intake, its direct effect
on the T-helper cell populations, and the connection of all
this to autoimmune diseases. Upon stimulation of the T-cell
receptor and the cytokine environment, the näıveCD4+ T cell
can differentiate into functionally distinct effector cell sub-
sets. This differentiation is also driven by key transcriptional
regulators such as T-bet forTh1, GATA binding protein-3 for
Th2, FOXP3 for Th3, retinoid acid receptor-related orphan
receptor gamma t (ROR𝛾t) for Th17, and transcriptional
regulator B-cell lymphoma 6 (BCL6) for T-follicular-helper
(TFH) cells [84].

Among these CD4+ T-cell subsets, the IL-23-dependent
IL-17-producing CD4+ helper T cells play a pivotal role in
autoimmune disease [85]. Adding salt to the wound of com-
plex autoimmune diseases, it has been shown that sodium
chloride can drive autoimmune disease by the activation
or induction of pathogenic Th17 cells [86]. These elegant
experiments were conducted in a culture medium containing
an additional 10–40mM concentration of salt, mimicking
animals fed a high-salt diet. Increased NaCl concentrations
markedly induced the conversion of naı̈ve CD4+ T cells
to CD4+ T cells expressing IL-17A (Figure 10). This effect

was dose dependent, and the optimum IL-17A induction
was achieved by increasing the concentration of NaCl by
40mM. Moreover, the authors demonstrated that a high-salt
diet could accelerate neuropathology in a mouse model of
multiple sclerosis through cellular signaling pathways involv-
ing transcription factor NFAT5, the protein kinase enzyme
P38, and salt-sensing kinase SGK1. In comparison with the
controls, mice on the high-salt diet not only displayed amuch
higher number of infiltrating CD3+ and MAC3+ cells but
also almost doubled the number of CD4+ T cells expressing
IL-17A or pathogenic Th17 cells [86, 87]. This effect of the
high-salt diet was specific for Th17 conditions, since the high
salt levels did not significantly alter cell death, lymphocyte
proliferation, or enhancement of Th1 or Th2 differentiations.
The mechanism by which a high-salt diet enhances the
differentiation of näıve CD4+ cells to pathogenic Th17 cells
is shown in Figure 11.

Extracellular NaCl concentration through the activation
of IL-23 receptor and its binding by IL-23 influences the
activity of SGK1 and NFAT5 which drives the expression
of transcription factor ROR𝛾t, IL-23R, IL-17A, and IL-17F
resulting in the phenotype switch from näıve CD4+ T
cells to pathogenic Th17 cells in MS, psoriasis, and other
autoimmune disorders (Figure 12). The data presented in
these manuscripts [86, 87] clearly indicate that high intake
of sodium potentiates pathogenic Th17 cell generation in in
vitro and in vivo systems in an SGK1-dependent manner and,
therefore, has the potential of increasing the risk of promoting
autoimmune diseases. Moreover, the elevated in vivo Th17
resulting from a high-salt diet raises the important question
of whether or not increased salt in westernized diets and in
processed foods contributes to an increased generation of
pathogenicTh17 cells and towards an unprecedented increase
in autoimmune diseases [87].

Thus, as indicated, dietary salt is just one of many dietary
components that can influence T-helper cell differentiation
and the development of autoimmune disease. The effect of
other dietary nutrients, for example, vitamins, and other
diverse environmental factors onmetabolism andmicrobiota
should also be investigated [88].

When this information is taken together with the strong
and consistent evidence that implicates high salt intake with
high BP and other cardiovascular disorders, it is alarming to
note as laid out in all these studies thatmost adult populations
have daily salt intakes well over the recommended US daily
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Näıve
CD4+

T cell
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cells into a greater number of TH17 cells.

ROR𝛾t

cell

conditions
IL-23

IL-23R

IL-23

IL-23R

IL-6, TGF-𝛽,  IL-23

promotion of tissue inflammation

Change in
osmolarity

Serum/glucocorticoid
kinase-1 involved

in sodium transport

SGK1

Positive regulation of
ROR𝛾t, IL-23R, IL-17A, IL-17F

Protein kinase
enzymes

activation
P38/MAPK

Osmosensitive
transcription
factor NFAT5

High salt
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subsequent increased, more profligate development of EAE.

level of 1.5 g/day for middle-aged and older adults [89]. On
the face of it a voluntary decrease in salt consumption seems
to be an easy policy to implement, but good sense and good
health face the formidable opposing forces of flavor, habit,
and culture.

5.2. The Role of Milk and Wheat Components in Autoimmune
Diseases. In relation to dietary proteins it has been well
established that different proteins and peptides in milk and
wheat are involved in autoimmune diseases [90–93]. Milk
contains more than 400 different proteins, most of which
have over 150 amino acids (AA). AA thatmimic collagenmay
induce RA, while those that mimic neural cell antigens may
induce multiple sclerosis or other neuroimmune disorders.

For example, a study reports that, as a consequence
of immunological cross-reactivity or molecular mimicry
between the extracellular IV-like domain of the milk pro-
tein butyrophilin and myelin oligodendrocyte glycopro-
tein (MOG), butyrophilin can modulate the encephalito-
genic T-cell response to MOG in experimental autoimmune
encephalitis [92]. Epidemiological and ecological investiga-
tions suggest that early infant nutrition, particularly drinking
cow’s milk, may induce autoimmunity, leading to type 1 dia-
betes.This autoimmune reactivity is due to cross-reactivity of
cow’s milk, particularly its albumin component, with islet cell
antigen-1 and beta cell surface protein. These studies suggest
that dysregulation of oral tolerance triggers a cellular and
humoral immune response against various components of
milk proteins, and cross-reaction with B-cell molecules may
result in autoimmunity [94–97]. In association with various
autoimmune disorders, wheat proteins and,more specifically,
gluten, have received significant attention [98–100]. Indeed,
it has been demonstrated that a wheat-based diet induces not
only Th1-type cytokine bias in the gut but also increased T-
cell reactivity to gluten, with a higher frequency of diabetes

[99–101]. In addition to diabetes, it has been shown that
celiac disease (CD) is associated with various extraintestinal
autoimmune disorders that involve the thyroid, joints, heart,
skin, pancreas, bone, liver, reproductive organs, and the
nervous system [102–112].

Although the exact mechanisms for the induction of
these autoimmunities are not definitely known, there is a
growing body of evidence indicating that these diseases may
result from molecular mimicry between gliadin or transg-
lutaminase and various tissue antigens, including nervous
system proteins [33–35, 68]. Interestingly, the celiac peptide
VVKVGGSSSLGW shares more than 30% homology with
the trangslutaminase peptide 476–487 (RIRVGQSMNMGS)
[113]. Therefore, antibodies generated against transglutami-
nase in the intestine can bind to extraintestinal tissues such
as those of the liver, pancreas, lymph nodes, muscle, heart,
and brain [114–117]. Very recently, we used both affinity-
purified and, monoclonal antibodies against 𝛼-gliadin 33-
mer peptide to examine the cross-reaction between gliadin
with different food and tissue antigens [91]. We observed
significant immune reactivity when these antibodies were
applied to cow’s milk, milk chocolate, milk butyrophilin,
whey protein, casein, yeast, oats, corn, millet, instant coffee,
and rice. With regard to the reaction of 𝛼-gliadin antibody
with various tested tissue antigens, the most significant bind-
ing occurred with asialoganglioside, hepatocyte, glutamic
acid decarboxylase 65, adrenal 21-hydroxylase, and various
neural antigens [92].

These studies collectively indicate that circulating anti-
bodies present in patients with nonceliac gluten sensitivity
(NCGS) and CD interact with different food antigens and
transglutaminases in various tissues, which may induce the
formation of antigen-antibody aggregates that can trigger the
activation of the inflammatory cascade.

While most studies about the implications of cross-
reactivity with various autoimmunities are limited to milk
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and wheat, a thorough investigation and understanding of
the immunologic cross-reactivity of other food proteins and
peptides are essential for advancing our knowledge about the
involvement of these dietary components in the development
of many autoimmune disorders. Finally, the identification of
triggers of autoimmunity can be used in the development of
new therapies for autoimmune diseases.

6. Using Gluten Sensitivity, Celiac Disease,
and Oral Pathogens to Understand
Autoimmunities

There is a lot that clinicians can learn about autoimmune
diseases from looking at gluten sensitivity and celiac dis-
ease. Some of the features of CD HLA-DQ2/DQ8 asso-
ciation, target organ (villi) T-cell infiltration, and disease-
specific autoantibodies produced against modified anti-
gens such as deamidated gliadin and deamidated gliadin-
transglutaminase complex [99, 116] are paralleled in chronic
joint disorder [94, 118]. These observations suggest that it
might be feasible to use CD to identify disease-relevant
epitopes in RA and other autoimmune disorders, such as
type 1 diabetes and multiple sclerosis [100]. For example, the
key enzymes that catalyze the modification of glutamine to
glutamic acid or arginine to citrulline as new epitopes have a
central role in CD and RA (Figure 13).

It is interesting to note that this process of arginine
deamination and the formation of citrullinated proteins and
peptides in the joint or other tissues could be potentiated
by oral pathogens such as Porphyromonas gingivalis [40, 119–
124] (Figure 14). That is why RA can also cause inflammation
in other organs, including the skin, lungs, heart, and periph-
eral nerves, often with serious consequences.

This is only one observation suggesting that environ-
mental triggers can change self-tissue antigens to become
disease-associated T-cell epitope, resulting in antibody pro-
duction against the citrulline-containing new epitope.There-
fore, if CD as an autoimmune disorder is driven by
transglutaminase-2 and deamidated gliadin, then we may
state that RA is caused by environmental factors, such as P.
gingivalis or EBV.These environmental factors, by causing the
formation of various citrullinated self-epitopes such as colla-
gen type II, fibrin, vimentin, keratin, 𝛼-enolase, and filaggrin,
are involved in the induction of RA [119–125]. Experience
with CD has taught scientists that genes, environmental
factors, and target tissue antigens are all important issues for
consideration in understanding the molecular structure of
epitopes recognized by T cells and B cells within the inflamed
target organ [100, 124].

6.1. Mechanism Involved in the Induction of Autoimmunity
by Oral Pathogen. A similar mechanism applies to the
autopathogenic correlation of periodontitis induced by P.
gingivalis and RA [40, 119, 124]. It is possible that both
diseases share a common aetiopathogenic background [124].
This mechanism includes the posttranslationmodification or
citrullination of bacterial proteins and self-antigens simul-
taneously, generating neoepitope structure. This can result
in a breakdown in self-tolerance and antibody production
against citrullinated bacterial antigens as well as citrullinated
host proteins [125]. One such antigen is 𝛼-enolase, which
features significant homology between human and bacterial
𝛼-enolase. Therefore, antibodies produced against citrulli-
nated bacterial 𝛼-enolase will react with human 𝛼-enolase,
and antibodies produced against human citrullinated 𝛼-
enolasewill react strongly against bacterial𝛼-enolase. For this
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reason, elevated levels of 𝛼-enolase antibodies are detected
in the synovium of 60% of patients with RA [122]. Indeed,
immunological mapping using a library of cyclic citrullinated
𝛼-enolase peptides led to the identification of a B-cell-
dominant epitope comprising amino acids 5–21 of 𝛼-enolase
(KIHAREIFDSRGNPTVE)where arginine-9 and arginine-15
are citrullinated, with an 82% sequence similarity with that
of P. gingivalis [126, 127]. Immunization with citrullinated
human and P. gingivalis 𝛼-enolase and citrullinated fibrino-
gen causes similar pathology in humanized DR4 transgenic
mice. This mechanism may be the common denominator
between autoimmunity and cardiovascular disease. These
findings suggest that, by mimicking the molecular structure

of host-citrullinated proteins, P. gingivalis peptidylarginine
deiminase-citrullinated bacterial 𝛼-enolase could trigger a
loss of tolerance to structurally similar host proteins, resulting
in expression of anti-citrullinated protein antibodies and the
development of RA [128, 129].

These antibodies can be detected up to 10 years before the
clinical onset of RA and the production of IgM antibodies
against IgG (called rheumatoid factor) in the majority of
patients.

In the joint, the specificity of anti-citrullinated peptide
is enhanced through epitope spreading to other citrullinated
autoantigens such as fibrinogen, collagen, filaggrin, and
vimentin (see Figure 15).
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7. Conclusion

Putting all this information together, it appears that there
are common mechanisms in the immunopathogenesis of
multiple autoimmune reactivities. In genetically susceptible
individuals, environmental triggers such as xenobiotics andP.
gingivalis can, respectively, induce the formation of neoanti-
gens, or be capable of inducing the citrullination of host pro-
teins and converting them to autoantigens. These modified
proteins can be recognized by the immune system, triggering
antibody production and the inflammatory process involved
in the clinical manifestations of autoimmune diseases.

To optimize the chances of therapeutic success it is
essential to identify the environmental triggers first and then
attempt to remove them from the patient’s environment (e.g.,
toxic chemicals and food associated with autoimmunities).
In the case of infections, this also helps to guide the clinical
use of various medications which are now often used for
prophylaxis. Therefore, careful monitoring for the presence
of infections in the patient’s blood or tissue will be desirable
for monitoring the effects of the drug therapy [40, 119–124].

Manipulation of environment triggers and the host
immune system during the clinical and in particular pre-
clinical stages of autoimmune disease will offer significant
insight and guide early intervention for many autoimmune
disorders that, according to the American Autoimmune
Related Disease Association, Inc. (http://www.aarda.org/),
affects approximately 10% of the world’s population [130],
while others put it as high as 20%. Finally, identification of
triggers of autoimmunities could be used in the development
of new therapies for autoimmune diseases.
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Garćıa-Latorre, “Cellular immune response to Klebsiella pneu-
moniae antigens in patients with HLA-B27+ ankylosing
spondylitis,” Journal of Rheumatology, vol. 27, no. 6, pp. 1453–
1460, 2000.

[48] A. Cope, J. Anderson, and E. Wilkins, “Clostridium difficile
toxin-induced reactive arthritis in a patientwith chronicReiter’s
syndrome,” European Journal of Clinical Microbiology and Infec-
tious Diseases, vol. 11, no. 1, pp. 40–43, 1992.

[49] Z.-Q. Liu, G.-M. Deng, S. Foster, and A. Tarkowski, “Staphylo-
coccal peptidoglycans induce arthritis,” Arthritis Research, vol.
3, no. 6, pp. 375–380, 2001.
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