Relatório - Experimento 6 - Viscosidade

Breno Pagotto Aguiar - nº USP: 11298553 lago Santos Alves - nº USP: 11223701

Turma 1 - Grupo 1 - Diurno

6,9

Resumo:

O experimento consiste em um aparato virtual, o qual há uma aparente queda livre da esfera até que ele adentre em um fluido, isto é, o corpo usado é solto de uma certa altura, até que a esfera emerge em um cilindro com óleo e assim translada inserida na substância. Através desse experimento é possível notar uma certa resistência ao movimento da esfera em relação à uma queda livre, fato que dá origem ao estudo da viscosidade do fluido.

• Introdução:

Através do movimento de queda da esfera no fluido, será possível estudar a viscosidade desse material, o que corresponde ao objetivo deste experimento. Para tal, também está envolvida a velocidade por meio da distância percorrida e do tempo necessário à que ocorra o movimento do corpo. Além disso, o diâmetro (dobro do raio), a densidade da esfera e do óleo (fluido) e a temperatura do meio são fundamentais e estão inseridas na análise para atingir o objetivo. A Figura 1 mostra o arranjo virtual o qual são coletados os dados do experimento.

Velocidade limite

Teoria? Fórmulas usadas?



Figura 1: esquema virtual do arranjo experimental

• Descrição Experimental:

Como cada grupo de estudo possui de dois a três integrantes, cada um ficou encarregado de coletar os dados de um grupo diferente de esferas e, no final, foi feita a média entre todos os resultados obtidos, denominando "aluno 1", "aluno 2" e "grupo", sendo "grupo" a média, para o nosso grupo que contém apenas dois alunos. Os dados foram coletados na plataforma *E-Disciplinas* da Universidade de São Paulo - USP. Nela, há 10 conjuntos de "viscosidade" (de 0 a 9), logo, foram determinados dois deles, sendo que cada aluno deveria pegar o conjunto que equivale ao seu último dígito do número USP do aluno. Os conjuntos adquiridos ao grupo foram: 1 e 3.

Cada viscosidade continha uma tabela com valores já fornecidos, os quais são, para ambos conjuntos escolhidos:

temperatura?

- altura entre as marcações: 65,0 ± 0,2 cm;
- diâmetro interno do tubo: 50,32 ± 0,07 mm;
- densidade do óleo: 0,883 ± 0,001 g/cm³;
- densidade da esfera: 7,850 ± 0,001 g/cm³;
- gravidade: 978,64 ± 0,01 cm/s²;
- temperatura: 28,0 ± 0,1 °C;
- incontaco do miovêmetro. O OOF m
- incerteza do micrômetro: 0,005 mm;
- incerteza do paquímetro: 0,05 mm;
- incerteza da trena: 0,5 mm;
- incerteza do cronômetro: 0,01 s;
- incerteza do densímetro: 0,001 g/cm³;
- incerteza do termômetro: 0,1 °C;
- incerteza sistemática do operador: 0,1 s.

grupo de

os dois experimentos foram simulados na mesma

Inicialmente, no grupo de esferas, foram feitas 4 medições do diâmetro de 8 esferas diferentes através de um micrômetro virtual. Foi calculado o diâmetro médio das 4 medidas, bem como o desvio padrão e a incerteza final. Nessa incerteza final, estão envolvidos o desvio padrão, a raiz quadrada do número 4, por serem 4 medidas e, a incerteza do micrômetro, aparelho utilizado para realizar as medições.

Logo após, foi medido o tempo que as esferas levam para percorrer a distância demarcada no tubo, uma vez que elas são abandonadas de cima dele e entram no meio viscoso. Para cada corpo, 5 tempos foram anotados, sendo possível calcular o valor médio entre eles, bem como o desvio padrão e a incerteza final do período, que leva em conta o desvio padrão, o número de medidas e a incerteza do cronômetro.

Em seguida, calculou-se o raio das 8 esferas, para cada aluno: uma vez obtido o diâmetro, foi possível encontrar o raio, considerando que ele equivale à metade do diâmetro. Com isso, o raio foi elevado ao quadrado por conta da Lei de Stokes (Fórmula 3 na aba *Análise de Dados*), a qual contém o quadrado do raio. Assim, foi considerada uma incerteza para "r²" e outra para "r".

Além disso, com a distância percorrida (entre as marcações no tubo, como mostra a Figura 1.1), chamada de Δd , e o tempo médio de queda (Δt), foi possível calcular a velocidade do corpo através da razão entre ambos.

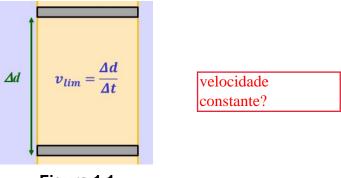


Figura 1.1

Essa velocidade corresponde à limite atingida pela esfera, pois como a força viscosa equivale a 6πητν, portanto varia conforme a velocidade da esfera quanto maior a sua velocidade maior a força, até que chega um momento onde a força viscosa é máxima e a força resultante do sistema é nula, atingindo assim sua velocidade máxima. Além do mais, ela foi denominada "sem correção" pois considera que o cilindro tem raio infinite posteriormente será feita uma correção para a grandeza, por meio de um fator C assim considerando fluido.

Em relação às unidades das grandezas, o diâmetro, e o raio consequentemente, são dados em centímetros (cm), enquanto que o período em segundos (s). Logo, a velocidade em centímetros por segundo (cm/s).

Por fim, calculou-se o coeficiente de viscosidade do fluido (eta - η) por meio da Lei de Stokes. Ele é dado em Stokes (St), conforme o sistema CGS (g/cm.s).

Logo, foi feito o cálculo para o "grupo", obtendo o diâmetro médio entre os alunos, o tempo médio, seu desvio padrão e sua incerteza final, o raio ao quadrado médio, a velocidade e o eta. As incertezas também foram calculadas para esses três últimos tópicos. Com isso, foram construídos gráficos de *vlim* vs *r*² para os "alunos" e para o "grupo". Através desse gráfico, é possível encontrar o coeficiente eta pelo coeficiente angular da reta linear gerada pelo software. A Figura 3 na *Análise de Dados* demonstra como isso ocorre.

Posteriormente, a próxima etapa do experimento equivale à correção da velocidade e do eta. Para isso, foi utilizado o Fator C, de modo a encontrar a velocidade limite correta (ou real) e o eta correto (ou real), isto é considerando o raio do tubo finito e seu fluxo laminar. O Fator C é conhecido como correção de Ladenburg.

A Fórmula para o cálculo do Fator C foi fornecida ao grupo. Nota-se nela o termo alfa (α): também fornecido externamente e valendo 2,4. Por fim, não foi adotada uma incerteza para esse fator.

Em seguida, foi determinada a velocidade limite real e o eta correto, considerando-se a Lei de Stokes com a correção de C. As incertezas das duas grandezas também foram deduzidas pelo princípio de propagação de incertezas.

Por fim, foi feito a média entre ambos alunos para todas as grandezas trabalhadas nessa etapa. Da mesma forma, foi feito um gráfico de *vreal* vs r^2 , a fim de encontrar o eta correto (ou real) pelo coeficiente angular da reta.

Na última etapa do experimento, o objetivo foi normalizar a correção de eta para 25°C, uma vez que a temperatura do fluido era de 28°C para ambos alunos. Para tal, foi necessária de outro fator de correção: Ct, o qual corresponde à razão entre o eta para a temperatura desejada e o eta para a temperatura medida. Ademais, foi calculada a segunda correção de eta (eta cor 2) e sua incerteza. Finalmente, para comparar os resultados obtidos com o esperado e entre os dois alunos para cada esfera, foi feito o Teste Z de Compatibilidade. Esse valor esperado foi fornecido e vale 2,85 Stokes = 2,52 cgs de acordo com a Figura 2.

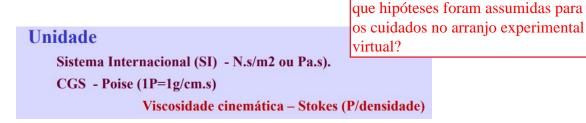
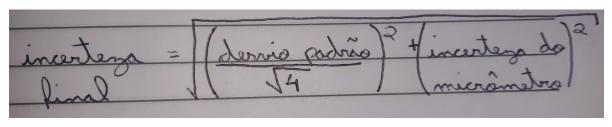



Figura 2

Análise de Dados:

Para analisar os dados que serão obtidos, foram utilizadas as seguintes fórmulas e equações:

Fórmula 1: cálculo da incerteza final para o diâmetro das esferas

Fórmula 1.1: cálculo da incerteza do raio, nela, a incerteza final corresponde à do diâmetro médio

$$\sigma r^2 = 2.r^2.(incerteza final)$$
(diâmetro médio)

Fórmula 1.2: cálculo da incerteza do raio ao quadrado, nela, a incerteza final corresponde à do diâmetro médio

$$v_{lim} = \frac{\Delta d}{\Delta t}$$

Fórmula 2: cálculo da velocidade limite sem correção

$$\frac{(\sigma V_{lim})^2}{(V_{lim})^2} = \frac{(incerteza final)^2}{(tempo médio)^2} + \frac{(\sigma \Delta d)^2}{\Delta d^2}$$

Fórmula 2.1: cálculo da incerteza da velocidade limite, sendo que "incerteza final" corresponde a do tempo médio

$$v_{lim} = \frac{2}{9} \frac{(\rho_c - \rho_{oleo})g}{\eta} r^2$$

Fórmula 3: Lei de Stokes, utilizada para o cálculo de eta

$$\frac{(\sigma \eta)^2}{\eta^2} = \frac{(\sigma x)^2}{x^2} + \frac{(\sigma g)^2}{g^2} + \frac{(2.\sigma r)^2}{r^2} + \frac{(\sigma V lim)^2}{V lim^2}$$

Fórmula 3.1: cálculo da incerteza de eta

É importante ressaltar que σr não provém da raiz quadrada de σr^2 , uma vez que essas incertezas são calculadas de maneiras diferentes. Além disso, x representa a diferença entre as densidades: ρ_c - ρ_{oleo} = 7,850 - 0,883 = 6,967 g/cm³. a incerteza de x é dada pela raiz quadrada da soma do quadrados de cada incerteza, isto é:

$$\sigma x = \sqrt{(0,001)^2 + (0,001)^2} = 0,001414$$

Equação 3.1.1: cálculo da incerteza da diferença das densidades (x)

$$C = \alpha \frac{r_{esf}}{R_{tubo}} + \left(\alpha \frac{r_{esf}}{R_{tubo}}\right)^{2}$$

Fórmula 4: Fator C, sendo que resf é o raio médio da esfera e Rtubo o raio do tubo

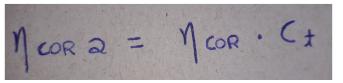
esta invertido...

Fórmula 5: cálculo da velocidade limite real

$$\frac{(\sigma V_{real})^2}{(V_{real})^2} = \frac{(\sigma V_{lim})^2}{V_{lim}^2}$$
 $\sigma V_{real} = V_{real} \cdot \frac{\sigma V_{lim}}{V_{lim}}$

Fórmula 5.1: cálculo da incerteza da velocidade real (ou correta), sendo **vlim** a velocidade sem correção

$$v_{lim}^{real} = \frac{2}{9} \frac{(\rho_c - \rho_{oleo})g}{(1+C)\eta} r^2$$


Fórmula 6: Lei de Stokes com o Fator C

$$\frac{(\sigma \eta_{real})^2}{\eta_{real}^2} = \frac{(\sigma x)^2}{x^2} + \frac{(\sigma g)^2}{g^2} + \frac{(2.\sigma r)^2}{r^2} + \frac{(\sigma v_{real})^2}{v_{real}^2}$$

Fórmula 6.1: cálculo da incerteza de eta correto

$$C_t = \frac{\eta(t_{ref})}{\eta(t_{medida})}$$

Fórmula 7: cálculo do Fator Ct, sendo que **η(tref)** corresponde ao eta da temperatura de referência de 25°C e **η(tmedida)** ao eta da temperatura medida (28°C)

Fórmula 8: cálculo do eta correto 2, sendo **ηcor2** o eta correto 2 e **ηcor** o eta correto calculado na Fórmula 6

$$(\sigma \eta cor2)^2 = (\sigma x)^2 + (\sigma g)^2 + (2.\sigma r)^2 + (\sigma V real)^2$$

 $(\eta cor2)^2 \qquad x^2 \qquad g^2 \qquad r^2 \qquad V real^2$

Fórmula 8.1: cálculo da incerteza de eta correto 2

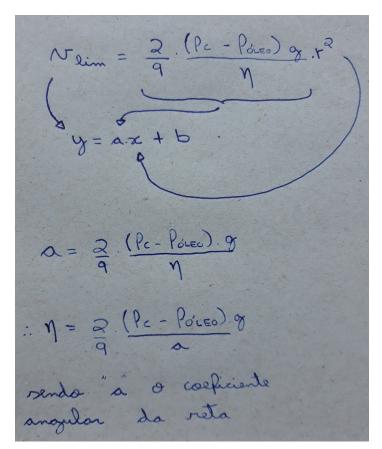


Figura 3: cálculo de eta pelo coeficiente angular da reta

incerteza de eta grafico?

Resultados Obtidos:

e item discussão?

Inicialmente foram medidos os diâmetros com o micrômetro digital e os tempos de queda das esferas com um cronômetro digital de um aparelho smartphone. Os resultados foram anotados nas tabelas abaixo. As incertezas finais do diâmetro médio e do tempo médio foram dadas pela Fórmula 1. Entretanto, para a incerteza do tempo, foi utilizada a incerteza do cronômetro de 0,01 s ao invés da incerteza do micrômetro.

				Alu	no 1			
	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
				Diâmet	ro (cm)			
d1	0,1510	0,1975	0,2482	0,3161	0,3949	0,4514	0,5500	0,6351
d2	0,1500	0,1985	0,2489	0,3169	0,3983	0,4521	0,5490	0,6331
d3	0,1508	0,1990	0,2491	0,3181	0,3979	0,4518	0,5502	0,6361
d4	0,1491	0,2000	0,2510	0,3200	0,3959	0,4534	0,5511	0,6341
Diâm								
médio	0,1502	0,1988	0,2493	0,3178	0,3968	0,4522	0,5501	0,6346
Desvio								
padrão	0,0009	0,0010	0,0012	0,0017	0,0016	0,0009	0,0009	0,0013
Incerteza								
final	0,0007	0,0007	0,0008	0,0010	0,0010	0,0007	0,0007	0,0008

Tabela 1

				Alu	no 2			
	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
		Diâmetro (cm)						
d1	0,1475	0,1982	0,2489	0,3172	0,3982	0,4750	0,5510	0,6335
d2	0,1473	0,1979	0,2483	0,3169	0,3961	0,4723	0,5492	0,6342
d3	0,1482	0,1970	0,2492	0,3172	0,3992	0,4751	0,5500	0,6340
d4	0,1488	0,1992	0,2490	0,3180	0,3940	0,4759	0,5505	0,6330
Diâm								
médio	0,1480	0,1981	0,2489	0,3173	0,3969	0,4746	0,5502	0,6337
Desvio								
padrão	0,0007	0,0009	0,0004	0,0005	0,0023	0,0016	0,0008	0,0005
Incerteza								
final	0,0006	0,0007	0,0005	0,0006	0,0013	0,0009	0,0006	0,0006

Tabela 2

				Alu	no 1			
	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
			r	Tempo de	queda (s)			
t1	17,89	10,57	6,64	4,26	3,20	2,55	2,16	1,83
t2	17,87	10,57	6,86	4,46	3,26	2,61	2,22	1,76
t3	18,01	10,50	6,79	4,33	3,20	2,54	2,09	1,76
t4	18,20	10,70	6,92	4,27	3,25	2,48	2,22	1,76
t5	17,61	10,52	6,91	4,26	3,26	2,48	2,10	1,77
Tempo	1= 02	10.55	6 O =	4.22	2.24	0.70	2.16	4 = 6
médio	17,92	10,57	6,87	4,33	3,24	2,53	2,16	1,76
Desvio								
padrão	0,25	0,09	0,06	0,09	0,03	0,06	0,07	0,01
Incerteza								
final	0,12	0,05	0,03	0,05	0,02	0,03	0,04	0,01

Tabela 3

				Alu	no 2			
	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
			ŗ	Гетро de	queda (s)			
t1	17,51	10,69	6,82	4,51	3,27	2,46	2,12	1,65
t2	17,43	10,57	6,80	4,60	3,34	2,48	2,15	1,81
t3	17,45	10,69	6,75	4,55	3,27	2,51	2,05	1,68
t4	17,53	10,51	6,75	4,54	3,31	2,55	2,14	1,68
t5	17,50	10,56	6,97	4,52	3,28	2,50	2,15	1,77
Tempo								
médio	17,48	10,58	6,82	4,55	3,30	2,51	2,12	1,74
Desvio								
padrão	0,05	0,08	0,10	0,03	0,03	0,03	0,05	0,07
Incerteza								
final	0,02	0,04	0,05	0,02	0,02	0,02	0,03	0,03

Tabela 4

Logo após, foram calculados o raio, a velocidade limite e o eta, todos eles sem correção. A incerteza do raio foi dada pela Fórmula 1.1, do raio ao quadrado pela Fórmula 1.2, a velocidade limite pela Fórmula 2 e sua incerteza pela 2.1. Por fim, o eta pela Fórmula 3 e sua incerteza pela 3.1.

				Alu	no 1			
	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
raio (cm)	0,0751	0,0994	0,1247	0,1589	0,1984	0,2261	0,2750	0,3173
inc r (cm)	0,0003	0,0004	0,0004	0,0005	0,0005	0,0003	0,0003	0,0004
raio ² (cm ²)	0,00564	0,00988	0,01554	0,02525	0,03935	0,05112	0,07565	0,10068
inc r ² (cm ²)	0,00005	0,00007	0,00010	0,00016	0,00019	0,00015	0,00018	0,00026
Vlim (cm/s)	3,63	6,15	9,46	15,01	20,05	25,72	30,13	36,88
inc V								
(cm/s)	0,03	0,03	0,05	0,17	0,12	0,34	0,53	0,24
eta (cgs)	2,36	2,43	2,49	2,55	2,97	3,01	3,80	4,14
inc eta								
(cgs)	0,03	0,02	0,02	0,03	0,02	0,04	0,07	0,03

Tabela 5

				Alu	no 2			
	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
raio (cm)	0,0740	0,0990	0,1244	0,1587	0,1984	0,2373	0,2751	0,3168
inc r (cm)	0,0003	0,0003	0,0003	0,0003	0,0006	0,0005	0,0003	0,0003
raio ² (cm ²)	0,00547	0,00981	0,01548	0,02517	0,03938	0,05631	0,07567	0,10039
inc r ² (cm ²)	0,00004	0,00007	0,00007	0,00009	0,00025	0,00022	0,00017	0,00018
Vlim (cm/s)	3,72	6,14	9,53	14,28	19,70	25,90	30,62	37,46
inc V								
(cm/s)	0,01	0,03	0,08	0,08	0,13	0,20	0,39	0,75
eta (cgs)	2,23	2,42	2,46	2,67	3,03	3,29	3,74	4,06
inc eta								
(cgs)	0,02	0,02	0,02	0,02	0,03	0,03	0,05	0,08

Tabela 6

Dessa forma, foram calculados os valores para o grupo, anotados abaixo. O diâmetro médio do grupo corresponde à média entre a medida do aluno 1 e do aluno 2, para cada esfera. O mesmo ocorre para o tempo médio, para a velocidade e para o eta. A incerteza final é dada pela mesma Fórmula 1, porém utilizando-se a raiz quadrada de 8, por serem 8 valores analisados. As incertezas do raio, da velocidade e do eta foram dadas pelas mesmas fórmulas 1.1, 1.2, 2.1 e 3.1, respectivamente.

				Grı	иро			
	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
Diâm								
médio	0,1491	0,1984	0,2491	0,3176	0,3968	0,4634	0,5501	0,6341
Desvio								
padrão	0,0014	0,0010	0,0009	0,0012	0,0018	0,0120	0,0008	0,0010
Incerteza								
final	0,0007	0,0007	0,0006	0,0008	0,0013	0,0085	0,0005	0,0007
Tempo								
médio	17,70	10,58	6,84	4,44	3,27	2,52	2,14	1,75
Desvio								
padrão	0,27	0,08	0,10	0,14	0,04	0,05	0,05	0,06
Incerteza								
final	0,09	0,03	0,03	0,04	0,02	0,02	0,02	0,02
raio ² (cm ²)	0,00556	0,00984	0,01551	0,02521	0,03937	0,05368	0,07566	0,10053
$inc r^2 (cm^2)$	0,00005	0,00007	0,00008	0,00013	0,00026	0,00197	0,00015	0,00023
Vlim (cm/s)	3,67	6,15	9,50	14,64	19,87	25,81	30,38	37,17
inc V								
(cm/s)	0,02	0,02	0,05	0,15	0,12	0,20	0,30	0,46
eta (cgs)	2,29	2,43	2,47	2,61	3,00	3,15	3,77	4,10
inc eta								
(cgs)	0,03	0,02	0,02	0,03	0,03	0,12	0,04	0,05

Tabela 7

Com isso, foi construído o gráfico de velocidade limite pelo raio ao quadrado:

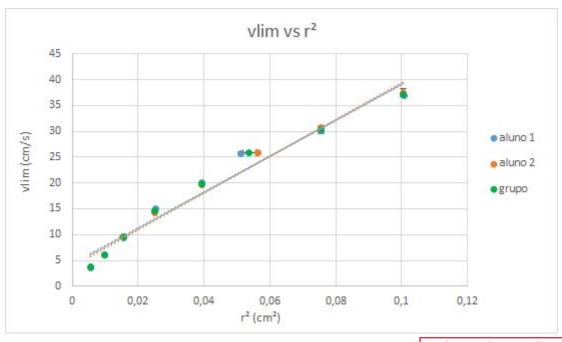


Gráfico 1

aqui era só para olhar e não para calcular...

Equação da reta do aluno 1: y = 347x + 4,38Equação da reta do aluno 2: y = 353x + 3,94Equação da reta do grupo: y = 350x + 4,15

Através do coeficiente angular dessas retas, foi possível encontrar o valor de eta. A Figura 3 demonstra como isso é possível

Aluno 1		Alu	no 2	Grupo		
coef ang	346	coef ang	353	coefang	350	
eta	4,37	eta	4,29	eta	4,33	

Tabela 7.1: valores do coeficiente de viscosidade por meio do coeficiente angular

Também foi utilizado o Método dos Mínimos Quadrados (MMQ) para obter-se os melhores parâmetros para os coeficientes angulares (a) e lineares (b), e por seguinte conseguir o eta através do coeficiente angular semelhante às operações acima.

Alu	Aluno 1		no 2	Grupo		
a	b	a	9	a	b	
408,4	1,96	459,8	1,37	433,88	1,68	
σа	σb	σа	σb	σа	σb	
2,1	0,03	2,3	0,03	2,53	0,03	

Tabela 7.2

Alur	Aluno 1		no 2	Grupo		
coef ang	$408,4 \pm 2,1$	coef ang	459.8 ± 2.3	coef ang	$433,9 \pm 2,5$	
eta	$3,71 \pm 0.02$	eta	$3,30 \pm 0,02$	eta	$3,49 \pm 0,02$	

Tabela 7.3

Posteriormente, foram feitos os cálculos das grandezas com o fator de correção C através da Fórmula 4. A velocidade correta ou real calculada pela Fórmula 5, sua incerteza pela Fórmula 5.1. Já o eta correto ou real foi dado pela Fórmula 6 e sua incerteza pela 6.1. Os resultados obtidos encontram-se nas tabelas abaixo.

		Aluno 1							
	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8	
Fator C	0,08	0,10	0,13	0,17	0,23	0,26	0,33	0,39	
Vel cor									
(cm/s)	3,91	6,79	10,72	17,63	24,56	32,46	40,11	51,42	
inc V									
(cm/s)	0,03	0,04	0,06	0,20	0,15	0,43	0,71	0,34	
eta cor									
(cgs)	2,19	2,20	2,20	2,17	2,43	2,39	2,86	2,97	
inc eta									
(cgs)	0,03	0,02	0,02	0,03	0,02	0,03	0,05	0,02	

Tabela 8: resultados obtidos para o aluno 1, em que **Vel cor** corresponde à velocidade limite real ou correta e **eta cor** ao eta correto ou real

		Aluno 2						
	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
Fator C	0,08	0,10	0,13	0,17	0,23	0,28	0,33	0,39
Vel cor								
(cm/s)	4,00	6,78	10,80	16,77	24,13	33,08	40,77	52,21
inc V								
(cm/s)	0,01	0,03	0,09	0,09	0,16	0,26	0,52	1,04
eta cor								
(cgs)	2,07	2,19	2,17	2,27	2,47	2,58	2,81	2,91
inc eta								
(cgs)	0,02	0,02	0,02	0,01	0,02	0,02	0,04	0,06

Tabela 9: resultados obtidos para o aluno 2

				Grı	иро			
	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
Fator C	0,08	0,10	0,13	0,17	0,23	0,27	0,33	0,39
Vel cor								
(cm/s)	4,00	6,78	10,80	16,77	24,13	33,08	40,77	52,21
inc V								
(cm/s)	0,01	0,03	0,09	0,09	0,16	0,26	0,52	1,04
eta cor								
(cgs)	2,07	2,19	2,17	2,27	2,47	2,58	2,81	2,91
inc eta								
(cgs)	0,02	0,02	0,02	0,01	0,02	0,02	0,04	0,06

Tabela 10: resultados obtidos para o grupo

Já obtido o raio das esferas, foi construído um gráfico de vreal vs r^2 , isto é, da velocidade limite real pelo raio ao quadrado:

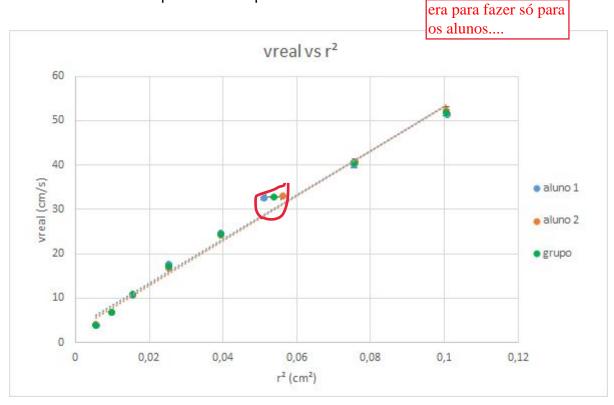


Gráfico 2

Equação da reta do *aluno 1*: y = 496x + 3,4Equação da reta do *aluno 2*: y = 505x + 2,87Equação da reta do *grupo*: y = 501x + 3,12

fez na mão ou era fornecido pelo excel?

As viscosidades encontradas pelos coeficientes angulares das retas foram:

Alun	o 1	Alur	10 2	Gr	иро
coef ang	496	coef ang	505	coef ang	501
eta	3,05	eta	3,00	eta	3,02

Tabela 10.1: valores do coeficiente de viscosidade por meio do coeficiente angular

Abaixo encontra-se a tabela com os valores obtidos através do MMQ.

Alu	no 1	Alu	no 2	Gri	иро
a	b	a	b	a	b
551,3	1,26	596,0	0,83	572,2	1,04
σα	σb	σa	σb	σα	σb
3,0	0,04	3,6	0,04	3,3	0,04

Tabela 10. era para ter um único coeficiente angular para dados dos alunos em conjunto..

Alur	10 1	Alu	no 2	Gr	иро
coef ang	$551,3 \pm 3,0$	coef ang	$596,0 \pm 3,6$	coef ang	$572,2 \pm 3,3$
eta	$2,75 \pm 0,01$	eta	$2,54 \pm 0,02$	eta	$2,65 \pm 0,02$

Tabela 10.3

unidade?

Em seguida, foi feita a normalização para a temperatura de 25°C através do fator de correção Ct, dado pela Fórmula 7. Por fim, o eta correto 2 foi calculado pela Fórmula 8 e sua incerteza pela Fórmula 8.1. Os resultados encontram-se nas tabelas abaixo.

era para corrigir o eta vindo do coeficiente angular...

		Aluno 1										
	esfera 1	esfera 1 esfera 2 esfera 3 esfera 4 esfera 5 esfera 6 esfera 7 esfera 8										
Fator de												
correção Ct	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20				
eta cor 2												
(cgs)	2,63	2,65	2,64	2,61	2,92	2,87	3,44	3,57				
inc (cgs)	0,03	0,02	0,02	0,03	0,02	0,04	0,06	0,03				

Tabela 11

que valores usou para avaliar ct?			Aluno 2										
para avar	iai ct.	esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8				
	Fator de												
	correção Ct	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20				
	eta cor 2												
	(cgs)	2,49	2,64	2,61	2,74	2,97	3,10	3,38	3,50				
	inc (cgs)	0,02	0,02	0,02	0,02	0,03	0,03	0,04	0,07				

Tabela 12

Dessa forma, foi feito o Teste Z de Compatibilidade entre os valores de eta cor 2 de ambos alunos, uma vez que esses resultados deveriam ser iguais em teoria, para cada esfera. Isso ocorre pois a esfera é lançada em um fluido que contém o mesmo coeficiente de viscosidade, isto é, o eta da esfera 1 deve ser o mesmo para os alunos 1 e 2, e assim sucessivamente para todas as 8 esferas.

Critério para compatibilidade

Comparação entre $(a \pm \sigma_a)$ e $(b \pm \sigma_b)$

$$Z = \frac{|a-b|}{\sqrt{\sigma_a^2 + \sigma_b^2}}$$

$$Z \le 1, \text{ compative is an nivel de } 1\sigma$$

$$1 \le Z \le 2, \text{ compative is an nivel de } 2\sigma$$

$$2 \le Z \le 3, \text{ compative is an nivel de } 3\sigma$$

$$Z > 3, \text{ discrepantes}$$

Figura 3: teste Z

		esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
Aluno 1	eta cor 2	2,63	2,65	2,64	2,61	2,92	2,87	3,44	3,57
	inc eta cor 2	0,03	0,02	0,02	0,03	0,02	0,04	0,06	0,03
Aluno 2	eta cor 2	2,49	2,64	2,61	2,74	2,97	3,10	3,38	3,50
	inc eta cor 2	0,02	0,02	0,02	0,02	0,03	0,03	0,04	0,07
	Z	3,70	0,45	0,88	3,35	1,51	4,90	0,73	0,86

Tabela 13

ou ve tira um valor média ponderada para eta de cada aluno e aí compara com os resultados desse aluno ou compara com esses valorew com o valor do vindo do ajuste de reta...

Portanto, nota-se que para as esferas 1, 4 e 6, os resultados obtidos são discrepantes entre si. Entretanto, para as esferas 2, 3, 7 e 8, o coeficiente de viscosidade é compatível em 1 sigma. Por fim, para a esfera 5, a compatibilidade é de 2 sigmas.

Com isso, pode-se concluir que há uma falta de precisão e

Além disso, o mesmo Teste Z foi feito entre os valores encontrados (em cgs) e o valor esperado, o qual foi fornecido e equivale à 2,85 Stokes = 2,52 cgs.

_		esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
Aluno 1	eta cor 2	2,63	2,65	2,64	2,61	2,92	2,87	3,44	3,57
	inc eta cor 2	0,03	0,02	0,02	0,03	0,02	0,04	0,06	0,03
Esperado	eta (cgs)	2,52	2,52	2,52	2,52	2,52	2,52	2,52	2,52
	Z	3,67	5,50	5,49	2,64	17,44	8,99	14,97	41,39

Tabela 14

		esfera 1	esfera 2	esfera 3	esfera 4	esfera 5	esfera 6	esfera 7	esfera 8
Aluno 2	eta cor 2	2,49	2,64	2,61	2,74	2,97	3,10	3,38	3,50
	inc eta cor 2	0,02	0,02	0,02	0,02	0,03	0,03	0,04	0,07
Esperado	eta (cgs)	2,52	2,52	2,52	2,52	2,52	2,52	2,52	2,52
•	Z	1,24	5,30	3,73	12,40	16,84	21,61	19,67	13,98

Tabela 15

Portanto, nota-se que apenas o valor para a esfera 1 é compatível (em 1 sigma) com o valor esperado de 2,52 cgs. Os outros valores mostraram-se incompatíveis, isto é, discrepantes com o almejado. Com isso, pode-se concluir que há uma falha na correção para a temperatura, o que pode estar relacionado tanto com o fato de que o experimento por completo é virtual quanto pela imprecisão do fator Ct, ou seja, ele não é suficiente para corrigir o coeficiente de viscosidade para a temperatura de 25°C.

ou as incertezas foram subestimadas...

Conclusão:

O experimento tinha como objetivo analisar o coeficiente de viscosidade de um óleo. Todo o processo é feito virtualmente, através do arranjo experimental virtual da plataforma *E-Disciplinas* da USP. Para tal, foram trabalhadas as grandezas: diâmetro do corpo (esférico), tempo de queda, velocidade e, por fim, o eta (viscosidade).

Com os valores encontrados, nota-se que as esferas com raio menor possuem uma menor velocidade. Isso ocorre devido ao peso da esfera ser menor já que mudou de assunto no ssuem a mesma densidade, o escoamento laminar ,isto é, o movimento de meio da frase? real é um importante fator ao resultado da viscosidade, porque como o tubo não contém borda infinita, as moléculas possuem velocidade em relação ao quão próximas estão da borda do tubo. Nesses pontos, a velocidade é reduzida pois tendem a grudar nas bordas, enquanto que no meio do tubo essa grandeza é maior. Dessa forma, quanto maior o diâmetro da esfera, maior será a influência desse escoamento laminar.

Além disso, uma vez obtidos os resultados para o eta sem a correção dos fatores C e Ct e com a correção dos mesmos, houve uma comparação entre os valores de cada aluno, uma vez que o óleo é igual para ambos, teoricamente. Essa comparação comprovou que o coeficiente de viscosidade entre os alunos varia em mais de 1 sigma para todos os valores, atingindo a discrepância, devido à um pequeno erro nas medidas. Além disso, quando comparados os resultados obtidos com o valor esperado e fornecido, ocorre uma maior discrepância entre os dados, de modo geral. Apenas uma medida mostrou-se compatível com o valor esperado (1 sigma), que é a medida com o menor diâmetro pois há menos influência das partículas das bordas do tubo.

Dessa forma, pode-se concluir que os fatores C e Ct não são suficientes para corrigir o coeficiente de viscosidade, uma vez que eles foram encontrados pelo grupo inicialmente a uma temperatura de 28°C (para ambos).

ou definir o óleo...