

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos

PSI 3212 – LABORATÓRIO DE CIRCUITOS ELÉTRICOS

Cinthia Itiki e Inés Pereyra / Magno T. Madeira – edição / revisão 2018

Experiência 4 - Cossenoides, Fasores e Impedâncias

Introdução Teórica

Esta introdução à experiência apresenta inicialmente as diversas representações de cossenoides. Em seguida, ilustra uma aplicação da representação de cossenoides por números complexos, na obtenção da impedância de um bipolo desconhecido.

1. Representações de cossenoides

Uma tensão cossenoidal pode ser representada matematicamente de diversas formas. Por exemplo,

$$v(t) = V_{p} \cos(\omega_{0} t + \theta_{0}) = V_{p} \cos(2\pi f_{0} t + \theta_{0}) = V_{p} \cos\left(\frac{2\pi}{T_{0}}(t - t_{0})\right) , \qquad \text{eq.1}$$

em que V_P é um número positivo que representa a amplitude de pico em volts, ω_0 é a frequência da cossenoide em radianos por segundo, t é o tempo em segundos, θ_0 é a fase em radianos, f_0 é a frequência em hertz, T_0 é o período da cossenoide e t_0 é o deslocamento em segundos.

A figura 1 representa uma tensão cossenoidal (linha contínua vermelha) em função de três parâmetros reais: amplitude de pico, período e deslocamento.

Figura 1 – Sinal cossenoidal de amplitude de pico V_p , período $T_0=1/f_0=2\pi/\omega_0$ e atraso t_0 (linha vermelha contínua) e cosseno padrão (linha azul tracejada).

Observe que valores positivos do deslocamento $t_0>0$ indicam um atraso e que valores negativos do deslocamento $t_0'=-(T_0-t_0)<0$ fornecem um adiantamento em relação ao cosseno padrão (de fase nula, ilustrado em linha tracejada azul). Além disso, na figura 1, é patente que um atraso de t_0 segundos equivale a um adiantamento de (T_0-t_0) segundos. Normalmente, utiliza-se o menor dentre os valores absolutos do atraso e do adiantamento, ou seja, escolhese min { $|t_0|$, $|-(T_0-t_0)|$ } para definir o atraso (ou o adiantamento). Por exemplo, para sinais cossenoidais de período de 2,5 segundos, a tensão poderia ser considerada atrasada de 1,0 segundo em relação à corrente, ou então, adiantada de 1,5 segundo. Nesse caso, seria preferível dizer que a tensão estivesse atrasada de 1,0 segundo em relação à corrente, porque 1,0 é menor que 1,5. Além disso, é importante lembrar que atrasos positivos equivalem a fases negativas.

A equivalência entre um atraso de t_0 e um adiantamento de (T_0-t_0) pode ser representada matematicamente por

$$v(t) = V_{p} \cos\left(\frac{2\pi}{T_{0}}(t-t_{0})\right) = V_{p} \cos\left(\frac{2\pi}{T_{0}}(t+(T_{0}-t_{0}))\right)$$
 . eq.2

Deslocamentos adicionais de múltiplos de $\pm T_0$ segundos resultam em alterações múltiplas de $\pm 2\pi$ radianos na fase que, por sua vez, não afetam a tensão cossenoidal. Isso ocorre porque a função cossenoidal tem período 2π radianos.

Uma outra representação da amplitude da cossenoide utiliza o valor eficaz.

$$v(t) = \sqrt{2} V_{ef} \cos(\omega_0 t + \theta_0) = \sqrt{2} V_{ef} \cos\left(\frac{2\pi}{T_0}(t - t_0)\right) .$$
 eq.3

E, por fim, podem-se usar números complexos para representar cossenoides [1]

$$\Re \left[V_p e^{j\theta_0} e^{j\omega_0 t} \right] = \Re \left[\sqrt{2} V_{ef} e^{j\theta_0} e^{j\omega_0 t} \right]$$
eq.4

Essa representação de uma cossenoide como sendo a parte real de uma exponencial complexa induz à utilização de fasores [1], [2], [3]. A apostila "Regime Permanente Senoidal e Fasores" [4] explica o conceito de fasores e utiliza a mesma notação da disciplina de Circuitos Elétricos para fasores $\hat{\mathbf{V}}_{\mathbf{p}} = V_p e^{j\theta}$. Outras referências usam o valor eficaz na definição de

fasores $\vec{\mathbf{V}}_{ef} = V_{ef} e^{j\theta}$ ou definem vetores girantes $\vec{\mathbf{V}} = V_p e^{j\theta} e^{j\omega_0 t}$ [1], [3].

Um resumo das representações de cossenoides é ilustrado na tabela 1.

amplitude	fase ou	frequência ou	representação
	deslocamento	período	
$V_p[\mathbf{V}]$	$\theta_0[rad]$	$\omega_0[rad/s]$	$V_p \cos(\omega_0 t + \theta_0)$
$V_p[\mathbf{V}]$	$\theta_0[rad]$	$f_0[Hz]$	$V_p \cos\left(2\pi f_0 t + \theta_0\right)$
$V_{p}[\mathbf{V}]$	$t_0[s]$	$T_0[s]$	$V_p \cos\left(\frac{2\pi}{T_0}(t-t_0)\right)$
$V_{e\!f}[\mathbf{V}]$	$t_0[s]$	$T_0[s]$	$\sqrt{2} V_{ef} \cos\left(\frac{2\pi}{T_0}(t-t_0)\right)$
	A [rad]	w [rod/s]	$\mathfrak{W}\left[U_{\alpha}j^{\theta_{0}}a^{j\omega_{0}t}\right]$
V _p [v]	0 ₀ [lad]	$\omega_0[1au/s]$	$\mathfrak{R}\left\{ V_{p}e^{-i\theta^{-1}}\right\}$
$\hat{\mathbf{V}}_{\mathbf{p}} = V_{p} e^{j \theta_{0}} [\mathbf{V}]$		$\omega_0[rad/s]$	$\Re \{ \hat{\mathbf{V}}_{\mathbf{p}} e^{j \omega_0 t} \}$
		ω_{o} [rad/s]	$\Re\left\{\sqrt{2}\mathbf{V}\boldsymbol{\rho}^{j\omega_0t}\right\}$
$\mathbf{V}_{ef} = \frac{\mathbf{r}}{\sqrt{2}} e^{\mathbf{r} \cdot \mathbf{v}} [\mathbf{V}]$		w ₀ [1 uu 15]	efc j
$\vec{\mathbf{V}} = V_p e^{j \theta_0} e^{j \omega_0 t} [\mathbf{V}]$			$\mathfrak{R}\left\{ \mathbf{ec{V}} ight\}$

Tabela 1 – Representações de cossenoides.

Para auxiliar a compreensão do significado das equações acima, a figura 2 apresenta o sinal cossenoidal como a projeção do vetor girante $\vec{\mathbf{V}} = V_p e^{j\theta_0} e^{j\omega_0 t} = \hat{\mathbf{V}}_p e^{j\omega_0 t}$ no eixo horizontal.

Figura 2 – Produto $V_p e^{j\theta_0} e^{j\omega_0 t}$ desenhado no plano complexo, juntamente com a circunferência de raio unitário. O sinal no tempo é dado pela projeção do vetor girante $V_p e^{j\theta_0} e^{j\omega_0 t}$ no eixo real e é descrito por $x(t)=A\cos(\omega_0 t+\theta_0)$. Neste exemplo, os valores atribuídos a $(\omega_0 t+\theta_0)$ estão indicados na figura, para amplitude A=3/2, frequência angular $\omega_0=2\pi rad/s$ e fase $\theta_0=\pi/6rad$.

2. Fasores e impedâncias

Em muitos circuitos elétricos, a alimentação é um sinal cossenoidal. Se o circuito for linear, invariante no tempo e estável, as tensões e correntes nos bipolos também serão cossenoidais da mesma frequência ω_0 que à da alimentação. As diferenças entre as tensões e correntes se restringem então às defasagens e às amplitudes. Como a frequência é constante e igual para todos os componentes do circuito, a representação por fasores pode então ser substituída pela representação por constantes complexas. Nesse caso, a frequência da alimentação fica implícita.

As relações entre as amplitudes e as diferenças de fase (defasagens) podem ser facilmente calculadas para os bipolos ideais e são apresentadas na tabela 2.

Bipolo	Razão tensão-corrente	Defasagem
Resistor ideal	$ Z_R = V_R / I_R = R$	$\theta_{VR} - \theta_{IR} = 0$
Capacitor ideal	$ Z_C = V_C / I_C = 1 / (\omega_0 C)$	$\theta_{VC} - \theta_{IC} = -\pi/2$
Indutor ideal	$ Z_L = V_L / I_L = \omega_0 L$	$\theta_{VL} - \theta_{IL} = +\pi/2$

Tabela 2 – Relações da amplitude e fase da tensão e corrente cossenoidal nos bipolos ideais.

Observe que a razão entre as amplitudes de pico fornece o módulo da impedância do bipolo. E a defasagem entre a tensão e a corrente no bipolo fornece a fase da impedância do bipolo. Portanto, a impedância do bipolo é uma constante complexa (para o circuito com alimentação cossenoidal de frequência constante ω_0) e é fornecida por

$$Z_{B}(j\omega_{0}) = |Z_{B}(j\omega_{0})|e^{j\theta_{ZB}(\omega_{0})} = (V_{B}/I_{B})e^{j(\theta_{VB}-\theta_{IB})}$$
 eq.5

No caso de bipolos ideais, a impedância é facilmente obtida pelas relações da tabela 2. Porém, quando se deseja determinar a relação entre as tensões nos bipolos não-ideais, as defasagens envolvidas são desconhecidas e, portanto, não correspondem exatamente a $0, -\pi/2$ e $+\pi/2$ radianos como nos resistores, capacitores e indutores ideais. Uma forma de obter essas defasagens seria medi-las com um osciloscópio. Outra forma utiliza a soma vetorial e algumas relações geométricas entre as amplitudes de pico e as fases (calculadas a partir das medidas com um multímetro), conforme descrito a seguir.

Considere um circuito elétrico alimentado por uma tensão cossenoidal e composto por dois bipolos em série, conforme a figura 3.

Figura 3 – Circuito com um bipolo em série com um resistor.

Pela segunda lei de Kirchhoff a tensão de alimentação instantânea será igual à soma das tensões instantâneas nos bipolos. No entanto, não se pode aplicar a segunda lei de Kirchhoff diretamente às amplitudes de pico das tensões cossenoidais. Para o caso em que a defasagem entre as tensões dos bipolos for não-nula, devem-se representar as amplitudes e as fases. Portanto, a primeira lei de Kirchhoff é dada pela soma dos números complexos que representam as *n* correntes que entram (ou saem) do nó

$$\sum_{k=1}^{n} \pm \mathbf{\hat{I}}_{k} = 0 \quad , \qquad \text{eq.6}$$

enquanto que a segunda lei de Kirchhoff para soma de m tensões no laço é

$$\sum_{k=1}^{m} \pm \hat{\mathbf{V}}_{\mathbf{k}} = 0 \quad \text{eq.7}$$

A figura 4 ilustra a soma de duas tensões cossenoidais de mesma frequência, com a mesma fase (figura 4.a) ou com fases distintas (figura 4.b).

(a) (b) Figura 4 – Soma de cossenoides de mesma frequência, de amplitudes $V_1=3$, $V_2=4$ e fases (a) iguais ou (b) diferentes. A amplitude do sinal resultante da soma é $V = \sqrt{V_1^2 + 2V_1V_2\cos(\theta_2 - \theta_1) + V_2^2}$.

As figuras 4.a e 4.b poderiam ser substituídas pelas somas vetoriais $3e^{i0}+4e^{i0}=7e^{i0}$ e $3e^{i0}+4e^{-j\pi/2}=5e^{-j \arctan(4/3)}$ respectivamente.

Para o circuito da figura 3, a tensão cossenoidal no gerador é representada pelo fasor \hat{V}_E . Este, por sua vez, corresponde à soma dos fasores \hat{V}_B e \hat{V}_R que representam

respectivamente as tensões no bipolo e no resistor. A soma vetorial é ilustrada na figura 5.

(a) (b) Figura 5 – Diagrama fasorial e relações geométricas entre as amplitudes e as fases das tensões. No primeiro caso, (a) as fases $\theta_B e \theta_E$ são positivas e indicam um bipolo indutivo, enquanto que no segundo caso, (b) as fases são negativas e representam um bipolo capacitivo. A frequência ω_0 está implícita.

Suponha que, a partir dos valores eficazes medidos com o multímetro, calculem-se as três amplitudes de pico, denominadas V_E (tensão no gerador), V_R (tensão no resistor) e V_B (tensão no bipolo desconhecido). Sem perda de generalidade, pode-se atribuir a fase nula à tensão no resistor. Isso equivaleria a tomar a tensão no resistor como sinal de referência, de tal forma que $v_R(t)=V_R \cos(\omega_0 t+0)$. Portanto, as tensões no bipolo e no gerador seriam dadas respectivamente por $v_B(t)=V_B \cos(\omega_0 t+\theta_B)$ e $v_E(t)=V_E \cos(\omega_0 t+\theta_E)$.

Pelas relações geométricas do maior triângulo retângulo da figura 5.a, um dos catetos é $V_R+V_B\cos(\theta_B)$ e o outro é $V_B\sin(\theta_B)$. Então, aplicando-se o teorema de Pitágoras, obtém-se a fase da tensão no bipolo

$$|\Theta_B| = \left| \arccos\left(\frac{V_E^2 - V_R^2 - V_B^2}{2V_R V_B}\right) \right| \quad . \qquad \text{eq.8}$$

A fase da tensão de alimentação θ_E também pode ser obtida a partir da figura 5.a. Sabe-se que o cateto $V_E \cos(\theta_E)$ também é igual a $V_R+V_B \cos(\theta_B)$. Após algumas manipulações algébricas, obtém-se que a fase da tensão de alimentação é dada por

$$|\theta_{E}| = \left| \arccos\left(\frac{V_{E}^{2} + V_{R}^{2} - V_{B}^{2}}{2V_{R}V_{E}}\right) \right| \qquad \text{eq.9}$$

Uma limitação das equações acima é que elas fornecem os módulos das fases, sem indicação de que a fase seja positiva ou negativa. Isso decorre da ambiguidade ilustrada nas figuras 5.a e 5.b. Tanto fases positivas quanto negativas fornecem as mesmas relações.

Portanto, o conhecimento prévio de que os bipolos tenham comportamento indutivo ou capacitivo na frequência das medidas é fundamental para a definição de que a defasagem do bipolo em relação ao resistor seja positiva (atraso negativo ou adiantamento) ou que a defasagem seja negativa (atraso positivo).

A impedância complexa do bipolo na frequência ω_0 é definida como

$$Z_B(j\omega_0) = |Z_B(j\omega_0)| e^{j\theta_{ZB}(\omega_0)}$$
eq.10

Ela pode ser obtida por uma divisão de números complexos. A amplitude da corrente no circuito série pode ser determinada pela razão entre a amplitude da tensão no resistor e o valor da resistência (medida com um ohmímetro, por exemplo). Em seguida, o módulo da impedância do bipolo pode ser obtida pela razão entre a amplitude da tensão no bipolo e a amplitude da corrente calculada anteriormente. Portanto, o módulo da impedância é calculado por

$$|Z_B(j\omega_0)| = V_B / (V_R/R)$$
eq.11

A defasagem entre a tensão no bipolo e no resistor é a mesma que a defasagem entre a tensão no bipolo e a corrente do circuito da figura 3, porque a tensão no resistor e a corrente tem defasagem nula. Portanto, a fase da impedância é dada por

$$\theta_{ZB}(\omega_0) = \theta_B = \pm \left| \arccos\left(\frac{V_E^2 - V_R^2 - V_B^2}{2V_R V_B}\right) \right| \qquad \text{eq.12}$$

e o sinal ('+' ou '-') da fase é definido como positivo para bipolos com comportamento indutivo e negativo para bipolos com comportamento capacitivo.

Bibliografia

[1] Phadke. A.G.; J S Thorp ,J.S. *Synchronized Phasor Measurements and their Applications*, New York: Springer, 2008.

[2] Orsini, L.Q.; Consonni, D. *Curso de Circuitos Elétricos*, vol.2, 2ed., Sao Paulo: Edgard Blücher, 2004.

[3] Crecraft, D.I.; Gorham, D.A.; Sparkes, J.J. *Electronics*, London: Chapman&Hall, 1993.

[4] Pavan, F.R.M; Silva, M.T.M.; Cipparrone, F.A.M. Apostila *Regime Permanente Senoidal e Fasores*, 2018.