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. . . . . i i Of
In Exercises 15, 16, and 17, assume the gtven differentja] €quation has a power-serics solution

the form y = ¥4 x» ang determine the phy coefficient g,

I5. y" = ay. 16. y" = xy.

18. Let f(x) = 20 0 @nX", where ay =
identity

17 y" +xp" + y = 0. the
I and the remaining cocflicients are determined by

e = ,go{zan + (" + l)a'H l}xn :

Compute q, , @25 dy, and find the sym of the scrieg for £(x).
19. Let f(x) = 200 Gpxn, where the cocflicients 4y are determineq by the relation

o

CoOS x = z a”(” + 2)'\.n .

n-=Q
Compute 5, a5, and f(x).
20. (a) Show that the first six termg of the binomiy] series for (1 — X712 are:

1 3 5 5

. nainder
(b) Let a, denote the nth term of this series when X = 1/50, and let r, denote the remain
after n terms; that is, for p 20 let

ry = ((,1” + “nn +“Hi3 oo
Show that 0 < Iy < a,l49,
[Hint: Show that i1 < a,/50

s and dominge Py by a suitable geometric serics.]
(©) Verify the identity

\/E - 7(1 _ i"'l/!
5)

W

and use it to compute the firgt ey, corregy decimalg of v
RREN Cl,

[Hint: Use parts (a) ang (b), re

ait . . alenls i()nS.
i N twelve decinmals during the calculat
and take into account round-ofr o

Irors, ]
21, (@) Show that

= 1732 1/2
V3= \(1 - \'7_(;_)
3,000,000

roceed as suggested in Exorcicn and . . i scimals of V

(b) “()“L'd '{*_“ E&S;Ld n [Puus«. 20ang Compute the firs fifteen correct decima yansion
“grate the binomial series for — Y 1, ; vroserics CX

22. Integrate the bi Slor(l — ) and thereby obain the power-serics Cf

7

ATCSIN v = v 4 A (2/,\” 2l
aresimn v o= y —}2 ‘m A (vl < 1),
1

"_ 2 27-}« 1




12
VECTOR ALGEBRA

12,1 Historical introduction

In the forcgoing chapters we have presented many of the basic concepts of calculug
and have illustrateq their use in solving a few relatively simple geometrical and physical
Problems, Further applications of the calculus require a deeper knowledge of analytic
8tometry thap has been presented so far, and thcre'fo.re We turn our attention to a more
detaileq investigation of some fundamental geometric ideas,

. A we haye pointed out earlier in this book, calculus and analytic geometry were
lntimatcly related throughout their historical development, Every.new discovery in one
Subject Ied (o g improvement in the other. The problem of drawn}g tangents to curyes
Tesulted i the discovery of the derivative; that of area Ied_to the integral; a“fj partial
derivatives Were introduced to investigate curved surfaces in space.  Along with these
aCComplishmems came other parallel developments in mechanics and mathemat?cm
Physics, In 1788 Lagrange published his masterpiece Mécanigue ana/)f'riqz.le (Analyt{ca]

CChanics) which showed the great flexibility and trcmen(.ious power attained by using
Analyticy| methods in the study of mechanics. Later on, in the [9¢h century, the Irish
ma(hcmatici;m William Rowan Hamilton (1805-1865) introduced his T/w()/:y0fQ1mtcrnions,
A new Method and a new point of view that contributed much (o the understanding of both
algebry and physics, The best features of quaternion analysis and Cartesian geometry were
later United, largely through the efforts of J. W. Gibbs (1839-1903) and O. Heaviside
(1850‘]92 » and a new subject called vector algebra sprang into being. It was soon realized
f A veergrg are the ideal tools for the exposition and simplification of many important
Weas iy, gCometry and physics. In this chapter we propose to discuss the clements of vector
Algebr, Applications to analytic geometry arc given in Chapter 13. In Chapter 14 vector
Algebr, is combincd‘wi(h the methods of calculus, and applications are given to both
&eometry and mechanics. '

There are essentially three different ways (o introduce vector algebra: geometrically,
m'm/rti('a//," and axiomatically. In the geometric approach, vectors are rcprcscntc.d‘ by
line segments, or arrows.  Algebraic operations on vectors, s.uch as 11(1(11110{1,
Sub fction, ang multiplication by real numbers, are defined and studied by geometric

N the analytic approach, vectors and veetor opcrations are described entirely in termg
0 . .
Mimber, called components. Properties of the vector operations are then deduced from
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corresponding properties of numbers, The analytic description of vectors arises naturally

from the gecometric description as soon s a coordingte

In the axiomatic approach, no altempt fs made to de
the algebraic operations on vectors, |nste
of as undefined conecepts of which we know

system is introduced.
scribe the nature of a vector or of
ad, vectors ang vector operations are thought
. : nothing except that they satisfy a certain set of
axioms. Such an algebraic System, with appropriate axioms, is called a linear space or a
linear vector space. Examples of linear SPaces occur in g branches of mathematics, and
we will study many of them in Chapter 15, Ty algebra ofdircctcd‘linc segments and the
algebra of vectors described by componengs are merely two exampleg of»lincﬂr spaces.
The study of vector algebra from the axiomatic point of vic?v ls erhaps the most
{nzuhemutically s:utisfactory approach to yge since it furnishes o dcscrif;ti[:)n of vectors that
is free of coordinate Systems and free of any particular 80011)0(60 representation, This
study .is carried out in detyj] in Chapter I5. In this chapter we base ouIr (;cutmcnt on the
amlync.ipproach, ‘jnd w? .also use dl‘rcclcd line segments (o interpret many of the rcsu]fs
gcometrically. When possible, we gIve proofy by coordinate-free methods. Thus, this

chup'ter serves Fo provide famlliarity with importang concrete examples of vector spaces,
and it also motivates the more abstract approach ip Chapter |5 g
< .

12.2  The vector Space of n-tupleg of rea) Numberg

| Tl}é;;dlc)l of “:'“8 i‘t “U;n(f;cli to locate 4 Point on 4 Jine Wwas known to the ancient Grcck.i'
n Cscartes extended thjg idea, using oo q point!
€a, using o Pairr of numbery (ay, a,) to locate a poin

the plzmc,'a.nd atriple of numbers (ay,a,, @) to locae 4 hoint in space. The 19th century
mathc.muncmns A. Cayley (1821—1895) and H. G ‘GI_,!‘%‘I']‘]" m(;g};)(‘)l()“.,xﬂ) realized that
there is no need to stop with three Numbers. One 'C'm tl;§t 'dlm 0l e —"dcr a (/uarlru/)/e 0
numbers (a,, ., ay, @) or, more generally, ap ’1"“/;/c (J)I"n::]S I:‘;Lm[::r’:“ ‘

(”1 sy, a,)

for any integer 5 . Such ; ; jonal
Ay mteger n > 1. Such an -tuple is cqlfeq AN n-dimensional point or an n-dinensio’

rector, the individual nun bers ¢ ns
Ty, g being refy ; - or compone
. . : referred to gy ‘vordinates or conlf
of the vector. J , ;o PEINgG as ¢ i
, ! The collection of all n~d1mensu)nul vectors is called the vector space ®
A-tuples, or simply f=space. We denoye this space by v, .
$ $pg , .
The reader may well ask a¢ this Stage why we e “i terested in snuces of dimension
greater than three, Ope answer s, o eerested in sp:

at Many ich invol Juree. number ©
. . ‘NS e mve]ve b
simultancous equations are =18 which finvolve al & 2:] q suitabl®

v

! mspaceiand replacing all ¢d by inir ducing vectors  vantage
asithatwe areable o dei tion.. Another ‘K,,‘ paces
A WL dTU . AT o o e ey gl s i 2.sDi

- . YOOI s e v v, 1110 T-space, <~ :
3-spiace, 010y that s, fopertics'common o' I-sp This

: p T . . “the space.
o LT i ¢ dimensionality of the S| 0
Tk kccpmg with the SPIL of modery, Mathemayje which l"lvorz the dcvclopmcm
omprehensive methods for altacking Droblome. o HEs VO
Linfortiisatoals, (om0 .
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To convert V, into an algebraic system, we introduce equality of vectors and two vector
operations called addition and multiplication by scalars. The word “scalar” is used here s
a synonym for “real number.”

DEFINITION.  Tiwo vectors A and B in Vo are called equal wheneper they agree in their
respectipe components. Thatis,if A = (ay, ay, ..., a,) and B = (b, by, ..., b,), the vector
Cquation 4 = B means exactly the same as the n scalar equations

a =b,, a=by, ..., a,=2>s,.
The s, A+ Bis defined to be the vector obtained by adding corresponding components;
/[+B=((]1+1)1,(12+b2,...,(1n+b").

Ifeisq scalar, we define cA or Ac 1o be the vector obtained by multiplying each component
of A by e

cA = (cay, ca,,...,ca,).

From thjs definition it is casy to verify the following propertics of these operations,

THEORENM 12,1, Vector addition is conunutative,

and associative,

Mulg Plication by scafars is associative,

c(dA) = (cd)A

and Satisfies the nvo distributive laws

oA+ B)y=cd+cB, and (¢4 d)d = cA + dA .

Proogs of these properties follow quickly from the definition and are left as exercises for
the reader,

The veetor with all components 0is called the zero rector and s (lcrlot?d by. 0. 1t has
“h“ Property thay 4 4 0 = A for every vector 43 in other words, O is an identity clcmc'nt
°f Vector ilddi‘tion. The veetor (—1)dA is also denoted by —A and is called the negative
T we also write A — B lor A+ (=B) and call this the difference of A and B, The

(‘;qualion (4 + B) — B = A shows that subtraction is the inverse of addition. Note that
A =

he it that 14 = 4. imilar in 2-space and compl
he reader may have noticed the similarity between vectors in 2-space plex

““mbcrs. Both are defined as ordered pairs of real numbers and both are added in exactly
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-
the same way. Thus, as far as addition is concerned, complex numbers and two-dimensional
vectors are algebraically indistinguishable, They differ only when we introduce multiplics-

Muitiplication of complex numbers gives the com
also possessed by the real numbers. It can pe sho
except for n = 1 and 2, it is not possible to infrog
all the field properties, However, special product
satisfy all the field properties. For example, in Sec
of two vectors in V.. The result of this multiplic
product, called the crogs product, is discussed ;
applicable only in the Space Vy. The resut i al
not commutative,

Plex-number system the field Pf‘)pcme:
wn (although the proof is difficult) t.h?
uce multiplication in ¥, so as to satisty
S can be introduced in ¥, which do not
tion 12.5 we shall discuss the dofl)’oml.ct
ation is a scalar, not a vector. Anothef
n Section 13.9. This multiplication
ways a vector, but the cross product

12.3  Geometric interpretation for n<3

Although the foregoing definitions are completely divoreed from geometry, vectors and
vector operations have an interesting geometric interpretation forés aces (;f dimension
three or less. We shall draw pictures in 2-space to illuslr"ne these cor:cc‘ts and ask the
reader to produce the corresponding visualizations for llim;clf in j—space azd in 1-space:

dy — €2
B (terminal
point)

A (initial point)

T)\___-———/

FIGURE 12.1  The geometric vector

—r T are equivale?
/ng’ fi Ato B FiGure 122 4B and €D arecquly
rom .

because B — A4 = D — C.
A, is Cll”cd

A pair of points 4 and B s called 5 geomeyy;
T BeCtor il ome of f1h s si
ctor if one of the points, say yectof

the initial point and the other, 8, the lernu'nalpoiuf Or tip. We visualize a geometric
as an arrow from A to B, as shown Figure 12.]’ ,l,,(’I/){_ L‘\-}lhim It;L.‘gbmhol B )
Geometric veciors are especially convenieny for’r‘c )rci fxnt(')tk, ”‘\)(y- in]L ig's‘icul (]”"mi“cs
such as force, dispiacement, velocity, ang ZlCCC]CF(lliOl[] wlL .“lmz:. Lg‘r\ ‘: 1,(?(11 ;nugniludc
direction. The length of the arrow is & measyre ()(" l ‘m 1, p()?swf. and the arrowhe?
indicates the required direction. the magnitude ¢

anc
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Suppose we introduce a coordinate system with origin O. Figure 12.2 shows two geo-

metric vectors A8 and C—i) with B — A = D — C. In terms of components, this means
that we have
by —ay=d; — ¢ and by —ay=dy —c,.

By comparison of the congruent triangles in Figure 12.2, we see that the two arrows
Iepresenting AB and CD have cqual lengths, arc parallel, llgd poin't in the same direction.
We call such geometric vectors equivalent. That is, we say AB 1s cquivalent to CD whenever

(12.1) B—A=D-C.

Note that the four points A, B, C, D arc vertices of a parallelogram. (See Figure 12.3.)
Equation (12.1) can also be written in the form A + D = B + C'which tells us that
Opposite vertices of the parallelogram have the same sunt. In particular, if one of thg vertices,
Say A, is the origin 0, as in Figure 12.4, the gcometric vector f‘rqm O to the opposite vertex
D corresponds to the vector sum D = B+ C. This is dFscrll)cd by saying that vector
addition corresponds geometrically to addition of gecometric vectors by'thc paral/clogram
law, The importance of vectors in physics stems fron.q the rem.arkabne fact that many
thsical quantitics (such as force, velocity, and acceleration) combine by the parallelogram
aw,

D

A

0

FIGURE 12.4 Vector addition interpreted

Fiaun: . e of
RE 123 site vertices of pre
Opposte geometrically by the parallelogram law.

a Pilrullclogmm hiave the samesum:
A4+ Ds=n+C

For simplicity in notation, w¢ shall use th.c same sy'mbo.l to figl]()tc a poi.nt‘ ix; .V:t(?vlilc)l}
”\,S 3) and the geometric veetor from the origin to this point. Thus, we wr‘ltc A nsteac (.
04, p instead of OF, and so on. Sometimes we also write A in place of any gcm_nclrlc
veetor cquivalent to OA. For example, Figure 12.5 illustrates the gC(?l‘llyc‘tl'lc 1:1}":‘111,1‘11‘%01‘"
Vcclm‘sul)lruclion. Two geometric veetors are labeled as B - A,.but these geometric vectors
T equivalen. They have the same I.L‘nglh and the same d|.rcct'mn. B

Figure 12, illustrates the geometric meaning of mllltlpllc'illl()l.l by.sul} ‘fls'. ’ __t(‘

1€ geometric vector B has length |¢f times the length of AA; n.pomts in the same direction
s and in the opposite direction if ¢ is negative.

Aif ¢ g positive,
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B
—_—

B -4 34

24

A-B

-A

FIGURE 12.5 Geometric meaning of subtraction of FiGure 12.6 Multiplication of
vectors,

vectors by scalars.
o | ati S , efine
The gcomctnc Interpretation of veetors in ¥, for < 3 suggests a way to d
parallelism in a gencral n-space.

" 1o . = cA
DEFINITION. * Two vectors A and p v, are said 1o have the same direction if B = ¢

.. . ) (4
Jor some positive scalar ¢, and the opposite direction if B = cA for some negative c. They ar
called parallel if B=cA4 Jor some nonzerg ¢,

. . N el ' . t
Note that this definition makes Eevery vector have the same direction as itself—a pm.pcrt())’
which we surely want, Noe also that this definition ascribes (he following P“’Pcmcs-ve
the zero vector: The zero veetor s the only vector having the same direction as its negatl

Is ! ’ c
and therefore the only vector having the Opposite direction to itself. The zero vector is ¢
only vector parallel to the zZero vector,

12.4 Exercises

L Let 4 =(1,3,6), B = @, =3,3), and ¢ = 2,1
components of cach of the following vectors: (
TA =28 ~3C; ()24 + p — 3¢ '

2. Draw the geometric vectors from the origin to the points 4 = (2, 1) and B = (1,3)- O

same ffgurc, draw the geometric vector from the origin to the point C = A + +Bfor cach©
following values of ¢: ¢ = St=1:p23. {

ine the
+ 3) be three vectors in V. Dctcrn”n’ )
DALB, D) A-B; () A+B-C
n the
fthe

. . = l’ P =2t = |+ = 2.

3. Solve Exercise 2 if C = 14 4 B. it 4
4. Let A =Q2,1), B = (1,3),and C = 4 + VB, where x ang y are scalars. tucs of
(@) Draw the geometric vector from the origin to ¢ for cach of the following pairs of valt -5
xandyix =p =1;y = Ly = 3ox = Ly = Bx=2 ) o lix=3 = —2x="1

y=hx=-—ly=2
(b) What do you think is the set of points C obtained
such that x + y = 1? (Just make g guess
required.) '
() Make a guess for the sct of ajl points ¢ Obtained s v and y range indcpcndcntly ove
intervals 0 < x < 1, 0 g; < 1 and make sketch of this set. <1
(d) What do you think is the set of al| ¢ obtaineq il x ranges through the interval 0 £ X
and y ranges through all real nlllT'lbch?
(¢) What do you think is the set if x ang ¥ both range over all real numbers?

5. Let A =(2,1)and B = (1, 3). Show that every vector ¢ = (¢1, ¢z) in Vg can be expr
the form C = xA + yB. Express xand y in terms of ¢, and cy.

rs
umbe
as.x and y run through all real n .

, roo
and show the locus on the figure. No P
r the

essed 1M
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6. Let A = i, 1,1, B=(0,1,1), and C =(l, 1,0) be three vectors in Vsand let D = x4 +
YB + zC, where x, y, z arc scalars.,
(@) Determine the components of D.
(b) If D = O, prove that x = y =z = 0.

. (¢) Find x, y, zsuch that D = (1,2, 3).

7. Let A =(1,1,1), B =(0,1,1) and C = (2, 1, 1) be three vectors in ¥y, and let D = xA +
VB + zC, where x, y, and z are scalars.

(a) Determine the components of D.
(b) Find x, y, and z, not all zero, such that D = O.
() Prove that no choice of x, y, z makes D = (1, 2, 3).
8. Let A =(1,1,1,0), B=(0,1,1,1), C= (1, 1,0, 0) be three vectors in ¥,, and let D =
XA + yB + zC, where x, y, and z are scalars.
(@) Determine the components of D.
() If D = 0, prove that x =y =z =0.
(©) Find ., y, and z such that D = (1,5, 3, 4).
(d) Prove that no choice of x, y, z makes D = (1, 2,3, 4).
9. Inv,, prove that two vectors parallel to the same vector are parallel to each other.
10. Given four nonzero vectors A, B, C, D in V, suchthat C = A4 + Band A4 is parallel to D.

Prove that C is parallel to D if and only if B is parallel to D.
1. (@) Prove, for vectors in V,, , the properties of addition and multiplication by scalars given in

Theorem 12.1.
(b) By drawing geometric vectors in the planc, illustrate the gcometric meaning of the two

distributive laws (¢ + d)A = eA + dAand (A + B) = cA + ¢B.
12. If 3 quadrilateral OABC in Vs is a paralle]ogram having A and C as opposite vertices, prove
that 4 + 1(C — 4) = 1B. What geometrical theorem about parallelograms can you deduce

from this equation?

12,5 The dot product
We introduce now a new kind of multiplication called the dot product or scalar product

of two vectors int,.

DEFINITION, If A=, » a,)and B = (by, ..., b,) are two vectors in 'V, , their dot

Product is denoted by A+ B and is defined by 1 he equation

n
A-B=3 ab,.
[
ompute A+ B we multiply corresponding components”of A and B and then

ThllS, to ¢
This multiplication has the following algebraic properties.

add g the products.

THEOREN 129 for all vectors Ay By Coin V, and all scalars ¢, we have the following

Properiieg.
() 4. p = DA (commutative law),
by 4. B+C)y=d4"B+ A C (distributive law),
(©) ¢4 - B) = (¢A) B=A"(cB) (homogeneity),

d) 4. 4 S0 if A#0O (positivity),
© A- 4= if 4=0.
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e

Proof. The first three properties are casy consequences of the definition and are Ieif(
as exercises. To prove the last two, we use the relation 4- 4 = > a?. Since each termn-
nonnegative, the sum is nonnegatjve. Morcover, the sum is zero if and only if each ter
in the sum is zero and this can happen only if 4 = 0. +od i

The dot product has an interesting geometric interpretation which will be dCSC{'le N
Section 12.9. Before we discuss this, however, we mention an important inequality €0
cerning dot products that is fundamental jn vector algebra,

¢
THEOREM 12.3.

have

(12.2)

2 . 1 V “‘
THE cAuCHY-SCHWARZ INEQUALITY.  If A and B are vectors in Vs

(A-B)2S(A-A)(B-B).

e
: . , , . inle 0 th
Moreover, the equality sign holde ifand only if one of the vectors is a scalar multi] f
other,

Proof, Expressing cach member of (12.2) in terms of components, we obtain

(300 (54)(5.).

k=1 k-1

which is the incquality proved earlier jn Theorem 1.41. b
We shall present another proof of (12.2) that makes no use of components. Suc o
is of interest because it shows that the Cauchy-Schwarz inequality is a conscqu)cnd on the
five properties of the dot product listed in Theorem 12.2 and does not depen
particular definition that was used (o deduce these propertics. - { or Bis the
To carry out this proof, we notice first that (12.2) holds trivially if cither # . the yectof
zero vector, Therefore, we My assume that both . and B are nonzero. Let C be

f
a pro¢

C=uxA— B, Where x = p.p and y=A"85.
.- and )
' . fxan
Properties (d) and {(e) imply that C- ¢ > 0. When we translate this in 'tcrn’lS O(b) an
it will yield (12.2). To express C - Cin termg of v and y, we use properties (@)
to obtain

C . C = (\/‘ . .VB) . (.\./1 _— .1.1}) — .\A‘_)(/‘ . /,) . 2.\:‘.(/‘ . [}) + )‘2([] * [}) .

Using the definitions of x and vand the incquuli[y C:-C >0, weget

(B BYA - ) = 20t .y (A BB B)>0.
. tain
Property (d) implies B+ B > 0 since B #* 0, 50 we may divide by (8- B) to ob

(B-B)A- )y~ (. BF >0, Iy

) if and O

. : . 2. I
which is (12.2). This proof also shows that the equuliry sign holds in (1 nd only
chis (12.2), I Juihity sig an

Co s Lt n, lf
ifC=0, But ¢ = O if and only if A = VB This equation holds, tur
one of the vectors is a scalar multiple of the other,
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t The Cauchy-Schwarz inequality has important applications to the properties of the
; length or norm of a vector, a concept which we discuss next.

12.6 Length or norm of a vector

Figure 12.7 shows the geometric vector from the origin to a point 4 = (a,, a,) in the
plane. From the theorem of Pythagoras, we find that the length of A is given by the

formula L
R
2 2 EEH ¢
length of A = Va} + a. it
A
i
a;
A 0
aZ \\\\ al
\\\\ )
. \\\ Coid
— |
0 a, a 1o

FIGURE 12,7 In V,, thelength FIGURE 12.8 In V¥, the length of A is Va2 + a} + a3, : ‘ |

of A is \/af + a}.

A corresponding picture in 3-space is shown in Figure 12.8. Applying the theorem of L

| pythagoras twice. we find that the length of a geometric vector A in 3-space is given by i
length of A = \/af + al 4 al. N

! Note that in cither case the length of A is given by (4 - A)'/%, the square root of the dot £
| Product of 4 with itself. This formula suggests & way to introduce the concept of length Ly

N n-space.

DEFINITION IfAisa vector in V,, its length or norni is denoted by | Al and is defined by
the equation

AL = (A~ A2,

The fundamental propertics of the dot product lead to corresponding properties of norms.

THEOREM (2.4, IfA is a vectorin 'V, and if ¢ is a scalar, we have the following properties:

@ Ja) >0

i A#0
if A= 0,

© led) = |c] 14]

(positivity),

(homogeneity).
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Proof. Properties (a) and (b) follow at once from Properties (d) and (c) of Theorem
12.2. To prove (c), we use the homogeneity Property of dot products to obtain

ledll = (cA - cA)’2 = (c24. AV = (et g V2 = || |A].
The Cauchy-Schwarz inequality can also be expressed in terms of norms. It states that
(12.3) (A= BY < a)2 B2,

Taking the positive square root of each member, we ¢

. o ; an also write the Cauchy-Schwar?
Inequality in the equivalent form

(12.4) 4Bl < 4 1)

Now we shall use the Cauchy-Schwarz inequality to deduce the triangle inequality.

THEOREM 12.5. TRIANGLE INEQUALITY, If A and B gre vectors in 'V, , we have

I4+ B < 4y + 1Bl

Moreover, the equality sign holds if and only if A =

- - B = cA for son¢
>0, O,or B=0, or B cA [

Proof. To avoid square roots, we write the triangle inequality in the equivalent form

(12.5) I+ B < (a4 .
The left member of (12.5) is

”A‘f‘BlF:(A‘*‘B)'(A"[—B):A’A+2A'B+B.B=”A”2+2A.B+”B”2'

whereas the right member s

(Al + 18] = 42 + 2I4)1B) + e,

Comparing these two formulas, we see that (12,5 holds if and only if we have

(12.6) A B4y 1y,

But A+ B < |A- B|so (12.6) fo'llows from the Cauchy-Schwary inequality, as cxprcsscd in
(12.4). This proves that the triangle incql"‘“l)’ is a consc(]l;cn‘cc of the C:lUCh)"SChWarz
inequality. - ‘ .8

The converse statement is also truc.. That is, jp the triangle incquality holds then (12
also holds for A and for — A, from which we obtain (12.3), If equality holds in (12.5), th;
A-B= A |B], so B = cA for some scalar ¢ Hence 4+ 12 = ¢4 )12 and [ A] [
lel A% 1 A 5 O this implics ¢ = el 2 0. 16 B o ¢ i 11 = o with ¢ > O,
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The triangle inequality is illustrated geometrically in Figure 12.9. It states that the
length of one side of a triangle does not exceed the sum of the lengths of the other two
sides,

127 Orthogonality of vectors

In the course of the proof of the triangle inequality (Theorem 12.5), we obtained the
formuly

(12.7) A+ BII* = [4]*+ B> + 24 - B

4] 4

FIGURE 12.10 Two perpendicular
vectors satisfy the Pythagorean
identity:

4+ BI® = AI* + ||BJ%

FIGURE 12.9 Geometric meaning of the
triangle inequality:
14 + B < llAl + 181

Which g valid for any two vectors Aand Bin V,. Figure 12.10 shows two perpendicular
Beometric vectors in the plane. They determine a right triangle whose legs have lengths
4] ang 8]l and whose hypotenusc has length |4 4 B|l. The theorem of Pythagoras

States (hyyy
A+ BI* = [4]* 4 |B)j*.

COmpuring this with (12.7), we se¢ that A+ B = 0. In other words, the dot product of two
Pcrpcndicul;lr veetors in the plane is zero. This property motivates the definition of per-

Dcndiculurity of vectors in V.

DEFINITION,  Thwo vectors Aand Bin'V, are called perpendicular or orthogonal ifAd-B=0.

Equution (12.7) shows that two vectors A and B in V, are qrthf)gonill if and only if
I+ Bi* = |42 + ||B® This is called the Pythagorean identity in V.
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12.8 Exercises

1.

15.
16.

17.
18.

20.

A =(1, =2,3)and B =(3, 1, 2), find scal

LfA=(,2,3,4,5and B =, !

Let™ = (1, =2,3)and B = (3, 1,2

. Find all vectors in V, that are orthogonal to 4 ang h

LA =2, =1, ) and B = (3, —4, —4), find

. Prove that for two vectors A and B in V, we b

Let A =(1,2,3,4), B =(~1,2, ~=3,0),and C = (0, 1,0, 1) be three vectors in ¥,. Compute
each of the following dot products: '

(a) A - B; (b) B-C; (¢} 4-C; (d)A'(B-Jr-C); (e) (4 —B)-C.

. Giventhreevectors 4 = (2,4, —=7), B = (2, 6, 3),and C = (3, 4, —5). Ineach of the following

there is only one way to insert parentheses to obtaj
theses and perform the indicated operations,

(a) A- BC, (b)A'B+C; (C)A+B~C; (d)AB'C; (C)A/B'C.

N a meaningful expression. Insert paren-

. Prove or disprove the following statement about veetorsin ¥, : If 4-B=A-Cand A # 0

then B = C.

. Prove or disprove the following statement aboyt vectorsin ¥, : 1f A - B = 0 forevery B, then

Mo

A = 0.

IfA =(2,1, —1)and B = (1, —1,2), find a nonzero vector Cin ¥, such that A4-C = B-C = 0.

ars x and y such that C = « B is a nonzero
vector with C- B = 0. ysuchthat C = x4 + yBisat
If4 =@, ~1,2)and B = (1,2, -2), find two vectors Cand D in Py satisfying all the follow-
ing conditions: 4 =C + D, B- D = 0, C parallel 1o 3
1 1 ’
' 25 3> 15 3), find two vect . : ricfving all the
following conditions: B = C +2D, D 4 = g, Cparallclotrosj ind D in Vy satisfying
Let 4 =(2, =1,5), B =(=1, ~2,3), and C = (| , .
’ P S = AL, - l, I a o o < 7 Ca Icu]atc
the norm of each of the following vectors: ( ) be three vectors in ¥y . Ca

(@) 4+ B; (b) 4 - B © A4+B~c. (d) 4 ~B+cC

. In each case, find a vector B in V, such that B 4 =0ang Bl = A1 if:
' T | .

@A=(1; ®A=(1,-~1); (o4 =2 =3 () A =ab)

) be two vectors ] tor C of
n VvV, ace age a vector
length 1 parallel to 3~ In each case, find a vee

@ A+ B OA=B () At2B () 4 _ap (¢) 24 — BB

Let A = (47 ]’ _3)v B = (l 2 2) C= (l 2 2 b
: =(1,2,2), L2, =2), D = (2 and = (2. —2, =1) be
vectors in V3. Determine all orthogonal pairs, ) @12 and £= 2, -2,

ave the same length as A if:
. ~1); (d) A =(=2,1). ¢
4 point Cin 3-space such that A, B, and car

(@) A=, 2); (b) A = (1, =2); ) A = 2

the vertices of a right triangle.

If4 = (1, —1,2)and B = (2, 1, -1, find
Let A =(1,2)and B = (3, 4) be two veet
A =P+ Q, Pisparallel to B, and Qiso
Solve Exercise 16 if the vectors are ip Vi, with 4 = 1.2 . _

Given vectors A = (2, —1, 'I), B =(l, 2, ~1), and ((, :(‘13’14)‘—12()1 iB ;(l,lli.nldv llcry e
D of the form xB + yC which is orthogonal to 4 and has icn'gthhl nVy.

ave the identity
A+ BIE— 14 e

anonzero vector Cin V4 orthogonal to A and B. t
ors in ¥y, Find vectors P and @ in V, such thd
rthogonal to g,

tor

=4/4-5,
and hence A - B =0 if and only if |4 + B =
metrically in V,, it states that the diagonals of
the parallelogram is a rectangle.

Prove that for any two vectors A and Bin ¥, v, have

o e e 0”
4 = B, When this is interpreted Ibci
A parallelogram are of equal length if and 0nY

A+ BIEHTA =B <0 e 40 e

T, - . -duce
What geometric theorem about the sides and diagonals of 4 parallclogram can you deduc

from this identity ?
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21, The following theorem in geometry suggests a vector identity involving three vectors A, B,
and C. Guess the identity and prove that it holds for vectors in V,, . This provides a proof of the

theorem by vector methods.
“The sum of the squares of the sides of any quadrilateral exceeds the sum of the squares of
the diagonals by four times the squarc of the length of the line segment which connects the

midpoints of the diagonals.”
22. A vector A in V, has length 6. A vector Bin V), has the property that for every pair of scalars
*and y the vectors x4 + yB and 4y4 — 9xB are orthogonal. Compute the length of B and

the length of 24 + 38. . .
23. Given two vectors A = (1,2,3,4,9 and B = (1, 3, 3, 1, 5) in V5. Find two vectors Cand D

satisfying the following three conditions: C is parallel to 4, D is orthogonal to 4, and B =

C+ D,
24. Given two nonperpendicular vectors A and B in ¥, prove that there exist vectors C and D

in V, satisfying the three conditions in Exercise 23 and express Cand D in terms of A and B.
2. Prove or disprove cach of the following statements concerning vectors in V), :

@) If A s orthogonal to B, then {4 + xB|| 2 Al for all real x.

(®) I |4 4 xB|| > ||4] for all real x, then A is orthogonal to B.

129 Projections. Angle between vectors in n-space

The dot product of two vectors in ¥, has an interesting geometric interpretation. Figure
[2.1 I(a) shows two nonzero geometric vectors A and B making an angle 0 with each other.
In thig example, we have 0 < 0 < 1. Figure 12.11(b) shows the same vector A and two
Perpendicular vectors whose sum is A. One of these, B, is a scalar multiple of B which we

Call the projection of A along B. In this example, ¢ is positive since 0 < 0 < L.

A C = ey A=IB+C

B 1B = projection of
Aalong B

(b)

The vector (B is the projection of /A along B.

()

Frgure 1211

We ean use dot products 1o CXPress tinterms of A and B, First we write 1B+ C = A
and they take the dot product of each member with B to obtain

BB+ C-B=4-5.

But C p— 0. because C was drawn perpendicular to B Therefore B B= A B, so
We hay ' ¢
ave

(12.3) (=B _AB
B-B By
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On the other hand, the scalar f bears a simple relation to the angle 0. From Figure 12.11(b),
we see that

cos fj = M ~ LB

lal - 4y
Using (12.8) in this formula, we find that
(12.9) cos = A B
A1 1By

or
A4-B= |4 18] cos 0.

In other words, the dot product of two nonzero vectors 4 and p in V' is equal to the pmd‘
uct of three numbers: the Iength of A, the length of B, and the C()sinc:()fthc angle between
A and B.

Equation (12.9) suggests a way to define the concept of
incquality, as expressed in (12.4), shows that th
value < 1 for any two nonzero vectors in V..

anglein ¥, . The Cauchy-Schwarz
¢ quotient on the right of (12.9) has absolule
In other words, we have

Therefore, there is exactly one real ¢ in the inte
define the angle between A and 3 to be this ¢
the following definition.

val0 <0 < 7 such that (12.9) holds. Ws
The foregoing discussion is summarized |

DEFINITION.  Let A and B be o veetors in v, vith p % 0. The vector 1B. where

A8
BB’

is called the projection of A along B. If by, A

een A
. : . and B are nonzero, the angle 0 betwee
and B is defined by the equation ‘

0 = arccos A B_ .
Al 3

Note:  The arc cosine function restr

0=}rwhen A B =0 °ls 010 the interval 0 < 0 < 7. Note also that
=, — .

=

12.10  The unit coordinate vectors

In Chapter 9 we learned that every complex Number form
a + bi, where i denotes the complex numbep 0, 1

can be expressed in the form

(a, by can be expressed in (hc.
- nre
). Similarly, every veetor (4, h) 1

(a, b) = q(1, 0) + b0, 1,
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The two vectors (1,0) and (0, I) which multiply the components a and b are called unir
coordinate vectors. We now introduce the corresponding concept in ¥,

DEFINITION. I V,,, the n vectors Ey = (1,0,...,0), E,=(0,1,0,. .. 0, . L E, =
©,0,... s 0, 1) are called the unit coordinate vectors. It is understood that the kth conmponent

of b is | and all other components are 0.

The name “unit vector” comes from the fact that each vector E, has length 1. Note that
Fhese veetors are mutually orthogonal, that is, the dot product of any two distinct vectors
IS Zero,

L. E =0 it k#j.

THEOREM 12,6, Epery vector X = (Xy, . .+, X,) in V, can be expressed in the Sform

n

X =xE + -+ x,E, =3 xE; .

k=1

loreover, s representation is unigue. That is, if
n n
X=3xE and X=3 pE,
ko1 k=1

then
en x, = Yifor each bk =1,2,...,1

Proof. The first statement follows immediately from the definition of addition and
Multiplication by scalars. The uniqueness property follows from the definition of vector
Cquality,

A sum of the type > ¢;d; is called a linear combination of the vectors Ay, ..., 4, .
1eorem 12.6 tells us that cvery vector in ¥, can be expressed as a linear combination of
tjc Unit coordinate vectors. We describe this by saying that the unit coordinate vectors
tfl, “<» E, span the space V,. We also say they span V, 1/{11’(/1«’/}’ because each representa-
00 of 4 vector as a linear combination of Ey, ..., E, is unique. Some collections of
Yectors other (han Ey, ..., E,alsospan V), uniquely, and in Section 12.12 we turn to the

Stu . .
dy or such collections.

SYmbyolg and j in bold-face italic type. In ¥, the symbols 4, j, and & arc also used in place
O‘f £y, Ey, I,. Sometimes @ bar or arrow is placed over the symbol, for example, i or /.
The geometric meaning of Theorem 12.6 is illustrated in Figure 12,12 for n = 3.

' hen veetors are expressed as lincar combinations of the unit coordinate veetors,
f‘lgcbr;lic Manipulations involving vectors can be performed by treating the sums > x.E,
f%ording to the usual rules of algebra. The various components can be recognized at any
S\tugc in the caleylation by collecting the cocflicients of the unit coordinate vectors.  For
SKample, 1, add two veetors, say A = (ay;, ... a,)and B = (by, ..., by), we write

n n
A= 2 akEk , B = Z bkEk y
k1 k-1
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and apply the linearity Property of finjte Sums to obt

The coefficient of E,

Vector algebrq

A=ajiy ayf + azk

ak

a,j

Ficure 12,12 A vector A4 jn vy expressed as g linear combination of i, j, k-
ain

n n n
A+ B =kzl a.k, +/z bkEk = z (a, + bk .

= k1 k=1

on the right is the g, Component of the sum A4 + B.

12.11 Exercises

I,
2. Determine the projection of 4 along B if 4
3.(@ Let 4 = (6, 3, -2), and let q, b, ¢ den

7.
8.

9.

. Prove that the angle between the twg vect

. Use vector methods to determine the cosip

Determine the projection of 4 along B i¢ A4=(1,2 Dand B = (1, 2, 2).

=432, Dand B =1, 1, 1, 1). 4 co
ote the angles between A and the un he d
MPute cos g, o b, and cos ¢. These are called th

inaté

jrectiol

or

vectors i, j, k, rcspectively. Co
cosines of A,

(b) Find all vectors in Vsof length | Paralle] to 4

, .th{lt
is twiIcc
ors A = (1, 3, Dand B = (2,1, —1)ist

between C = (1, 4, Dand p = 2,5, ). - $host
s of the angles of the triangle in 3-spac
=~35), and (3, -4, —-a).

Iowing propertics:

vertices are at the points (2, =L, - ,
Three vectors 4, B, Cin v, satisfy all the fol

If the angle between A and B is 77/8,. find the angle between p and C.

Given three nonzero vcctor's A; B, Cin v, ../\ssumc that the angle between A [ B.
the angle between B and C. ]‘roxlrc‘t_hat Cis Orthogona ¢, the vector 1Bl A — ”/I)zm g
Let 0 denote the angle between the following 1y, veetors in 1, 4 = (1, 1y

(1, 2,....m). Find the limiting value of 9 a5 ,, _, o,

Solve Exercise 8if A = (2,4,6,...,2n) and p - (13,5, . ,2n — 1),

- wqualtl
and Ciscqu?
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10. Given vectors 4 = (cos 0, —sin 0) and B = (sin 0, cos 0) in V, .
(a) Prove that A and B are orthogonal vectors of length 1. Make a sketch showing 4 and B
when 0 = 7r/6
(b) Find all vectors (x, ) in Vy such that (x, y) = x4 + yB. Be sure to consider all possible
values of 0,

11, Use vector methods to prove that the diagonals of a rhombus are perpendicular.

12. By forming the dot product of the two vectors (cos a, sin a) and (cos b, sin b), deduce the

trigonometric identity cos (a — b) = cosacos b + sinasinb.
13, It ¢ is the angle between two nonzero vectors Aand Bin V,, prove that

A — Bjj? = |41 + B> — 2 141l 1B cos 0.

When interpreted geometrically in ¥y, this is the law of cosines of trigonometry.
14, Suppose that instead of defining the dot product of two vectors 4 = (a,...,a,) and B =
(by,..., b,) by the formula 4 - B = 2,’!:1 azby , we used the following definition:

A-B=Y labl.
x=1

Which of the propertics of Theorem 12.2 are valid with this definition? Is the Cauchy-Schwarz

mt‘quality valid with this definition?
13, SUPPOSC that in ¥, we define the dot product of two vectors A = (a; , ay) and B = (b, , b,) by

the formula
A . B = Zalbl + a2b2 + (11b2 + azbl N

Prove that all the propcrties of Theorem 12.2 are valid with this definition of dot product. Is
the Cauch ~Schwarz incquality still valid ?
é /a quality .
16, Solve Exerycisc 15 if the dot product of two vectors A = (ay, @y, a)and B = (b, b, , by)in V,
is defineq by the formula A+ B = 2ayby + @by + asby + arby + azhy .
7. Suppose that instead of defining the norm of a vector A = (ay, ...
- A2 we used the following definition:

, ay) by the formula

n
4] = z lay] .
E=1

@) Proye that this definition of norm satisfics :1‘11 the propcrtigs in 'I'l.worcms 124 and 125,
(b) Use this definition in V, and describe onatigure the set of all points (v, y) of norm 1.
© Which of the propcrtic; of Theorems 12.4 and 12.5 would hold if we used the definition

9

n
] = . S a,
ko<t

' s“pl’()sc that the norm of a vector A=A(ay,. .., a,) were defined by the formula

LAl = max |a,l,
vk

Where the symbol on the right means the maximum of the # numbers fdll,.l‘lzlv c |“»"f-
(a) Which of the propcrtics of Theorems 12.4 and 12.5 arc valid with this dchmt.lon ?

Use this definition of norm in Vy and describe on a figure the set of all points (x, y) of
Norm 1,
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S

19. If A =(ay,...,a)isa vector in V, | define two norms as follows:

n

41, =kz la]  and iy = max |a, .

= 15k y

Prove that A4ll, < 4] < 140y Interpret this inequality geometrically in the plane. bis
20. If A and B are two points in 'rspace, the distance from A to B is denoted by d(d, B) an

defined by the equation d(4, B) =4 - p. Prove that distance has the following prop-
erties:

(@) d(4, B) = d(B, A). (b) d(4, B) =y

if and onlyif 4 = p,
(©) d(4,B) < d(4,C) + d(C, B).

12.12 The lincar span of g finite sct of vectors

e k, the
Let S={d;,..., 4} be a nonempty s consisting of & vectors in ¥, , where L,qce
number of vectors, may be less than, equal to, or greater than a, the dimension of the spf
If a vector X in V, can be represented as 3 linear combination of Ay, oo, Ay, sy

k
X=%,
= }' A,
1]

then the set S is said to Span the vector X.

DEFINITION. - The set of qlf vectors spanpe

. . ()f(’([
dby S i called the linear span of S and is den
by L(S).

. . s ations
In other words, the linear Span of § ig simply the set of ali possible linear combinati0

. . ¢
of vectors in S. Note that lincar combinations f veetors in L(S) are again in L(S)-
say that § spans the whole space V, if L(S) = | '

no-

EXAMPLE 1. Let S = {4,), Then L(S) consigy of all scalar multiples of A, .

. ' » . — o 4 04
EXAMPLE 2 E\{cry S.CtS - i, A} spans thezero vecor sincc O = 04, + -+ F vial
This representation, in which all the cocflicients ¢, are zero, is called the {7 s
. N~ * Ts o FONS A gy IS .,
representation of the zero veetor, Howerr, there may b,c nontrivial linear C(,mbmatloo
< 1S . 1)
that represent 0. For example, SUPpose one of the veetors in S s g scalar multiple

¢
., — . X SR
another, say A, = 24, . Then we have many nontriviyl representations of O, for exi P

where ¢ is any nonzero scalar.
s are especiall inlcrcstcdins‘:f At spy . ,
We are especially €8 S that spy, veetors in exactly one way.
DEFINITION. A sel S = {d,, ..., 4 of vectors ) 1

' ns
, miamefy if S SP4
w18 said to span X uniquely if
Xand if

v
.oand X = 2 da,

i=1 iz

]
!
S

(12.]0) /\, i’”l’“(‘.\‘ ¢ = ‘Ii .f()l' (l” i.
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].n the two sums appearing in (12.10), it is understood that the vectors 4, , . . . , A, are
Written in the same order. It is also understood that the implication (12.10) is to hold for a

fixed byt arbitrary ordering of the vectors A, , ..., Ay.

THEOREM 12.7. A set S spans every vector in L(S) uniquely if and only if § spans the

<ero vector uniquely.
Proof. If § spans every vector in L(S) uniquely, then it certainly spans O uniquely. To
I;YOVC the converse, assume S spans O uniquely and choose any vector X in L(S). Suppose
SPans X in two ways, say

x
c;A;  and X=>dA,.

i=1

VR

X =

i=<1

!

By subtraction, we find that 0 = 3%, (¢; — dA; . But since Sspans O uniquely, we must

have ¢, — d; = 0 for all i, so S spans X uniquely.

1 . .
213 Linear independence
Theorcm 12.7 demonstrates the importance of scts that span the zero vector uniquely.

uch sets yre distinguished with a special name.

DEFINITION, A set S =1{Ay, . Ay} which spans the zero vector uniquely is said to be
a /inear/y independent set of vectors. Otherwise, S is called linearly dependent.

In other words, independence means that S spans O with only the trivial representation:

]\. M M 3 V m——
Sed =0 implies all ¢, = 0.
=1
D"l)cmlon(-o means that S spans O in some nontrivial way. That is, for some choice of
Scalarg . e e
TS e, we have

x
z e, = 0 but not all ¢, are zero .
i1

/\llhough dependence and independence are properties of sets of vectors, it 1S common
Practice ¢, also apply these terms 0 the vectors themselves, FFor example, the vectors in
a4 ine: Lo ' . : : " . aore

l]lncdl'ly independent set are often called lincarly independent vectors. We also agree to
Call ¢ '

’

; ¢ empty set lincarly independent. .
he lollo\ving examples may serve to give further insight into the meaning of dependence

and ;

d ndependence.

EXAMpLy; | If o subsct 7 of a set Sis dependent, then § itself is dependent, because
, Spans O nontrivially, then so does 8. This is logically equivalent to the statement that
ery ¢ o

TY subset of an independent sct s independent.

n
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EXAMPLE 2. The n unit coordinate vectors E, , ., ., £, in V, span O uniquely so they
are linearly independent.

EXAMPLE 3. Any set containing the zero vector is dependent. For example, if 4, = 0,
we have the nontrivial representation 0 — I+ 04, + -+ 04, .

EXAMPLE 4. The set § = {,/,1 4+ j) of vectors in ¥, is line

arly dependent because we
have the nontrivial representation of the zerg vector

O=i+j+4 (=D +j).

In this example the subset T — {i,j} is linear]
in the linear span of T. The next theorem show
linear span of 7, we get a dependent set,

Y independent. The third vector, I'-*"J" 15
s that if we adjoin to i and j any vector in the

THEOREM 12.8, et § = {4,, ..., Ay
and let L(S) be the lineqr span of S. T}
dependent.

} be a linearly independent set of k vectors in Vy >
L every set of k + 1 pectors in L(S) is linearl)

Proof. The proof is by induction on &, the number of vectorsin S. First suppose k = 1-
Then, by hypothesis, S consists of one vector, say A, | where Ay % Osince Sis independent.
Now take any two distinct vectors By and B, in L(S). Then cach js 4 scalar multiple of A1

say By = 14, and B, = ¢y, , where “rand ¢, are not both zer, Multiplying B, by c, and
B, by ¢; and subtracting, we find that

C2Bl - C132 = 0 .

This is a nontrivial representation of 0 5o B, angd By are dependent. This proves the
theorem when k = [,

Now we assume that the theorem is trye for k — 1 angd prove that it is also true for k-

Take any set of k + 1 vectorsin L(S), say T = By, 8,,.. Bii1}. We wish to prove that
T'is linearly dependent. Since each B, is in L(S), we may write

.
(12.11) Bi=Ya,u,
FES |

foreachi=1,2,...,k 4+ 1. We examine all the scalars a, th

. it
. at multiply A, and spli
the proofinto two cases according to whether a]] these scalars

are 0 or not,

CASE 1. a, = 0 for evc’r)'v 1“= 1, 2,.. <k 4+ 1. Inthis case the sum jy (12.11) does l}](')t
involve A, so each B; in T is in the linear span of (he set 8" = {4, LA But S8
linearly independent and consists (Bf./\' - Vcctors,‘ 'By the induction hypothesis. the
theorem is true for k — 1 so the set T'is dependent, Thig proves the theorep, in Casc I

CASE 2. Not all the scalars a;, are zero. Let us ggsume that ¢

S , LA 7 0. (If necessary, We
n renumber the B’s to achieve this.) Taking i = | Equatioy
ca

V(12.11) ang multiplying
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both members by ¢; , where ¢; = a,,/a,, , we get

k
ciBl = a“Al + Z Ci(l”AJ- .

j=2

From this we subtract Equation (12.11) to get

k
B, — B, = z (Cialj - aij)Aj >

=2

forj = 2, ...,k + 1. This equation expresses each of the k vectors ¢,B, — B, as a linear

€ombination of k — 1 linearly independent vectors A, ..., A,. By the induction hy-
Pothesis, the & vectors ¢, B, — B; must be dependent. Hence, for some choice of scalars

fayoio, Ii11, not all zero, we have

k+1

z ti(ciBl - B,) = 0 ’
i=2

from which we find

k+1 k+1
(Z ’tci)Bl -2 4B;=0.
i=2

i=2

But this is a nontrivial linear combination of By, . . ., By, which represents the zero vector,
S0 the vectors B, B,,; must be dependent. This completes the proof.
yovy By

We show next that the concept of orthogonality is intimately related to linear inde-
PCndcncc_

DEFINITION, A ser S = {4 , Ay} of vectors in V, is called an orthogonal set if
. S ¢4 — PRI . . . -
4, Ay =0 whenever i #j. In other words, any two distinct vectors in an orthogonal set

are pe '
€ perpendicular.

THEOREM 12.9.  Any orthogonal set S = {dvs ., A} of nonzero vectors in V', is linearly

1ependeny. Morcover, if S spans a vectol Y, sy
k

(12.12) X=3cd,,

LED

then the scalar nn dtipliers ¢y« «+» G are given by the formulas

XA .
(12.13) (-j:———’j‘ ./(N' _/.:'_1,2.....]\'.
A A,

. . . . K i PR—
Pr""f First we prove that S is lincarly independent.  Assumc that X% ¢ d, = 0.
aki”g the dot product of cach member with A, and using the fact that A, - A, =0 .fOT
fach i 5 [, we find ¢y(cAy - Ay) = 0. But (A4, - A;) 5 0 since A; # 0,s0 ¢; = 0. Repeating
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e —
this argument with A, replaced by A, we find that cach ¢, = 0. Therefore S Spansc
uniquely so S'is linearly independent.

Now suppose that § spans X as in Equation (12.12). 1

‘aking the dot product of X witl
A; as above, we find that cd; A) = x. A4, from whicj

1 we obtain (12.13).

If all the vectors A, .., A, in Theorem 129h

o 1 S
avenorm |, the formula for the multlp]ler
simplifies to

. 4 . . , 0-

An ()I'lh()g()lldl set of vectors { T nu, Ak}, cach of Wthh has norm ]‘ is called an ()]l'[/lt

. T i ne ~ A N al sctl.
normal set, he unit COOI‘dlndlC vectors L, e, 12" are an CXillﬂp]C of an orthonorma

12.14 Bascs

It is natural to study sets of veetors th

at sp; : . . are
atspan cvery veetor ip V. uniquely. Such sets
called bases for v, .

DEFINITION. A sef § = {4,,..., A of vee

every vector in 'V, uniquely. If, in addition, Si
basis,

. R \ . ans
lors in v, g called a basis Sor V,, if Ssp o
S orthogonal, then § is called an orthogo

Thus, a basis is a lincarly independent set w]
unit coordinate vectors js up cxample of y
basis. Now we prove that cvery b

) . ctof

lich Spans the whole space V, . The Sonq
. v M . ‘

This particular basis is also an orthog

he same number of elements.

asis,
SIS contajng ¢

THEOREM 12.10. In ¢ given vector space v
(2) Every basis containg exactly p tectors,

(b) Any set of linearly indepengop, LCCLOrs is q sypye
(c) Any set of n /incar/y 1'/1(/(’/)0/1(/0/11 re

n> bases have 1, Jollowing properties:

Lof some basis,
Clors is a bayig.

. i inate ve - hat
Proof.  The unit c'oordm te vectors Ey, . E, form one basis for 1/, . If we prove!
any two bases contain the same umber of veeqors We obtain (q) T

Let S'and 7 be two bases, where § hys x Yectors and T has r veetors, If > k, then 1
contains at least & + 1 vectors jp L(S), since L(S) = p ;
12.8, T must be linearly dependent, comrudicting the ,
. . G ith
means we cannot have >k, s0 we must hllVC F< k., /\pplying the same ”rgumcm Wi
Sand T interchanged, we find that k < ”C”CC, k =, SO part (a) is pl'OVCd’ V

To prove (b), let §.= Ay 2o A be any lincarly independent set of veetors " t,i'n
IrLs)="r,, t}}cn S'is a basis. If not, is some veetor v in J, which is n¢
L(S). Adjoin this vector to S and conside

“ .S SC[
I the neyw set §7 — { if thi
were dependent, there would be scafqars o,

e " Theott
i+ Therefore, because of l'h This
assumption that 7 is a basis.

"
/ll" . ../’k' “J'
G, not g zero, such that

r
2-](.1'/11' + (.’\'H‘\’ = .
P

, . o fof
. N are Ty N . s n f()
But ¢, # O since A, ..., A, are Independeny, Hence, we could solve this cquatio
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— —_—
X and find that X e L(S), contradicting the fact that X is not in L(S). Therefore, the set
S s lincarly independent but contains k + | vectors. If L(S") = V., then " is a basis
and, since S is a subset of S, part (b) is proved. 1f.S"is not a basis, we may argue with §’
A we did with S, getting a new set " which contains k + 2 vectors and is linearly inde-
pendent. If $” is 4 basis, then part (b) is proved. If not, we repeat the process. vWe must
arrive at a basis in a finite number of steps, otherwise we would eventually obtain an inde-
pendent set with 5 4 1 vectors, contradicting Theorem 12.8. Th'ercfore part (b) is proved.
Finally, we use (a) and (b) to prove (c). Let S be any linearly independent set consisting
of n vectors. By part (b), S is a subsct of some basis, say B. But by (a) the basis B has

exactly n clements, so S = B.

12.15 Exercises
I. Let iand j denote the unit coordinate vectorsin V,. Ineach casc find scalars x and y such that

X0 =) + pi +j) is cqual to o
@i byj;, (©3i-5; (@) T+ .
2.1f4 = (1,2), B = (2, —4), and C = (2, —3) are three vectors in V,, find scalars x and y such

that € =, 'B. How many such pairs x, y arc therc? ‘
JIf 4 = 2 W_‘ l+l))BB =o(v;/ I2 _yl) anf C = (2, —11,7) are three vectors in Vy, find scalars

rand y such that C = x4 + yB.
4. Prove that Exercise 3 has no solution if C is replaced by the vector (2, 11, 7).

5. Let 4 and B be two nonzero vectors in Vy, . .
(@) If 4 and B are parallel, prove that A and B are lincarly dependent.

at A : i independent.
(b) If 4 and B are not parallc], prove that A4 and B are lmcarl)./ indepe '
6. If (q, b) and (¢ d)carc tho vectors in ¥y , prove that they are linearly independent if and only

ifad — pe s . ) ‘
7. Find all real ¢ for which the two vectors (1 +¢, 1 — ) and (1 — 1,1 4 ¢) in V, arc lmear]y

independent. .
8. Let; J, k be the unit coordinate vectors in V5. Prove that the four vectors i, j, k, i +j + k

are lincarly dependent, but that any three of them are lincar])./ {ndc;}cndcnt.
%, Let fand j be the unit coordinate vectors in Vpand let S = {i, i + j}.

() Prove that 5 is lincarly independent.

(b) Prove that j is in the lincar span _of S i

(c) Express 37 — 4j as a lincar combination of iand i +j.

(d) Prove that LS) =V,. _
10 COnsidcr the three vectors A =i, B = i+jand C =i+ + 3kin Vy.

@) Prove that the set {A, B, C} is lincarly inflcpc.‘micn(. ‘
EXprcsg cach of jand kasa lincar combination of A, B8, and C.
(©) Exprcs; 7;' — 3j+ Skasa linear combination of A, B, and C.

() Prove (1 3 C)is a basis for V. _ .
L Leg A :V? lth:; {;;'__{'(2 }_4), C =(2, =3),and D = (1, —=2) be four vectors in Vy . Display

al . i hvent 3, C, D} which are lincarly independent.
12, thn/(;n;nz?t); S:lbg;[bnoi{?(;,]l, L :}lnd C=(,1,0, O); be tl?rcc vectors in V.

(@) Dctcrm‘in;\ \\'/hct'hcr A, B, C are lincarly dependent or independent.

;b)) Exhibit a nonzero chtorl D Sl;Ch[;h(a'l IA, B, .(',II) :lrcl dclpcndcnt.

C) ExNibit o vee ~such that A, B, C, I are independent. ) L

(< ) ”);ll,lill:lé gh\:s(,ctl(])rl:[}l:l;;” ©), express the vector ,\l' =(1,2,3, 4)asa lincar combination of

L /3,1,0),(1,V/3, 1
13. (a) Prove that the following three vectors in ¥, are lincarly independent: (V'3,1,0), (1, v/3, 1),

(0, l, ’\/3).
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(b) Prove that the following three are dependent “/2, 1,0), (1, v2, 1), (o, 1, v2).
(¢) Find all real ¢ for which the following three vectors in ¥y are dependent: (4, 1, 0), (1, 4, D)
©, 1,0,
14. Consider the following sets of vectors in V. Ip each case, find
containing as many vectors as possible,
@ {0, 1,0, (,1,1,1, (0,1,0,1), (2,0, ~1,0)).
® {0, 1, 1,1, «q, =L L1, (, =1, -1, 1, a, ~1, —1, -1
©ULLLD, ©,1,1,1,"0,0,1,1), (g, 0, 1%},
15. Given three linearly independent vectors 4, B, Cip V,
ing statements,
@ A+B,B+C A+ Care Iinearly independent.
(®) 4 ~B,B+C, 4+ Care linearly independent,
16. (a) Prove that a set S of three veetors in Vg is a basis for ¥y if and only if its lincar span L(S)
contains the three unit coordinate vectors i, j, and .
(b) State and prove a generalization of part (a) for v, |
17. Find two bases for Va containing the two vectors (0, 1, 1)
18. Find two bases for Vi having only the two vectors
19. Consider the following sets of vectors jn Vy: )
S =L 11),0,1,2),(1,0, ., T= _ = {(1.2.3). (1,3, 5}
(2) Prove that L(T) < Lys), 4 10,00 P U={0,2,3.(
(b) Determine all inclusion relationg that hold among the setg L(S), L(T), and L(U).
20. zid:xtl(;{:edg::irBl?::aortzI:Xz.“rll’lrtgvseuf"stzltls (?frt‘llc-C }O;S l'n'a vector space ¥, , and let L() and L
@ A< B, then L(4) < 1p) ¢ following statements.
(b) L(AN B) < L(A) N LBy,
(¢) Givean example in which LA N By = LA A L(B)

a linearly independent subse

. Prove or disprove cach of the follow-

and (1, 1, 1),
O, 1,1, 1y and (1, 1, 1, 1) in comnon.

12.16 The vector space V,(C) of n-tuples of complex numbers
In Section 12.2 the.vcctor space If,l. Was defined 1o pe the collection of all n-tuple n
real numbers. Equality, vector addition, g multiplication by scalars were defined !
terms of the components s follows: If 4 - (a, @) and B _ (b b,), then
N 9 == 1oyl

s of

A=pn means =
‘ 4= foreachi—_—l,2,...,n,

A+B=(al+1)1,..,,a”+b)

cAd = (ca,, ..., ca,) .

IEall the scalars a, , b, zm.d ¢ ir_] these relations gre replaced by complex numbers, the newW
algebraie system so O.bmmcd is called complex vecror space and is denoted by Vul©
Here C is used to remind us l!mt the scalars gre complex. S

Since complex numbers satisfy (he same fielq Properties as real numbers, all theore!
about real vector space V', that use only the fiel Propertics of the real numbers ar¢ 415
valid for 1,(C), provided all the scalars are allowed (¢ e L‘om rlex ‘In particular, thos¢
theorems in this chapter that involve only veetor addition 'md[mililiplic;llion by scalars
are also valid for 17,(C). ;

This extension is not made simply for the sake of generalization. Complex vector P |
arise naturally in the theory of linear dil].crcntiul cqt,;”i(;m ;u‘ul in modern qu:mluns
mechanics, so their study s of considerable IMPortanee, l’orlm‘mlcly many of the theore™
about real vector space I, carry over withou change 14 V,(C). Sm‘nc small changes 14

aces
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to be made, however, in those theorems that involve dot products. In proving that the dot
Product 4 - 4 of a nonzero vector with itself is positive, we used the fact that a sum of
Squares of real numbers is positive. Since a sum of squares of complex numbers can be
negative, we must modify the definition of 4 - B if we wish to retain the positivity property.
For 7,(C), we usc the following definition of dot product.

DEFINITION. If A = (a,,...,a,) and B=(by, ..., b,) are two vectors in V.(C), we
define their dot product A - B by the Sformula

Where b, is the complex conjugate of by .

Note that this definition agrees with the one given earlier for ¥, because b, = b, when
b is real. The fundamental properties of the dot product, corresponding to those in
Theorem 12.2, now take the following form.

THEOREM 12.11. For all vectors A, B, C in V,(C) and all complex scalars ¢, we have
(@) 4-B=B-4,

B a4-B+C)=4a-B+4-C,
(©) (4 B)=(cA)- B=A"(B),
a-4>0 if 4#0,
(€ 4-4=0 if A=0.

All these properties arc easy conscquences of the definition zm.d their proofs are left as
€Xxercises. The reader should note that conjugation takes place in property (a) when the
Order of the factors is reversed. Also, conjugation of the scalar multiplier occurs in prop-
€Ity () when the scalar ¢ is moved from one side of the dot to the other.

The Cauchy-Schwarz inequality now takes the form
(12.14) |4 BI* < (4~ A)(B- B).

The Proof is similar to that given for Theorem 12.3. We consider the vector € = x4 — B,
Where v = B-Band p=A" B, and compute C- C. The incquality C- C > 0 leads to

(12'14)- Details are left as an exercise for the reader.
Since (he dot product of a veetor with itself is nonnegative, we can introduce the norm

T veeror » usual formula
¢ Veclor in )/ (C) by the usui )

Al = (A~ A2,

The fundamenal propertics of norms, as stated in Theorem 12.4, arc also vallid without

Change for 1/ (C). The triangle inequality, |4 + B| < ||| + |B], also holds in I/, (C).
O”h(’gonzl,llit of vectors in V,(C) is defined by the relation A - B = 0. As in the real

FI5C, two yveeqors A and B in V,(C) arc orthogonal whenever they satisfy the Pythagorean

ldcntity, 14 + B2 = (41 + 18]
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The concepts of linear span, linear independence, lineyy dependence, and basis, are defined

for V,(C) exactly as in the rea] case. Theorems 12.7 through 12.10 and their proofs are all
valid without change for Va(C).

12.17 Exercises

LoLet 4 =(1,0), B = (i, —i), and ¢ = (24, 1) be three vectors in ¥(C). Compute each of the
following dot products:

@A-B; O BA; () ). p, (d) A-(B): (e) (i) (B);
) B-C; (® 4-¢; (h) (B + C) 4, i (14— C‘)'B'
) (4= iB)- (4 + iB), ’
2.1f4 =,1, ~)and B = (i, =1, 24), find 5 honzero vector Cip y,
and B, ’
3. Prove that for any two vectors 4 ang Bin V.0,

(C) orthogonal to both A
we have the identity

4+ B2 = 42 4 IBI*+ 4.5 4 AB.

4. Prove that for any two vectors Aand Bin Vu(C), we have the identity

A4+ Bj2 — yy _ Bl =204.p 4 ADB),

5. Prove that for any two vectors A4 and B in VA(C), we have the idcnlily

4+ B 4 4 ~ BIF =242 4, 1812,

6. (a) Prove that for any two vectors 4 and B in
1

{O), the sum 775 + 4 - Bis real,
(b) If 4 and B are nonzero vectors in V.(C), prov(c 3hatlc A A e

5 AB+ 4}
4B S 2.

7. We define the angle 0 between twe nonzero vectorg Aand Bin V,.(C) by the equation

0 = arccos 248 4 4-8)
40 18]

The inequality in Exercise 6 shows that there jg

. \rvﬂ]
o . . always a unique ; 0 in the closed inte
0<0< = satisfying this cquation. Proye th y> 1 unique ngle 0

at we haye
— 2 = :

A =B = 142 4 1812 < 2 4,4 I 18] cos 0.
8. Usc the definition in Exercise 7 to compute th
V(O A = (1,0,4,4, 0, and B = (i, i, i 0, j).

9. (a) Prove that the following three vectors forp, @ basis for VO = (1,0,0), B =04 o

C=(,1,0. . _ ' '
(b) Express the vector (5,2 —, 2") as a linear Combination of A B, C. .
10. Prove that the basis of unit coordinate vectors Ey,. .., Eyin ¥, is also a basis for V,(C)-

] : o vectors in
angle between the following two veeto
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APPLICATIONS OF VECTOR ALGEBRA
TO ANALYTIC GEOMETRY

13.1 Introduction

This chapter discusses applications of vector algebra to.the study of lines, planes, and

€onic sections, In Chapter 14 vector algebra is combined with the methods of calculus, and
further applications are given to the study of curves and to some problems in mechanics.
. The study of gecometry as a deductive system, as conceived by Euclid around 300 s.c.,
begins with a set of axioms or postulates which describe properties of points and lines.
The concepts “point” and “line” are taken as primitive notions and remain undefined.
Other concepts are defined in terms of points and lines, and theorems are systematically
deduced from the axioms. Euclid listed ten axioms from which he attempted to deduce all
his theorems. It has since been shown that thesc axioms are not adequate for the theory,
.For ¢xample, in the proof of his very first theorem Euclid made a tacit assumption concern-
Mg the intersection of two circles that is not covered by his axioms. Since then other lists
of axioms have been formulated that do give all of Euclid’s theorems. The most famous
Of these is 4 Ijst given by the German mathematician David Hilbert (1862-1943) in his now
classic Grundlagen der Geometrie, published in 1899. (An English translation exists:
The I"”“’l(/(lfi(mts‘ of Geometry, Open Court Publishing Co., 1947.) This work, which went
through seven German editions in Hilbert's lifetime, is said to have inaugurated the abstract
Mathematies of (he twentieth century.

Hilbery starts his treatment of plane geometry with five undefined concepts: point, line,
on‘(a relation holding between & point and a line), benveen (a relation between a point and a
Pﬂ}r of points), and congruence (a relation between pairs of points). He then gives fifteen
AX10ms from which he develops all of plane Euclidean geometry. His treatment of solid
8eometry js haged on twenty-one axioms involving six undefined concepts.

"]‘hc approach in analytic geometry is somewhat different. We define concepts such as
Point, [ipe, on, between, ¢tc., but we do 5o in terms of real numbers, which are left un-
dcﬁncd. The resulting mathematical structure is called an analytic model of Euclidean
gcomur)’- In this model, properties of real numbers are used to deduce Hilbert’s axioms.

¢ shall ney attempt (o describe all of Hilbert’s axioms. Instead, we sl.mll merely indicate
oW he primitive concepts may be defined in terms of numbers and give a few proofs to

‘”llstrulc the methods of analytic geometry,
471




