; Clie.

2.

6.

9.

10.

- Guess a gener

. Let ny be the smallest

- Given positive real numbers a,

. Letnand ¢ denote inte

. Describe the fal]

Introduction

Note that

1 =1,
1 —4=-(1+2),
l-4+9=1+42+3,
| -4+49-16=—=(14+2+3+4).

Guess the general |

aw suggested and prove it by induction.
. Note that
1+4=2-1,
l+3+1=2-1},
l+3+}+3=2-1}

Guess the general law suggested and prove

it by induction.
. Note that

-

1 -4 =1
{l= “:)(I Ca :lx) . ;Il
1= -H1 - P = i .
Guess the general law suggested

and prove it by induction,
al law which simplifies the product

=30 -3)(1 -5+ (1-4)

2
and prove it by induction.

Let A(n) denote the statement: | + 2
(a) Prove that if A(k) is true
(b) Criticize the statement :
(¢) Amend A(n) by ch

tort =300 + 1)
for an inlcgcr k, then A(k 4
"By induction it follows that
anging the cquality to
positive intcgcr n for
Compute n,

1) is also trye.
A(n) is true for
an incquulll) that is try
which the inec
»and prove th
y Ay, ay, . .

all n»

¢ for all positive integers 1.
true for all x > (.

uality (1 4 vy < I + nx + nx®18
ality is true for all integ
-, such that a4y < ca,  for all n>
use induction to prove that ¢, < ac" Yforally > 1
atement by induction: |f aline of unit leng
structed with xlr;lighlcdgc and com
Prove the followin

at the incqu
fixed positive number,
Prove the l'olluwing st
length 'n can be con
Let b denote a fixed
integer n > 0, there

ersn 2 ny.

2, where ¢ 1s @

th is given, then a line of
pass for cach positive integ
positive integer,

crn
exist nonnegative

£ statement by induction: For every
ntegers ¢ and such that
n=gqgb + 0<r<p,

gers. We say that « is cd for some integer ¢, An
aprimeifn > | and if the only positive divisors
ery inlcgcr '

of nare | and n. Prove, by
IS either g I primes,
acy in the fullm\‘ing'

integer n is called

a divisor of nif n
induction, that ey

prime or g product o
‘proof™ by induction -
.Smlwnwl/: Given any collection of , blonde girls, 1f yy least one of the girls has blue eyes,
then all » of them have blue cyes.,

Proof. I'he statément g nh\‘inu\ly true whei-he = 1
be-illustrated by igaing

Tha SUPLTOM=IES L
P —="T3~{ ' )L }

1 can
lhcrcl‘mc, that e

Assume,

atément s true



The summation notation %A

when n = 3 and let Gy, Gy, Gy, G4 be four blonde girls, at least on¢ of which, say G, has blue
eyes. Taking Gy, Gy, and G, together and using the fact that the stateme - g

. nt is true when n = 3,
we find that G, and G also have blue eyes. Repeatin

g the process with G, G,, and G4, we find
that G, has blue eyes. Thus all four have blue eyes. A similar argument allows us 1o make
the step from ktok + 1in gcncrul.

Corollary. All blonde girls have blue eyes.

Proof. Since there exists at least one blonde girl with blue eyes, we can apply the foregoing
result to the collection consisting of all blonde girls.
Note: This example is from G. Polya, who suggests that the reader m

ay want to test the
validity of the statement by experiment.

«14.5 Proof of the well-ordering principle

In this section we deduce the well-ordering principle from the principle of induction.

Let 7 be a nonempty collection of positive integers. We want to prove that T has a
smallest member, that is, that there is a positive integer £, In T such that 1, < tforallrin T.

Suppose T has no smallest member. We shall show that this leads to a contradiction.
The integer | cannot be in T (otherwise it would be the smallest member of 7). Let S
denote the collection of all positive integers n such that n < t for all rin T.
because 1 < t forall tin T. Next. let k be a positive integer in S.
We shall prove that k + 1is alsoin S. If this were not so, then for some f, in T"we would
have 1, < k + 1. Since T has no smallest member, there is an integer 1, in 7 such that
fu <, Bus and hence 1, < k + . But this means that 7, <G5 L‘\\I\ll'&;kiiclillﬂ, the fact that
k < t forall tin T. Therefore k + 1 is in S, By the induction principlc‘\
positive integers. Since Tis nonempty, there is a positive integer f in 7.

Now | isin S
Then k < tforalltinT.

S contains all
But this  must also
be in S (since S contains all positive integers). It follows from the definition of' S thatt < f,

I has no smallest member leads
{o a contradiction. 1t follows that I must have a smallest member, and in turn this pr

which 15 a contradiction. Therefore, the assumption that

OVeS
that the well-ordering principle is a consequence of the principle of induction.
14.6 The summation notation

In the calculations for the area of the p;u';nlm\i( segment, we encountered the sum
(1.20) (24204 3F 4 + n*.

Note that a typical term in this sum is of the form k2 and we get all the terms by letting A
run through the values 5.9 B sl here 1s a very useful and convenient notation which
enables u; {o write sums like this in @ more compact form. This is called the summation
notation and it makes use of the Greek letter sigma, b8 Using summation notation, we can
write the sum in (1.20) as follows:

This symbols retrdt el rhedam of A% ker . running from | to n.” The numbers appearing
Gnder and above the sigoma el us the. range of values taken by & s der AL iselt 1s

| s
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referred to as the index of summation. Of course, it is not impo.rlunl thzlt‘ wc usc"lhc I‘ctl]cri
k; any other convenient letter may take its place. For cxu.mplc. instead of Z, e we U.Htf ,Lr
write 7y % 30 % D, m?, ete., all of which are considered as alternative notu%l.«m;'tg
the same thing. The letters 7, j, k, m, etc. that are used in tln:s way are c.ullcd (.lmnm_\‘u?c ic clc
[t would not be a good idea to use the letter n for the dummy index in this particular examp
because 7 is already being used for the number of terms.

More generally, when we want to form the sum of several real numbers, say @y, Ay, ..
a,, we denote such a sum by the symbol

(1.21) R il o -

which, using summation notation, can be written as follows:

 a,. .
(1.22) h}_l K
For example, we have

4

Z(l,‘. = + dy + dgy + Qg
k=1

5

> x;=x; 4+ X+ X3+ X4 + x5
d=1

Sometimes it is convenient to begin summations from 0 or from some value of the index
beyond 1. For example, we have

X; = Xg+ X1+ Xo+ X3 + X4,

=0
5

”3 = 23 + 33 + 43 + 53.
2

n=2
Other uses of the summation notation are illustrated below :

4
2 x™ = x 4 x4 x® 4 x* 4 x5,

m-=-()
6
22j71=l+2+22+73+71+73,
i=1

To emphasize once more that the choice of dummy index is unimportant, we note that the
last sum may also be written in each of the following forms:

6 5 b 6
22’1 g = 2 ;e z b z LS
q=1 =0 k-1

n—0

Note:  From astrictly logical standpoint, the symbols in (1.21) and (1.22
among the primitive symbols for the real-number system. In
could define these new symbols in terms of the primitive

) do not appear
amore careful treatment, we
undefined symbols of our system:
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Ah|\ may be done by a process known as definition by induction hich, like proof by induc-
tion, consists of two parts:
(a) We define

(b) Ass 4 . : ) , . . . g
) Axxllmn]g that we have defined }_;’ L ay fora fixed n > 1, we further define

! n
> a ( \u,‘) N
k=1 k=1

To i - ) '
ilustrate, we may take n | in (b) and use (a) to obtain

2 1

2. a = :u,_ +a, = ay + az.

K1 Fo1

— 2 to obtain

| @), We can use (b) again with n =

N s ‘
OW, having defined »?

D a = Sa, +ag =(a + a,) + as.

k=1 k=1

+ ay is the same as

By the .

e associat: . . _ ‘
Y ssociative law for addition (Axiom 7). the sum (a; + a,)
drop the pzn‘cnlhcscx‘

a, + ( : b
1 (s E O ) 2 ; ! i .
aricl sl t ay), and therefore there is no danger of confusion if we
¢ Simply . 2 . 57 o
ply write a, + a, + ay for D5 di- Similarly, we have

P

1 3
lu/‘ : a, + ag = (a4 b oay + ag) +da-

k=1 k=1

is the same as (ay 4 a,) +

In thj
1S case we o
case we can prove that the sum (a; + a Fag) + da . ‘
1 be dmppcd again w ith-

(a. )
8+ doray +(ay + ay 4 u,),:mdlhcrclnrclhc parentheses cat

out danger of - i
ger of “””‘%’llll)’, and we agree to write

1
Sa, =a +axta boay .

K1
( ontinuing in this way, we find that (a) and (b) together give us a complete definition of
”lc. \.)'I\ll\(»l in(1.22), The notation in (1.21) is cnn\uicrcd {o be merely an alternative way of
,“‘”“”L' (1.22). 1tis justified by a ::cm'x;ll associative law for addition which we shall not
.lllL‘Ill|‘( Lo state or to prove |\.L‘It.‘.‘

Ihe reader should notice that definition by induction and proof by induction involve the

same . 4 ,
ne underlying idea. A definition by induction is also called a recursive definition.

14 :
i I‘:\t'l'k‘isc\
1. B
. Fi _ ‘ |
nd the numerical values of the following sums:
1
(¢ Y 3 5
l),l/“ () > 2w, (e) S i + 1),
! o o
(l\] \ Y2 1 - |
R (d) > n", (|‘)\
ol '—l -——‘/\‘l\ } l)
k=1
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2. Establish the following properties of the summation notation:

(additive property).

(a) Z (a, + b,) = Z a, + 2 by
=1 F=1 F—1

(b) 2 (ca,) =c¢ z a,
k=1 k=1

(homogeneous property).

n
©) > (ay — ap_y) = a, —a, (telescoping property).
i1

Use the properties in Exercise 2 whenever possible to derive the formulas in Exercises 3
through 8.
n
3. z I = n. (This means 2;‘ ., ai, where each a;, = 1)
k=1

n
4. Z(Zk —1) =n [Hint: 2k — 1 =k* — (k — 1)2]
k=1
n n R :
5 Ek =z + 5 [Hint: Use Exercises 3 and 4.]

\k‘) n® 112+I_1 [Hint: k® — (k — 1)® = 3k2 3 4+ 1.
6'2 =3 *3 TE ' :

— 4=+ .
4 * 2 4
k=1
L 1 — xntl - . \
8. (a)ZX'" sk rov-n if x # 1. Note: x is defined to be 1.
k=0 :
[Hint: Apply Exercise 2 to (I — x) 328

(b) What is the sum equal to when x = ]'.’

9. Prove, by induction, that the sum 7" (=1 2k + 1) is proportional to n, and find the
constant of proportionality.

10. (a) Give a reasonable definition of the symbol 2’” il

m /\ e
(b) Prove, by induction, that for n > 1 we have

\ 1 “\” (—1)mi1
4_4 k m
k=n+1 m l
11. Determine whether each of the Iolln\»\lngQ statements is true or false. 'In each case give a
reason for your decision.
100 100 100 09
Ly R . ; e
(a) > n* =3 nt. (DG +1)2=32
70 n=1 i=1 /‘—
]()l} 100 100 /100
) S ‘
()32 =200 (€ 3 K = ( 2/\) ( > ke J
100

100 100

k=0

2 0 3
©YQ+k) =2+ k. 3
02 ) =2+ Yk 03kt = (2,)




Absolute values and the triangle inequality 41

suess and prove a gcncrul rule which simplifies the sum

H\ 1
Lkk + 1
k1
13. Prove that 2 ——— /- ! - S L i
at 2(Vn + 1 = Vn) < —=<2AvVn-~ Vn—1ibn > 1. Then use this to prove
that \Vn I
. < | —
24 m—-2</ = 2N m — 1
—{vn
if m > ; ;
m > 2. In particular, when 7= 10, the sum lies between 1998 and 1999.

148 A}
solute values and the triangle inequality
n calculus. They are of particular
If x is a real number, the absolute
and defined as follows:

Calculatj
alculatio O . A vie D :
importar ons with inequalities arise quite trcqucnlly i
ance | sl . ; i
value of y j in dealing with the notion of absolute palue.
X 1S G _
IS @ nonnegat1ve real number denoted by | X1

[,\‘ if .\'Z()~
M=1_x if x50

esented gcomctric;\\ly on a real axis,
and if a point X lies between —a
ement of this fact is given by the

NU{C

that — |y

the 'Hlm\l Ix| < x < |x|. When real numbers are repr
i bk 8 st :

and q, er | x| is called the distance of x from 0. Ifa>0

foll S—— |x| is nearer to 0 than a 1s. The analytic stat
Owing theorem. ’

THEOREN : : o
M 138, Ifa >0, then x| < @ if and only if —@ <x<La

first, that the inequality x| € a implies the

Pro / !
0 ‘ .
)J. 16re are .
Cr are two \llllk‘l\\k'l\‘\ 1o P““C:

tWo inequalit;
Sll|:;»tl)l\|\‘.l‘\l:|lcl a ,/’ v < a and, cony ersely, that —a S <a imp\ic\ x| < a.
ence —g < a. l|u-n{ we also have —d = l\\ But either X = |x| or x = - |x] and
To P'"“L‘i i l\‘ S X x| < a. [his proves the ’h‘l\l \Ifl?x'l\\f‘l\l.
Whereas if x /M converse, assume a<xsa ['hen i1 X .2 0, we have \\\ = x < a,
< 0. we have |x| = ¢ < a. In cither case We have |x| < 4, and this com-

dlete
I kl“.\ the proof.
igure 1.9 |
9 ifluatrates the }.C‘»lng-llly;l‘ sienificance of this theorem.

|x| s ain this interval

FiGure 1.9 Geometrical significance of Theorem 1.38.

As d (“n\\‘(l“\'l\k'k‘ Tl ) ' . . .
0 jeorem 1.38, it 1s €aSy {o derive an important inequality which

State
ates that tl
. ¢ ab . v . :
\bsolute value of a sum of two real numbers cannot exceed the sum of their

absolute values
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THEOREM 1.39. arbitrary real numbers x and V> we have

X+ yl < |x] + .

Note:  This Property is called the -
Vectors it states that the length of
the lengths of the

iangle l'rwqua/ir_y, because when it is generalized to

any side of a triangle is less than or equal tc

) the sum of
other two sides,

Proof. Adding the inequalities - <x< [x] and = <y < Iyl, we obtain

—X+ ) <x+y< IXI+ 1y,

and hence, by Theorem 1.38, we conclude that lx + 3] < x| + [y]. .
If we take x = 4 _ cand y =c¢ — p, then y t+y=a—pang the triangle inequality
la—blgla—('l—i-lh—('].

This form of the triangle inequzllily is often used in practice.
Using mathematical induction, we m

ay extend the triangle incquulity as follows:

THEOREM 1.40. Fop arbirrary real numbers a, a,,

>y we hape

n n
Z“k SE"‘J;] .
k=1 k=1

Proof. When n = | the inequality s trivial, and whe

Nn=2itis the triangle incquulity.
Assume, then, that itis true for p real numbers. Then for p + 1 real numbers ar,ay,
@yy1, We have

s .y

n+1 n n n n+1
l zak ' = ’ Zak + an.q ’ < ’ 2“/.-' + |a,,,,| g}:m; + ]a“‘l, = 2"(“, _
k=1 k=1 k=1 x=1 s
Hence the theorem is try
every positive integer p,
The next theorem describes
with our study of vector

eforn 4 | numbers if jt jg true for p, By induction, jt is true for
an import

ant inequulily that we shy use late
algebra,

rin connection

THEOREM [ 4]. THE (‘AU(‘HY‘S(‘HWAR’/,

INEQUALITY, Ifa,, .
arbitrary req] humbers, o have

dyand b b, are
n \2 n ) n )
(I.23) (}_(’kbk) < (}_af) (}_b[) )
k=1 k=1 k=1 )
The equaljs Y sign holds if and on] Y if there jg 4 real numpe
=1,2. ... 5 70,

"X Such thqy Qx4 b

e =0 for ecach
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Proof. We have 7, (a;x + by)* > 0 for every real x because a sum of squares can

never be negative. This may be written in the form

(I.

24) A+ 2Bx + C>0,

where

i n n :
A=Yal, B=2ab, C=2b.
k=1 Je=:1 k=1

We wish to prove that B2 < AC. If A =0, then each ¢, = 0, s0 B = 0 and the result is

trivial. If 4 3 0, we may complete the square and write

2 ) B AC — B*
Ax* 4+ 2Bx + C =4 (\ + _4 4 4/‘_

The right side has its smallest value when x = —B/A. Putting x = —B/A in (1.24), we
obtain B2 < 4C. This proves (1.23). The reader should verify that the equality sign holds

if

and only if there is an v such that a.x + b, = 0 for each k.

9 g .
14.9 Exercises

& © et g g { 1 1 P J > « 2 Q
Prove each of the following properties of absolute values.

@) x| =0ifand only if x = 0. (f) lxyl = |x| Iyl
(b) | —x| = Ix. (g) Ix/yl = x|/l if y # 0.
(©) |x =y ly — x|. (h) |x _4l'| < |x| + “‘
(d) |x]2 = y2, - Gy 1xl = Iyl < lx = yl.
(&) x| = vz () ‘]\[ =y , & e 3

el i"“l““'”\’ (a,), listed below, is equivalent to exactly one inequality (b;). For example,
J i/ ) )

4l < 3ifand onlyif —3 < x < 3, and hence (¢;) is equivalent to (b,). Determine all equivalent

pairs,

(ay) [ X% %, (b)) 4 <x - 6.

(ag) |x 1] < 3, by =31<x<i

(ay) |3 2x| < 1. (/);) % cone g ol well
(ag) |1 +2x| < 1. G w>a |
(@) |x = 1] >2, (b —2 <x <4

({l.;) [x 4 _‘_[ > 5 (/)”) V3 < x 1 or 1€x< V3
(a;) |5 1 by 1 <x <2

(ay) |x — 5| < |x + 1], (/’;) i =T or %%,
(@) |x* -2 <1, (b § <x <}

(a) x < x2 12 < 4x. (hyy) | < x <0.

- Determine whether each of the following is true or false. In each case give a reason for your

decision.

(@) x <5 implies x| < 5.

() |x -5 2 implies 3 < x <7,

©) |1 4 3x| <t implies x ¢

(d) There is no real x for which X I | 2}

(¢) For every x > 0 there is a y -~ 0 such that |2x 4 ”

qr

-

- Show that the equality sign holds in the Cauchy-Schwarz inequality if and only if there is a real

fumber xsuch thag ayy + by = 0 for every k = 1,2, 1.
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Miscellaneous e

In this section we
the use of mathematj
classroom discussion.

Factoriglg and binoy
duction ag follows: o1

Ifo < g < n, the bj

cal in

nial

=1

Note: Sometimes
in the binomial theo

it Compute the valye

2. (a) Show that () =,
(b) Find n, given that

3. Prove that (» s T

forn <.

4. Use induction to prove

Then use the theore

The product notation,
e @> Which may pe defiy
this product. Note that

assemble

1omial coefficient (

S of the following binomj
@ (3),  (b) (7), © (), W@,

M to derive the

The product of

Introduction

xercises involving

a number of miscel]
duction, Some of these

coefficients. The symbol n! (read ¢

s o= — D! nif n > 1.

2Cl I8 written for (3). The
rem. (See Exercise 4 be

2.

) = (7).

binomial coefficien

15 10 10
I 6 15 2

the binomig] theorem

n

A

ancous facts whose proofs
exercises may serve as

%) is defined as follows:
(n n!
/\‘) Ck'(n = k)

low.)

alled the law of P
ts succcssivcly. I

5
15 6 |

induction

n factorial”) may be
Note that n! = 1. 7. 3o

S¢ numbers appe

al coeflicients -

© G, (@) (3).
(¢) Find k, giv
(d) Is there
21) + (). This is o
rapid way of computing

en that (1) = Knsali
a k such that ( 2) = (22372

2ascal’s lri;mglc is ill

@+ by =N (”)u"/)” k
—

k y

k=0

formulag
Il\
=2 and S (»1)/‘(
—
k()

treal nump
1ed by induc(inn.

\

L S ay,ay .. w18 denoteq by
I'he Symbol q,q, - . ' :

‘n '
/) = (), it >

yild

T, 1S an

ascal’s riangle and it

are good exercises in
a basis for supplementary

defined by in-

"N,

ar as coeflicients

provides a
ustrated here

the symbol

;lllw'n.'lli\‘c notation for




Miscellaneous exercises involving induction

L . " ) . e by “tion:
Prove the following properties of pmdmls by induction

n

). ]T(u,‘b,‘) " (H a, )( ]”] /’;.) (multiplicative property).
k=1 Jom1

-~

1

i * wTle
An import | (ca) = ¢ [ T#1 ax

. ! n
ant special case is the relation l 1,\

T a, a, ' =
T l ' = g1 if cach a, # 0 (telescoping PWPU()).
k ](l"‘ 1 (l“ ‘ ;
8. If x I, show that
N B
k=1
What is the value of the product when x =17

" . : “n & N'n b'
. If . iy & - ave by induction that Dy 2 x=1 Dk
Il a - by for each k 1,2,...,n, itiseasyto prove Y — “

ISCuss the corresponding |nu1Uu|ll)‘ for pmdud.\.

n n

T I a, < T[/Ul»-

k=1 k
S(}[;
e ;
Special inequalities |
10, 1 Tl If 0 < x < 1, prove that
"W I, prove by induction that x™ > X for every integer 7t ‘
xn
b X for every integer n :
( Clermine all l\U\il]\L‘ integers n for which 2" n.. " integer we have
e < - - 5 ’ . C e
Y Use the binomial theorem to prove that for n a positiy 5
n K 1 r ‘
1\" \\' I i = ) )
(1+5) =1+ 20 7))
\ n Tl ’
) .o the incqualitics
) 11 n I, use part (a) and Exercise (1 to deduce the mequ
1\ <1 .
) < [ 90 i, |
; " Leed /\ H
Jeoe 1
13, (a)

Let P be a positive integer. Prove that

) 8,2 ba’ ® 4+ a" ).
b al (b ayb" '+ b" Fa } h¥%a® el

(Hint: Use the telescoping property for sums.]

o Use part (a) to show that

Let P and n denote positive integers.

(n + Dt n"!

Y (n + D7".
n l
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*14.10 Miscellaneous exercises involving induction

= st ™ fQ are yd exercises 1
In this section we assemble a number of miscellaneous facts whose proofs are goc d u)l B e
3 1 Q . Arve 9Q ¢ Q19 C supple
the use of mathematical induction. Some of these exercises may serve as a basis for supy
classroom discussion. ‘ o i
fi ad “n factorial) m: > defined b
Factorials and binomial coefficients. The symbol n! (read *‘n l/(l(‘f()ll(l[ )‘,m;ly be d Y
duction as follows: 0! = Lnl=@m—1D'nifn > 1. Note that n! =1-2 -3 n.
If0 <k < n, the binomial coefficient (}}) is defined as follows:

n n!
(k) Tkl =k

Note: Sometimes ,C; is written for (7). These numbers appear as coefficients
in the binomial theorem. (See Exercise 4 below.)

1. Compute the values of the following binomial coefficients:
(@) (3), (b) (), ©) (D, (d) (1), (e) 3D, (f) (9).

2. (a) Show that (}) = (,, " ). (e Pl k, gven that (57 = (4% D

(b) Find n, given that ({}) = (%). (d) Is there a & SUCh' that (%) - (x23)" . s B
3. Prove that (" ;') = (™) + (}). This is called the law of Pascal’s Ip.'uu:‘:;/v.ul?d it prmltlv‘rc

rapid way of computing binomial coefficients successively. Pascal’s triangle is illustrated he

forn < 6.

1
(I
1 2 1
13 3

15 10 10 5 1
L6 15 20 15 6 1

4. Use induction to prove the binomial theorem

n

“(n
(a + by =Z(k)a"b“ k.

k=0

Then use the theorem to derive the formulas

n

L = ‘n
Z(/) = " and Z ( ~|)"(l ) = 0, it n >0,

k=0 k=0

The product notation. The product of n real numbers ay,
ﬂ,’" 1 @5, which may be defined by induction,
this product. Note that

day, . .

.y a, is denoted by the xyml““
The symbol a,a, - - -

a, is an alternative notation for

n! = T'T k.
k1

5. Give a definition by induction for the product [r | a,.
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Prove the following pmpcrlics of producls by induction:

6. H (apby) = (\( a ) (‘ ’] I),‘.\’ (mulliplicuti\'c pmpcrly),
1 k=1

k=1 k

An important special case is the relation ] \,(’  (cap) = ¢" \ H’ 1 Qe

i IR / ) a, N .
7 l 1 = — if cach @, #0 (telescoping ‘\1'(»[1c|'1)‘),

ag

8 1If x # 1, show that
T+ =
[Ta +7) =7T"%

k=1

=17

y to prove by induc y A < > %=1 D

¢ of the pmducl when x

[.2....,n, itiscas tion that >
A I\

What is the valu
9. If a, < b, for cach k
1ss the un‘rcxponding incaluul

Discl ity for pmducls:

n

TTa < ~ﬁll’lu

k=1 k

Some \,wml inequalities
10, If x > 1, prove by induction that " > x for every integer n = 2. 1f 0 < x <1, prove that

x" < x for every integer i = 2.
1. Determine all positive integers n for which 2* < nl.

12, (a) Use the binomial theorem to prove that for n ger we have

a pm‘ili\c inte

(by If n > 1, use part () and Exercise {1 to deduce the mc«ln;\lllnc\

l n “«
> < (14 ) <1 > 3
n —d /\Y
Jew 1
13. (@) Let p be a positive integer. Prove that
p = (b — a)b L 4 b %a + D" 8,2 4+« + ba’ + a? 1)

[Hint: Use the telescoping property for sums.]
Use part (a) 1O show that

(b) Let P and n denote Pn\m\(' integers.

(n + 1Pt =n"
nP < : <+ D"
/) | |




Introduction

(¢) Use induction to prove that

n—1 n

Zkl nrtl ’ 7—\/ "
P < — .
k=1 g 5 | k=1

Part (b) will assist in m

aking the inductive step from nto n + 1.
14, Let s...,a, be n real numbers, al| having the same sign

and all greater than —1. Use
induction to prove that

(I + ap@ ta) (1 +a) > Tahta+-- 44

n-

In particular, when hh=a='"=q =y, where x > —1, this yields

(1.25) (1 2" &1 4 (Bernoulli’s iue(/ua/[t_l').

Show that when » > | the equality sign holds jp, (1.25) only for x = .
15. Ifn > 2, prove that n!lnt < (H*, where k is the greatest intcgcr < n/2,
16. The numbers 1, 2, 3, 5, 8, 13, ) .

- In which cach term
two predecessors, are called

P : g its
after the second is the sum of 1
Fibonacci numbersy.

They may be defineq by induction as follows:

4 =1, ay =2 nyy = a, + a, 4 if n>2.
Prove that
1 \/‘ n
“ <( +2 5)
for every n > 1.

Inequalities relating cl{'[ﬁ)

rent types o/'urera(gvc.s-. Let x, 5 Xgisiios
If p is a nonzero inte

-» Xy be n positive real numbers.
ger, the Pth-power mean M, of the n num

bers is defined as follows:

D &t P\1/p

M - (xl + + x”)

D — \ .
n

The number ps

harmonic mean,

Ifp >o0, prove that M, < Mm
[Hint:

118 also called the arithmetic mean, M, the root mean Square,

and M, the
17,

2p When *15X3,...,x, are not all equal,
Apply the Cauchy-—Schwarz inequality

18. Use the result of Exercise 17 ¢, Prove that

with g, = Xpand b, = 157

al 4 bt 4ty 64

ifa2+b2+c2=8anda>0,b>0,c>0.
19. Let AGs...,a,ben positive reg| Numbers whoge
4, 2 nand that the cquality

product s ¢qual to 1,
sign holdg only if ¢

Prove that g, 4 ... +
very aq;, = 1,
[Hint: ¢

nsider two cases: (a) All a,
(b) notice tha

: =1; (b) not alla;, = 1. Use induclion. In case
tif alaz'- g1 =1, then gt least one factor, Say a, , exceeds | and at least

one factor, $ay a,.,, is less than 1, [ ¢ by = aya

the product p

_ ni1 and apply the induction
19 a, using the fact that (a, — I)(

hypolhcsis to
i1 = 1) < 0.]




20,

o
3]

23,
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The geometric mean G of n positive real numbers xy, ..., x, is defined by the formula G =
R L)

(a) Let M, denote the pth power mean. Prove that G < M, and that G = M, only when
.\'l = '\': SR

(b) Let p and g be integers, ¢ <0 < p. From part (a) deduce that M, < G < M, when Xy,
Xay ..., X, are not all equal.

Use the result of Exercise 20 to prove the following statement: If @, b, and ¢ are positive real
numbers such that abe = 8, thena + b + ¢ > 6 and ab + ac + be = 12.

i X, are positive numbers and if y, = 1/x;, prove that

If a, b, and ¢ are positive and if @ + b + ¢ = 1, prove that (1 — a)(1 = b)(1 — ¢) > 8abe.




