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Abstract For random, diluted, multicomponent solutions,
the excess chemical potentials can be expanded in power
series of the composition, with coefficients that are
pressure- and temperature-dependent. For a binary system,
this approach is equivalent to using polynomial truncated
expansions, such as the Redlich-Kister series for describ-
ing integral thermodynamic quantities. For ternary systems,
an equivalent expansion of the excess chemical potentials
clearly justifies the inclusion of ternary interaction param-
eters, which arise naturally in the form of correction terms
in higher-order power expansions. To demonstrate this, we
carry out truncated polynomial expansions of the excess
chemical potential up to the sixth power of the composition
variables.

Keywords Thermodynamics · Redlich-Kister
polynomials · Solution models · Calphad method ·
Ternary parameters

1 Introduction

The Wagner formalism [1] for the thermodynamics of dilute
solutions was proposed in the first half of the twentieth cen-
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tury. Still popular in metallurgy, it is in particular widely
applied in calculations describing steelmaking processes.
This popularity contrasts with the history of the formal-
ism, which is inapplicable to concentrated solutions and was
shown to be thermodynamically inconsistent by [2]. A cor-
rection to the Wagner formalism was proposed [3, 4], to
motivate a recent study that has challenged its uniqueness
and deflated confidence in results drawn from the corrected
formulation [5].

An alternative is available. Physical quantities of thermo-
dynamical interest in this context can either be integral, such
as the Gibbs energy, or derived, such as the excess chem-
ical potential. While the Wagner formalism gives attention
to the latter with no regard for thermodynamic consis-
tency, Calphad-type models [6] start from the former, cover
the entire compositional range, are always thermodynam-
ically consistent, and have been successfully applied to
various systems and situations [6]. These advantages may
seem to outshine other theoretical constructions. Nonethe-
less, interest in the Wagner formalism persists, in spite of
its inconsistency with equilibrium conditions, because it is
simple and accurate within its range of applicability.

The present paper can be regarded as an extension of
Wagner’s treatment of dilute solutions [1]. It is not our aim
to obtain another correction to the Wagner formalism, a
development that would be pointless since the formalism
may be corrected in infinitely many ways [5]. Instead, we
want to offer an interpretation for the ternary-interaction
parameters in ternary systems. To this end, we will begin
at the starting point of Wagner’s treatment [1] and proceed
to show that the ternary-interaction parameters in Calphad
models and the binary parameters in the Redlich-Kister or
other polynomial expansions have the same origin. It is quite
possible that Mats Hillert had the same idea in mind when
he published his proposals for ternary solution models [7],
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and that Pelton and Bale [8], who realized that a polyno-
mial description of integral functions (e.g., the excess Gibbs
energy) is equivalent to a truncated polynomial expansion
of partial excess quantities (e.g., the excess chemical poten-
tials or, equivalently, activity coefficients), were also moved
by that idea. Nonetheless, refs. [7] and [8] only stated
this equivalence without explicitly expressing the connec-
tion between Wagner’s treatment and the Calphad solution
models, except for the first-order approximation and a few
general guidelines for higher-order extrapolations [9]. The
present authors, by contrast, argue that the equivalence
should be proved in detail, at least for binary and ternary
systems.

The procedure we adopt to prove the equivalence is not
unique. We could, for instance, postulate an expression for
an integral function, as Pelton has done [8], to offer a proof
that, albeit more difficult to extend to higher polynomial
degrees, would be more compact and simpler. But Wagner’s
theory is not expressed in terms of integral quantities. The
whole idea behind working with the Wagner interaction
parameters (and their extension to concentrated solutions)
is that, unlike integral functions, partial quantities, such as
the activity coefficients, can be directly related to measur-
able quantities (activities, electrochemical measurements,
vapor pressure measurements, and so on).

We have no intention to develop new methodology. Our
work is centered on the fundamentals of certain Calphad
solution models. We also limit our discussion to substitu-
tional solution models, for the sake of simplicity. We focus
our analysis on ternary parameters and discuss none of
the several “geometric” extrapolation methods in the liter-
ature, referring the reader to Malakhov [10] for a recent
review of those very convenient extrapolations, which are
sometimes used instead of ternary interaction parameters to
derive parameters for a ternary system based on binary data
only.

Our work is organized as follows. Section 2 presents a
general, brief overview of selected aspects of Calphad disor-
dered solution models. We then derive series expansions for
the excess chemical potentials in powers of the composition
to show their equivalence, first, in Section 4, to Redlich-
Kister series for binary systems, and then, in Section 5, to
a mix of Redlich-Kister polynomials and ternary interaction
parameters for ternary systems. Finally, Section 6 brings us
to our final discussion and conclusions.

2 Calphad Solution Models

Let us say we need to describe a solution phase φ in a
multicomponent system. In one of the most widespread
methodologies, one would write its molar Gibbs energy as
the following sum of four contributions, each of which is

(or may be) a function of the temperature T , the pressure p,
and the molar fractions of the components xi , xj , . . . [6]:

Gm(p, T , xi, xj , . . .) = serGm+ idGm+ physGm+ exGm

(1)

Here, serGm is the molar Gibbs energy of a standard energy
reference state, e.g., the mechanical mixture of the pure
components at the same temperature, pressure, and struc-
ture as the phase φ under consideration; idGm is the molar
Gibbs energy of an ideal solution, equivalent to a Bragg-
Williams treatment [11] and the only term on the right-hand
side explicitly accounting for the configurational part of the
Gibbs energy; and physGm is the contribution due to such
physical phenomena as ferromagnetism. The last term on
the right-hand side, the excess molar Gibbs energy for the
phase φ, measures the inadequacy of the previous terms to
describe physical reality.

Until physically sounder methods and models become
available, one is forced to use excess quantities, which
should parameterize all uncertainties inherent to the model
in (1). Artificial as it may at first seem, this definition proves
useful because approximate mathematical expressions for
the excess term, such as polynomial fits, can be derived to
describe the temperature-pressure-composition dependence
of the molar Gibbs energy. Examples are the truncated
expansions that generate Redlich-Kister [12], Legendre [8],
Margules [13], and other polynomials for binary systems.
Here, we will show that, applied to ternary systems, the
same truncated expansions yield ternary-interaction param-
eters.

3 Excess Chemical Potentials as Power Series

The excess term in (1) can be written in terms of the so-
called excess chemical potentials μex

i in the form

exGm =
∑

i

xiμ
ex
i (2)

The excess chemical potentials μex
i are related to each

other by the Gibbs-Duhem differential equation, which can
be written in as follows:
∑

i

xi dμ
ex
i = 0. (3)

For a completely random solution, it is possible to
express the excess chemical potentials μex

i in terms of
composition, pressure, and temperature. To the best of
our knowledge, Margules [14] was the first to develop
such an expansion to describe the thermodynamics of a
system, an idea that, half a century later, would be fur-
ther explored by Wagner [1]. The methodology was also
employed by Wohl [15], who developed expressions up to
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the fifth power of composition. Two years later, Redlich and
Kister [12] independently introduced their power series for
integral quantities, such as the excess Gibbs energy, follow-
ing an idea put forward by Guggenheim [16]. Cheng and
Ganguly [17] later demonstrated the equivalence between
the series expansions by Wohl [15] and by Redlich and
Kister [12]. Ansara [18] compared different models. Even
though Redlich and Kister [12] cite the work of Margules
[14], no explicit demonstration that the two approaches are
equivalent was presented, since they took the equivalence
for granted, as did the authors of more recent work [7, 8,
19, 20], who preferred to work directly with integral excess
quantities rather than with activity coefficients, an approach
still employed today.

We start out our discussion with binary disordered
solutions.

4 Binary Solution Phases

In the case of a random, diluted solution of two species,
labelled A and B , it is possible to expand the excess
chemical potentials in terms of the molar fractions,
so that after Wagner [1], we may write the following
expression

μex
i = �i,1(1−xi)+�i,2

2
(1−xi)

2+�i,3

3
(1−xi)

3+. . . (4)

where i = A, B , and the unknown parameters �i,η (η = 1,
2, 3,. . . ) are supposed to be functions of pressure and tem-
perature, so that μex

A (μex
B ) depends only upon p, T , and

1 − xA = xB (1 − xB = xA).
The unknown coefficients �i,η in (4) reflect the a pri-

ori unknown relationship between the composition and the
other two variables, p and T . Of course, the series must be
truncated at some power of (1 − xi). The �i,η should be
regarded as fitting parameters, in the very sense of a Cal-
phad optimization. It should be also clear that the truncated
expansion of μex

i is strictly valid for xi → 1, i.e., for infinite
dilution of the second component. One cannot treat concen-
trated solutions without considering interactions between
groups of atoms. Replacing idGm in (1) by more precise
entropic terms, such as those given by the Cluster varia-
tion method [21] or the cluster-site approximation [22], is
an alternative that could be used instead of (or simultane-
ously with) increasing the order of the series expansions in
(4). In the following, however, we will keep the ideal term
in (1).

Since the power expansions in (4) must obey the Gibbs-
Duhem relation (3), the �i,η cannot be independent. If we
adopt the �A,η as our fitted quantities, the parameters �B,η

for the second element (B) should be written in terms of
�A,η. In the Appendix, we prove that �A,1 = �B,1 = 0 and

�B,η =
ηmax∑

λ=η

(
λ− 2

η − 2

)
(−1)η�A,λ (η ≥ 2) (5)

where ηmax is the maximum degree of the truncated poly-
nomials of (1− xi) in (4), and we have assumed that the the
expansions of μex

A and of μex
B have the same ηmax .

One may now use (2) and the power expansions to rewrite
the excess molar Gibbs energy in the following form:

exGm = xAxB

ηmax∑

η=2

�A,ηxB
η−1 +�B,ηxA

η−1

η
. (6)

To obtain the Redlich-Kister polynomials, we introduce
the following transformations, first proposed by Hillert [7]:

xA ← 1

2
+ xA − xB

2
, xB ← 1

2
− xA − xB

2
. (7)

Equation 7 are valid as long as xA + xB = 1. Under
this condition, which is only valid for the binary systems
here considered, the two relations are identities, and we can
replace the arrows by equal symbols. When the right-hand
sides are substituted for xA and xB in (2), we obtain the
expression

exGm = xAxB

ηmax−2∑

ν=0

(xA − xB)
ν

⎧
⎨

⎩

ηmax∑

η=g(ν)

1

η · 2η−1

(
η − 1

ν

)[
�A,η(−1)ν +�B,η

]
⎫
⎬

⎭ , (8)

with the function g(ν) defined by the equality

g(ν) = 1 + ν + 1 + |ν − 1|
2

. (9)

The term within the curly braces on the right-hand side of
(8), a linear combination of the coefficients �A,η, is unique
for each running index ν. We call it Lν and rewrite (8) as
follows:

exGm = xAxB

νmax∑

ν=0

Lν(xA − xB)
ν (10)

with νmax = ηmax − 2.
The polynomials defined by the sum on the right-hand

side of (10) are identical to the so-called Redlich-Kister
polynomials [12].

Of course, from the Redlich-Kister parameters Lν , it is
also possible to derive the �i,η parameters, if one prefers
to consider them as the dependent variables. It is likewise
possible to derive other series, such as Legendre or Cheby-
shev polynomials, which are truncated series of orthogonal
polynomials, and hence offer the advantage that the addi-
tion of a new higher-order term has only small or no effect
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upon the lower-order terms [7, 8]. For additional discus-
sion of the conversion between different polynomial series,
a point of secondary importance for our purposes, the reader
is referred to the works of Hillert [7], Tomiska [23–25], and
Pelton and Bale [8].

5 Ternary Solution Phases

Ternary systems A−B−C pose a more interesting problem.
In analogy with the binary case, one can write the excess
chemical potentials of A, B and C as series expansions
of the composition. Under the same assumptions (dilute,
random solution), we can write, say, μex

A in terms of the
concentrations of the two other components, xB and xC , as
follows:

μex
A = 1

2

(
�A

BBxB
2 + 2�A

BCxBxC +�A
CCxC

2
)

+1

3

(
�A

BBBxB
3 + 3�A

BBCxB
2xC+

3�A
BCCxBxC

2 +�A
CCCxC

3
)
+ . . . , (11)

a generalization of (4) to ternary systems.
The � coefficients on the right-hand side of (11) are

interpreted as in Section 4, that is, they are simply mathe-
matical interaction parameters extracted from fits to exper-
imental data. The series should be truncated at some maxi-
mum power of the compositions. Similar equations hold for
the excess chemical potentials of the other two species.

On the right-hand side of (11), we have already dropped
the linear terms �

j

i xi (i, j = A,B,C), since their con-
tribution vanishes as a consequence of the Gibbs-Duhem
equation. Explicitly, from (3), we derive two equations
involving the coefficients in (11), namely,

xA

(
∂μex

A

∂xB

)

xC

+ xB

(
∂μex

B

∂xB

)

xC

+ xC

(
∂μex

C

∂xB

)

xC

= 0,

(12a)

and

xA

(
∂μex

A

∂xC

)

xB

+ xB

(
∂μex

B

∂xC

)

xB

+ xC

(
∂μex

C

∂xC

)

xB

= 0.

(12b)

It is obvious that not all three composition variables are
independent. For this reason, on the right-hand side of (12a,
b), we regard xA as dependent on xB and xC , that is, given
by the expression xA = 1 − xB − xC . This choice is
arbitrary, not unique, but the final result will not depend
on it.

In addition to the relations imposed by (12a, b) and the
condition xA + xB + xC = 1, a constraint relating the �

coefficients is introduced by the following thermodynamic
identity:

∂
(
μex
B − μex

A

)

∂xC
= ∂

(
μex
C − μex

A

)

∂xB
, (13)

which is valid as long as xB and xC are the independent
variables and leads to Darken’s criterion for thermodynamic
consistency in ternary systems [2].

Equation (11) and its analogues for μex
B and μex

C intro-
duce three sets of parameters, which consist of the �A, �B

and �C variables. Given (12a, b) and (13), however, we see
that only one of those sets, or a linear combination of the
three sets, is independent. Therefore, as in the binary case,
to insure thermodynamical compatibility of the proposed
model, we have to reduce the number of parameters.

5.1 Regular Solution Model

Let us first consider the simpler case, in which the coef-
ficients of third or higher order are ignored, that is, let us
start by assuming that �l

ijk... = 0, so that only the �k
ij

(i, j, k, l, . . . = A,B,C) are nonzero. Equations (12a, b)
and (13) then yield the result

�
j

ii = �i
jk +�

j

ik (i, j, k = A,B,C). (14)

Therefore, out of the nine �k
ij parameters, only three

are independent. We choose �A
BC , �B

AC , and �C
AB . Using

(2), we can then write the excess molar Gibbs energy for a
ternary system A− B − C in the form

exGm =
(
�A

BC + �B
AC

2

)
xAxB +

(
�A

BC +�C
AB

2

)
xAxC +

+
(
�B

AC +�C
AB

2

)
xBxC, (15)

which can be rewritten as follows:

exGm = LAB
0 xAxB + LAC

0 xAxC + LBC
0 xBxC. (16)

The right-hand side of (15) contains no term dependent
on the product xAxBxC . This immediate consequence of
neglecting third-order terms in our expansion for the excess
chemical potential shows that this approximation is equiv-
alent to Muggianu’s “geometrical” extrapolation [26], an
equivalence that has been established by Saulov [27] in a
multicomponent context.

As stated in the introduction, the above procedure is
not the only way to prove the equivalence. One could
postulate (16) and derive (14) and (15). Although sim-
pler, this route is not as easily extended to accommodate
higher powers of the composition on the right-hand side of
(11).
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5.2 Subregular Solution Model

We now consider terms up to third power on the right-hand
side of (11). There are now 21 � parameters, but the Gibbs-
Duhem (12a, b) and (13) reduce the number of independent
parameters to seven, included among them at least one of
the third-order �’s to allow for ternary interactions.

We chose to keep the �A parameters as the indepen-
dent ones, and solve for the others. The following lists of
equations results:

�B
AA = �A

BB +�A
BBB (17a)

�B
AC = �A

BB −�A
BC +�A

BBB −�A
BBC (17b)

�B
CC = �A

BB +�A
CC − 2�A

BC +�A
BBB − 2�A

BBC +�A
BCC

(17c)

�B
AAA = −�A

BBB (17d)

�B
AAC = −�A

BBB +�A
BBC (17e)

�B
ACC = −�A

BBB + 2�A
BBC −�A

BCC (17f)

�B
CCC = −�A

BBB + 3�A
BBC − 3�A

BCC +�A
CCC (17g)

�C
AA = �A

CC +�A
CCC (17h)

�C
AB = −�A

BC +�A
CC −�A

BCC +�A
CCC (17i)

�C
BB = �A

BB +�A
CC − 2�A

BC +�A
BBC − 2�A

BCC +�A
CCC

(17j)

�C
AAA = −�A

CCC (17k)

�C
AAB = �A

BCC −�A
CCC (17l)

�C
ABB = −�A

BBC + 2�A
BCC −�A

CCC (17m)

�C
BBB = �A

BBB − 3�A
BBC + 3�A

BCC −�A
CCC (17n)

With the reduction relations in (17a–n), we can relate the
excess molar Gibbs energy in (2) to the �A coefficients.

Straightforward algebra yields the following expression for
the excess molar Gibbs energy:

exGm = xAxB

[
LAB

0 + LAB
1 (xA − xB)

]
+

+xAxC

[
LAC

0 + LAC
1 (xA − xC)

]
+

+xBxC

[
LBC

0 + LBC
1 (xB − xC)

]
+

+xAxBxC LABC, (18)

where the L-coefficients are defined as follows:

LAB
0 = 2�A

BB +�A
BBB

4
(19a)

LAB
1 = −�A

BBB

12
(19b)

LAC
0 = 2�A

CC +�A
CCC

4
(19c)

LAC
1 = −�A

CCC

12
(19d)

LBC
0 = 2�A

BB+2�A
CC − 4�A

BC ++�A
BBB −�A

BBC −�A
BCC +�A

CCC

4
(19e)

LBC
1 = �A

BBB − 3�A
BBC + 3�A

BCC −�A
CCC

12
(19f)

LABC = 3�A
BBC + 3�A

BCC − 2�A
BBB − 2�A

CCC

12
(19g)

It is also possible, if required, to invert (19a–g) to express
the �A coefficients as linear combinations of the L param-
eters and then invert (17a–n) to also write the �B and �C

coefficients in terms of the L parameters.
Equation 18 show that if the series for the excess chemi-

cal potentials in (11) is expanded up to power three, all three
binary systems will be described as subregular solutions.
More importantly, a ternary term xAxBxCLABC emerges
naturally from the equations. With that in view, we can
say that the ternary interaction parameter LABC is part of
the subregular solution model extrapolated to ternary sys-
tems. In other words, if all three binaries are described as
subregular solutions, Muggianu’s “geometric” extrapolation
[26] is insufficient to describe ternary systems. That extrap-
olation is only appropriate for special systems, ones with
special properties that may a priori justify the approximation
LABC ≈ 0.

5.3 Higher-Order Approximations

We can add higher powers to (11) and, using the Gibbs-
Duhem relations (12a, b) plus equation 13, obtain expres-
sions for exGm. To save space, we will not present here



Braz J Phys (2014) 44:208–214 213

the details of the calculation, which follows the analysis in
Section 5.2 and involves a large number of equations. For
details, please contact the authors. This procedure yields the
following expression for the Gibbs energy:

exGm = exG(bin)
m + exG(tern)

m (20)

where exG
(bin)
m is a sum of Redlich-Kister polynomials

coming from the three binaries,

exG(bin)
m =

∑

i=A,B,C

∑

j>i

xixj

ηmax−2∑

ν=0

Lij
ν

(
xi − xj

)ν
. (21)

Here, ηmax is the maximum power in the series on the right-
hand side of (11).

The cases ηmax = 2 and ηmax = 3 have already been
described, in Sections 5.1 and 5.2, respectively. As (21)
shows, each new power ν added to (11) adds three new
L
ij
ν Redlich-Kister coefficients, one for each binary system

i − j . As explained in Section 4, the polynomial expression
(21) is by no means the only possible expansion. One could
work, for instance, with Legendre polynomials.

Ternary terms are also required, as indicated by the term
exG

(tern)
m in (20). As we have seen, there is no ternary term

for ηmax = 2, so that exG
(tern)
m (ηmax=2) = 0. For ηmax = 3, the

ternary excess term is the last term on the right-hand side of
(18). For a maximum power of four in(11) (ηmax = 4), the
ternary parameter LABC is replaced by three coefficients,
so that (20) is complemented by the ternary excess term as
follows:

exG
(tern)
m (ηmax=4) = xAxBxC (xALA + xBLB + xCLC) (22)

The right-hand side of (22) is exactly the ternary term
proposed by Hillert [7], which is commonly used in ternary
assessments. The result is also equivalent to the Margules-
type polynomial expansion proposed by Gokcen and Baren
[28]. As (21) shows, to take full advantage of the series
expansion, one has to introduce appropriate L2 coefficients
for the binary terms. This procedure has been bypassed in
certain treatments, the ternary parameters LA, LB , and LC

in (22) having to be modified to account for the corrections
due to missing LAB

2 , LAC
2 , and LBC

2 terms. Whether this
procedure is valid or unreliable will depend on the particular
system being modelled.

The next power (ηmax = 5) yields the ternary term

exG
(tern)
m (ηmax=5) = exG

(tern)
m (ηmax=4) + xAxBxC(xAxBLAB +

+xAxCLAC + xBxCLBC) (23)

in addition to three L3 binary interaction parameters.

We are unaware of any work having reached this degree
of approximation, ηmax = 5, even though Gokcen and
Moser [29] have discussed it. In any case, for the vast major-
ity of systems, such high-order corrections are expected to
make negligible contributions. The same can be said about
the approximation ηmax = 6, which yields an L4 interac-
tion parameter for each of the tree binary systems, plus a
ternary correction with four additional parameters, which
can be written in the following form

exG
(tern)
m (ηmax=6) = exG

(tern)
m (ηmax=5)

+ xAxBxC

[
xAxBxCL

0
ABC

+ x2
A(xB − xC)L

A
ABC

+ x2
B(xA − xC)L

B
ABC

+ x2
C(xA − xB)L

C
ABC

]
(24)

6 Conclusion

As we ventured to show, the inclusion of ternary interaction
parameters is mathematically justified on the same grounds
as the inclusion of binary interaction parameters. We have
been led to an agreement with the analyses of Helffrich
and Wood [30] and Saulov [31], who have followed dif-
ferent approaches to reach conclusions that are similar to
ours. Contrary to Janz and Schmid-Fetzer’s statement [32],
ternary parameters should not be avoided, notwithstanding
the counterintuitive behavior reported by those authors, also
commented by Saulov [31]. Nor should one conclude, on the
other hand, that our treatment of the excess ternary Gibbs
energy is unique or preclusive of alternative formulations
such as the extrapolation scheme proposed by Chartrand and
Pelton [33].
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Appendix: Proof of (5)

Equation 5 is but a generalization of the expansion proposed
by [1], who presented only the first few terms. The proof
of the general expression, using the Gibbs-Duhem equation,
may be of some interest. To that end, we write (3) in the
following form

xB
dμex

B

d xA
= xA

dμex
A

d xB
, (A1)
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which is valid for a binary system A− B . More compactly,
(4) can be rewritten as follows:

μex
A =

ηmax∑

η=1

�A,η

η
xB

η, μex
B =

ηmax∑

η=1

�B,η

η
xA

η. (A2)

Substitution of the right-hand sides in (A2) for the excess
chemical potentials in (A1) yields the equality

xB

⎛

⎝�B,1 +
ηmax∑

η=2

�B,ηxA
η−1

⎞

⎠ = xA

⎛

⎝�A,1 +
ηmax∑

η=2

�A,ηxB
η−1

⎞

⎠ .

(A3)

From (A3), we deduce immediately that �A,1 = �B,1 = 0,
as pointed out by Darken [34]. We also have to equate the
sums within the parentheses on both sides of (A3). Division
of both sides by the product xAxB then yields the expression

ηmax∑

η=2

�B,ηxA
η−2 =

ηmax∑

η=2

�A,ηxB
η−2 (A4)

We now recall that xB = 1 − xA and use the binomial
theorem to expand the resulting powers of 1 − xA, which
leads to the equality

ηmax∑

η=2

�B,ηxA
η−2 =

ηmax∑

η=2

η−2∑

λ=0

�A,η

(
η − 2

λ

)
(−1)λxAλ (A5)

Since the right-hand side of (A5) is a polynomial in xA,
we can easily reverse the order of the double sum, to find
that

ηmax∑

η=2

�B,ηxA
η−2 =

ηmax−2∑

λ=0

ηmax∑

η=λ+2

�A,η

(
η − 2

λ

)
(−1)λxA

λ

(A6)

The formal transformations λ → η−2 and η → λ adjusts
the power of xA in the summand on the right-hand side of
(A6) to make it identical to the power in the summand on
the left-hand side:
ηmax∑

η=2

�B,η xA
η−2 =

ηmax∑

η=2

ηmax∑

λ=η

�A,λ

(
λ− 2

η − 2

)
(−1)η xAη−2

(A7)

since (−1)η−2 = (−1)η.

Comparison between the coefficients of x
η−2
A in the

summands on both sides of (A7) then yields the final
result

�B,η =
ηmax∑

λ=η

�A,λ

(
λ− 2

η − 2

)
(−1)η. (A8)
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