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ABSTRACT, Various empirical methods of predicting the properties of a ternary system from its 
binary components are reviewed and their generalization to higher systems is dis- 

cussed, The methods are compared by applying the subregular solution model and ex- 
pressions are derived which allow a direct comparison. 

For symmetric treatments, a numerical method and equivalent analytical methods are 

recomnended for universal usage. For asymmetric treatments, a numerical method is 
recommended but the possibility of treating such cases by transforming an asymmetric 
ternary system into a reciprocal system and using a formally symmetric description 

is emphasized. 

Introduction 

There is a considerable need to predict the thermodynamic properties of a ternary solution 

phase from the properties of its binary cornpo~~~ ts and a large number of methods have been 
suggested. They have been reviewed by Ansara , for instance. Some are based upon theoretical 

models and others may be characterized as empirical. The present communication will only con- 
cern the empirical methods and their physical justifications will not be discussed. They may 
be divided into two groups. One group of methods can be applied directly to numerical informa- 
tion on the binary systems. They will here be called numerical methods although they treat the 
t$Qary numerical information analytically. They are sometimes described as geometrical methods 

because they can be i llustrated by geometrical constructions, Another group requires that 
the binary information first be approximated by certain analytical expressions. They will here 

becalledanalytical methods although it has become very common also to apply the nuyjjcal 
methods to cases where the binary information has first been put in analytical form . In 
such cases it is possible to make a direct comparison between the different methods. Such a 
comparison will now be made of the methods most commonly used for metallic systems. 

Experience shows that the analytical expressions, g iven by the various methods of predic- 
ting ternary properties from binary ones, wi 11 also be used for the representation of experi- 
mental data. It is thus important to choose the method of prediction with this purpose in mind, 

as well. In particular, it would be a great advantage if a general agreement could be reached 
and only a few methods be used. 

Analytical Methods 

A large number of expressions have been proposed for the tsa),y{i&pl representation of 
thermodynamic properties of solution phases in binary systems ’ ’ ’ . There is also a need 

to represent the properties of higher systems with such formulae. It may thus be advantageous 
to use a method which can easily be generalized to higher systems. Expressions, which are 

based upon some power series expansion using mole fractions, lend themselves to this purpose 

and will be used in the present work. The use of a power series expansion was first proposed 
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(7) by Marguies . For the excess Gibbs energy of a binary solution phase one can formulate the 
expression in two ways 

EG = x,(1-x,)P,2 

E 
G = xix2P,2 

The regular solution model is defined by P,2 being a constant, 
“A 

which wi ii here be denoted by 

*13’ 
The two expressions are completely equivalent in the binary case where x,+x2=1 but they 

yle d different results when used to predict the properties of a ternary phase where x,+x2=1-x3. 

It is corm-non to predict the properties of a ternary solution phase by a simple summation 
of the binary expressions, as given by eq. lb, when they obey the regular solution model, 

EG = x1x2’A,2 + x2x3OA23 
+ x3x1OA31 

This expression has the attractive property of being gradually reduced to the expression for a 
binary system if two of the components could be made more and more similar. For example, when 
2 and 3 become identical, one has ‘Al2 = ‘A3, and A23 = 0 and one thus obtains 

which is equivalent to eq. lb when the components 2 and 3 are identical. 

As al ready mentioned, a different result would be obtained if the ternary expression was 
constructed by using the form given by eq. la, * 

EG = x,(l-x1)0A,2 + x~(~-x~)~A~~ + x3(1-x3)0A31 

This expression does not reduce to the expression for a bi nary system if two components become 
identical. It is thus less attractive and there seems to be universal agreement that eq. 2 re- 
presents a more natural way of predicting the properties of the ternary system. In fact eq. 2 
can be justified by a nearest neighbor mode1 with random mixing. 

As soon as the P12 parameter is allowed to vary with the composition, there is a large 
number of alternatives which are equivalent in the binary case but not in the ternary. One may 
for instance write P,2 
or only the combination 

as a symmetric function in x, and x2 or as a function of only x,, only x2 
x1-x2. None of these expressions ~111 yield the same attractive pro- 

perty as eq. 2. As a consequence, other criteria must now be used in order to choose between 
the alternatives. The remainder of this section will be concerned with various alternatives. 

The subregular solution mode1 is obtained by allowing P 
the composition. There are a number of ways to write the bin a2 

in eq. 1 to vary linearly with 
ry expression which should now 

contain two independent parameters. A rather common expression is the following symmetric one, 

E 
G = x,x~[A;~x, + Af2x2] 

which reduces to the regular solution mode1 when A’ = A‘ = oA 
ties are predicted by a simple summation of binary’gxpre!gions l2 

. However, if ternary proper- 
Ike eq. 5, an expression re- 

suits which doesonot reduce to the rgguiar solution modeb, eq. 2, For instance, the first term 
;zi,;;t lfe x,x2 Al2 but x1x8(x,+x2) Al2 i.e. x,x2(1-x4) A12. One should thus avoid using eq. 5. 

It can easliy be mo ifled in such a manner th t i reduces to the regular solution 
model i; use is made of the relation x +x =l in an appropriate way. A method which wi i i give 
the desired result when applied to any’exfiression is based upon the following parameters. 

v12 = (1+x,-x2) /2 

v21 
= (1+x2-x1)/2 (Gbj 

In the binary system they are equal to x1 and x2 but their sum is unity even in higher systems. 

v12 
+ v2, = 1 
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The required modification of eq. 5 can thus be accomplished by simply replacing x, by v,2 and 

x2 by “21 
inside the bracket, 

EG = x x [A’ 
2 

1 2 12V12+A12V2’] (7) 

In view of eq. 6c this expression always reduces to x,x~~A,~ when Ai = A:2 = oA,2. 

It is interesting that the procedure which was applied to eq. 5 would have no effect if it 
is again applied to eq. 7, 
(1+x,-x2)/2 and 

since the bracket only contains v,~ and v2, which are equal to 
(1+x -x )/2. By replacing x, by v12 and x2 by v 

pressions (l+~,~-v~, f/Z’and (l+v 
one thus obtains the ex- 

-v 
21 1s 

)/2 which are always equaq’to v and v in view of eq. 
6c. It would thus e possible to cons ruct a computer-operated procedu e whit could accept any ‘f K’ 
y;;;tical expression for PIP and by the substituion of x, and x2 with (1+x -x )/2 and 

2-x,)/2, respectively, I would make all those expressions equivalent in h gher-order ’ 3 
systems which are equivalent in the binary system, 

Eq. 7 can be rearranged in the following two ways, 

EG = x,~~~~A,~+‘A,~(x,-x~)] 

E 
G = x,x~~~A,~+‘A,~~,+‘A~,~~] 

(8aI 

(8b) 

where OA 
equivalen ‘t 

= (A2 )/2 and ‘A = -‘A 
to e4? 7 and it I’? only 4’ 

= (Ai2-Af2)/2. Of course, these expressions are quite 
matter of onvenience what expression is chose 

then worth,noting that eqs. 8a and b should be accompanied by the information that 
y0 
A 

It if 

= 0 where A is the parameter to be used in eq. 
q’requires no such information. 

8a if the order of the two componen s is r$! i2 
+ A 

versed. Eq. This fact can be used as an argument in favour of 
eq. 7. It is not a strong argument and eq. 8a may be the most attractive alternative because 
of its simplicity. However, as shown later, the argument in favour of the v parameters grows 
stronger when one goes from binary interactions to ternary ones. 

If the ternary properties are predicted by a summation of binary expressions like eq. 8a 
the result takes the following form 

EG = x,x2~oA,2+1A,2(x,-x2)1 + x2x3[0A23+‘A23(~2-~3)]+ x~x,[~A~,+‘A~~(~~-~,)] (9) 

As already mentioned, this reduces to the regular solution expression, 
= 0. However, it should be noticed that this attractive property may be 
adds a term x x x *f where f is some function which goes to zero when 
zero. As a cor!s$qaence there is no formal way to justify why a simple 
pressions like eqs. 7,‘8a or 8b should be used for predicting ternary properties from binary in- 
formation. Other alternatives will be discussed in the next sections. 

There are many ways to formulate the power series for a binary system when higher powers 
are included. By generalizing eqs. 7 and 8a one obtains 

E 
G = x,x2 ,%A’;;‘v~;“v;, 

EG 
= ‘1’2 k~okA,2(x,-x2)k 

(lOa) 

(lob) 

These expressions are completely equivalent since v 
‘a and 24 

only contain x and x in the com- 

;;~;~a;l;x~: 
The relations between the two sets o para ers in eqs. 1Oa’and b are presen- 

Another method is to use the Legendre polynomials, which have the advantage that the 
addition of a new higher term has only a small effect or none at all on the values of the lower 
terms. This has been discussed in detail by Bale and Pelton (6) who also discussed other ortho- 
gonal functions. They chose to express the Legendre polynomials in terms of x, and obtained the 
following equation, 
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EG 
1 

= x,x~~~B,~+ B,2 ~2x,-,)+2B,2(6x~-6x,+l)+3B,2(20x~-30x~+,2x,-,) 

4 
+ B12(70x:- 14Ox~+YOx;-2Ox,+l)+...........l (,,a) 

TABLE I 

Coefficients for the Conversion between the Sets of Parameters in Eqs. 10a and b. For Example, 
at na2, A2=2'A-2'A and 4'A=2A'-2A3 

n OA/A' IA/A* 2A/A3 3A/A4 4A/As sAlA 6A/A7 'A/A8 

0 A1/'A 1 

1 A'/2'A 1 1 
A2/Z1A 1 -1 

2 A1/4"A 1 1 1 
A2,'41A 2 0 -2 
A3/42A 1 -1 1 

3 A1/8'A 1 1 1 A2/81A 1 -, -: 
A3/6i2A 2 -1 -1 3 
A4/83A 1 -1 1 -1 

4 A1/16'A 1 1 1 1 A2/161A 4 2 0 -2 -2 

A3/16'A 6 0 -2 0 A4/163A 4 -2 0 2 -64 
A5/164A 1 -1 1 -1 1 

5 A1/32cA 1 : 1 1 1 A2132'A 5 1 -1 -3 -: 
A3/32*A 10 2 -2 -2 2 10 
A4,'323A 10 -2 2 -10 

As/32'A 5 1; 1 1 -: 5 
A6/325A 1 -1 1 -1 1 -1 

6 A1/64'A 1 1 1 . 1 A2/641A 6 1 2 -2 -1 -: 

A3/642A 15 5 
1; 

-8 -1 5 15 
A4/643A 20 0 4 -20 

A5/64'A 15 -"5 -1 3 -1 
A6/64=A 6 -4 2 0 -2 

-% 
1; 

A'/646A 1 -1 1 -1 1 -1 1 

7 A1/128'A 1 1 1 1 1 A2/1281A 7 
5 

3 
-: 1; 

_; _; -: 
A3/,2g2A 21 1 1 9 
A4/12a3A 35 -3 -:: 
A5/,28'A 35 -: 1; 3 ; _;, 1: 35 
A6/12g5A 21 

1; : 

3 -3 -1 

A'/lZ@A 7 -1 -1 3 -z 

-21 

7 
A8/128'A 1 -1 1 -1 1 -1 1 -1 

In order to treat the two components in a symnetric way, the following modification of the 
Legendre polynomials may be chosen 

EG = x,x2[oB12+1B,2(x,-x2) + 2B,2(x;-4x,x2+x;) 

+ 3 B12(x:-9x:x2+9x x , ;-x;)+........ + nB,2 (lib) 

Rand (8) has pointed out that it may be advantageous to express the Legendre polynomials in 
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terms of the concentration parameter z,2=x,-x2, 

EO = x,x2~“B,2+1B,2z,2+2B12(3z;2-l)/2 + 3B12(5z;2-3z12)/2 

+ ‘B,2(3~~~~-30~~~+3)/8 + 
5 

B,2~63=~2-70*~2+15~12)/8 

+ 6B12(231z~2-315z~2+105z~2-5)/16 + 7B,2(429z7-693z5 

+ 315z3-35~)/16+.......... (1 lcf 

The coefficients in all these equations using Legendre polynomials are identical and they are 
directly related to the coefficients in eqs. IOa and b as shown in Table II. However, when used 

TABLE I I 

Coefficients for the Conversion between the Sets of Parameters in Eq. IOb 
using Legendre Polynomials. Fgr each n Value read up tp thy correSrpnding 
Example, at n=3 or 4, ‘A=‘B- ~~8 and at n=5 and 6, A= B- ?‘B + T B. 

@B ‘8 “B 38 4B 5B 6B ‘B 
‘A 1 -- 1 

2 
‘A 1 3 _- 

2 
2A 3 105 

T -iz 

3A 5 
? 

@A 315 
--it; 

sA t 6 

6A 231 
71: 

?A 

‘A ‘A ‘A 3A 4A 'A 6A ‘A 
‘B 1 1 

5 
‘B 1 3 3 1 

5 7 7 
28 4 10 

7 ?i 
38 s 4 

B 
48 a 24 

3 7 
se 8 8 

= 3 
68 16 

zz 

78 

and the Equations 
Parameter e For 

to predict ternary properties, only the type of equations , where the bracket ,is composed of the 

~;$;;~;;o;J;x$) 
only, give the Same result. These are eqs. IOa and b and llc. The other 

ifferent results because they can be derived from the first type of equations 
by the use of the relation x1+x2 11 which is only true in the binary case. These equations can 
easily be transformed to the first type by substituting x, and x2 with v,2, respectively. For 



6 M. Hillert 

example, eq. lib is thus transformed as follows 

EG 
1 

= ~,x~[~B,~+ B,~(v,~-v~, 
2 

I+ B,~(v,~- 2 4v 
12v21+v21 2, 

+ 3B12fv:2-9v:2vZ1+9v,2v~,-v2, 
2 2 

3 )+4B,2(v~2-16v:*v2,+36v,2v21 

‘16v,2v;1+v;l)+.*“.**..~ (lid) 

By this transformation it becomes completely equivalent to eqs. 1Oa and b. As already pointed 
out, the same transformation would have no effect when applied to an equation which is already 
composed of the combi nation x1-x2. 

The expressions involving Legendre polynomials have the disadvantage of taking slightly 
longer to compute and from a practical point of view eq. lob seems to be the best expression. 
On the other hand, the Legendre expressions have an advantage when the parameters are to be 
evaluated from experimental information because they can Fn principle be determined one after 
the other due to the orthogonality. In practice one must allow a small correction to the pre- 
viously evaluated parameters when a new one is included unless the experimental data are closely 
and regularly spaced (6). Furthermore, the standard deviation for each parameter, which is ob- 
tained from the data fitting procedure, is meaningful and can be judged separately when one 
works with the Legendre expressions but not when one works with the non-orthogonal power Series 
expressions. In addition, the Legendre expressions allow approximate expressions to be con- 
structed by simply dropping any higher order terms. It may thus be concluded that both types of 
expressions should be used where appropriate and a conversion can be made by means of Table Ii 
whenever it is needed. 

Once it has been decided what analytical expression should be used for the representation 
of the binary information and what method should be used for the construction of the ternary 
expression, e.g. the simple sumnation of the binary expressions, it is possible to compare the 
prediction with experimental information from the ternary system. To what extent the difference 
is due to a real ternary effect, depends upon how well the physical justification for the 
method of constructing the ternary expression applies to the system under consideration. Such 
aspects will not be discussed in the present work. In any case, it is convenient to represent 
the difference by an expression of the follwing form 

EG 
= x1x2x3p123 (12) 

is some power series expansion using mole fractions. In the sksplest case, P 
~!?~~t’&@al 

can 
to a cons tan t ‘A If the next higher order terms are needed, there wi II’&! three 

parameters and the fol lowing sy 12A-Atric exp ressFon can be used 

EG = x x % tA1 2 3 
1 2 3 123X1+A123X2+A123X3’ (13) 

This expression reduces to the previous one when A’ g2 =A3 0’4 
su’tabAe for predictions of quaternary prope&ties 

f 

3a:: %? f~~~‘b~“~~e’~:~o~‘~a.“a’,“a’~~~~f 

b@m ra;tna~:3,nf~~g,tr~~~~~u~~ As “Z2 
On the o&J ha%, it 

?A$?~dk~’ t$x?17fz;#A :?188il ties 

v123 = (1+2x,-x2-x3)/3 (14aI 

v231 = (1+2x2-x3-x,)/3 (14b) 

~~~2 - (1+2x3-x1-x2)/3 (14c). 

In the ternary system, v 23, v 
1 gas :;:t:x!T 

are identical to x x andx 3, respectively, but 
their sum is unity even n hl I’ 2 

‘123 + ‘231 + v312 p 1 (l&d) 

The requlred modification of eq. 13 can thus be accomplished by replaclng x1 by v123, x2 by 
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~23, and x3 by v3,2 inside the bracket, 

EG = x x x [A’ 
2 3 

1 2 3 123V123+A,23V231+A123v312’ 
(15) 

If the same procedure is repeated it would have no effect since the bracket only contains v 

&V 
and ‘312 

and, for instance, v is equal to (lt2xl:x2 -x )/3 which will be modified to 
1239 

hold ~6?-:231-%12 
)/3 which is alway 122 equal to v,23 In view 0 eq. 

3 
14d. Equivalent relations 

231 ‘312’ 
As expected, eq. 15 reduces to x,x~x~~A~~~ when A :23=~:23=A:23= OA It can be rearranged 

in the following two ways, 
123’ 

E 1 
G = x,~~“~[~A,~~+ Alz3b, 2 -x )+‘A 

231 
(x -x 

2 3 
)+‘A 

3l2(x3-x1’ I (164 

E 1 1 1 
G = xlx2x3’oA123+ ‘123’1+ ‘231x2+ ‘312’3’ 

(16b) 

where 
two eq::~ta~:ldw_::lrl’e~C,tal;~~3~~1~~2315’~~12;:~~11;:~263 ::~o~~~~~~“aa’:::,i~~~~,:::~~ 

that the sum of the three A or C parameters is zero. This fact makes eq, 15 more preferable 

although it is more complex because it contains v instead of x. If even higher order terms are 

needed, it is advisable to use a generalization of eq. 15 similar to eq. 10a. 

It is possible to extend this treatment to higher systems by simply taking the summation of 
the contribution from all the binary components,expressed by means of eq. lOa, all the ternary 

components, expressed by means of a generalization of eq. 15, and all the higher components, ex- 

pressed by similar equations. 

Numerical methods 

All the numerical methods as well as the analytical ones give different results for diffe- 
rent choices of concentration oarameter. The choice of mole fraction is almost universally pre- 

ferred. 

FIG. 1 

Various methods of selecting the point on a binary side 

whose value will be used as a contribution to the value 
of a ternary alloy 

In the discussion of the numerical methods, 

energy on the binary l-2 side will be denoted by 

bhe numerical values of the excess Gibbs _ 
-G~~(x1;x21 where x1+x2=1. The question is 

tram what point on the binary side one should take e numerical value which ~111 be allcwed to 

contribute to the value in a ternary alloy. Figure 1 illustrates the geometrical COnStructiOnS 

which have been used to illustrate the different methods. In addition each method uses a weight 
factor which is constructed in such a way that the final expression can be @!1,16tf,fo ik’,yre- 
gular solution model. In particular, three methods deserve special mention . 

yield the following expressions. 

Kohler EG = Z(x,+x2)’ . EG,2(~l/(x1+x2) ;x2L(xl+x2)) (17) 
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Co1 inet 
x1’2E 

EG,2(xl;l-xl) f l_x G 
2 '* 

(,-x2;x2) 1 
Muggi anu EG 

‘lx2 E 
= C- G(v 

v12v21 
12;v21) 

(18) 

The summations are taken over al, the binary components. The three methods have here been de- 
fined with expressions which allow an extension to higher systems by simply adding terms for 
the new binary components. In addition, ternary contributions should be added in the following 
way o 

Kohler EG = C(X~+X~*X~~~ EG,23 x, ( /(x,+x2+x3) ;x2f (x1+x2+x3) ‘X3/ (x1+x2+x3) I(201 

E 

Co1 inet EG=C 
[ 

x3/3* G,*3(xl,x2, *(1-x1-x211 

1-x,-x2 

+ xl’3* 
E 

G123 ((l-x, 3 -x 1;x2;x3) 

1-x2-x3 

+ xZ/3~EG123(XI'(I-~3-x11ix3~, (21) 

1 -x3-x1 

Muggi anu 
EG L1 ZXlX2X3 EG 

v123v231v312 123fV123~V231,V312) 
122) 

The surmaationsare taken over all the ternary components. Expressions for higher components can 
be constructed in a similar way. 

The numerical methods a e often applied to cases where the binary information has already 
been put in analytical form f3) . It is then possible to make a direct comparison with the ana- 
lytical methods. Such a comparison will now be made for the subregular solution model written 
in the form given by eq. 7 or 8a. The following results are obtained. 

Kohler 

Co1 inet 

Muggi anu 

EG 
2 xl x2 

= c(x1+x2) l - * - 
x,-x* 

x1+x2 x1+x2 
‘A,*+‘A - 

12 x,+x* 1 
= Cxlx2 x1-x2 oA12(x1-x2+ x * (23) 

1 2 
x32 I 

x1(1-x1) [“A,2+‘A12(2x1-1~1 

x1/2 
+ I_X * (,-x~)x~[~A,~+‘A~~(,-~x~)~- C~,x~f~A,~+‘A,~(x,-x~)1 (24) 

2 

(251 

The summations are taken over all the binary components. The three methods are illustrated in 
Figure 2. The Collnet and Muggfanu methods both yield the same result as the analytical method, 
eq. 7. The Kohler method yields a similar result but it contains an extra term of the form 
x,x2x3. f where 

f= ‘A 
xI_xz + 

12 x1+x2 
lA x2_x3+ lA x3-xl 

23 x2+x3 31 xJ+xI 
(261 

It may thus be regarded as a modification of eq. 9. The factor f is zero at the center of the 
ternary system where x =x -x 

, 2 3 
and it has always a low value In comparison with the total value 

given by eq. 9. 
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,A2 ,A* ,b, 
Kohler Colinet Muggianu 

FIG. 2 

Illustration of the character of some symmetric numerical methods of predicting ternary proper- 
ties from binary ones. The properties of the alloy, marked with a cross, are given by some ave- 
rage of the properties of the binary alloys marked with circles. 

The results will generally be more complicated if higher order terms are included in the 
analytical description pf2fhe binary properties. An exception is Muggianu’s method, eq. 19. When 
applied toeq. 10a or b , it recreates the binary expression. In the case of eq. 10a this is 
because it contains v and v which are equal to (1+x -x )/2 and (1+x -x )/2. By substituting 

v12 
and v 2, for xl an d2 x2, ac ording to eq. 19, and app yang eq. ?’ 1 *2 6c one’oblains for instance, 

(l+v ,2-v2,)/2 = v,2 

In the case of eq. lob it is because it contains the combination x,-x2 and by substituting 
and v2, for x, and x2 according to eq. 19, one obtains, 

v12 - v21 = (1+x,-x2)/2 - (1+x2-x,)/2 = x, - x2 (27b) 

Muggianu’s method as well as the analytical method thus yields the following expression if 
IOa or b is chosen, 

v12 

eq. 

E 
x1x2 ,2,A;;‘v;;“v;,]= E[x,x2 ~okA12(~,-~2)k] (28) 

where the first summations are taken over all the binary components. When applied to the Legend- 
re polynomials in the forms given by eqs. llc and d, Muggianu’s method also recreates the binary 
express ions. The generalized version of Muggianu’s method has the same property if applied to 
eq. 15 or a generalized version of it. For instance, the bracket contains v 
(1+2x ,-x,-x3)/3. When replacing x,, x2 and x by v accord~~,w:b4q1’2;~‘~~dto 
applyrng eq. l4d, one obtains 3 123’ ‘231 and ~312s 

(1+2v 
123-v231-v312)‘3 = ‘123 

The expression inside the bracket is thus recreated. 

Asymmetric methods 

(29) 

So far, all the methods that have been discussed treat the components in the same way and 
may thus be characterized as symmetric methods. However, sometimes there may be a physical rea- 
son to divide the component elements into different groups. For instance, if components 2 and 3 
are similar to each other but differ markedly from component 1, then one should expect the bi- 
nary systems l-2 and l-3 to be similar and it may be advantageous to describe the ternary l-2-3 
system in such a way that the expression would reduce to the binary expression if one could make 
2 and 3 identical. This could be fccomylished with the analytical method if eq. 9 is modified 
by the addition of a term x,x2x3( A3,- A,2), 

EG = ~,~~~~A,~+‘A,~(x,-x~)l + x~x~[~A~~+‘A~~(X~-X~)I 

+ x~x,[‘A~~+‘A~, (x,-x,) I + x,“~x~(‘A~,- ‘5 2) (30) 

For 2 = 3 one has oA,2=oA 
31’ 

1A,2=‘A,3=-‘A 
31’ 23= 

‘A ‘Az3=0 and one then obtains 
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(31) 

which is identical to eq. 6c for the binary system. In connection with eq. 2 it was shown that 
this attractive property is obtained for ail possible pairs of components when the regular so- 
lution model holds. It was lost when higher order terms were introduced. We have now seen that 
it can be restored for a preselected pair of the components by the addition of an asymmetric 
term x,x2x3.f. 

A numerical method has been proposed by Toop (13) which also has this asymmetric property 
It is illustrated in Figure 3 and it yields the foiImi;g equation, 

‘2 E 
ToopEGai-=;- 

1 
G12(x,;l-x1) 

x3 
+ I_X EG,3(xlil-xl) 

1 

+ (x2+x3) 
2 

* EG x2 x3 (-; ) 
23 x2+x3 x2+x3 

When Toop’s method is applied to the subregular solution model, eq. 8a, the following result is 
obtained, 

EG 
1 

= x,x210A12+ A12(x1-x2 -x )I 3 + x,x3~oA13+1A13(xl-x3-x2)I 

+ x x [‘A +‘A (x -x + - ‘2-‘3 
23 23 23 2 3 x2+x3 

* x,)1 

This expression contains all the terms 
where 

f= 
1A x2’x3 

23 x2+x3 

(33) 

in eq. 25 and in add ition a term of the form x x x .f 
123 

(34) 

This term comes from the last term in Toop’s equation which has been borrowed fromKohierCs method 
From the previous discussion of Kohier’s, Coiinet’s and Muggianu’s methods it is evident that 
the extra term can be avoided if Toop’s method is modified by taking the last term from Coli- 
net’s or Muggianu’s method. These new methods are illustrated in Figure 3. In particular, the 
“new method 2” is very attractive because it yields fairly simple expressions when applied to 
higher power descriptions of the binary components, eq. 10a or b. Its formulation for a ternary 
system is as follows, 

x2 New asymnetric model EG = I_X x3 

1 
EG,2(xlil-xl) + I_X EG,3(xl;l-xl) 

1 

+ ‘2’3 E 

‘23’32 
G23(V23’V32) 

.A, ,A* ,A2 
Toop New method 1 New method 2 

FIG. 3 

(35) 

Illustration of the character of some asymmetric, numerical methods of predicting ternary pro- 
perties from blnary ones. The properties of the alloy, marked with a cross, are given by some 
average of the properties of the blnary alloys, marked with circles. 
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The generalization of the asytmsetric models to higher systems yields a large number of aiterna- 
tives depending upon how the component elements are divided into separate groups. This will not 
be discussed further in the present work but it may be emphasized that such cases might be bet- 
ter handled by the introduction of real or artificial sublattices. That method will be discussed 
in a later section. 

Recommendations 

An analytical description of a method of predicting the properties of a higher system 
from the properties of the lower, component systems has two advantages. It can yield analytical 
expressions of derivatives and thus allow the direct calculation of chemical potentials and it 
may be useful for the representation of experimental data. The numerical methods of predicting 
the properties of a higher system from the properties of the lower, component systems have the 
advantage of yielding a formulation which is simple even in complicated cases. Both types of 
methods should thus be used and it is advantageous to select one method of each type which are 
equivalent to each other. 

It seems very attractive to choose Huggianu’s numerical method in combination with the 
analytical methods based upon the v parameters or the special cotiination x -x . One could then 
choose anyone of eqs. lOa, lob, llc and lld and easily transform from one td agother by the use 
of Tables I and I I, 

If an asymmetric description is required, it is recommended to use a new asymmetric method 
eq. 35. Analytical equivalences can be calculated for various descriptions of the binary pro- 
perties. In particular, eq. 30 is recommended when the binary properties can be represented by 
the subregular solution model o 

Orderinq systems 

The discussion in the present paper has only concerned the excess term of the Gibbs energy 
It should be emphasized that it is also essential to use a realistic expression for the positio- 
nal entropy, For example, the ideal entropy of mixing is different for a substitutional solution 
where ail the atoms occupy the same type of lattice sites, and for an interstitial solution, 
where the interstitial atoms occupy a separate sublattice. In fact, each type of ordering leads 
to its own expression for the ideal of mixing. 

When formulating the ideal entropy of mixing for an ordered phase one makes use of a spe- 
cial type of mole fraction, y, based upon the occupancy of each sublattice. At the same time 
one should use y instead of x in the representation of the excess Gibbs energy. Each sublattice 
wSii thus be treated separately and the resulting expression will mainly account for the inter- 
actions within each sublattice. For a simple reciprocal system where A and B occupy one sub- 
lattice and C and D another one obtains the following expression, 

EG = yAEGAD,AC(yC) + yBEGBD,BC(yC) + yDEGAD BD B , (Y ) + Yc~GAC,BC(YB) (36) 

The question of how to represent the interaction between atoms in different sublattices is 
related to the fact that the pure elements can no longer be used as reference states because 
they do not exist within the yB, y coordinate system. Instead, a 
rence should be chosen based upon !he compounds AC, AD, BC and BD 

p?qrpianar surface of refe- 
. The interactions between 

atoms in different sublattices is thus entered into the total expression for the Gibbs energy. 
The same method can also be used for ternary solution phases where two elements substitute for 
each other on one sublattice and the third element goes into a sublattice of interstitial sites. 
An interesting possibility is also to use the method in ternary cases where there is a physical 
reason why one should treat the system in an asymmetric fashion. This may often occur in the 
liquid phase if one component is a metal and two are non-metals or if two are metals and one is 
a non-meta 1 . One would thus obtain an expression which is symmetric with respect to fo 
or hypothetical compounds. This possibility was recently tried for the Fe-Mn-S system Yf5 ret Ad 
it is illustrated in Figure 4. The property of a ternary phase is thus predicted to be a 
weighted average of the four binary alloys represented by circles in the diagram. 

In order to represent experimental information from the interior of the system, which may 
differ from this prediction, one may add a term y y y y P 
power series expansion. A B ’ poAaFBh~5’~~d~4Bses~~~,c~7~r~~: %ti- In order to allow an extension 



M. Hillert 

derations to thosediscussed for P,2 in the fir ‘St paragraph should be applied. 

FIG. 4 

Transformation of a highly asynnnetric ternary 
system into a reciprocal system where the 
ternary properties are given as an average of 
those of four binary or quasi-binary systems. 

C 

A AC BC f x 
xc 
A B 

‘B - 

AC BC t 
Yc 

A B 
YB - 
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