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Tumour heterogeneity in cancers has been observed at the histological and genetic levels, and
increased levels of intra-tumour genetic heterogeneity have been reported to be associated
with adverse clinical outcomes. This review provides an overview of radiomics, radiogenomics,
and habitat imaging, and examines the use of these newly emergent fields in assessing tumour
heterogeneity and its implications. It reviews the potential value of radiomics and radio-
genomics in assisting in the diagnosis of cancer disease and determining cancer aggressive-
ness. This review discusses how radiogenomic analysis can be further used to guide treatment
therapy for individual tumours by predicting drug response and potential therapy resistance
and examines its role in developing radiomics as biomarkers of oncological outcomes. Lastly, it
provides an overview of the obstacles in these emergent fields today including reproducibility,
need for validation, imaging analysis standardisation, data sharing and clinical translatability
and offers potential solutions to these challenges towards the realisation of precision oncology.

Crown Copyright � 2016 Published by Elsevier Ltd on behalf of The Royal College of
Radiologists. All rights reserved.
Introduction

Tumour heterogeneity in cancers has been observed at
the histological and genetic levels,1e3 and increased levels
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of intra-tumour genetic heterogeneity4e8 have been re-
ported to be associated with adverse clinical outcomes.9,10

In oncological imaging, phenotypic heterogeneity between
and within tumours of a given patient is readily apparent
and various imaging features are routinely described sub-
jectively in radiology reports.11 Recently, however, imaging
research has focused increasingly on the newly emergent
field of radiomics, which is defined as a high-throughput
process in which a large number of shape, edge, and
ollege of Radiologists. All rights reserved.
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texture metrics are extracted and quantified objectively and
in a reproducible form12e14 (Fig 1). These quantitative
metrics can provide important insights into tumour
phenotype and as well as the interaction of the tumour with
its microenvironment, defined as “habitat imaging”.11,15 In
the effort to delineate the biological and clinical implica-
tions of these new quantitative metrics, radiomic metrics
obtained from magnetic resonance imaging (MRI),
including diffusion-weighted (DW) and dynamic-contrast-
enhanced (DCE) MRI sequences, computed tomography
(CT), and combined 2-[18F]-fluoro-2-deoxy-D-glucose (FDG)
positron-emission tomography (PET)/CT have been further
correlated with genomics data, a process defined as radio-
genomics.16 Radiogenomics and outcome data can be
meaningfully mined with the goal of developing robust
biomarkers that may potentially aid cancer diagnosis,
improve assessment of treatment response, and better
predict patient outcome.

Potential value of radiomics and
radiogenomics

To date, several studies have focused on the correlation
and integration of radiomics with genomics (defined as the
systematic study of the complete DNA sequences [genome]
of organisms17) and proteomics (defined as the systematic
study of the complete complement of proteins [proteome]
of organisms18) data, and their results continue to support
the notion that radiomic metrics may perform relatively
well as surrogates of molecular alterations and protein
expression found in tissue samples.
Figure 1 Radiomics analysis workflow. Radiomics-based analysis starts w
cancer. Various texture features including Haralick textures are generated.
several images. Classification of various measures is then performed on n
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Radiomics approaches for assisting in diagnosis and
assessment of cancer aggressiveness

Studies using radiomic analyses have shown that radio-
mic metrics are capable of distinguishing between benign
andmalignant tissue and aiding in the assessment of cancer
aggressiveness in a variety of clinical settings. Analysis
of heterogeneity in enhancement patterns, found on
perfusion deficits, which ultimately lead to different micro-
environmental selection pressures,11 has been performed
with promising findings. For example, grey level co-
occurrence matrix analyses of DCE images distinguished
between benign and malignant breast lesions with very
high diagnostic accuracy.19 Texture analysis of DCE images
using a structured fractal-based approach improved differ-
entiation between low- and high-grade gliomas by orders of
magnitude20; however, texture analysis is not limited to
enhancement patterns. Measures of heterogeneity in T1-
weighted (W), T2W, and DW MRI images can reveal dif-
ferences in cellular density in tumours, which in turn can be
matched to histological findings and aid in distinguishing
malignant versus benign soft-tissue masses.21 Similarly,
analysis of prostate MRI using T2W and DWI sequences has
been successful in discriminating prostate cancer from
benign prostate tissue and in providing information on
prostate cancer aggressiveness using Gleason scores.5 In
this study, five textural features (entropy, inertia, energy,
correlation, and homogeneity) on apparent diffusion coef-
ficient (ADC) maps and two textural features (inertia and
correlation) on T2W imaging were significantly different
between prostate tumours and benign prostate tissue.5
ith segmentation of the structure(s) of interest, in this case, bladder
A machine-learning classifier is trained using features generated from
ever-seen-before images.
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Using textural features, the same group also reported 90%
accuracy for discriminating Gleason score of six tumours
(which are usually considered “low risk”) from those with a
Gleason score of �7.5 Similarly, a study by Fehr et al.22 used
texture features derived from ADC and T2W MRI to obtain
classification of Gleason patterns with >92% accuracy
(Fig 2).

Associations between radiomics, radiogenomics, and
patient outcomes

Radiomics has the potential to identify imaging pheno-
types of prognostic value by exploring intra-tumour het-
erogeneity features. For example, Grove et al.8 assessed
spiculation and entropy gradients in patients with lung
cancer to find that these measures were strong prognostic
indicators in patients with early stage lung cancer. Another
study by Aerts et al.23 demonstrated that a radiomic
signature (size, shape, texture, and wavelets) was predictive
of outcome in independent cohorts of patients with lung
cancer. Additionally, this same signature could be applied to
patients with head and neck cancer with equivalent prog-
nostic power.23 The presence of different habitats can be a
source of radiomic features due to their distinct volumes,
each with a specific combination of flow, cell density, ne-
crosis, and oedema12 (Fig 3). Habitat distribution in patients
with glioblastoma multiforme has enabled us to discrimi-
nate between cancers that progress quickly and those that
are more indolent.24

Texture analysis can also be applied to PET. A study by
Nair et al.25 demonstrated correlation of PET imaging fea-
tures with gene expression, which led to an association of
metagene clusters to imaging features and yielded good
prognostic models in patients with resected non-small cell
lung cancer.

Finally, correlation of radiogenomic data may enable us
to make a decision about where to biopsy, when necessary.
Quantitative analysis of regionally distinct radiomic fea-
tures has the potential to inform precisely about the best
biopsy sites by identifying the locations within complex
Figure 2 Example of texture analysis on ADC map and T2W image of pros
ADC map (the top row) and T2W image (the bottom row). The texture fea
tumour of GS 9 (4þ5) (b). Fehr et al.22 reported that texture analysis toget
and GS 7 (3þ4) versus GS (4þ3) with high accuracy: 93% and 92%, respe
prostate cancer Gleason scores from multiparametric magnetic resonanc
(46):E6265-E6273.
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tumours that are most likely to contain important diag-
nostic, prognostic, or predictive information. In fact PET,
after overlaying functional information on CT or MRI im-
ages, has been employed to guide biopsies in the abdomen
and in patients with bone disease, demonstrating the po-
tential of radiomics to enable better-informed decisions
about ideal biopsy sites.26,27

Improving evaluation of treatment response

Radiogenomic analysis can be used to guide therapy for
treatment of individual tumours by predicting drug
response and potential therapy resistance. While Kuo
et al.28 were the first to explore specific hepatocellular
carcinoma imaging phenotypes that correlated with doxo-
rubicin drug response in 2007,28 more recently, a study in
women who completed treatment for locally advanced
breast cancer suggested that texture analysis of DCE MRI
can enable us to predict response to neoadjuvant chemo-
therapy before its initiation.29 Understanding the spatial
and temporal phenotypic, physiological, and genetic het-
erogeneity of most solid tumours has led to the realisation
that most chemotherapy responses are not durable and that
targeted therapies are necessary to improve outcomes.6,30

Furthermore, inter- and intra-tumour phenotypic hetero-
geneity are associated with treatment failure and therapy
resistance.11 For example, in a study of malignant gliomas
using fused MRI sequences, the regions of tumour that were
poorly perfused on post-T1W contrast-enhanced images
may exhibit areas of low or high water content on T2W
images and low or high diffusion on DWI. Thus, high or low
cell densities can coexist in poorly perfused volumes,
creating perfusionediffusion mismatches. Poorly perfused
regions with high cell density are concerning because they
can represent cell populations that are adapted to live in
micro-environmental conditions associated with poor
perfusion. The associated hypoxia, acidosis, and nutrient
deprivation have been suggested to select for cells that are
resistant to apoptosis, and subsequently, are likely to be
resistant to therapy.31,32
tate cancer. Energy and entropy values are overlaid on the tumour on
tures differ between a tumour of Gleason score (GS) 6 (3þ3) (a) and a
her with machine learning had distinguished GS6 (3þ3) versus GS �7
ctively. Reprinted with permission from “Automatic classification of
e images,” by Fehr et al.,22 Proc Natl Acad Sci U.S.A, 2015 Nov 17; 112
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Figure 3 Example of habitat imaging in a patient with glioblastoma multiforme. Habitat imaging (lower right) is obtained by the combination of
contrast-enhanced T1W, T2W, and fluid-attenuated inversion recovery (FLAIR) images. Each voxel of a tumour is assigned a specific colour
depending on the combination of signal intensity (high/low) of these sequences, e.g., the red voxel is low on T1W images, and high on T2W and
FLAIR images in this case. The clusters of voxels with specific colours yield regions that reflect different physiologic microenvironments, called
habitats. This regional analysis would help the deeper understanding of tumour heterogeneity. Figure provided courtesy of R. A. Getenby.
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Developing radiomics as biomarkers of oncological
outcomes

The field of biomarker discovery and validation has
evolved rapidly over the past few years with the emergence
of precision medicine, aiming to tailor medical care to the
individual by taking into account the variability in genes,
environment, and lifestyle. Biomarkers must accurately
reflect the underlying molecular cancerous machinery33,34

and are measured by assays often requiring tissue analysis
obtained through surgery or biopsy. The limitations of this
approach include its invasive nature and the fact that
samples are often obtained from only a portion of a gener-
ally heterogeneous lesion and cannot completely represent
the lesion’s anatomical, functional, and pathological prop-
erties.35 Various groups have proposed that image-derived
indices may reliably identify important subregions non-
invasively and create predictive imaging biomarkers.36

These imaging biomarkers could then act as non-invasive
measurements of functional and physiological processes
Please cite this article in press as: Sala E, et al., Unravelling tumour heterog
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in vivo and provide information on treatment planning,
prognosis, and therapy response.35 For example, O’Connor
et al.37 predicted colorectal cancer liver metastasis
shrinkage following anti-angiogenic and cytotoxic therapy
by using heterogeneity of tumour vascular enhancement as
a prognostic/predictive biomarker; however, such an
endeavour has proven to be difficult in radiogenomics,
making implementation of predictive biomarkers more
difficult than expected.38 In fact, only a few single genes,
transcriptomic, epigenetic or structural genomic alterations
in tumours have been discovered that could serve as clini-
cally implementable biomarkers. For example, in breast
cancer, only a few prognostic gene signatures and three
traditional single gene predictive markers, namely oes-
trogen receptor (ER), progesterone receptor (PR), and hu-
man epidermal growth factor receptor 2 (HER2), are in
routine clinical use.13,39 The reasons behind the limited
prognostic/predictive value of many proposed biomarkers
are manifold, and include intra- and inter-tumour genetic
heterogeneity; technical issues including reproducibility
eneity using next-generation imaging: radiomics, radiogenomics, and
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and reliability of the biomarker assay; and retrospective,
small and often clinically heterogeneous patient cohorts.34

Despite these challenges, given the potential usefulness
of imaging biomarkers, the National Cancer Institute (NCI)
in the United States has established the Quantitative Im-
aging Network, which promotes the development of im-
aging methods, protocols, and software tools.19 Although a
lot of work remains to be done, a multidisciplinary
approach that combines phenotype and genetics is an
important strategy for advancing precision medicine.

Challenges and future directions

Radiogenomics is still in its early phases and its imple-
mentation requires completion of a series of steps to make
it usable in daily clinical practice. First, it requires stand-
ardisation of imaging protocols, including image acquisition
and post-processing, as well as robust segmentation algo-
rithms that require minimal operator input.13 As with any
study, a radiogenomics study must be validated against a
set of independent data, to ensure its reproducibility.
Radiomic analyses require large image datasets with the
expectation that large numbers may be able to overcome
some of the inherent heterogeneities in clinical imaging.
Hence, the need for informatics databases that allow for
image data sharing along with medical and genetic data
across sites becomes very important. Incorporating detailed
clinical and patient risk factor data into radiomics is
essential in clinical translation and development of bio-
markers. Currently, the most important goal is optimisation
of each of these steps, with a future plan to gradually
harmonise and standardise the entire process.13

Reproducibility

Radiomics has remarkable potential to accelerate preci-
sion medicine; however, it faces challenges common to
biomarker development including suboptimal study de-
signs, high technical complexity, data overfitting, incom-
plete result reporting, and the presence of many
confounding variables, especially when dealing with
retrospective data, which makes it difficult to ensure
reproducibility.12 For example, in radiomics, a large number
of imaging features may be computed, which increases the
risk of extracted features becoming higher than the number
of samples in a study, reducing its power and increasing the
probability of overfitting the data.12 Dimensionality reduc-
tion offers a solution to this particular issue by selection of
task-specific features or by combining the original features
to obtain a new set of features by using methods, such as
principal component analysis.13 Furthermore, although
some standardised tools for genomic profiling exist, they
are not universally accepted and applied across different
institutions.12

The issue of reproducibility extends beyond radiomics to
biomedical research in general. A 2009 analysis of biomed-
ical research reports found that at least 50% of studies were
too poor, insufficient, or incomplete to be usable.40

Furthermore, when scientists at Amgen (Thousand Oaks,
Please cite this article in press as: Sala E, et al., Unravelling tumour heterog
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CA, USA) tried to replicate 53 landmark studies in the basic
science of cancer, they were able to reproduce the original
results of just six.41 In order to address this issue, editors
from more than 30 high-impact-factor biomedical journals
have imposed common standards for statistical testing and
to improve access to raw data.42 Furthermore, reporting
guidelines have been developed by many organisations,
such as the Equator network, which focus on improving
health research quality and transparency.43 Development of
such standard guidelines provides a roadmap tonavigate the
complex issues inherent to radiomics, particularly acquisi-
tion and analysis of high-dimensional data12; however, at
present, adherence to these guidelines is not mandatory.

Need for validation

Validation with prospectively collected independent
cohorts, ideally in the setting of clinical trials, is the refer-
ence standard for verifying an identified statistical associ-
ation or biomarker.34,44 As with any biomarker study, a
retrospective radiomics investigation must be validated
against a completely independent dataset, preferably from a
different institution.12 In a thorough review by Bai et al.,35 a
validation dataset was used in only eight out of 27 studies.
One problem that prevents retrospective validation studies
is the availability of publicly available radiomics data, which
creates the need for shared databases that can be used as
validation sets. The Cancer Genome Atlas (TCGA) has
generated comprehensive multidimensional genomic data
of more than 30 types of cancer, which together with the
clinical annotations are available to the public.45 The Cancer
Imaging Archive (TCIA)46 is another publicly available
resource that contains imaging corresponding to the pa-
tients in the TCGA database and can be used as valuable
sources for both hypothesis-generating and validation
purposes.

Sample size

Sample size determines the power of predictive classifier
models used in radiomics and other biomedical studies.
According to Gillies et al.,12 10 patients are needed for each
feature in a model based on binary classifiers; however, the
need for accommodation of additional clinical or genomic
covariates demands a large sample size. Additionally, as few
as 100 patients can be used in radiomics studies; however,
datasets with larger samples provide more power.12

Furthermore, the presence of heterogeneity in clinical im-
aging requires a large enough dataset to overcome such
inherent differences.13 Acquiring a sufficiently sized sample
set requires large databases and data sharing capability
across sites, which already exists in form of various online
repositories that host image and clinical data, as described
above.13

Standardisation of imaging analysis

Image acquisition parameters vary widely in routine
clinical practice. For example, patient positioning, pixel or
matrix size, section thickness, variable reconstruction
eneity using next-generation imaging: radiomics, radiogenomics, and
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algorithms, and washout period in the case of PET imaging
vary widely in different institutions.13 As such, comparing
results obtained across different machines becomes chal-
lenging and allows room for error. Furthermore, varying
image parameters makes it more difficult to identify large
numbers of image data examples with similar clinical pa-
rameters such as disease stage.13 For example, Kumar et al.13

showed the effect of the large variation of section thickness
and pixel size in a study that aimed to develop prediction
models by using image features to classify non-small cell
cancer tumours. The large variation in this scenario and
when performing radiomic analysis in general affects the
information being extracted by image feature algorithms
and subsequently classifier performance.13 As a result, there
is an indisputable need for standardisation of imaging
analysis and further research remains to be done in this area.

Image segmentation challenges

One of the most critical steps in feature data analyses is
the segmentation of images into volumes of interest (VOI),
which presents a variety of challenges. Many tumours have
indistinct borders, which make reproducibility of their
delineation an important issue.47,48 Manual segmentation is
often performed; however, it suffers from high inter- and
intra-reader variability and is labour intensive, and hence, it
is not feasible for examining the large datasets required in
radiomics.13 Automatic and semi-automatic segmentation
algorithms have been developed; however, there is no
universal segmentation algorithm that can work for all
medical image applications.13 Furthermore, even when us-
ing automatic or semi-automatic segmentation, the VOI will
be different even when using the same algorithm per-
formed multiple times with different initialisations.13 Thus,
it becomes essential to develop agreed-upon metrics to
evaluate segmentation algorithms. Currently, a consensus is
emerging that computer-aided edge detection followed by
manual adjustment may result in optimal reproducible
segmentation.12

Adequacy of the reference standards

Histopathology and results of genomic testing are often
used as standards of reference; however, only few studies
have explored the spatial relationship between imaging,
genomics, and histopathology.15 Although there is a need
for large prospective studies, a few issues arise when
attempting to integrate imaging, genomic, and histopatho-
logical data. These studies must evaluate large and complex
data across a range of biologically different scales.19,49 One
problem is that CT, MRI, or PET voxels are usually non-
isotropic, where section thickness exceeds in-plane reso-
lution. Hence, compared with genomic and histopathology
biomarkers, this represents many orders of magnitude dif-
ference in scale,49 making it challenging to validate image
heterogeneity biomarkers against histopathology. Further-
more, it is unclear whether imaging, genomics, and histo-
pathology show spatial correspondence because they
measure the same biology in different ways or alternatively
Please cite this article in press as: Sala E, et al., Unravelling tumour heterog
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If the last statement is true, this would open up new
multidisciplinary strategies for advancing precision medi-
cine by bringing imaging phenotype and genotype together,
rather than assessing genomics in isolation.15

Clinical translatability

Radiogenomics is still a relatively new field, and its full
potential for clinical translation is yet to be explored;
however, many studies have shown early promise. For
example, in the research of hepatocellular carcinoma,
microscopic venous invasion (MVI) is a sign of poor prog-
nosis.50 Imaging techniques have failed to predict MVI and
the only way it is diagnosed is by explanted tissue histol-
ogy.51 In a study by Segal et al.,52 91 genes in the “venous
invasion signature” were associated with two predominant
imaging traits on CTdthe presence of “internal arteries”
and absence of “hypodense halos”. Banerjee et al.53 again
demonstrated that these two imaging biomarkers, along
with “tumoureliver difference,” were able to predict his-
tological MVI with high precision. Furthermore, these three
features were associated with early disease recurrence and
poor overall survival.53 Beyond diagnosis, radiogenomics
can have a significant impact on treatment guidance and
overall survival.35 In a study of clear cell renal cell carci-
noma patients, Jamshidi et al.54 developed a prognostic
multigene signature termed radiogenomic risk score con-
sisting of four CT imaging features (tumour necrosis
pattern, transition zone, tumoureparenchyma interaction,
and tumoureparenchyma interface) to predict disease-
specific survival, independent of disease stage, disease
grade, and performance status. The ultimate goal of clinical
translation of radiogenomics is to enhance the radiology
report to beyond what is typically reported and include
genomics data in addition to radiological data, which may
have an impact on patient clinical management.

Data sharing

As mentioned above, there is need for the development
of integrated publicly available databases where images and
the extracted features are linked to clinical and molecular
data13 to ensure studies of sufficient size for statistical po-
wer. Such databases present their own challenges including
de-identification, the need for large digital storage space,
integration of clinical and molecular data to create a simple
work stream, as well as reporting and exporting the data.13

Furthermore, as part of a larger network of quantitative
imaging sites, we must also be able to exchange data ac-
cording to an evolving set of standards. Various online re-
positories that host image data are currently available, such
as the online CT image repository, the National Biomedical
Image Archive (NBIA), hosted by NCI; however, in addition
to images themselves, image annotations, outcome data,
acquisition, scanner, and other information should be
available. Currently, available clinical image data, which
may be used for radiomics study, includes TCIA, TCGA, and
others.12,13,45,46 Ultimately, the goal is multi-institutional,
eneity using next-generation imaging: radiomics, radiogenomics, and
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national, or international consortia to agree to share data
either through centralised or federated networks.12

Need for well-designed prospective studies that account
for spatial and temporal heterogeneity

Although initial retrospective studies linking imaging
phenotype with genotype have shown high prognostic ca-
pabilities, they do not provide spatial information, as
quantitative imaging features are generated and averaged
over the entire tumour, assuming that tumours are het-
erogeneous but well mixed. This approach ignores the
spatial heterogeneity readily apparent on imaging. Sub-
regions of tumour that show distinct imaging features may
have different biological behaviour, which may lead to
different response to therapy or drive tumour progression
and metastatic ability.15 Indeed, recent genomics work has
highlighted the presence of intra-tumour genetic and
transcriptomic variation.1e3,7,38,55 Nevertheless, little effort
if any has been put into integrating imaging, histopathology,
and genomics.4,56 In a retrospective study of 10 patients
with breast cancer, heterogeneous enhancement correlated
with genetic subtypes.4 Jenkinson et al.56 found significant
differences in ADC values at tumour margins between
oligodendroglial tumour genotypes that may reflect un-
derlying tumour biology56; however, there is a need for
well-designed prospective studies focused on meaningful
integration of imaging phenotype and genotype rather than
genomics or imaging in isolation.

Important information can be gained by evaluating the
quantitative parameters in discrete phenotypic clusters or
regions of the tumour by combining perfusion, diffusion,
andmetabolic maps derived frommultiparametric imaging,
such as MRI and PET/CT, to create one set of phenotypic
heterogeneity maps based on their similarities and differ-
ences. This in turn can be used to guide tissue sampling,
from both primary tumours and metastatic disease, for
detailed histological, immunohistochemical, genetic,
epigenetic, and proteomic analysis55 with the goal of
assessing whether an imaging-based analysis of heteroge-
neity would be reflective of the underlying pathological
and/or genomic heterogeneity of the tumour.

Conclusion

In conclusion, complementary innovations in massive
parallel sequencing, proteomics, and imaging that allow
spatial and temporal quantification of tumour heterogene-
ity and its changes during drug treatment will provide the
basis for the realisation of precision oncology.
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