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Abstract
Objectives Adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) are assumed to be indolent lung
adenocarcinoma with excellent prognosis. We aim to identify these lesions from invasive adenocarcinoma (IA) by a radiomics
approach.
Methods This retrospective study was approved by institutional review board with a waiver of informed consent. Pathologically
confirmed lung adenocarcinomas manifested as lung nodules less than 3 cm were retrospectively identified. In-house software
was used to quantitatively extract 60 CT-based radiomics features quantifying nodule’s volume, intensity and texture property
through manual segmentation. In order to differentiate AIS/MIA from IA, least absolute shrinkage and selection operator
(LASSO) logistic regression was used for feature selection and developing radiomics signatures. The predictive performance
of the signature was evaluated via receiver operating curve (ROC) and calibration curve, and validated using an independent
cohort.
Results 402 eligible patients were included and divided into the primary cohort (n = 207) and the validation cohort (n = 195).
Using the primary cohort, we developed a radiomics signature based on five radiomics features. The signature showed good
discrimination between MIA/AIS and IA in both the primary and validation cohort, with AUCs of 0.95 (95%CI, 0.91–0.98) and
0.89 (95% CI, 0.84–0.93), respectively. Multivariate logistic analysis revealed that the signature (OR, 13.3; 95% CI, 6.2–28.5; p
< 0.001) and gender (OR, 3.5; 95% CI, 1.2–10.9; p = 0.03) were independent predictors of indolent lung adenocarcinoma.
Conclusion The signature based on radiomics features helps to differentiate indolent from invasive lung adenocarcinoma, which
might be useful in guiding the intervention choice for patients with pulmonary nodules.
Key points
• Based on radiomics features, a signature is established to differentiate adenocarcinoma in situ and minimally invasive
adenocarcinoma from invasive lung adenocarcinoma.
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Abbreviations
AIS Adenocarcinoma in situ
AUC Area under the curve
CT Computed tomography
IA Invasive adenocarcinoma
LASSO Least absolute shrinkage and selection operator
MIA Minimally invasive adenocarcinoma

Introduction

The prognostic and predictive value of the new classification
system for lung adenocarcinoma proposed by the
International Association for Study of Lung Cancer,
American Thoracic Society and the European Respiratory
Society has been validated [1], and it formed the basis of
the fourth edition of the World Health Organization classifi-
cation of lung cancer [2]. In particular, adenocarcinoma in
situ (AIS) and minimally invasive adenocarcinoma (MIA)
were newly defined and assumed to be indolent lesions be-
cause of the excellent prognosis compared with invasive
adenocarcinomas (IA), and published evidence supports
management of these lesions with sublobar resection [3–6].
Thus, it is of utmost importance to accurately diagnose these
indolent lesions from invasive pulmonary adenocarcinoma
prior to or during surgery. Unfortunately, even with intraop-
erative frozen section, it is still challenging to accurately
diagnose these lesions because of the requirement to evalu-
ate the entire tumour to rule out the existence of an invasive
component [6, 7].

In contrast, high resolution thin-section computed to-
mography (CT) allows comprehensive and non-invasive
characterisation of pulmonary nodules. However, by visu-
ally assessing the CT images, we may miss out some
important information to define the nodule’s type. In this
context, radiomics, which aims to extract high-throughput
data and analyse large amounts of advanced quantitative
features from medical images, may play a valuable role
[8–10]. Recent studies have revealed that radiomic analy-
sis showed promising potential for lung nodule character-
isation [11–14].

However, previous studies only focused on finding
some predictive radiomics features to differentiate pre-
invasive from invasive lung adenocarcinoma without val-
idation [11–13]. In our study, a radiomics-based predic-
tive model was established using least absolute shrinkage
and selection operator (LASSO) logistic analysis, which
showed excellent performance in predicting AIS/MIA
from IA. To our knowledge, this is the first validated
radiomics model for predicting preinvasive from invasive
lung adenocarcinoma.

Materials and methods

Patients

Our institutional review board approved this retrospective
study with a waiver of informed consent. Using the descrip-
tive terms Bsubsolid nodule^, Bsolid nodule^, Bpart-solid
nodule^, Bground-glass nodule^ or Bground glass opacity ,̂
we retrieved CTexaminations of patients who underwent lung
resection between January 2016 and December 2016 because
of lung adenocarcinoma. Two thoracic radiologists (H.Z. and
X.S.) re-evaluated the CT scans in consensus and assessed the
lesions for inclusion. The pulmonary nodule is defined as a
single, well-circumscribed, radiographic opacity that mea-
sures less than 30 mm in diameter and is completely
surrounded by pulmonary parenchyma without atelectasis,
mediastinal lymphadenopathy or pleural effusion [15].
Those with multiple lesions, large lesions (greater than 3
cm), CT slice thickness greater than 1 mm or without a diag-
nosis confirmed by pathologic analysis were excluded. In ad-
dition, patients’ clinical characteristics were collected from
medical records. Eligible patients were divided into the prima-
ry cohort (January to June) and the validation cohort (July to
December).

Image acquisition protocol and radiomic features
extraction

Preoperative chest CT scans were obtained using a Somatom
Definition AS (Siemens Medical Systems, Germany) or
Brilliance 40 (Philips Medical Systems, Netherlands). For
both manufacturers, CT scans were acquired at full inspiration
without contrast medium at 120 kVp tube energy and 200
mAs effective dose. In the Siemens group, a Somatom
Definition AS scanner (64 × 0.625 mm detector, 1.0 pitch)
was used. All images were reconstructed at 1.0 mm slice
thickness, with 0.7 mm increment and a standard soft kernel
(Siemens B31 filter, Siemens Medical Solutions, Forchheim,
Germany). In the Philips group, scans were taken using a
Brilliance 40 scanner (40 × 0.625 mm detector configuration,
0.4 pitch). Images were reconstructed at 1.0 mm slice thick-
ness, with 0.7 mm increment and a sharp reconstruction kernel
(C filter, Philips, Cleveland, OH).

Radiomic features were extracted from nodules with in-
house software implemented with Python Programming
Language (http://www.python.org). Nodule segmentation
was performed manually by a radiologist (H.Z.) with 2 years
of experience in chest CT imaging and confirmed by another
radiologist (X.S.) with 20 years of experience. Regions of
interest were delineated around the nodule boundary for
each section, and the process of manual segmentation per
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nodule took about 5 min for experienced performers. After
nodule segmentation, the software automatically calculated
radiomic features for each included patient. Generally, CT-
based radiomics features can be divided into four groups: (1)
volumetric features, (2) histogram features, (3) textural fea-
tures, (4) wavelet features. The wavelet features calculated
by wavelet transformation were much more obscure and dif-
ficult to interpret [16]. In this study, we selected 60 radiomics
features of the first three groups, which made intuitive sense
and these were mostly adopted in other research [11–13].
Algorithms for feature calculation are described in the
Supplementary material.

Histological evaluation

All specimens were formalin-fixed and stained with
haematoxylin and eosin (HE). Two pathologists (Huikang Xie;
Wei Zhang) re-evaluated and discussed all slides at a multi-
headedmicroscope and discussed until consensus was achieved.
According to the new classification of lung adenocarcinoma [1],
each histological pattern present was recorded in 5% increments.
On the basis of the types of invasive pattern, patients were
categorised into an indolent (AIS/MIA) or IA group.

Construction of Rad-score using the LASSO regression
model

As a result of the existence of multi-collinearity between
radiomics features, the LASSO binary logistic regression model
was used to select the optimal subset of radiomic features in
order to develop the radiomic signature score (Rad-score). The
mechanism of the LASSO regression analysis was to introduce
a penalty parameter (also called as tuning parameter) to penalise
the coefficient of variables entered into the LASSO regression
model in order to avoid the overfitting problem. As the tuning
parameter (λ) increases, more coefficients were set to zero (less
variables are selected), and among the non-zero coefficients,
more shrinkage was employed. The area under the receiver op-
erating characteristic (AUC) curve was plotted versus log(λ) in
order to identify the optimal value of log(λ). The optimal value
was identified by the minimum criterion and the one standard
error of the minimum criterion. The Bglmnet^ package of R
software was used to perform the LASSO binary logistic regres-
sion analysis and the programing process is listed in the
Supplementary material [17–19]

Statistical analysis

Continuous and categorical variables were compared using the t
test and Fisher’s exact test, respectively. Multivariable logistic
regression analysis was used to select the independent

prognostic factors. The performance of the model was assessed
in the primary and validation cohorts. The discrimination of the
signature was measured by the area under the curve (AUC). The
apparent calibration curve was plotted using model-predicted
probability against actual probability of invasive adenocarcino-
ma, and the bias-corrected curve was also produced with 1000
bootstrap resamples. Statistical analysis was performed with
SPSS for Windows, version 20.0 (IBM, Armonk, NY, USA).
A two-sided p valuewas always computed, and a differencewas
considered significant at p < 0.05.

Results

Clinicopathologic characteristics

In this study, most participants received lung resection without
preoperative biopsy, except that 28 patients were diagnosed as
IA by transthoracic needle aspiration. Also, 22 patients with
lung nodules confirmed as benign or atypical adenomatous
hyperplasia were excluded. In total, 402 eligible patients were
included with 207 in the primary cohort and 195 in the vali-
dation cohort. Patients’ baseline characteristics in the primary
and validation cohorts are listed in Table 1. In the primary
cohort, 61.8% of the patients were female with 29% having
a smoking history, and the median age was 58 years (range
21–84 years). In the validation cohort, the majority of patients
were female (64.1%) and never smokers (79.5%) with a me-
dian age of 57.5 years (range 24–81 years). Most of the pa-
tients had a normal carcinoembryonic antigen level.

There were 30.0% (62/207) of patients with AIS/MIA in the
primary cohort and 32.8% (64/195) in the validation cohort.
Gender was significantly different between the AIS/MIA and
IA groups both in both the primary (p = 0.007) and validation
(p = 0.011) cohorts. Age showed marginal significance between
these two groups in the primary cohort (p = 0.052), but evident
difference (p = 0.014) in the val idat ion cohort .
Carcinoembryonic antigen level and smoking history were not
significantly different in either the primary or validation cohort.

Feature selection of the radiomic signature

λ in the LASSO model was selected using 10-fold cross-val-
idation and log(λ) of – 2.216 was chosen for the optimal
subset of radiomics features. At this value, 60 radiomic fea-
tures were reduced to five potential predictors with non-zero
coefficients in the LASSO logistic regression model in the
primary cohort (Fig. 1). Figure 1a, b respectively show that,
as the log(λ) changes from – 10 to 0, the number of variables
that entered into the model is reduced, and the absolute values
of the coefficients of the variables also shrink toward zero.
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Patients with indolent lung adenocarcinoma generally
had lower values of maximum 3D diameter, root mean
squared, entropy and standard deviation, but higher values
of long grey level run emphasis compared with those with
IA (Table 1). In order to validate the stability and

generalizability of the radiomics analysis by in-house
software, all five selected features were re-extracted using
3D slicer (www.slicer.org), which demonstrated no
significant difference between these two times of feature
extraction (Supplementary material).

Table 1 Characteristics of patients in the primary and validation cohorts

Characteristic Primary cohort
(n = 207)

Validation cohort
(n = 195)

AIS/MIA IA p AIS/MIA IA p

Age (years) 0.052 0.014
< 65 44 82 46 70
≥ 65 18 63 18 61

Gender 0.007 0.011
Male 15 64 15 55
Female 47 81 49 76

Smoking history 0.242 0.263
Never 48 99 54 101
Current or ever 14 46 10 30

CEA level 0.325 0.150
Normal (< 5 ng/ml) 62 140 62 119
Abnormal (≥ 5 ng/m) 0 5 2 12

CT scanner 0.73 0.36
Somatom Definition AS 14 36 18 29
Brilliance 40 48 109 46 102

Rad-score 0.33 (− 1.21 to 2.52) − 1.86 (− 3.86 to 1.20) < 0.001 0.23 (− 1.35 to 2.51) − 1.53 (− 4.89 to 1.27) < 0.001
Maximum 3D diameter (mm) 16.11 ± 5.26 22.49 ± 4.74 < 0.001 16.29 ± 5.55 22.30 ± 5.42 < 0.001

Root mean squared 1383.35 ± 88.78 1609.83 ± 160.04 < 0.001 1375.02 ± 93.14 1562.33 ± 149.09 < 0.001
Standard deviation 129.60 ± 34.04 215.34 ± 48.17 < 0.001 129.40 ± 35.75 210.62 ± 63.60 < 0.001
Entropy 4.24 ± 0.38 4.83 ± 0.29 < 0.001 4.23 ± 0.39 4.79 ± 0.34 < 0.001

Low grey level run emphasis 0.02 ± 0.01 0.01 ± 0.006 < 0.001 0.02 ± 0.01 0.01 ± 0.008 < 0.001

AISadenocarcinoma in situ, MIA minimally invasive adenocarcinoma, IA invasive adenocarcinoma, CEA carcinoembryonic antigen

Fig. 1 Radiomic feature selection
using LASSO regressionmodel. a
Optimal feature selection
according to AUC value; b
LASSO coefficient profiles of the
60 radiomic features. Vertical line
was drawn at the selected value
using 10-fold cross-validation,
where optimal λ resulted in 5 non-
zero coefficients
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Based on the five radiomic features, the radiomic signature
score (Rad-score) was calculated for each patient
(Supplementary material). The Rad-score for each patient is
shown in a waterfall plot (Fig. 2). Rad-score was significantly
different between AIS/MIA and IA group in both the primary
and validation cohort (p < 0.001). The mean value of Rad-
score for patients with indolent lung adenocarcinoma was sig-
nificantly higher in both the primary and validation cohort
(0.33 and 0.23, respectively) compared with those with IA
(– 1.86 and – 1.53, respectively).

Performance of the radiomics signature

Multivariate logistic regression analysis identified the Rad-
score (OR 13.29; p < 0.001) and gender (OR 3.55; p =
0.027) as independent factors (Table 2). On the basis of the
discriminating analysis, the signature had AUCs of 0.95 (95%
CI, 0.91–0.98) and 0.89 (95% CI, 0.84–0.93) (Fig. 3) in the
primary and validation cohort, respectively. However, the
AUC values of lesion size in differentiating AIS/MIA from
IA were only 0.80 (95% CI, 0.73–0.87) and 0.77 (95% CI,
0.60–0.85) in primary and validation cohort, respectively. The
complex model, which combines the signature and gender,
had a higher AUC of 0.96 (95% CI, 0.92–0.98) and 0.90
(95% CI, 0.85–0.94) in the primary and validation cohort,
respectively. However, the AUC difference between the
Rad-score and complex model was not statistically significant

(Table 3). The calibration curve of the signature is presented in
Fig. 4.

Discussion

The largest study to date, which examined 440 radiomic fea-
tures in 1019 patients with lung and head/neck cancer, sub-
stantiated that radiomic characteristics were correlated with
both histology, tumour staging and overall survival [16]. A
recent study also demonstrated an association between the
imaging phenotype captured with radiomic signature and
EGFR mutation in four independent cohorts of lung adeno-
carcinomas [20]. Furthermore, combining radiomic features
with clinical features can provide added diagnostic value in
identifying the persistent part-solid nodules, the presence of a

Fig. 2 Rad-score for patients in
primary and validation cohort

Table 2 Results of multivariate logistic regression analysis

Characteristic β Odds ratio (95% CI) p

Intercept − 0.05 0.119

Age (≥ 65 years) 0.02 1.02 (0.37–2.78) 0.971

Gender (female) 1.27 3.55 (1.16–10.89) 0.027

Rad-score 2.59 13.29 (6.2–28.45) < 0.001

CI confidence interval, β regression coefficient
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micropapillary component, lymph node phenotypic informa-
tion and distant metastasis in lung adenocarcinomas [21–24].

In our study, we demonstrated that a novel radiomic
signature based on five radiomic features (maximum 3D
diameter, root mean squared, entropy, standard deviation
and long grey level run emphasis) was an independent
factor to discriminate indolent lung adenocarcinoma from
IA in patients with solitary lung adenocarcinoma less than
3 cm. For the construction of the radiomic signature, 60
candidate radiomic features were reduced to five potential
predictors by examining the predictor–outcome associa-
tion, which was conducted by shrinking the regression
coefficients with the LASSO method. This is a popular
method for regression with high dimensional data, which
has been extended and broadly applied to the Cox propor-
tional hazard regression model for survival analysis, and
to the logistic regression model for predicting outcome
[18, 19, 25, 26]. This approach not only works better than
the conventional method of choosing predictors on the
basis of the intensity of their univariate association with
outcome but it also allows researcher to combine the se-
lected features into a single signature.

Lung nodule size was conventionally reported by using the
long-axis diameter alone, and guidelines from the Fleischner
Society recommended that lung nodule measurements should
be based on the long- and short-axis diameters in the same
plane [27]. Radiomics allows one to measure three-
dimensional volume of lung nodules, which offers more in-
formation to precisely characterise the nodule size. In our
study, maximum 3D diameter was significantly different be-
tween AIS/MIA and IA group in both the primary cohort and
validation cohort.

Root mean squared, entropy and standard deviation
were obtained from the histogram of voxel intensities
and represented the heterogeneity of lung nodules [10,
28]. The root mean squared and standard deviation de-
scribe the histogram dispersion, which is a measure of
how much the grey level differs from the mean.
Similarly, entropy is an imaging feature able to represent
heterogeneity of the nodule density, which is related to
invasive tumour biology, such as the advanced stage [12,
13]. By quantitative analysis of CT image, radiomics
could objectively reflect both the attenuation and disper-
sion of grey level intensity, which might not be evident on

Fig. 3 Area under the curve (AUC) of the signature and the complex model in a the primary cohort and b the validation cohort

Table 3 ROC analysis of the
signature and the complex model Model Primary cohort Validation cohort

AUC 95% CI p* AUC 95% CI p*

Radiomics signature 0.95 0.91–0.98 0.421 0.89 0.84–0.93 0.437

Complex model 0.96 0.92–0.98 0.90 0.85–0.94

ROC receiver operating characteristic, AUC area under the curve, CI confidence interval
* AUC was compared between the signature and the complex model
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direct visual assessment. Because invasive nodules tended
to be more heterogeneous on CT images [15], these pa-
rameters could provide valuable evidence to discriminate
AIS/MIA from IA. In our study, these three parameters
were significantly higher for patients with IA in both the
primary cohort and validation cohort. Unlike histogram
features, second-order statistics can retain spatial informa-
tion among voxels, thus reflecting the texture characteris-
tics of a lung nodule [28]. In our study, long grey level
run emphasis was selected as one of the second-order
statistics to quantify the nodule texture and showed signif-
icant difference between AIS/MIA and IA.

As indolent and invasive nodules have a large overlap
in both the nodule size and visual morphology on CT
images [13], it is highly challenging to differentiate them
on the basis of visual assessment. In this regard,
radiomics might provide added information to more accu-
rately characterise these lesions. Recently several studies
[11–13] have been conducted to utilise radiomics for lung
nodule characterisation and they showed promising ability
of differentiating invasive lung adenocarcinoma from pre-
invasive lesions. In our study, we established an image
signature based on five radiomic features, which showed
excellent performance in differentiation of IA from AIS/
MIA. When the signature is less than – 1.5, no patient
was misclassified in both the primary and validation co-
hort. Therefore, it might serve as an important tool in
determining the optimal management of patients with
small lung nodules.

However, our study has several limitations. Firstly, patients
diagnosed as having benign or atypical adenomatous hyper-
plasia were excluded, whichmay subject the study to selection
bias. Secondly, the CT acquisition protocol was not

standardised among patients. This may have resulted in the
variability of CT attenuation values with resultant bias for
estimation of radiomic features. Finally, the radiomic features
in this study were derived from the results of manual segmen-
tation by radiologists, and the segmentation variability was
not evaluated. We believe that a reliable and robust automatic
boundary extraction method should be further developed to
address this issue.

In conclusion, the radiomics approach can be used to de-
code lung nodules in a non-invasive manner, thus enabling the
identification of imaging phenotypes to characterise lung nod-
ules. The developed radiomics signature provides added diag-
nostic value to differentiate IA from indolent lung adenocar-
cinoma in lung nodules less than 3 cm, which might offer
useful information for the clinician to choose the optimal
intervention.
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Methodology
• retrospective
• observational
• performed at one institution

References

1. Travis WD, Brambilla E, Noguchi M et al (2011) International
Association for the Study of Lung Cancer/American Thoracic
Socie ty /European Respira tory Socie ty Internat ional
Multidisciplinary classification of lung adenocarcinoma. J Thorac
Oncol 6:244–285

2. Travis WD, Brambilla E, Nicholson AG et al (2015) The 2015
World Health Organization classification of lung tumors: impact
of genetic, clinical and radiologic advances since the 2004 classifi-
cation. J Thorac Oncol 10:1243–1260

3. Yoshizawa A, Motoi N, Riely GJ et al (2011) Impact of proposed
IASLC/ATS/ERS classification of lung adenocarcinoma: prognos-
tic subgroups and implications for further revision of staging based
on analysis of 514 stage I cases. Mod Pathol 24:653–664

4. Woo T, Okudela K, Mitsui H et al (2012) Prognostic value of the
IASLC/ATS/ERS classification of lung adenocarcinoma in stage I
disease of Japanese cases. Pathol Int 62:785–791

5. Kadota K, Villena-Vargas J, Yoshizawa A et al (2014) Prognostic
significance of adenocarcinoma in situ, minimally invasive adeno-
carcinoma, and nonmucinous lepidic predominant invasive adeno-
carcinoma of the lung in patients with stage I disease. Am J Surg
Pathol 38:448–460

6. Liu S, Wang R, Zhang Y et al (2016) Precise diagnosis of intraop-
erative frozen section is an effective method to guide resection
strategy for peripheral small-sized lung adenocarcinoma. J Clin
Oncol 34:307–313

7. Yeh YC, Nitadori J, Kadota K et al (2015) Using frozen section to
identify histological patterns in stage I lung adenocarcinoma of </=
3 cm: accuracy and interobserver agreement. Histopathology 66:
922–938

8. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are
more than pictures, they are data. Radiology 278:563–577

9. Verma V, Simone CB, Krishnan S, Lin SH, Yang J, Hahn SM
(2017) The rise of radiomics and implications for oncologic man-
agement. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djx055

10. Lee G, Lee HY, Park H et al (2017) Radiomics and its emerging role
in lung cancer research, imaging biomarkers and clinical manage-
ment: state of the art. Eur J Radiol 86:297–307

11. Son JY, Lee HY, Lee KS et al (2014) Quantitative CT analysis of
pulmonary ground-glass opacity nodules for the distinction of in-
vasive adenocarcinoma from pre-invasive or minimally invasive
adenocarcinoma. PLoS One 9:e104066

12. Chae HD, Park CM, Park SJ, Lee SM, Kim KG, Goo JM (2014)
Computerized texture analysis of persistent part-solid ground-glass

nodules: differentiation of preinvasive lesions from invasive pulmo-
nary adenocarcinomas. Radiology 273:285–293

13. Hwang IP, Park CM, Park SJ et al (2015) Persistent pure ground-
glass nodules larger than 5mm: differentiation of invasive pulmonary
adenocarcinomas from preinvasive lesions or minimally invasive ad-
enocarcinomas using texture analysis. Invest Radiol 50:798–804

14. Hawkins S, Wang H, Liu Y et al (2016) Predicting malignant nod-
ules from screening CT scans. J Thorac Oncol 11:2120–2128

15. Ost DE, Gould MK (2012) Decision making in patients with pul-
monary nodules. Am J Respir Crit Care Med 185:363–372

16. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tu-
mour phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun 5:4006

17. McNeish DM (2015) Using Lasso for predictor selection and to
assuage overfitting: a method long overlooked in behavioral sci-
ences. Multivariate Behav Res 50:471–484

18. Jiang Y, Zhang Q, Hu Y et al (2016) ImmunoScore signature: a
prognostic and predictive tool in gastric cancer. Ann Surg 267:
504–513

19. Guo BL, Ouyang FS, Yang SM et al (2017) Development of a
preprocedure nomogram for predicting contrast-induced acute kid-
ney injury after coronary angiography or percutaneous coronary
intervention. Oncotarget 8:75087–75093

20. Rios Velazquez E, Parmar C, Liu Yet al (2017) Somatic mutations
drive distinct imaging phenotypes in lung cancer. Cancer Res 77:
3922–3930

21. Lee SH, Lee SM, Goo JM et al (2014) Usefulness of texture anal-
ysis in differentiating transient from persistent part-solid nodules
(PSNs): a retrospective study. PLoS One 9:e85167

22. Song SH, Park H, Lee G et al (2017) Imaging phenotyping using
radiomics to predict micropapillary pattern within lung adenocarci-
noma. J Thorac Oncol 12:624–632

23. Coroller TP, Agrawal V, Huynh E et al (2017) Radiomic-based
pathological response prediction from primary tumors and lymph
nodes in NSCLC. J Thorac Oncol 12:467–476

24. Coroller TP, Grossmann P, Hou Y et al (2015) CT-based radiomic
signature predicts distant metastasis in lung adenocarcinoma.
Radiother Oncol 114:345–350

25. Huang YQ, Liang CH, He L et al (2016) Development and valida-
tion of a radiomics nomogram for preoperative prediction of lymph
node metastasis in colorectal cancer. J Clin Oncol 34:2157–2164

26. Zhang JX, SongW, Chen ZH et al (2013) Prognostic and predictive
value of a microRNA signature in stage II colon cancer: a
microRNA expression analysis. Lancet Oncol 14:1295–1306

27. Bankier AA, MacMahon H, Goo JM, Rubin GD, Schaefer-Prokop
CM, Naidich DP (2017) Recommendations for measuring pulmo-
nary nodules at CT: a statement from the Fleischner Society.
Radiology. https://doi.org/10.1148/radiol.2017162894

28. Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor
heterogeneity: an emerging imaging tool for clinical practice?
Insights Imaging 3:573–589

5128 Eur Radiol (2018) 28:5121–5128


