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The Potential of Radiomic-Based Phenotyping
in Precision Medicine
A Review
Hugo J. W. L. Aerts, PhD

M edical imaging is a proven technology for the clinical as-
sessment of tumors. A workhorse of oncologic prac-
tice, imaging does what it has to do—diagnose tumors

and measure treatment response—and it has done so rather well for
several decades.1,2 Consequently, imaging is often viewed as an old
technique, a misperception that, unfortunately, has limited its po-
tential and perceived effect on precision medicine.

Precision medicine has been introduced into routine clinical care
in which treatments are tailored toward specific characteristics of
individual patients. Examples are therapies that target specific mu-
tations that occur in small subsets of patients for which highly ac-
curate and predictive biomarkers have been discovered. For ex-
ample, erlotinib and gefitinib have been used successfully to treat
patients with non–small cell lung cancer who test positively for the
EGFR (epidermal growth factor receptor) mutation (OMIM
131550).3-6 However, many novel therapies fail to make this transi-
tion because viable, predictive biomarkers cannot be found. This cir-
cumstance has spawned a great deal of research, enlisting clinical,
genomic, or proteomic data to find clinically useful biomarkers for
promising therapies.

Medical imaging is a valuable additional data source that can be
used for this purpose. It is well known that tumors exhibit strong phe-
notypic differences in patients that can be visualized by imaging. A
great advantage of medical imaging is its ability to noninvasively vi-
sualize a cancer’s appearance, such as intratumor heterogeneity, on
a macroscopic level, at baseline and follow-up, from primary tumor
to potential metastasis. In current clinical practice, tumors are also
monitored by invasive biopsy and molecular profiling, but their spa-
tial and temporal pathologic heterogeneity limits the ability of in-
vasive biopsy techniques to fully capture their state.7,8 Further-
more, the necessity of repeated, invasive sampling and molecular
assay may be burdensome to the patient, is expensive, and limits
the practical number of opportunities to monitor disease progres-
sion and treatment response.

Conversely, the imaging phenotype may encompass a wealth
of information, including the effects of the genotype, the environ-
ment of the tumor, and its potential treatments.9 Although it is un-
likely that imaging can quantify all relevant biological processes in
detail, it could, however, provide important complementary infor-
mation about the phenotype. Therefore, the role of image-based
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phenotyping for precision medicine has to be further investigated.
It is potentially suited to this task because there is ample access to
imaging in the clinical setting, where it is already used for diag-
nosis, staging, treatment planning, and response assessment.
Moreover, the clinician can probe the phenotype for quantitative fea-
tures at every follow-up visit with limited burden to the patient. Thus,
visualizing aspects, such as tumor heterogeneity, macroscopically
through medical imaging could potentially have a large effect on pre-
cision medicine.

In current clinical practice, radiologists use relatively few met-
rics to quantify tumors. In cross-sectional imaging performed by com-
puted tomography (CT), for example, tumor burden and size are
quantified by 1-dimensional10,11 or 2-dimensional12 descriptors. Simi-
larly, although molecular imaging is an evolving field, with novel trac-
ers extensively being evaluated in research settings, only a few of
these tracers are currently being used in the clinic. Positron emis-
sion tomography (PET), for example, uses simple measures to indi-
cate metabolic activity, such as maximum and mean standardized
uptake values. Although these metrics are valuable as biomarkers,13,14

there are potentially hundreds of imaging features able to quantify
a variety of phenotypic traits that await the application of promis-
ing new methods, such as image-based phenotyping.

With image-based phenotyping, the information that consti-
tutes the tumor phenotype is extracted from medical images manu-
ally, by radiologists, or computationally, through the application of
advanced automated quantitative imaging algorithms. With the
manual or semantic feature approach, expert radiologists score the
macroscopic appearance of the tumor using a standardized lexicon
of qualitative descriptors, such as pleural attachment or high hetero-
geneity. Although this approach is more intuitive than quantita-

tive, many studies have shown promising results with this method.
Another approach uses radiomic features to characterize the tu-
mor phenotype, and automated data characterization algorithms are
used to quantify simple and complex patterns in the data, such as
roundness of a tumor and intratumor heterogeneity quantified by
the spatial arrangement of imaging voxels with variations in signal
intensity.9,15-17 These approaches show promise to become a new
standard of care for treating patients with solid tumors. This re-
view outlines the potential of these new technologies for precision
medicine and the challenges to its clinical application.

Image-Based Phenotyping
The workflow of image-based phenotyping is achieved by a combi-
nation of manual semantic annotation carried out by an expert ra-
diologist and automated (or semiautomated) computational fea-
ture assessment achieved through the application of advanced
imaging algorithms (Figure). The workflow is divided into 4 dis-
tinct steps: (1) quantitative imaging, (2) tumor detection and seg-
mentation, (3) tumor phenotype quantification, and (4) data inte-
gration and analysis. Radiologic research is being actively pursued
in each of these areas.

Quantitative Imaging
The first step of image-based phenotyping involves data acquisi-
tion. The quality of the imaging data depends on the reliability
of the acquisition protocols used in clinical centers. Historically, these
protocols have varied widely across medical institutions, causing
unknown effects that are often not perceived in routine clinical

Figure. Image-Based Phenotyping Steps

Computed tomography

Magnetic resonance imaging

Positron emission tomography 

Quantitative imaging
Data integration
and application

Tumor detection and segmentation

Tumor phenotype quantification

1 2 4

3

Manual semi-quantitative semantic annotation Automated phenotype quantification (radiomics)

Manual detection and segmentation Automated detection and segmentation

Radiologist describes tumor using 
a standardized semantic lexicon.

Tumor 
characteristic Score

Spiculation 3

Pleural attachment 1

Enhancement
heterogeneity

1

Data characterization algorithms provide 
comprehensive quantification of the 
tumor phenotype.

Region of 
interest

Statistical 
determinants

Shape-based
features

Filters

M A N U A L A U T O M A T E D

Radiologist identifies tumor location, 
borders, and size by visual assessment.

Computer-aided detection systems detect tumor 
location and perform volumetric segmentation.

Texture

Investigation of 
associations between 
tumor image 
phenotype data and 
genomic, proteomic, 
and clinical data

Biomarker discovery 
and validation

Clinical application

Diagnosis

Staging

Treatment planning

Prediction of 
treatment response

Patient report

Clinical Review & Education Review Image-Based Phenotyping and Precision Oncology

E2 JAMA Oncology Published online August 18, 2016 (Reprinted) jamaoncology.com

Copyright 2016 American Medical Association. All rights reserved.

Downloaded From: http://oncology.jamanetwork.com/ by a Univ Maastricht User  on 08/22/2016

http://www.jamaoncology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2016.2631


Copyright 2016 American Medical Association. All rights reserved.

practice. In recent years, the field of quantitative imaging has strived
to improve standardization by defining standard acquisition proto-
cols and recommendations. In large part, within the United States,
this work has been stimulated by the Quantitative Imaging
Network, which is funded by the National Institutes of Health, and
the Quantitative Imaging Biomarker Alliance, which is organized by
the Radiological Society of North America.2,18,19 Other interna-
tional initiatives include the European Association of Nuclear Medi-
cine Research Ltd program and the European Society of Radiology.
Although much progress has been made by these groups, several
hurdles must be overcome to use these data for advanced feature
quantification. The important aspects, including partial volume ef-
fects, inherent scanner limitations (eg, resolution, signal to noise ra-
tio), and motion artifacts, have to be investigated to demonstrate
stability of developed image-based biomarkers, and the perfor-
mance of these biomarkers has to be evaluated in phantom studies
and large patient cohorts.

Tumor Detection and Segmentation
In routine clinical practice, the expert radiologist detects the pres-
ence, location, and size of the tumor by visual assessment. Typi-
cally, for diagnosis, staging, and response assessment, the sole mea-
surement is maximum tumor diameter within a single section (often
in the axial section direction),11 whereas for research studies, 3-di-
mensional volumetric segmentations are performed to capture a
comprehensive view of the total tumor burden. Although good per-
formance has been observed for volumetric assessment in relation
to different clinical end points,20,21 the introduction of volumetric
definitions into clinical practice has been challenging, primarily be-
cause it is a time-consuming process. Furthermore, tumors with
poorly defined borders are difficult to segment, leading to high varia-
tions among operators.22,23 Segmentation of normal structures, such
as the lungs or heart, can be performed almost completely auto-
matically, and this procedure is widely applied in clinical settings, such
as radiation treatment planning.

Automated tumor detection and segmentation methods have
also been introduced into clinical practice. Computer-aided detec-
tion systems are reliable for identifying tumors or nodular lesions.
The largest successes have been observed in breast cancer,24,25 in
which US Food and Drug Administration–approved systems are
being used in the clinic. These systems interact with the radiolo-
gist by potentially identifying undetected tumors or metastases.
Furthermore, computer-aided detection systems offer several
semiautomated segmentation algorithms that can interact with
the radiologist to rapidly segment highlighted nodules. Similarly,
in the field of radiation oncology, volumetric segmentations are
required for treatment planning. Several fast semiautomated seg-
mentation algorithms are available for clinical use. These algo-
rithms allow physician input to achieve an acceptable volumetric
segmentation within a limited time frame. Other fully automated
segmentation algorithms are being evaluated in research
settings.26,27 The Bratumia algorithm, for example, is accurate in
volume measurements compared with manual delineations for
glioblastoma multiforme (GBM) brain tumors.26,27 Future clinical
applications of such tools could enable the segmentation of nor-
mal tissues and tumors to be automatically performed immedi-
ately after the scan is acquired. These automatic segmentations
would then be available when the physician starts the segmenta-

tion process, potentially speeding up the process and improving
segmentation stability.

Semantics Features: Phenotype Quantification
by a Radiologist’s Expert Eye
Semantic annotation refers to the manual assessment of the tumor
phenotype by an expert radiologist. In current clinical practice, this
assessment is often made in a qualitative manner using a nonstan-
dardized lexicon. However, a large effort is being made by trained
expert radiologists to define terms such as moderate heteroge-
neity, highly spiculated, or large necrotic core to establish a uniform
lexicon for semantic annotation. The advantage of developing a stan-
dardized semantic lexicon is that it builds on the experience of ex-
pert radiologists, many of whom have viewed thousands of cases
and can adeptly quantify very complicated patterns in radio-
graphic images. Furthermore, expert human readers can handle
imaging data with lower qualities, for example. images with low reso-
lution or artifacts. Several studies28-38 have documented an asso-
ciation between semantic phenotypic features and several clinical
end points or underlying driving biological patterns. In lung can-
cer, several studies have used RadLex,38 a semantic lexicon, and
other semantic feature sets33 to demonstrate significant associa-
tions with overall survival31,33-35 and histopathologic findings.28-32

For example, Wang et al33 developed a CT-based set of 25 seman-
tic features and found that, in adenocarcinoma lung tumors, pleu-
ral attachment was significantly associated with an increased risk
of death and texture was important to distinguish histological
subtypes.

Within the field of neuro-oncology, a large effort developed and
evaluated a comprehensive semantic feature set to normalize grad-
ing of magnetic resonance imaging (MRI) features of malignant GBM
tumors.39 These features, known as the Visually Accessible Rem-
brandt Images (VASARI) features,36,37 were developed by neurora-
diology domain experts and contain controlled terms that incorpo-
rate most of the visible subjective MRI features associated with
malignant primary brain tumors. The experts found that these
distinct VASARI features could quantify the phenotype comprehen-
sively and robustly, demonstrating that radiologist-made measure-
ments and assessments can be reproducible, clinically meaningful,
and biologically relevant.39

There are several other investigations that link GBM tumor
features with biological patterns.40-42 For example, Diehn et al40 per-
formed an imaging-genomic analysis and linked semantic features
to driving biological pathways. They found that contrast enhance-
ment was associated with EGFR overexpression and mass effect was
correlated with proliferation pathways. Furthermore, Gutman et al43

found that the expert-defined volumetric features of GBM are sig-
nificantly associated with and predictive of several cancer-relevant
and drug-targetable somatic mutations. For example, P53 mu-
tated tumors had significantly smaller contrast enhancement and
necrosis volumes, and RB1 (retinoblastoma) (OMIM 180200)–
mutated tumors had significantly smaller tumor-induced edema vol-
umes compared with wild-type tumors.43

However, there are also disadvantages with semantic annota-
tions. Large intrareader (same reader) and interreader (different
reader) variability exists.44,45 Furthermore, it has high costs
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because manual reads take considerably longer and only radiolo-
gists with training can perform the task.

Radiomics: Automated Phenotype Quantification
The process of automated phenotype quantification is also re-
ferred to as radiomics. Radiomics aims to provide a comprehensive
quantification of the imaging phenotype using automated data-
characterization algorithms.9,15-17 To achieve this goal, radiomics ex-
tracts a large number of computational quantitative features that
capture a wide variety of phenotypic traits. As shown in the Figure,
radiomic phenotyping requires a defined segmentation, also re-
ferred to as a region of interest, often defined by a human reader using
manual or semiautomatic tools.

Radiomic features are subsequently extracted from the de-
fined region of interest. These features are identified by algorithms
that capture patterns in the imaging data, such as first-, second-, and
higher-order statistical determinants, shape-based features, and frac-
tal features.15,17 First-order statistics can be used to describe voxel
values without concern for spatial relationships. These measures can
be used to quantify phenotypic traits, such as overall tumor inten-
sity or density (eg, mean and median of the voxels), or variations (eg,
range or entropy of the voxels). There are also shape- and location-
specific features that capture 3-dimensional shape characteristics
of the tumor, such as sphericity, spikiness, location, or pleural at-
tachment. These shape features rely heavily on the segmentations
and protocols by which they were made. Second-order statistical fea-
tures are able to take spatial relationships of contrast between vox-
els into account. They are also referred to as texture features. Ex-
amples of texture features include the gray-level co-occurrence
matrix,46 gray-level run-length matrix,47 and gray-level size zone
matrix.48 These matrices describe textural differences based on gray-
tone spatial dependencies. Advanced methods, such as wavelet and
laplacian of gaussian filters, can be applied to enhance complex pat-
terns in the data that are difficult to quantify by eye.16

Because the objective of precision medicine is to improve over-
all and progression-free survival, radiomic data have been associ-
ated with several clinical end points and have demonstrated better
performance compared with conventional volumetric and size-
based features. Radiomic data extracted from CT images of lung tu-
mors have been linked with prognosis,16,49 local control,49 distant
metastasis,49 and radiation-induced pneumonitis.50 In a large
study,16 a biomarker containing 4 radiomic features that quantified
intratumor heterogeneity was found to be significantly prognostic
across several different cancers in independent validation data sets
and was associated with certain driving biological pathways, includ-
ing cell cycling and proliferation. Although radiomic biomarkers have
been applied successfully across different cancer types,16 Parmar et
al51 observed that the features are also specific to the prognostic per-
formance of specific cancer types, in this case lung and head and neck
cancer. Similar studies52-54 have been performed with PET, in which
advanced texture features were compared with conventional stan-
dardized uptake value measures, such as maximum and mean stan-
dardized uptake values. Radiomic metrics also have strong perfor-
mance for outcome prediction.52-54 In a large data set of more than
500 patients, Hatt et al52 found that 4 robust and reproducible PET-
based features were independent prognostic predictors across sev-

eral cancer types, including breast, cervix, head and neck, and lung
cancer. Similar investigations applied to MRI data have found asso-
ciations with treatment outcomes and prognosis.37,55,56 Radiomic
features extracted from GBM tumors have been associated with the
VASARI semantic feature set and with survival and molecular
subgroups.37,55

The pros and cons of this technology warrant mention. Ra-
diomics is a noninvasive quantitative method that objectively as-
sesses the tumor phenotype, without observer variation, except for
the region of interest predefined by an operator. Through the ex-
traction of hundreds of quantitative features from a myriad of im-
age sections, it delivers a far more comprehensive and nuanced rep-
resentation of the tumor phenotype than would be possible by the
human eye alone. On the other hand, the method is critically de-
pendent on image acquisition settings, which may vary across in-
stitutions and operators; thus, feature robustness remains a signifi-
cant challenge. It is also more dependent on harmonization of
acquisition and reconstruction than human readers. Furthermore,
the analyses focus on a specific region of interest, usually the
primary tumor, and capture less information outside the tumor area,
which may contain important clinical cues, such as inflammation, vas-
cularization, or pneumonitis. Although radiomics does not replace
the need for radiologic expertise, it provides useful additional infor-
mation in a short amount of time. Finally, most phenotypic fea-
tures and radiomic models are difficult to explain and comprehend
by humans, including experts, making the acceptance of these meth-
ods within the clinical community more challenging.

Combining Semantics and Radiomics
Semantic and radiomic feature representations often provide
complementary information about the tumor phenotype. To take
advantage of this scenario, the radiomic workflow includes an in-
teractive component in the quantification phase (Figure), whereby
semantic features that are considered useful to the expert radiolo-
gist can be evaluated for automation by radiomic algorithms, thus
providing a method to incorporate radiologic expertise and guid-
ance into automated feature sets. Conversely, radiomic features that
exhibit strong performance can be used to inform radiologists be-
cause a large number of radiomic features capture complex pat-
terns that are difficult to explain to a human observer. Several
examples of radiomic features that have been developed to quan-
tify semantic features have been reported.57-59

Imaging as a Data Science
Important principles of data science must be applied to the inter-
pretation of imaging data. As with any data science, semantic and
radiomic data suffer from the curse of dimensionality. To overcome
this problem, specific experimental designs are required to get to
clinically useful results. First, independent data sets are required for
training and validation to reduce the risk of overfitting the data. If
the data sets are from independent institutions, this will increase the
value of the study because it may show the generalizability of the
results. Second, the sample size of the data set(s) under study de-
termines a proper experimental design because false discovery cor-
rection has to be applied. Therefore, a smaller data set requires a
more focused analysis compared with a larger data set, which can
be used for a more comprehensive analysis. Third, computational
methods have to be applied to extract useful data and to build ac-
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curate and clinically useful biomarkers. These methods, referred to
as machine-learning techniques, are capable of learning useful
data (also referred to as experience). Feature selection methods
can be used to select stable, robust, nonredundant, and informa-
tive features. Selected features can be incorporated in multivari-
ate models, or classifiers, which is a supervised learning task from
labeled data. Indeed, prognostic biomarkers developed using
machine-learning methods have increased performance when
compared with standard statistical methods in lung51,60 and head
and neck61 cancer.

Imaging Genomics
Several studies9,16,37,39-43,62-64 have investigated the association of
imaging phenotype data with genomic patterns. These studies have
several distinct end points, namely, to acquire an understanding of
the biological correlates that underlie image-based phenotypes, to
determine how a biological process is reflected in the image, and to
define biomarkers for clinical end points and clinically relevant bio-
logical end points.9 For example, the semantic features of lung tu-
mors have a strong association with somatic mutation status, such
as the EGFR mutation.62,63 Hong et al62 found that EGFR-mutated
lung adenocarcinoma tumors have a significantly higher propor-
tion of ground-glass opacity and that absence of ground-glass opac-
ity is associated with negative EGFR mutation status. Similarly, CT
radiomic features of lung adenocarcinomas have been associated
with the presence of EGFR mutations.64 It is unlikely that imaging
can quantify all biological processes with high precision; however,
because it provides information about the phenotype, it could po-
tentially provide important complementary information for preci-
sion medicine.

Clinical Implementation of Image-Based Phenotyping
The overall tendency of image-based phenotyping is for automa-
tion to occur under expert guidance; hence, radiologists have an im-
portant role in this process. Several automated techniques have been
evaluated in research settings and have been introduced into clini-
cal practice, in particular, the various systems for semiautomated tu-
mor detection and segmentation.

Further clinical implementation of image-based phenotyping is
challenging. Much can be learned from the clinical use of computer-
aided diagnosis (CAD) of tumors, which was preceded by decades
of research on image-based phenotyping for clinical screening. Ra-
diologists typically use CAD in place of a second opinion for difficult
clinical decisions. In breast and lung cancers, specific schemes have
been devised and are recommended to improve nodule detection
and classification.65,66

Systems that combine computer-aided detection and computer-
aided classification are currently being used to assist physicians with
early detection of breast cancer on mammograms67-71 or lung screen-

ing assessed with CT or MRI.24,25 Detecting lung nodules is particu-
larly challenging because they may overlap with normal structures,
such as vessels, that impede detection. Computer-aided classifica-
tion uses radiomic-based features to classify nodules or tissue as be-
nign or malignant. Several computer-aided detection methods have
been proposed to suppress normal structures and by doing so en-
hance the detection of lung nodules.72-76

The synergistic benefit of combining the radiologists’ exper-
tise with the CAD system’s performance is widely used in clinical set-
tings, especially breast mammography screening, in which a clini-
cal reader may agree with the computer output or disagree with it
and disregard the computer-aided assessment. Such systems are
implemented in 3 ways.77 The first method is CAD as a second reader.
In this instance, the radiologist performs a complete read of the case
without CAD support. The results of CAD are subsequently dis-
played as a second opinion, after which the radiologist makes a fi-
nal decision. The second method is CAD as a concurrent reader. In
this scenario, the radiologist’s read is displayed simultaneously with
the CAD results. The radiologist then chooses whether to combine
the CAD findings with his or her own findings without the necessity
of a second reader step. The third method is CAD as a first reader.
With this implementation, the CAD system is regarded as the pri-
mary reader. The CAD results are displayed for the radiologist, of-
ten focusing on particular sections. A radiologist always makes the
final decision; however, the role of the radiologist and the perfor-
mance requirement of the CAD system may vary.77

Conclusions
Medical imaging is redefining its role as a data source for precision
medicine in the guise of image-based phenotyping, which repre-
sents the convergence of medical imaging analysis and radiomics.
Already strongly embedded in clinical practice, the medical image
data type is extremely versatile in its ability to quantify the tumor
phenotype noninvasively. It also quantifies intratumor heteroge-
neity at a macroscopic level, a critical limitation of biopsy-based ap-
proaches. Image-based phenotyping relies on semantic and ra-
diomic features and thereby combines years of radiologic experience
with the muscle of automated image processing. Despite the rela-
tively young age of this discipline, radiomics has been linked with
several clinically relevant end points and holds great promise for im-
proving overall and progression-free cancer survival. The power of
this approach, which has the potential to unleash hundreds of use-
ful quantitative features, is difficult to overstate. However, the suc-
cessful introduction of these methods into clinical care will require
much additional research to determine how underlying driving bio-
logic patterns are related to the tumor phenotype reflected in the
medical image.
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