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Precision medicine is an emerging approach for treating medical disorders, which takes into account individual variability in genetic
and environmental factors. Preventive or therapeutic interventions can then be directed to those who will benefit most from targeted
interventions, thereby maximizing benefits and minimizing costs and complications. Precision medicine is gaining increasing recogni-
tion by clinicians, healthcare systems, pharmaceutical companies, patients, and the government. Imaging plays a critical role in precision
medicine including screening, early diagnosis, guiding treatment, evaluating response to therapy, and assessing likelihood of disease
recurrence. The Association of University Radiologists Radiology Research Alliance Precision Imaging Task Force convened to explore
the current and future role of imaging in the era of precision medicine and summarized its finding in this article. We review the increas-
ingly important role of imaging in various oncological and non-oncological disorders. We also highlight the challenges for radiology in
the era of precision medicine.
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INTRODUCTION

T he current era of precision medicine is transforming
the practice of medicine with its aim of early diag-
nosis and personalized treatments, and positively

impacting the role of radiology. According to the National
Academy of Sciences, “Precision medicine refers to the tai-
loring of medical treatment to the individual characteristics
of each patient, encompassing the ability to classify individu-
als into subpopulations that differ in their susceptibility to a
particular disease, in the biology and/or prognosis of those
diseases that may develop, or in their response to a specific
treatment” (1). Preventive or therapeutic interventions can
then be directed to those who will benefit, reducing cost and
minimizing side effects of therapy.

Precision medicine takes into account individual variabil-
ity in genetic and environmental factors (2). Treatments are
targeted on the basis of genetic, biomarker, phenotypic, or
psychosocial characteristics that distinguish individual pa-
tients from others with similar clinical presentations (3). Precision
medicine is receiving growing recognition by clinicians, health-
care systems, pharmaceutical companies, patients, and the
government. Advances in genomics, molecular biology, in-
formation technology, and imaging are accelerating the
acceptance of precision medicine. It takes less than a day to
sequence a genome today, whereas it may have taken about
2 years a decade ago. Accordingly, the cost of a complete
genome sequence has decreased from $10 million in 2007 to
$21,000 in 2011. Based on the data collected from National
Human Genome Research Institute-funded genome-sequencing
groups, the cost to generate a high-quality “draft” whole human
genome sequence in late 2015 was less than $1500 (4).

Recently, the precision medicine movement has received
vital support from President Barack Obama. In the 2015 State
of the Union address, the president allocated $215 million to
the National Institutes of Health and other regulatory bodies
to support this initiative (2). The initiative will help identify
genomic drivers of malignancy and promote innovation in
diagnosis and treatment. The goal is to “pioneer a new model
of patient-powered research that promises to accelerate bio-
medical discoveries and provide clinicians with new tools,
knowledge, and therapies to select which treatments will
work best for which patients” (5). Ultimately, the aim of pre-
cision medicine is to administer the precise treatment to the
right patient at the right time (6).
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Imaging will play a pivotal role in precision medicine, in-
cluding screening, early diagnosis, guiding treatment, evaluating
response to therapy, and assessing likelihood of disease re-
currence (7). For precision medicine to succeed, it is critically
important that imaging be able to help identify and classify
patients in different subgroups who have identical disease char-
acteristics and share similar treatment response and prognosis.

Although the term “radiogenomics” is perceived by radi-
ation oncologists to refer to the study of correlation of genetic
variation with response to radiation therapy, it has a differ-
ent meaning in the radiology community. In radiology, the
term “radiogenomics” (also called imaging genomics) refers
to the correlation of imaging phenotypes with genotypic ex-
pressions, and this is the context in which this term is being
used in this review (8). Radiogenomic studies that help de-
termine statistically significant linkage between imaging features
and gene expressions may help create models that predict patient
outcomes based on imaging features. Radiogenomics has already
attracted major interest in the radiology community, with re-
search undertaken in various cancers such as glioblastoma, breast
carcinoma, and renal cell carcinoma (RCC).

“Radiomics” refers to the process of extracting mineable,
high-dimensional data from the routine, standard of care com-
puted tomography (CT), magnetic resonance imaging (MRI),
and positron emission tomography (PET) images, using au-
tomatic or semiautomatic extracted data-characterization
algorithms (9,10). This is another field that shows great promise
in the era of precision medicine. Recent studies have shown
that quantitative imaging data extracted from tumor segmen-
tation and derived from imaging features such as shape, size,
tumor volume, signal intensity, CT attenuation, maximum
standardized uptake value, and CT and MR textural analysis
can be used as biomarkers in tumor prognosis, predicting re-
sponse to therapy and patient outcome (11–17).

Molecular imaging, defined as “visualization, characteriza-
tion, and measurement of biological processes at the molecular
and cellular levels in humans and other living systems,” is
elegantly poised to become an invaluable tool in the era of
precision medicine (18). By enabling disease imaging at cel-
lular level, molecular imaging may help to identify disease
in preclinical states, classify which group of patients may or
may not benefit from a particular targeted therapy, and ac-
curately evaluate response to therapy. Numerous endogenous
molecules and exogenous molecular imaging agents are
currently available, including radiolabeled, fluorescently
labeled, and nanoparticle-based molecular imaging probes.

Image-guided biopsies will play an increasing role in pre-
cision medicine, not only for the initial diagnosis but also
in the evaluation of treatment resistance. Tissue from selec-
tively targeted biopsies will provide substrates for genetic and
molecular characterization. Obtaining such hitherto unavail-
able genetic information may have a positive impact in the
pursuit of individualized therapy.

The Association of University Radiologists Radiology
Research Alliance convened a Task Force to review the role
of imaging in precision medicine. In this review, we discuss

the critical role of imaging in helping to achieve the goals of
precision medicine in oncological and non-oncological dis-
orders. Given the broad topic, the task force members opted
to highlight the role of imaging in select oncological and
non-oncological disorders, which were perceived to be ex-
emplars to showcase the evolving role of radiology in the era
of precision medicine. We also review the various chal-
lenges for radiology in the era of precision medicine.

ROLE OF IMAGING IN ONCOLOGY IN THE ERA
OF PRECISION MEDICINE

Oncology is at the forefront of precision medicine. The aim
of this review was merely to provide a glimpse of how imaging
can be successfully integrated in precision oncology. As such,
the evolving role of imaging in the precision medicine for
breast cancers, brain tumors, lung cancers, and genitourinary
malignancies was chosen for this review, wherein reason-
able success has already been achieved in this regard but we
acknowledge that imaging plays an equally important
role in various other cancers and is helping to accomplish the
proposed goals of precision medicine. It is the opinion of this
task force that the principles and the role of imaging in the
era of precision medicine remains the same regardless of the
organ system. Indeed, the lessons learned and success achieved
in one imaging field is easily applicable to any other imaging
subspecialty and similar success can be replicated.

Breast Cancer

Breast cancer is associated with significant morbidity and mor-
tality in the United States, with about one in eight American
women (12%) predicted to develop invasive breast cancer in
their lifetime (19). Breast cancer encompasses 21 distinct his-
tologic subtypes, and at least four different molecular subtypes
have been established through gene expression profiling:
luminal A, luminal B, human epidermal growth factor (Her2)
enriched, and basal (20). The molecular breast cancer sub-
phenotypes are biologically variable in patterns of disease
expression, response to treatment, and patient survival out-
comes (21). Formal genetic analysis has been replaced by more
convenient immunohistochemical surrogates of molecular sub-
types, including the presence or absence of estrogen receptor
(ER), progesterone receptor (PR), and Her2. Luminal A is
ER and/or PR+ and Her2−; Luminal B is ER and/or PR+
and Her2+; Her2+ is ER−, PR−, and Her2+; and basal (triple
negative) is ER−, PR−, and HER2−.

Because each breast cancer subtype is associated with a
unique prognosis, establishing the relationship between tumor
genomic characteristics and their imaging phenotype can
provide clinically relevant prognostic information. Significant
advances have been made in this regard. The Cancer Genome
Atlas Breast Phenotype Research Group has undertaken major
research initiative in breast cancer, and have reported signif-
icant correlations between imaging phenotypes and breast cancer
phenotypes (22–26). Tumor enhancement dynamics on
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breast MRI are significantly associated with tumor molecu-
lar subtypes (27). Breast cancers with a higher ratio of lesion
enhancement to background parenchymal enhancement on
MRI are more likely to be luminal B subtype (27). Similarly,
large tumor size, unifocal mass, rim enhancement, round shape,
smooth margin, higher signal intensity on T2 sequence, high
degree of intratumoral necrosis, and higher apparent diffu-
sion coefficient (ADC) values are associated with basal or triple-
negative breast cancers (28–32). Grimm et al. reported that
luminal A and luminal B molecular subtype breast cancers are
associated with unique, distinguishing semiautomatically
extracted MRI features (33). Studies have also reported that
MRI-derived parameters of primary breast tumor can help
to predict lymph node status, the most important prognostic
factor for the overall and disease-free survival (34).

Changes in tumor imaging characteristics following
neoadjuvant therapy can also help determine prognosis. In pa-
tients with ER+, PR+, and HER2− invasive ductal carcinoma,
Sutton et al. showed that extracted features from posttreat-
ment breast MRI (including morphological, histogram, and
grayscale correlation matrix-based texture features) were
significantly correlated with genomics, suggesting that image-
based features could predict the likelihood of recurrence and
magnitude of chemotherapy benefit (35). Studies have also
used quantitative image analysis of pretreatment MRI (con-
trast kinetics, morphology, texture, and variance) to predict
response to neoadjuvant therapy. Similar to pathologic com-
plete response, quantifiable changes in tumor vascularity through
kinetics (hemodynamic imaging biomarker) and ADC can
serve as potential predictors of patient overall survival in breast
cancer. However, until these quantitative imaging features
are validated, initial MRI volume remains the strongest pre-
dictor of recurrence-free survival (36).

Molecular imaging with novel PET tracers may help to
advance precision medicine further in breast cancer. For example,
breast cancers with HER2 overexpression tend to be very
aggressive, with poor oncological outcome, but patients with
such kind of mutation may benefit from HER2-targeted
therapy. Because only 20% of patients with breast cancer harbor
HER2 overexpression, it is important to confirm the HER2
status, so that only those who would benefit from this targeted
therapy are given costly drugs such as trastuzamab, lapatinib,
and pertuzumab (while helping to avoid this therapy in HER2-
negative patients, who would not have any benefit from it
but may suffer from serious toxicity). Currently, tissue biopsy
is the standard. However, significant tumor heterogeneity
between the primary tumor and distant metastases in these
patients, as well as false-negative biopsies from sampling error,
can potentially lead to mismanagement. Recent studies show
that anti-HER2 monoclonal antibodies such as trastuzumab
and pertuzumab or anti-HER2 nanobodies can be used as
HER2-targeting agents and can be combined with PET ra-
dionuclides and can be an effective noninvasive means of
confirming the HER2 overexpression (37,38). This is yet another
eloquent example of how imaging can play a leading role in
individualizing treatment in this era of precision medicine.

Overall, it is abundantly clear that the ability to practice pre-
cision medicine in breast cancer depends on figuring out which
new drug agents may be most effective with which type of
molecular subtype of breast cancer and identifying reliable in-
dicators of early tumor response, and it is evident from clinical
trials such as Investigation of Serial Studies to Predict Your
Therapeutic Response With Imaging And moLecular Analysis
trials 1 and 2 that imaging is poised to play a vital role (39,40).

Further, imaging may serve as an effective screening test
for high-risk patients with inherited gene mutations. For
example, patients with BRCA1 and BRCA 2 mutation have
up to 65% and 45% lifetime risk, respectively, of developing
breast cancer. Certain imaging features (round shape, sharp
margins on mammograms, and rim enhancement on MRI)
have been shown to be associated with breast cancers in pa-
tients who are positive for BRCA (41). In populations with
genetic predisposition for breast cancer, annual screening
breast MRI has been reported to be effective, with much higher
sensitivity (71%–100%) for detecting breast cancer compared
to traditional mammography (16%–40%) (42) and may facil-
itate appropriate early intervention.

Brain Tumor

Next-generation sequencing of primary brain tumors has sig-
nificantly improved our understanding of the molecular basis
of brain tumors. Research is now underway to apply and in-
tegrate the knowledge of tumor molecular characteristics into
molecular imaging techniques, such that noninvasive imaging
modalities can be used to classify patients into subgroups who
share similar tumor characteristics, prognosis, and/or may
benefit from similar treatment strategies (43).

For example, adult glioblastoma multiforme (GBMs) can
be classified into two categories: primary, isocitrate dehydro-
genase (IDH) wild-type GBMs; and secondary, IDH mutant
GBMs. Studies show that patients with IDH1 wild-type GBM
tend to have worse prognosis compared to those with
IDH1 mutant subtypes (44). MR spectroscopy (MRS) can
be helpful to distinguish between these two subtypes (45). D-2-
hydroxyglutarate (D-2HG) is a metabolite produced only by
the IDH1/2 mutant gliomas and not by wild-type gliomas.
MRS has been reported to be useful in the detection and mea-
surement of D-2HG, and therefore, could serve as an elegant
biomarker to differentiate between these two GBM sub-
types and provide noninvasive means of diagnosis, evaluating
response to therapy treatment and surveillance (45–47). Given
the significant difference in prognosis between the IDH1
mutant and the IDH1 wild-type GBMs, MRS, by its inher-
ent ability to detect D-2HG in these tumors, can also help
to stratify patients into different subgroups according to their
prognosis (44,48). Besides diagnosis, molecular characteriza-
tion, and prognostication, MRS may have a significant impact
in treatment decisions in GBM in the near future. Preclini-
cal studies have reported that pharmacological inhibition of
IDH1/2 mutant enzymes decreases intracellular D-2HG levels,
reverses epigenetic dysregulation, and releases the differentiation
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block (49). These findings support initiation of the ongoing
clinical trials evaluating novel IDH1/2 inhibitors in IDH1/2
mutant cancers (50).

Similarly, MRS can also help in molecular subtyping of
medulloblastomas and influence treatment decisions and
prognostication. For example, medulloblastomas are grouped
into four distinct molecular variants: sonic hedgehog (SHH),
wingless, group 3, and group 4 (51). MRS can enable
noninvasive differentiation between SHH and group 3 or 4
medulloblastomas. On MRS, SHH medulloblastomas tend to
be associated with presence of high levels of choline and
lipids but low creatine and taurine levels (52). In contrast, group
3 or 4 medulloblastomas are characterized by higher taurine
levels but lower levels of lipids and creatine (52). Such imaging-
guided molecular subtyping may be useful in making treatment
decision (53,54). Robinson et al. reported that vismodegib,
which works by inhibiting SHH pathway, is effective in pa-
tients with SHH medulloblastoma, but not in patients with
other medulloblastoma subtypes (53).

Besides MRS, PET imaging is also making headway as a
potentially powerful diagnostic tool in precision medicine of
brain tumors. For example, preliminary studies show that the
novel PET tracer, 18F-fluoroethyl-l-tyrosine, can serve as a
noninvasive tool to differentiate between the IDH1/2 mutant
gliomas and the IDH1/2 wild-type gliomas (55). Various other
molecular imaging techniques using targeted PET tracers are
also currently being investigated to help image cancer me-
tabolism in brain tumors. For example, 11C-DASA-23, a new
11C-labeled PET-imaging probe specific for pyruvate kinase
M2, has been shown in animal model studies to specifically
accumulate in GBMs, which express pyruvate kinase M2
isoforms (56). Another example is the PET tracer (4S)-4-(3-
[18F]fluoropropyl)-l-glutamate, which can image the cysteine-
glutamate antiporter called “system Xc

− antiporter” (57,58).
Overexpression of system Xc

− antiporter is associated with
aggressive tumor behavior and poor survival (59). Other PET
tracers such as 18F-fluorothymidine, 8F]fluoromisonodazole,
and 18F-galacto-RGD-PET are also being investigated as means
of imaging cellular processes in brain tumors such as tumor
cell proliferation, hypoxia, and angiogenesis, respectively (43,60).

Although it is true that novel imaging techniques may
be required to glean vital tumor molecular profiles, this may
not always be necessary as even routinely reported imaging
features seen on conventional brain MR may prove to be useful
surrogate markers for genomic testing. For example, Perreault
and colleagues reported that tumor location and enhance-
ment pattern were predictive of molecular subgroups of
pediatric medulloblastoma (61). Carrillo et al. reported a 97.5%
accuracy for predicting IDH1 mutant subtype GBM using four
tumor characteristics observable on routine MR images (size,
contrast enhancement, presence or absence of cyst, and pres-
ence or absence of satellite lesion) (62). Similarly, Baldock et al.
reported that IDH1 mutant subtypes had significantly lower
values of ratio of proliferation (ρ) to invasion kinetics (D) than
IDH1 wild-type gliomas in routine clinical MRI, indicating
that IDH1 mutant tumors are relatively more diffuse and less

aggressive than IDH1 wild-type tumors (63). Other authors
have also reported high accuracy (up to 98%) for MRI-derived
parameters in predicting the IDH1 mutation status (64). Another
study correlating MR phenotypes in GBM to genomic sig-
natures reported significant association of tumor contrast
enhancement-to-necrosis ratio with KLK3 and RUNX3 genes,
subventricular zone involvement with RAP2A and TYMS
genes, and presence of vasogenic edema with the oncogenes
FOXP1 and PIK3IP1 (65). Zinn et al. were able to identify
GBM subtypes with genes and microRNAs accounting for
tumor migration and invasion by classifying patients into
high and low fluid attenuation inversion recovery (FLAIR)
radiophenotypes (66). In a more recent study involving 92
patients, a combination of three MRI-based imaging fea-
tures (volume class, hemorrhage, and T1/FLAIR-envelope
ratio) enabled MRI phenotype-based stratification of surviv-
al in GBM. It is clear that neuroimaging is significantly changing
the landscape of precision medicine in brain tumors, and the
future holds promise.

Lung Cancer

Lung cancer is the leading cause of cancer death in the United
States and the second most common cancer in men and women
(28). The American Cancer Society estimates that there will
be approximately 158,080 lung cancer-related deaths in 2016
(28). Tumor stage significantly impacts prognosis. For example,
the 5-year survival for stage IA non–small cell lung cancer
(NSCLC) is around 49% compared to 1% for stage IV (28).
Unfortunately, more than 75% of lung cancers are diag-
nosed at an advanced stage, with associated poor prognosis.
This underlines the urgent need for early diagnosis, which
may significantly improve the chance of curative treatment.

Although chest radiography is the most commonly used
diagnostic test for lung pathology, it has a relatively low sen-
sitivity for detecting lung cancers, especially early-stage tumors,
compared to CT scans. This led to a paradigm shift to using
low-dose CT scan for lung cancer screening, which truly
changed the landscape of lung cancer screening. Numerous
landmark studies have shown the clear advantage of lung
cancer screening with CT scan (67–70). In 1999, the Early
Lung Cancer Action Project reported significant benefit of
low-dose CT in detecting early-stage lung cancer (70). A total
of 1000 symptom-free volunteers, aged 60 years or older, with
at least 10 pack-years of cigarette smoking, underwent both
low-dose CT and chest X-rays. Low-dose CT detected lung
cancer in 27 patients, compared to just seven patients de-
tected by chest X-ray (70). Most importantly, 26 of the 27
CT-detected cancers were early stage, resectable tumors, high-
lighting the potential significant impact that CT may have
in reducing mortality in lung cancer (70). Indeed, results from
the International Early Lung Cancer Action Project study con-
firmed these findings, in which low-dose CT identified 484
malignancies from a total of 31,567 volunteers, the vast ma-
jority (85%) of which were stage I tumors (69). Statistically
significant improvement in survival was shown in these
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early-stage lung cancers that were resected, with a 92% 10-year
survival. These results were further replicated in the National
Lung Screening Trial. In the landmark randomized con-
trolled trial study involving 53,454 high-risk persons at 33
US medical centers, compared to chest X-rays, low-dose CT
identified a significantly higher number of lung cancer
(94% sensitivity for low-dose CT compared to 73% for chest
X-rays) (67,68). In particular, low-dose CT was shown to iden-
tify a significantly higher number of stage I lung cancers. Use
of low-dose CT for lung cancer screening was associated
with 20% relative reduction in mortality from lung cancer (68).
Finally, in 2013, the US Preventive Services Task Force
recommended low-dose screening CT (LD-CT) for eligible
individuals at risk for lung cancer. The abovementioned studies
are elegant examples of how high-impact imaging-centered
research for early tumor diagnosis can significantly improve
patient outcome.

Lung cancer is a heterogeneous tumor with molecularly
distinct subtypes. Breakthrough advances in the genomics of
NSCLC had significant therapeutic implications, leading the
way to personalized medicine in lung cancer. Epidermal growth
factor receptor (EGFR) mutations and anaplastic lymphoma
kinase rearrangements were the first molecular alterations
in lung adenocarcinoma shown to be actionable mutations,
with sensitivity to specific tyrosine kinase inhibitors (TKI)
(71–73). This led to a new paradigm of tumor molecular
profiling-directed precision therapy and greatly accelerated the
development of novel anticancer drugs. Molecular profiling
helps determine if the tumor harbors an actionable mutation,
which in turn predicts a more favorable response to selective
targeted therapies. Such matching of tumor genotype to therapy
is the foundation of precision medicine. For example, erlotinib
and crizotinib are the molecularly targeted therapies of choice
in EGFR mutation-positive and anaplastic lymphoma kinase
translocation-positive lung cancers, respectively. Given the sig-
nificance of genotyping lung cancers, identifying imaging
correlates for specific lung cancer subtypes would be helpful
in patient management. Gevaert et al. reported positive cor-
relation between molecular phenotypes and some imaging
traits in NSCLC (74). Specific genomic characteristics and
imaging features were used to predict patient survival. Imaging
features included internal air bronchogram as well as lesion
size, margins, and pleural attachment. For example, the pres-
ence of an air bronchogram was associated with metagene 12.
The corresponding gene cluster contains genes that are
specifically overexpressed in NSCLC, including KRAS (74).
The presence of air bronchogram was associated with KRAS
and poor recurrence-free survival. The study showed that
prognostically significant patient-specific molecular markers
may be predicted from imaging features (74).

It is well known that tumors may evolve and develop
treatment resistance during therapy. Identifying the under-
lying mechanism of acquired resistance can be crucial in
deciding further management. For example, in patients with
NSCLC, presence of certain somatic mutations in EGFR (in
frame deletions in exon 19 and frame deletions in exon 21

deletions) are associated with excellent response to EGFR TKI,
and have significantly increased progression-free survival
and overall survival (75). However, patients may develop re-
sistance to therapy after a median of 16 months and demonstrate
tumor progression (76). These tumors may develop resis-
tance to treatment via a number of mechanisms, but the
two major ones include the development of a new EGFR
tyrosine kinase mutation called T790M or the development
of amplification of the gene encoding the MET receptor ty-
rosine kinase (77,78). Identifying the precise cause of acquired
drug resistance (T790M or MET amplification) can help to
decide subsequent treatment strategy (second-generation
irreversible EGFR TKIs, combination EGFR TKIs with
MET kinase inhibitors or with anti-EGFR monoclonal
antibodies) (79–81). In this context, image-guided repeat
biopsies at disease progression can play a critical role in de-
ciding which therapy to use in patients with acquired treatment
resistance. In a recent study, Arcila et al. reported 89% accuracy
of interventional radiology-guided lung biopsies to establish
complete tumor molecular profiling, which helped to estab-
lish the presence of T790 mutation in 68% of patients and
MET amplification in 11%, thereby guiding subsequent man-
agement (82). Such image-guided biopsies or repeat biopsies
may become the norm in the near future in management of
other tumors as well and help assess treatment resistance and
guide treatment (73).

Genitourinary Malignancies

Imaging is increasingly playing an important role in the pre-
cision medicine for prostate cancer. Multiparametric MRI is
emerging as a potent tool, not only for diagnosing prostate
cancer but also for classifying patients into subgroups, which
can help decide the most appropriate treatment for an indi-
vidual patient (83). It is well known that random ultrasound-
guided prostate biopsies can miss even significant sized tumors
and/or under-stage disease owing to sampling error. Such errors
in diagnosis could negatively impact the prognosis by undue
delay in treatment. MRI-guided targeted biopsies offer many
advantages that can overcome the limitations of ultrasound-
guided core biopsies (84,85). MRI-guided targeted biopsies,
including MR-ultrasound fusion biopsies, can accurately lo-
calize and identify tumor in patients with prior negative biopsies,
which can significantly impact management (86–89). Most
importantly, prebiopsy MRI can help to detect more high-
grade tumors than random systematic biopsy while limiting
detection of low-grade (Gleason score 3 + 3) tumors, and this
may help to avoid biopsy in patients with low likelihood of
clinically significant tumors (90,91). MRI can help with active
surveillance by allowing patients with low-grade, low-volume
disease to remain on surveillance and avoid unnecessary
serial repeat biopsies. MRI surveillance can help ensure that
patients who subsequently develop imaging features concern-
ing for progression undergo selective targeted biopsy and
receive early appropriate intervention (92–94). Therefore, MRI
phenotypes can help to classify patients into subgroups (low
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risk, clinically insignificant tumors versus high risk, clinically
significant tumors), which helps to plan treatment and predict
prognosis and oncological outcome. In addition, preliminary
studies report that multiparametric MRI may be useful for
phenotype-genotype characterization in prostate cancer, al-
though this needs further validation (95,96).

Despite advances in surgery and radiotherapy, 15%–25%
of patients with prostate cancer still experience biochemical
recurrence following radical prostatectomy or radiation therapy
(97). In recurrent prostate cancers, conventional imaging sig-
nificantly underestimates tumor burden, with very limited
sensitivity for identifying local recurrence, nodal, and osseous
metastases, particularly in the setting of early biochemical re-
currence (98). Salvage radiotherapy may be most effective in
patients with recurrent tumor after radical prostatectomy, when
the serum prostate-specific antigen (PSA) values are less than
0.5 ng/mL (98). Unfortunately, anatomical imaging tech-
niques such as CT and MR have low sensitivity at such low
PSA levels. In this setting, prostate-specific membrane antigen
(PSMA), a cell surface enzyme that is highly expressed in
prostate cancer, is being investigated as a promising target for
PET imaging in prostate cancer (99–102). In a study involv-
ing 248 patients with biochemical recurrence after radical
prostatectomy, 68Ga-PSMA-PET CT was reported to have
local recurrence detection rates of 57.9%, 72.7%, 93.0%, and
96.8% in patients with serum PSA values of 0.2 to <0.5 ng/mL,
0.5 to <1 ng/mL, 1 to <2 ng/mL, and ≥2 ng/mL, respectively
(102). 68Gallium-PSMA-PET may also help in intraoperative
guidance by accurately localizing even small deposits during
PSMA-radioguided surgery for salvage procedures (100,103).
Larger prospective studies would be very helpful, and if vali-
dated, introduction of these functional imaging techniques in
routine clinical practice may positively influence patient outcome.

The role of imaging in RCC has evolved beyond just serving
as a road map for surgery. Imaging may help identify key
genetic alterations in RCC, which in turn could help to select
patients who may benefit from a particular molecularly tar-
geted therapy and/or help predict outcome. Preliminary
radiogenomic studies of clear cell RCC indicate that imaging
features may correlate with the presence of certain charac-
teristic genetic alterations (104,105). Karlo et al. reported that
clear cell RCC with well-defined margins and nodular tumor
enhancement were more likely to harbor mutations in von
Hippel-Lindau gene, whereas RCCs with mutations of the
lysine (K)-specific demethylase 5C and BRCA1 associated
protein-1 (BAP1) genes were more likely to be associated with
renal vein invasion (105). More recently, a multicenter study
of 103 patients reported that BAP1 mutation was associated
with ill-defined tumor margins and tumor calcification, whereas
MUC4 mutation was associated with exophytic growth of
tumor (104). Such pretreatment genotypic characterization based
on imaging features may be useful in predicting patient outcome
as studies have shown that mutations of von Hippel-Lindau,
PBRM1, BAP1, SETD2, and lysine (K)-specific demethylase
5C are associated with advanced stage, advanced grade, and
poor survival (106).

CT, PET CT, and MRI features are being increasingly
evaluated as potential noninvasive biomarkers for predicting
tumor behavior, treatment response, prognosis, and overall
patient outcomes in gynecological cancers. For example, dif-
fusion MRI may be useful to predict treatment response to
chemotherapy in patients with cervical cancer (107,108). Liu
et al. reported that tumors with a relatively lower ADC had
a higher chance of complete response. Their study showed
that tumor ADC in complete responders increased by 56%
between the pre- and the mid-treatment MRI, whereas only
a 29% change in ADC values was seen in partial responders
(107). Also, combined clinical and imaging nomogram model
using MRI and PET CT may be valuable in determining
prognosis in patients with cervical cancer (109,110). Simi-
larly, in ovarian cancer, incorporation of postoperative CT
data into clinical models may help predict overall and
recurrence-free survival after primary cytoreductive surgery
(111). PET CT may also offer important prognostic infor-
mation in this tumor, as patients with ovarian cancer with a
negative restaging PET CT study are reported to have a sig-
nificantly longer progression - free survival and overall survival
(112). Initial radiogenomic studies in ovarian cancer are also
showing encouraging results, with potentially useful genotype-
phenotype correlations, which could impact patient outcome.
For example, Vargas et al. reported that mesenteric tumor in-
filtration on CT was associated with CLOVAR mesenchymal
subtype in high-grade serous ovarian cancers, and such tumors
had a significantly shorter median progression-free survival (113).

ROLE OF IMAGING IN NON-ONCOLOGICAL
CONDITIONS IN THE ERA OF
PRECISION MEDICINE

Imaging has not yet been successfully integrated with genomics
of most noncancerous conditions. However, similar to the
sentiments echoed by other authors, it is our opinion that disease
phenotypic data are as important as the genotype (7,114). There-
fore, even in the absence of any significant radiogenomic
correlation, imaging is still expected to be a vital cog in pre-
cision management of these conditions. Imaging phenotypes,
including imaging-based classifications and scoring system, can
help to classify patients with similar disease manifestations into
distinct subgroups, improve clinical trial designs, better eval-
uate treatment response, and improve patient outcome (7,114).
In this section, we briefly discuss the role of neuroimaging in
Alzheimer disease (AD) and cerebrovascular disorder, using
them as exemplars to highlight how imaging phenotypes can
be used to subgroup patients, predict prognosis, and improve
patient outcome, the very goals of precision medicine.

AD is the most common cause of dementia and affects 5%–
6% of population over the age of 60 worldwide. It is associated
with significant healthcare costs, estimated to be between $159
and $215 billion (115). Detection of early and preclinical AD
is becoming increasingly important as that may allow for the
development of new treatments and early intervention.
However, early diagnosis of AD by clinical evaluation alone

GIARDINO ET AL Academic Radiology, Vol ■, No ■■, ■■ 2017

6



is very challenging and has led to search for imaging biomarkers.
fluoro-deoxy-glucose PET and novel PET tracers such as
Pittsburgh compound B (in vivo amyloid imaging agent) have
been used as imaging biomarkers for identifying early AD,
before the onset of dementia (116–119). In a large prospective,
longitudinal study involving 128 patients with autosomal dom-
inant AD, PET imaging using the tracer Pittsburgh compound
B was able to detect amyloid-beta deposition 15 years before
the onset of symptoms, implying that this imaging modality
can serve as biomarker for early recognition of AD and can
potentially improve patient outcome through early interven-
tion (116). Other studies have also reported promising results
in early detection of AD using imaging, such as diffusion tensor
imaging, resting state functional MRI, and PET-MR, in-
cluding in patients who are at risk, such as APOE ε4 carriers
(120–122). Using diffusion tensor imaging, Jahanshad et al.
reported a statistically significant association of brain connec-
tivity with the SPON1 variant at rs2618516 on chromosome
11 (11p15.2) (123). The study confirmed that elderly patients
who harbored that connectivity variant had significantly milder
clinical dementia scores and lower risk of AD (123). Bralten
and colleagues reported significant association between
MR-derived hippocampal volume and sortilin receptor 1 gene,
which was identified as a candidate gene in pathogenesis of
AD (124). Another large genome-wide association study in-
volving 381 patients was able to identify numerous candidate
genes (EFNA5, CAND1, MAGI2, ARSB, and PRUNE2)
for sporadic AD, using hippocampal atrophy measured on brain
MRI as a quantitative phenotype (125). These studies high-
light the growing interest in imaging genomics in this condition,
which could potentially translate to improved outcome in the
near future, with development of effective therapies.

In patients with stroke, multimodal imaging including CT
and MR angiography of the cerebral vasculature helps estab-
lish specific patterns of infarct evolution, hematoma growth,
perfusion fluctuations, and vascular factors, allowing for optimal
patient management, prognostication, and improved clinical
outcomes (126). Perfusion MRI has been used in multiple
clinical trials for stratification of patients with stroke (127). In
the Mechanical Retrieval and Recanalization of Stroke Clots
Using Embolectomy trial, patients were randomly assigned
within 8 hours of anterior circulation strokes to undergo
mechanical embolectomy or receive standard care, with ran-
domization stratified according to presence or absence of a
favorable penumbral pattern (127). This study showed that
patients with a favorable penumbral pattern did have im-
proved outcomes, smaller infarct volumes, and attenuated infarct
growth, compared to patients with a non-penumbral pattern,
regardless of treatment assignment. The “spot sign,” a marker
of potential contrast extravasation on CT angiography, has
been used as predictor of early intracerebral hematoma ex-
pansion, a major determinant of poor clinical outcomes (128).
These findings were subsequently confirmed in a meta-
analysis of 18 studies (129). Another promising neuroimaging
biomarker in cerebrovascular disease is the blood-brain barrier
permeability evaluation with CT perfusion, as increase in

blood-brain barrier permeability precedes delayed ischemia and
is correlated with cerebral edema and poor clinical outcomes
(130). Although imaging biomarkers are expected to play a
key role in various neurologic disorders, they should be used
in conjunction with blood-based, cerebrospinal fluid-based,
genetic, and electrophysiological biomarkers. In the future,
precision medicine should help identify subgroups of patients
most likely to respond to specific biologically based therapies.

A comprehensive review of the potential role of imaging
in all non-oncological disorders in the era of precision med-
icine is beyond the scope of this review. Although the current
role of imaging is yet to reach its full potential in non-
oncological conditions, the future looks promising.

CHALLENGES FOR IMAGING IN THE ERA OF
PRECISION MEDICINE

To achieve the objectives of precision, imaging should strive
to be able to precisely classify patients into subgroups, based
on the individuals’ disease phenotypes (which includes imaging
features) as well as genotypes (114). As already alluded to before,
radiogenomics has the ability to impact patient outcome by
successfully integrating radiological phenotypes with genom-
ics. Despite its attraction and obvious potential, there are
significant challenges in this field. For example, not all genetic
mutations are directly related to cancer; some of the changes
may be secondary to germline mutations. Therefore, a “tumor-
only sequencing approach” may be misleading. A recent study
showed that personalizing therapy based purely on tumor-
only sequencing approach may have led to erroneous treatment
decision in nearly 50% of patients (131). This highlights the
importance of performing matched normal DNA sequenc-
ing along with tumor sequencing analyses for precise
identification and interpretation of somatic and germline
alterations. Given these challenges within genomics, the
interpretation of radiogenomics data requires caution. Well-
designed prospective trials using large patient cohorts and
using large public databases such as The Cancer Imaging
Archive and The Cancer Genome Atlas may help to eluci-
date correlations between imaging phenotypes and genomic
characteristics in various cancers (8).

One of the biggest challenges faced by oncologists is the
presence of “intra-tumor and inter-tumor heterogeneity” (132).
Numerous studies have highlighted this concept by demon-
strating the presence of a diverse array of complex genomic
alterations not only between primary tumor and metastatic
sites but also between different regions within the same tumor
mass (133–135). This inherent heterogeneity within tumors
helps cancer cells develop subclones, which can escape the
various stresses in the tumor microenvironment including
the effects of oncological drugs, which contributes to the
emergence of treatment resistance. Also, tumor heterogene-
ity changes over time and in response to treatment. Such tumor
heterogeneity highlights the limitations of performing genomic
analysis based on tissue materials obtained from a single biopsy
site, as that would significantly underestimate the full extent
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of whole genome alteration. As described earlier, radiogenomic
studies, by virtue of correlating the genomic signatures with
imaging phenotypes, can help in deciphering and overcom-
ing the challenges of tumor heterogeneity. Several studies have
also reported the utility of molecular imaging using PET CT
in demonstrating tumor heterogeneity in prostate, breast, and
colorectal cancers (136–138). Recent studies also indicate that
quantifying intra-tumor heterogeneity using PET textural anal-
ysis may have the potential to predict response to therapy and
predict survival in tumors such as esophageal and lung cancers
(139–142). Nanoparticle-based imaging is another field with
a promising future. By virtue of their small size (1–100 nm),
nanoparticles are uniquely capable of interacting with intra-
cellular and extracellular biomolecules, which may enhance
the diagnostic capabilities for disease detection and monitor-
ing treatment response, and also provides therapeutic advantages
for more precise drug delivery. Advances in molecular imaging
offer exciting opportunities in clinical trials by enabling the
use of different types of imaging agents. This may provide
previously unavailable information such as the specific effect
of therapy on multiple cellular events including tumor an-
giogenesis, metabolism, and cell proliferation, thereby helping
more accurately identify early responders versus nonresponders.

Radiomics is another field showing great potential but should
be approached with cautious optimism. Despite the dramatic
increase in the number of published studies on utility of radiomics
in the last decade, majority of these studies are small and require
further validation. Also, most of the radiomics studies have
reported correlation and not necessarily causation between
imaging biomarkers and patient outcomes. Another challenge
is the need to have standardization of techniques across the
centers conducting such studies, to improve reproducibility
of results. Further, standardization also needs to extend to manu-
facturers and their proprietary imaging hardware or software.
Proper quality assurance programs should be developed to
improve the reliability of newer techniques and biomarkers.
Highly reliable, robust, and secure methods of data sharing
need to be developed, considering the amount of confiden-
tial patient health information stored in each patient record.

The large volume of data (Big Data) that can be extracted
from patients’ genomics, epigenomics, radiomics, transcriptomics,
proteomics, and metabolomics as well as other data from the
electronic health records offers seemingly endless opportunities
to enhance healthcare delivery; it undoubtedly brings upon
its own challenges (143). A decade ago, the main challenge
was scarcity of data and the focus was on data generation. Now,
we are faced with an explosion of data and the challenge is on
deciding how to integrate, analyze, and interpret the data. It
is critical to be able to differentiate true data from “noise” to
decrease the chance of erroneous interpretations (143,144).
This requires significant investment in bioinformatics and bio-
statistics and creation of complex disease-based models.

Finally, successful implementation of precision medicine
requires active collaboration of industry, governmental regulatory
bodies, and academia (7). Pharmaceutical companies and manu-
facturers would need to be invested in the development of

novel imaging biomarkers (145,146). Although it may be an
expensive, high-risk venture at the outset, successful development
of new molecularly targeted imaging biomarkers can prove
to be highly cost-effective in the long run. For example, novel
tracers can successfully identify which patients will benefit
from a newly developed experimental therapy in clinical trials.
In turn, this can help to save a lot of money by avoiding
giving costly therapies to patients who are unlikely to benefit.
Also, such targeted selective identification of trial participants
may help to improve the chances of success of the trials. Gov-
ernment regulatory bodies also have an important role in the
development of quantitative imaging biomarker (146). Gov-
ernment funding agencies should identify those research
proposals that hold promise and ensure adequate funds for
the development of novel molecular imaging tracers. Further,
the US Food and Drug Administration should fast track the
process of approval of novel quantitative imaging biomarkers,
especially those that are safe, noninvasive, and have potential
to make high impact in achieving the mission of precision
medicine. Academic centers should be encouraged to foster
an environment where radiological research related to im-
proving patient outcomes, including development of novel
functional imaging techniques and imaging biomarkers, is
given the highest priority. Precision medicine has indeed
heralded a new era in modern medicine, an era where
imaging will continue to play a pivotal role.
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