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Purpose: To identify cerebral radiomic features related to diagnosis 
and subtyping of attention deficit hyperactivity disorder 
(ADHD) and to build and evaluate classification models 
for ADHD diagnosis and subtyping on the basis of the 
identified features.

Materials and 
Methods:

A consecutive cohort of 83 age- and sex-matched children 
with newly diagnosed and never-treated ADHD (mean age 
10.83 years 6 2.30; range, 7–14 years; 71 boys, 40 with 
ADHD-inattentive [ADHD-I] and 43 with ADHD-combined 
[ADHD-C, or inattentive and hyperactive]) and 87 healthy 
control subjects (mean age, 11.21 years 6 2.51; range, 7–15 
years; 72 boys) underwent anatomic and diffusion-tensor 
magnetic resonance (MR) imaging. Features representing 
the shape properties of gray matter and diffusion prop-
erties of white matter were extracted for each participant. 
The initial feature set was input into an all-relevant feature 
selection procedure within cross-validation loops to identify 
features with significant discriminative power for diagnosis 
and subtyping. Random forest classifiers were constructed 
and evaluated on the basis of identified features.

Results: No overall difference was found between children with ADHD 
and control subjects in total brain volume (1 069 830.00 mm3 6  
90 743.36 vs 1 079 213.00 mm3 6 92 742.25, respectively; P = 
.51) or total gray and white matter volume (611 978.10 mm3 
6 51 622.81 vs 616 960.20 mm3 6 51 872.93, respectively;  
P = .53; 413 532.00 mm3 6 41 114.33 vs 418 173.60 mm3 6 
42 395.48, respectively; P = .47). The mean classification ac-
curacy achieved with classifiers to discriminate patients with 
ADHD from control subjects was 73.7%. Alteration in corti-
cal shape in the left temporal lobe, bilateral cuneus, and re-
gions around the left central sulcus contributed significantly 
to group discrimination. The mean classification accuracy 
with classifiers to discriminate ADHD-I from ADHD-C was 
80.1%, with significant discriminating features located in the 
default mode network and insular cortex.

Conclusion: The results of this study provide preliminary evidence that 
cerebral morphometric alterations can allow discrimina-
tion between patients with ADHD and control subjects 
and also between the most common ADHD subtypes. By 
identifying features relevant for diagnosis and subtyping, 
these findings may advance the understanding of neurode-
velopmental alterations related to ADHD.
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mainly in clinical oncology to extract 
imaging features in solid tumors. The 
first step of a radiomics workflow for 
oncology has been to segment tumors 
on medical images, after which quan-
titative imaging features are extracted. 
Extracted features represent the inten-
sity distribution, shape, and texture of 
tumors and capture distinct phenotypes 
of tumors that are clinically important 
(22). Similarly, brain magnetic reso-
nance (MR) images also can be ana-
lyzed within a radiomics framework by 
precisely segmenting the brain into an-
atomic structures and then extracting 
quantitative features from segmented 
structures to form the mineable data 
set.

However, radiomics features may 
also present the high-dimension low–
sample size problem (23). Common 
practice in machine learning is to per-
form feature selection to reduce the 
dimensionality by selecting the features 
that carry useful information related to 
category label. However, similar to the 
issue of feature selection in genetics re-
search, the features from neuroimaging 
data can also be highly correlated be-
cause of the intrinsic network architec-
ture of the human brain (24,25). Thus, 
it is crucial to identify all the relevant 
features related to the disease during 

volume (8–11), cortical morphomet-
ric features (12–14), and diffusion 
properties of white matter tracts (15) 
when compared with typically devel-
oping individuals. However, previous 
imaging findings have no established 
diagnostic value for individual patients 
with ADHD, as studies typically report 
group-level differences between pa-
tients and control subjects. Analyzing 
brain imaging data under the frame-
work of machine learning has the po-
tential to address this challenge (16). 
In the context of the developing field of 
psychoradiology (17), machine learning 
is concerned with automatic discovery 
of regularities in brain imaging data 
through the use of pattern recognition 
algorithms to develop classifiers that 
can be used to predict disorders in 
individuals.

The first step in building an image-
based classifier is to extract quantita-
tive features from brain images. Voxel-
wise features, which have been widely 
used as extracted features in previous 
neuroimage-based classification studies 
(18–20), are sensitive to registration 
errors and intersubject variations and 
present the problem of dimensionality. 
The emerging field of radiomics has the 
potential to address this problem (21). 
Radiomics is a medical image analysis 
framework that converts digital radio-
graphic images into a mineable data 
set with a series of data characteriza-
tion algorithms. It has been applied 
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Advances in Knowledge

 n Cerebral radiomic features based 
random forest models allowed 
discrimination of patients with 
attention deficit hyperactivity 
disorder (ADHD) from healthy 
control subjects with 73.7% 
mean accuracy and discrimina-
tion of ADHD inattentive and 
combined inattentive and hyper-
active subtypes with 80.1% mean 
accuracy in a MR imaging study 
with a single imager and amedi-
cation-naïve and relatively large 
sample size.

 n During model construction, the 
all-relevant feature selection 
process identified alteration in 
cortical shape within the left 
temporal lobe, bilateral cuneus, 
and regions around left central 
sulcus that contributed signifi-
cantly to group discrimination, 
while features involved in the 
default mode network and insu-
lar cortex had significant contri-
bution to subtype discrimination.

Implications for Patient Care

 n The proposed analysis framework 
based on radiomics and machine 
learning has the ability to iden-
tify imaging features relevant to 
diagnosing ADHD, while fur-
thering the understanding of neu-
rologic developmental alterations 
related to ADHD and their spe-
cific pattern in the two most 
common subtypes of the illness.

 n The proposed analysis framework 
is fully automatic and can be 
deployed readily in clinical envi-
ronments to be a useful adjunct 
to psychiatric behavioral evalua-
tion for diagnosing ADHD.

A ttention deficit hyperactivity dis-
order (ADHD), characterized 
by age-inappropriate inattention, 

hyperactivity, and impulsivity, is among 
the most common childhood-onset neu-
rodevelopmental disorders, with an es-
timated prevalence in 5%–8% of chil-
dren and 4% of adults worldwide (1). 
ADHD has an adverse effect on social, 
cognitive, educational, and emotional 
functions (2–6). Currently, clinical diag-
nosis and subtyping of ADHD is based 
on an integration of parent and teacher 
behavioral reports and assessment of 
behavioral problems (7). However, 
given the subjective nature of these 
evaluations and the overlap of ADHD 
with other psychiatric disorders, im-
aging-based parameters may provide a 
useful objective adjunct to clinical psy-
chiatric evaluation for diagnosing and 
subtyping ADHD.

Although the etiology and neuro-
biological substrate of ADHD remain 
unclear, converging evidence from im-
aging studies suggests that individuals 
with ADHD have alterations in brain 
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data (2 3 20 diffusion-encoding direc-
tions) were acquired from each partic-
ipant. Imaging protocols appear in Ap-
pendix E1 (online).

Extraction of Gray Matter Features
T1-weighted anatomic images were 
processed with software (“recon-all” 
processing pipeline; Freesurfer, https://
surfer.nmr.mgh.harvard.edu/, with the 
Desikan-Killiany-Tourville atlas [26] 
and “antsCorticalThickness” pipeline; 
Advanced Normalization Tools, http://
stnava.github.io/ANTs/) (27) to gener-
ate labeled brains (full list of regional 
labels in Table E1 [online]). A total of 
2338 shape-related features that rep-
resent gray matter morphometry were 
extracted from each T1-weighted image 
by using open source software (Mind-
boggle, http://www.mindboggle.info/) 
(28). Details about gray matter fea-
ture extraction appear in Appendix E1 
(online).

White Matter Features Extraction
Routine diffusion-tensor processing, 
including head motion and eddy-cur-
rent correction, brain extraction, and 
tensor model fitting were performed 
by using software (FSL, FMRIB Soft-
ware Library; http://www.fmrib.ox.ac.
uk). The Johns Hopkins University of 
Medicine International Consortium of 
Brain Mapping diffusion-tensor im-
aging white matter atlas constructed 
with data from 81 individuals, or JHU-
ICBM-DTI-81, was wrapped to individ-
ual space. Distribution metrics (mean, 
standard deviation, skew, and kurto-
sis) were extracted from diffusion pa-
rameter maps (fractional anisotropy, 
mean diffusivity, axial diffusivity, and 
radial diffusivity) for each label defined 
in the atlas. A total of 768 features 
that represent the diffusion properties 
of white matter regions were extracted 
from each participant’s diffusion-ten-
sor data. Details about white matter 
feature extraction appear in Appendix 
E1 (online). The whole feature extrac-
tion process is illustrated in Figure 1.

All-Relevant Feature Selection
The morphometric features and diffu-
sion features were concatenated into a 

Hand Preference Questionnaire); any 
physical illness that might affect brain 
anatomy and function (including neu-
rologic illness; head injury; and liver, 
renal or cardiac abnormalities); and 
contraindications to MR imaging. One 
hundred sixteen patients underwent 
MR imaging, and 33 patients were ex-
cluded for the following reasons: ex-
cessive motion artifacts or inability to 
remain in the imager for a repetition 
sequence (n = 21) and vibration arti-
facts in diffusion data (n = 12). Finally, 
83 patients (40 with ADHD-I and 43 
with ADHD-C) were included in this 
study.

Healthy control subjects were re-
cruited from local schools with an ad-
vertisement and were matched with 
patients with the same age distribution 
and sex ratio. Control subjects were 
screened by using the Chinese modi-
fied version of SCID-I (nonpatient ver-
sion) to exclude any Axis I psychiatric 
diagnoses. Control subjects had no 
history of taking psychotropic medica-
tions or known family history of psy-
chotic or mood disorder or ADHD in 
a first-degree relative. Other exclusion 
criteria were the same as those for the 
ADHD group. An experienced neuro-
radiologist (nonauthors, with 5 years 
of experience in diagnostic neuroim-
aging) inspected conventional MR im-
aging examinations of all participants 
to exclude individuals with gross neu-
roradiologic abnormalities (including 
any neurologic or systemic illness that 
could confound assessment of AD-
HD-specific brain abnormalities such 
as intracranial tumor; head trauma; 
developmental deformity; and demy-
elinating, infectious, and metabolic 
diseases). One hundred nine healthy 
control subjects underwent MR im-
aging, 22 of whom were excluded for 
excessive motion artifacts or vibration 
artifacts. Finally, 87 healthy control 
subjects were included in this study.

Data Acquisition
All examinations were performed by 
using an MR imager (Siemens Trio 3 
T; Siemens Healthineers, Erlangen, 
Germany). High-spatial-resolution T1-
weighted and diffusion-tensor imaging 

the classification process, because un-
derstanding the mechanisms behind 
the imaging phenotype is the aim. 
Therefore, the purpose of our study 
was to identify all cerebral radiomics 
features related to ADHD diagnosis 
and subtyping and to build and evaluate 
classification models for ADHD diagno-
sis and subtyping on the basis of the 
identified features.

Materials and Methods

Participants
This prospective study was approved 
by the local ethics committee for hu-
man studies. All participants and their 
parents were fully informed about the 
purpose and procedures of this study, 
written informed consent was obtained 
from the parents, and assent was pro-
vided by child participants before en-
rollment. Study participants were con-
secutively recruited from September 
2009 to October 2015. Children with 
newly diagnosed and never-treated 
ADHD were recruited from the De-
partment of Psychiatry, West China 
Hospital, Sichuan University. Diagnosis 
of ADHD was determined by two ex-
perienced clinical psychiatrists (Y.C. 
and a nonauthor, with 5 and 28 years 
of experience in clinical psychiatry, re-
spectively) by using the Chinese version 
of the Structured Clinical Interview for 
Diagnotic and Statistical Manual 4 Text 
Revision Axis I Disorders, or SCID. The 
diagnosis of ADHD inattentive subtype 
(ADHD-I) required seven symptoms of 
inattention and less than four symp-
toms of hyperactivity and impulsivity. 
For a diagnosis of ADHD combined 
subtype (ADHD-C), seven symptoms 
of inattention and seven symptoms of 
hyperactivity or impulsivity were re-
quired. Patients with any Axis I psy-
chiatric comorbid disorders were ex-
cluded. Other exclusion criteria were 
a full-scale intelligence quotient lower 
than 90 based on an age-appropriate 
Wechsler Intelligence Scale for Chil-
dren, Chinese Revision results; current 
or past treatment with psychotropic 
medication; substance abuse; left-hand-
edness (assessed by using the Annett 
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(Appendix E1 [online]). The result of 
the algorithm is the assignment of each 
feature to one of two classes: relevant 
or irrelevant. In our study, all relevant 
features were selected and compared 
between patients with ADHD and 

involved in ADHD, we performed a 
random forest–based feature selec-
tion algorithm for all relevant features, 
which was implemented with software 
(R package, “Boruta”; https://www.r-
project.org/) (29) on extracted features 

long feature vector to represent both 
gray and white matter profiles of each 
individual brain (2338 morphometric 
and 768 diffusion features, for a total of 
3106 features). To remove nonrelevant 
features and identify all brain regions 

Figure 1

Figure 1: Diagram shows workflow for extracting radiomics features from T1-weighted and diffusion-tensor images. For extraction of gray matter features, labeled 
brain data were converted to surface mesh. Volume and surface area were measured for each labeled region, and shape properties (local cortical thickness, mean 
curvature, convexity, geodesic depth, and travel depth) were calculated on each vertex, then distribution metrics (mean, standard deviation, skew, kurtosis) of shape 
properties in each labeled region and sulcus were extracted. For white matter features extraction, the JHU-ICBM-DTI-81 atlas was wrapped to individual space, and 
istribution metrics (mean, standard deviation [Std], skew, kurtosis) were extracted from four diffusion parameters: fractional anisotropy (FA), mean diffusivity (MD), 
axial diffusivity (AD), and radial diffusivity (RD) maps for each labeled region.
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Classification Performance
In building and evaluating the classifier 
for discriminating patients with ADHD 
from healthy control subjects, we per-
formed 100 runs of 10-fold cross-val-
idation and summarized the classifier 
performance from a total of 1000 train-
ing-testing cycles. The classification ac-
curacy and k value achieved with our 
method by means of a repeated 10-fold 
cross-validation were 73.7% 6 5.2 and 
0.47 6 0.10, respectively, with features 
from the all-relevant features selection 
step. Sensitivity and specificity for dis-
criminating patients with ADHD from 
control subjects were 70.2% 6 7.1 and 
77.0% 6 5.8, respectively. In building 
and evaluating the classifier for dis-
criminating between ADHD subtypes, 
the mean classification accuracy and k 
value achieved by means of repeated 
10-fold cross-validation were 80.1% 
6 6.2 and 0.60 6 0.13, respectively. 
Sensitivity and specificity for classi-
fying patients with ADHD-I subtype 
were 71.0% 6 8.3 and 87.5% 6 5.9, 
respectively.

Significantly Relevant Features
As we embedded the feature selection 
into the cross-validation procedure, a 
total of 1000 feature subsets were ob-
tained in each classifier construction. 

To determine the relevance of selected 
features, 1000 random data sets were 
created by permuting the label column 
of the original data set. The random 
data sets went through the same fea-
ture selection procedure. The expected 
distribution of selection frequency (de-
fined as the number of iterations in 
which a feature was selected divided 
by the total number of iterations per-
formed in one data set) of each feature 
throughout cross-validation iterations 
was modeled as a binomial distribution 
with the parameter estimated as the 
mean selection frequency in all random 
data sets. This distribution was then 
used to find features in the original 
data set with selection frequency signif-
icantly higher than would be expected 
by chance, with adjusted P values of 
.05, after Holm-Bonferroni correction 
to correct for multiple tests (32).

Results

Demographic and Volumetric Comparison
Demographic variables and macro-
scopic cerebral volume were not sig-
nificantly different between patients 
and control subjects or between 
patients with the ADHD subtypes 
(Tables 1, 2).

healthy control subjects and between 
ADHD subtypes.

Random Forest Classifier Training and 
Cross-Validation
The random forest classifier for dis-
criminating between patients with 
ADHD and healthy control subjects 
and the classifier for discriminating be-
tween ADHD subtypes were construct-
ed and evaluated through the workflow 
shown in Figure 2. The all-relevant fea-
ture selection step was embedded in a 
repeated k-fold (k = 10) cross-validation 
framework (30) to obtain unbiased es-
timates of classification error (31). The 
R package “caret” (classification and 
regression training) was used to im-
plement the workflow. The overall ac-
curacy, sensitivity, and specificity and 
k score were used to characterize the 
performance of the classifier (Appendix 
E1 [online]).

Assessment of the Relevance of Selected 
Features
In our workflow, features were selected 
in each iteration on different subsets of 
features taken from the cross-validation 
procedure. Features that were selected 
in more iterations than would be ex-
pected to occur at random were identi-
fied as significantly relevant selections. 

Figure 2

Figure 2: Flowchart shows feature selection and model training. Rectangles in blue represent data and rectangles in gray represent the processes. The all-relevant 
features selection step was nested in repeated 10-fold cross validation.
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Table 1

Demographic and Macroscopic Volume Comparison between Patients with ADHD and Healthy Control Subjects

Characteristic or Volume Measure ADHD (n = 83) Control Subjects (n = 87) Statistic* Degrees of Freedom P Value

Age (y) 10.83 6 2.30 (7–14) 11.21 6 2.51 (7–15) 21.01 168 .31
Sex† 0.12‡ 1 .72
 Male 71 72
 Female 12 15
Total gray matter volume (mm3) 611 978.10 6 51 622.81 616 960.20 6 51 872.93 20.63 168 .53
Total white matter volume (mm3) 413 532.00 6 41 114.33 418 173.60 6 42 395.48 20.72 168 .47
Subcortical region volume (mm3) 44 319.48 6 3514.38 44 079.05 6 3144.57 0.47 168 .64
Total brain volume (mm3) 1 069 830.00 6 90 743.36 1 079 213.00 6 92 742.25 20.67 168 .51

Note.—Unless otherwise indicated, data are means 6 standard deviation, with the range in parentheses, if applicable.

* Unless otherwise indicated, statistics were calculated with t tests.
† Data are number of patients.
‡ x2 test was used.

Table 2

Demographic Characteristics and Macroscopic Volume Comparisons between Patients with ADHD-I and ADHD-C

Characteristic and Volume Measure ADHD-I (n = 40) ADHD-C (n = 43) Statistic* Degrees of Freedom P Value

Age (y) 10.66 6 2.23 10.91 6 2.29 20.48 81 .63
Sex† 0‡ 1 ..99
 Male 34 37
 Female 6 6
Total gray matter volume (mm3) 611 031.90 6 40 442.30 611 636.90 6 57 724.25 20.05 81 .96
Total white matter volume (mm3) 408 586.80 6 36 980.55 420 132.70 6 46 000.69 21.19 81 .24
Subcortical region volume (mm3) 44 022.64 6 3232.51 44 780.13 6 3693.04 20.94 81 .35
Total brain volume (mm3) 1 063 641.00 6 75 673.49 1 076 550.00 6 102 658.70 20.62 81 .54

Note.—Unless otherwise indicated, data are means 6 standard deviation, with the range in parentheses, if applicable.

* Unless otherwise indicated, statistics were calculated with t tests.
† Data are number of patients.
‡ x2 test was used.

In the construction of the classifier 
discriminating patients with ADHD 
from healthy control subjects, the 
mean number of features in each 
subset was 13.2 (range, eight to 17; 
0.26%–0.55% of all features). Eight 
features were identified as signifi-
cantly relevant, because their selec-
tion frequency in real data were sig-
nificantly higher than that in random 
data (Table 3, Fig 3). In the construc-
tion of the classifier to discriminate 
between ADHD subtypes, the mean 
number of features in each subset was 
8.7 (range, six to 13; 0.20%–0.42% of 
all features). Five significant features 
were identified as significantly rele-
vant (Table 4, Fig 4).

Discussion

The major finding of this study was that 
cerebral radiomics-based classification 
models provided discrimination of pa-
tients with ADHD from healthy con-
trol subjects, as well as separation of 
the two most common subtypes in a 
medication-naïve and relatively large 
sample-size single-imager MR imaging 
study. During model construction, the 
all-relevant features selection process 
identified alteration in cortical shape in 
the left temporal lobe, bilateral cune-
us, and regions around the left central 
sulcus that contributed significantly to 
discrimination of patients with ADHD 
from control subjects, while features 
involved in default mode network and 

insular cortex significantly contributed 
to ADHD subtype discrimination.

The aim to diagnose ADHD accord-
ing to neuroimaging data has long been 
pursued. The largest attempt to clas-
sify ADHD by using neuroimaging data 
comes from the ADHD-200 consortium 
multicenter study in which resting-
state functional and structural data sets 
of 285 children and adolescents with 
ADHD and 491 healthy control subjects 
were used (33). Various combinations 
of feature extraction and classification 
algorithms were used to classify this 
sample, with accuracy of 43.1%–61.5% 
(mean, 56.0%) with the use of a two-
class classifier to differentiate patients 
with ADHD from healthy control 
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approach used involved sophisticated 
data preprocessing steps, which are not 
feasible in a clinical environment. Also, 
the lack of diffusion-weighted MR imag-
ing data may have limited the efficiency 
of the constructed classifier, because 

inconsistent echo-planar imaging ac-
quisition provided by different imaging 
systems and manufacturers, and these 
differences likely increased variability in 
brain measurements related to the pa-
tients’ state of illness. Furthermore, the 

subjects. The best classifier achieved 
high specificity of 94% but poor sen-
sitivity of 21%, resulting in overall ac-
curacy of 61%. One limitation to these 
findings was that resting-state func-
tional MR imaging data suffers from 

Table 3

Significant Features for Discriminating Patients with ADHD and Healthy Control Subjects

Selection Frequency (%)* Hemisphere Label or Sulcus Feature Type† Statistic Patients with ADHD Control Subjects

92.3 Left Superior temporal sulcus Convexity Skew 20.81 6 0.11 20.78 6 0.08
88.4 Right Cuneus Local thickness Mean 2.01 6 0.16 1.92 6 0.17
85.9 Left Precentral Mean curvature Kurtosis 20.33 6 0.43 20.41 6 0.51
82.4 Left Superior temporal Travel depth Skew 20.46 6 0.13 20.40 6 0.11
80.0 Left Precentral Mean curvature Skew 21.12 6 0.10 21.10 6 0.09
77.3 Left Cerebral peduncle Fractional anisotropy Skew 20.14 6 0.16 20.24 6 0.15
76.9 Left Cuneus Local thickness Mean 1.89 6 0.15 1.85 6 0.18
75.1 Left Postcentral Mean curvature Kurtosis 20.26 6 0.66 20.48 6 0.46

Note.—Unless otherwise indicated, data are means 6 standard deviation.

* Defined as number of iterations in which the feature was selected divided by the total number of iterations performed.
† Includes local thickness, mean curvature, convexity, geodesic depth, and travel depth for gray matter structure and fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity for 
white matter structure.

Figure 3

Figure 3: Graphs show distribution of significant features that discriminated ADHD and healthy control subjects. FA = fractional anisotropy.
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ADHD and 80.1% for discriminating 
between ADHD-I and ADHD-C, some-
what better than those achieved with 
the ADHD-200 consortium. In compar-
ison with the commonly used minimal-
optimal feature selection algorithm, the 
all-relevant features selection algorithm 
allows identification of all features 

data were involved in the process of 
classifier building, providing a more 
comprehensive neuroanatomical eval-
uation of the disorder. By integrating 
the all-relevant features selection step, 
the random forest classifier allowed 
the achievement of average accuracy of 
73.7% for identifying individuals with 

authors of many studies have reported 
white matter abnormalities in patients 
with ADHD.

In our study, we established an 
analysis framework on the basis of ce-
rebral radiomics and machine learning 
methods for ADHD diagnosis and sub-
typing. Both structural and diffusion 

Table 4

Significant Features for Discriminating ADHD-I and ADHD-C Subtypes

Selection Frequency (%)* Hemisphere Label/Sulcus Feature Type† Statistics Patients with ADHD-I Patients with ADHD-C

93.7 Left Circular sulcus Travel depth Mean 19.75 6 1.26 20.05 6 1.12
90.1 Left Posterior cingulate Mean curvature Skew 21.13 6 0.08 21.17 6 0.11
85.4 Left Sylvian fissure Mean curvature Kurtosis 20.407 6 0.30 20.31 6 0.34
82.7 Left Pars triangularis Mean curvature Kurtosis 20.85 6 0.16 20.72 6 0.16
77.5 Left External capsule Fractional anisotropy Skew 0.13 6 0.14 0.20 6 0.20

Note.—Unless otherwise indicated, data are means 6 standard deviation.

* Defined as number of iterations in which the feature was selected divided by total number of iterations performed.
† Includes local thickness, mean curvature, convexity, geodesic depth, and travel depth for gray matter structure and fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity for 
white matter structure.

Figure 4

Figure 4: Distribution of significant features that discriminated ADHD-I and ADHD-C. FA = fractional anisotropy.
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longitudinal developmental studies are 
needed to confirm this interpretation.

Different ADHD subtypes may 
share overlapping structural aberra-
tions, but also exhibit unique abnor-
malities as suggested in prior work 
(45). However, authors of few studies 
to date have examined neuroanatomic 
differences between ADHD subtypes, 
to our knowledge. With the use of 
shape measurements, the feature se-
lection process revealed differences 
between subtypes located in the circu-
lar sulcus, posterior cingulate cortex, 
sylvian fissure, and pars triangula-
ris. These morphometric findings are 
consistent with a previous functional 
study, in which ADHD-C exhibited al-
tered regional connectivity in the de-
fault mode network and insular cortex, 
while ADHD-I exhibited alteration in 
frontoparietal network (45). In addi-
tion, alterations in the posterior cingu-
late cortex, which is a key integration 
node in the default mode network, 
have been related to ADHD-I (46).

In comparison with widespread al-
terations in white matter revealed in 
previous studies in which group-level 
comparison was used, in our study, we 
identified local alterations in the skew 
of fractional anisotropic distribution 
linked to ADHD discrimination and 
subtyping. Decreased skew of fractional 
anisotropic distribution was found in 
the left cerebellar peduncle, a fiber 
bundle connecting the sensory and mo-
tor areas of the cortex with the pons 
and cerebellum. ADHD-I and ADHD-
C also had differences in the skew of 
fractional anisotropic distribution in 
the left external capsule, which con-
nects anterior and posterior attentional 
systems (47). Fractional anisotropy 
measurements in white matter have a 
very broad distribution with consider-
able skew and kurtosis (48), and the 
change in skew may reflect alterations 
of tissue organization. Because of the 
inherent limitation of the atlas used for 
parcellation, only main white matter 
tracts were evaluated in feature extrac-
tion. Future studies of fibers in super-
ficial regions may provide additional 
information about the specific areas of 
cortex affected by tract alterations.

to changes in gray matter and cerebral 
spinal fluid volumes as well as in corti-
cal surface curvature (39). Findings of 
altered shape in the left temporal lobes 
are also, to some extent, consistent 
with previous morphometric studies 
in which authors observed a reduction 
in size of the anterior temporal lobes 
along with an increased density of gray 
matter in posterior temporal cortices. 
These temporal regions integrate in-
formation from lower-order sensory to 
higher-order perceptual systems used 
to guide the control of attention and ac-
tion (40). Thus, observed abnormalities 
in the left temporal lobe may be clini-
cally relevant with regard to cognitive 
and behavioral problems in patients 
with ADHD.

In comparison with prior findings 
of decreased total brain volume and 
global gray matter in children with 
ADHD (41), our study of never-treat-
ed patients showed no volume differ-
ences in total brain, white matter, 
or cortical and subcortical gray mat-
ter between patients with ADHD and 
control subjects. Differences in study 
methodologies and patient age and 
treatment history may have contrib-
uted to this discrepancy. Also, authors 
of previous studies reported cortical 
thinning in patients with ADHD, while 
we found increased cortical thickness 
throughout the bilateral cuneus in pa-
tients with ADHD relative to that in 
control subjects. The cuneus is cen-
tral to processing visual information. 
This might underlie alterations in vi-
sual psychophysical processes related 
to visual sensation and perception in 
patients with ADHD (42). Results of a 
recent study showed that 11-year-old 
children with ADHD presented simi-
lar visual temporal selective attention 
as healthy 8-year-old control subjects 
(43), consistent with a neurodevelop-
mental delay affecting visual cortical 
systems. According to the typical tra-
jectory of cortex maturation, cortical 
thickness declines in a relatively linear 
pattern after approximately 5 years 
of age (44). The observed thicker cu-
neus in patients with ADHD may thus 
suggest a developmental delay in the 
primary visual cortex in ADHD, but 

that provide information usable for 
classification, rather than finding a 
more compact subset of features on 
which a certain classifier has a mini-
mal error. Thus, the proposed analytic 
framework has the ability to identify all 
features relevant to diagnosis and sub-
typing the two most common forms of 
ADHD and to advance a more compre-
hensive understanding of the neuroana-
tomic alterations related to ADHD and 
its most common subtypes.

In the human brain, the morphol-
ogy of cortical gyri and sulci is complex 
and variable among individuals. This 
may cause and reflect abnormal func-
tioning, with specific abnormalities ob-
served in patients with developmental 
and neuropsychiatric disorders, but 
may also reflect the individual varia-
tion in neuroanatomy. Authors of pre-
vious ADHD research (34,35) suggest 
that aberrant cortical folding patterns 
may be involved in the pathology of 
ADHD. Local cortical thickness, con-
vexity, curvature, and depth are fre-
quently used shape analysis measures 
for characterizing cortical folding pat-
terns. Results from the feature selec-
tion procedure in our study indicate 
that the top discriminative differences 
between patients with ADHD and typ-
ically developing control subjects are 
local alteration in cortical shape prin-
cipally in the left temporal lobe, bilat-
eral cuneus, and regions around the 
left central sulcus.

Structural changes in the motor 
area are of interest, because impaired 
motor inhibition is a cardinal feature 
of ADHD. Precentral and postcentral 
cortical areas also have been implicated 
in inhibitory behavioral control (36). 
By using shape measures, we found an 
altered distribution of the curvature of 
vertices within left precentral and post-
central regions. Curvature primarily re-
flects packing density and arrangement 
of neuronal cells (37). This result fur-
ther refines conclusions from previous 
voxel-based morphometry studies in 
which authors reported reduced gray 
matter in the motor and premotor cor-
tices (38), because alteration of gray 
matter volume identified with voxel-
based morphometry can be sensitive 
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