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Purpose: To investigate the importance of presurgical computed tomography (CT) intensity and
texture information from ground-glass opacities (GGO) and solid nodule components for the predic-
tion of adenocarcinoma recurrence.
Methods: For this study, 101 patients with surgically resected stage I adenocarcinoma were selected.
During the follow-up period, 17 patients had disease recurrence with six associated cancer-related
deaths. GGO and solid tumor components were delineated on presurgical CT scans by a radiologist.
Computational texture models of GGO and solid regions were built using linear combinations of
steerable Riesz wavelets learned with linear support vector machines (SVMs). Unlike other traditional
texture attributes, the proposed texture models are designed to encode local image scales and
directions that are specific to GGO and solid tissue. The responses of the locally steered models
were used as texture attributes and compared to the responses of unaligned Riesz wavelets. The
texture attributes were combined with CT intensities to predict tumor recurrence and patient hazard
according to disease-free survival (DFS) time. Two families of predictive models were compared:
LASSO and SVMs, and their survival counterparts: Cox-LASSO and survival SVMs.
Results: The best-performing predictive model of patient hazard was associated with a concordance
index (C-index) of 0.81±0.02 and was based on the combination of the steered models and CT inten-
sities with survival SVMs. The same feature group and the LASSO model yielded the highest area
under the receiver operating characteristic curve (AUC) of 0.8±0.01 for predicting tumor recurrence,
although no statistically significant difference was found when compared to using intensity features
solely. For all models, the performance was found to be significantly higher when image attributes
were based on the solid components solely versus using the entire tumors (p < 3.08×10−5).
Conclusions: This study constitutes a novel perspective on how to interpret imaging information
from CT examinations by suggesting that most of the information related to adenocarcinoma aggres-
siveness is related to the intensity and morphological properties of solid components of the tumor.
The prediction of adenocarcinoma relapse was found to have low specificity but very high sensitivity.
Our results could be useful in clinical practice to identify patients for which no recurrence is expected
with a very high confidence using a presurgical CT scan only. It also provided an accurate estimation
of the risk of recurrence after a given duration t from surgical resection (i.e., C-index= 0.81±0.02).
C 2015 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4916088]

Key words: lung cancer, texture analysis, steerable Riesz wavelets, quantitative imaging biomarkers,
radiomics

1. INTRODUCTION

Adenocarcinoma is a subtype of nonsmall cell lung cancer
that begins in the cells that line the alveoli. It is the most
common histopathologic subtype of lung cancer, and its
incidence is increasing.1 In 2011, a new classification of
the adenocarcinoma subtypes based primarily on histology
was proposed to standardize the diagnosis criteria and
terminology.2 Integral to this new classification system is
the concept of a spectrum of adenocarcinoma that ranges

from preinvasive entities that if resected would have a 100%
disease-free survival to frankly invasive adenocarcinoma that
has potential to metastasize and result in patient death.

The current approach to evaluate adenocarcinoma aggres-
siveness is to measure and monitor the size of solid tumor
components in thin-section computed tomography (CT)
scans.3,4 However, simple diameter measurement of solid
components has shown to have limited reproducibility, where
no standardized method is available for part-solid nodules.5

The monitoring of nodule growth is costly and delivers
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significant radiation dose to the patients with repeated CT
examinations.6 The assessment of change in solid tumor size
requires a waiting duration of at least one follow-up cycle
(e.g., 1–3 months) before treatment when the latter is found
to be necessary.

Considerable research efforts have been carried out to
enable the assessment of adenocarcinoma aggressiveness
based on one single CT study to optimally manage the
treatment and follow-up of early lesions. Morphological
tissue properties of the tumor are known to be indicators of
cancer aggressiveness.7,8 At the histopathological scale, the
various growth patterns of the cancer cells in small peripheral
adenocarcinomas have been classified into several categories
including lepidic, acinar, papillary, and solid growth.2 In
lepidic predominant adenocarinoma, single-layered cancer
cells grow along alveolar walls, and the distance between the
alveoli (i.e., septa) is widened. The acinar growth consists
of disorganized malignant glands invading a fibrous stroma,
which can cause disorientations of fibroblasts and collagen.
Papillary patterns are characterized by columnar malignant
cells aligning on the surface of fibrovascular structures. Solid
growths are cohesive cell agglomerates. Angiogenesis9,10 and
lymphovascular invasion8 are other histopathological markers
of adenocarcinoma aggressiveness causing morphological tis-
sue alterations. Although invisible on CT images, the combi-
nations of these histological patterns (i.e., patchy or mixed)
create textured patterns that are characterized in thin-section
CT by various proportions and subtypes of ground-glass
opacities (GGO) and solid nodule components.2,8,9 The
underlying histopathological patterns also lead to large
intraclass variations of GGO and solid components. In GGO,
the visible underlying bronchovascular structures from both
normal vasculature and increased angiogenesis create even
greater variations of its appearance on CT.

The proportions of solid and GGO components are known
to be predictors of prognosis.11,12 Although GGO is an indi-
cator of malignancy,13 its presence in a malignant nodule is
a sign of less aggressive cancer.5,11,12,14–16 These findings are
thus important for the stratification of adenocarcinoma aggres-
siveness and the risk of relapse based on the CT examination.
Various decision algorithms and scores were first proposed
based on CT intensities and human interpretation.5,11,12,14–16

In addition to the distribution of CT intensities, some studies
also investigated the value of computerized texture analysis of
the nodules (i.e., morphological properties) as an indicator of
cancer aggressiveness.17–21

The above-mentioned studies demonstrated the feasibility
of predicting prognosis based on CT image features, where
tumor texture was found to have an important role in charac-
terizing cancer growth patterns. However, the proposed ap-
proaches have several limitations hindering the accuracy of
predicting clinical outcome. First, in the prior methods, texture
properties are most often averaged over the entire tumor (e.g.,
Refs. 19, 20, 22, and 23) and do not explicitly characterize
GGO and solid components. Mattonen et al.21 separated the
analysis of tumor components, although focusing on GGO
regions only. This limitation has been pointed out recently by
Gatenby et al.,24 which recalled that cancer evolution within

tumors is directed by complex interactions between many
different cell phenotypes with regionally distinct habitats.
Second, all texture descriptors used (e.g., fractal dimension
and Laplacians of Gaussian or Haralick) are not specifically
designed to model GGO and solid components, and may
characterize a wide range of morphological properties that
are not related to cancer evolution (e.g., CT noise).25–27

In this work, we first learn computational texture models
of GGO and solid components of lung tumors using steerable
second-order Riesz wavelets28 and linear support vector
machines (SVMs). The models obtained have the desirable
property of quantifying CT image features that are specific to
GGO and solid tissue. Second, responses of the locally steered
texture models are combined with HU statistics to predict
tumor recurrence and relapse rate (i.e., patient hazard) after a
given disease-free survival (DFS) time t. Responses of initial
second-order Riesz wavelets are used as a baseline method.
The mapping of the descriptors to tumor recurrence and
patient hazard is carried out using either a LASSO (Ref. 29)
or SVM (Ref. 30) model and their survival counterparts:
Cox-LASSO (Ref. 31) or survival SVMs.32

2. MATERIALS

In this study, 101 patients with surgically resected stage
I adenocarcinoma from Osaka University Hospital were
retrospectively reviewed (see Table I). A presurgical CT scan
was available for each patient. All patients had undergone
lobectomy (n= 70) or segmentectomy (n= 31). After hospital
discharge from resection, patient follow-up was carried out
every three months. Additional thoracoabdominal CT scans
were generally performed every 6 months. Tumor recurrence
was confirmed by CT scan and 18-fluorodeoxyglucose-PET
(positron emission tomography) scan when necessary. The
median follow-up period of all 101 patients after surgery
was 6.03 yr (range of 0.86–12.63 yr). During the follow-up
period, 17 patients had disease recurrence with six associated
cancer-related deaths. The 84 patients (83.2%) with no
observed failure events in the present study were considered
censored for disease recurrence. No recurrence was observed
in all ten patients with pure GGO nodules, which is in
accordance with the previous studies.11,12 The distribution
of the DFS and censoring times is shown in Fig. 1. DFS
defines the time interval for which the patient did not have

T I. Patients (101 in total).

Age (years) 63.53±9.81
Women 52 (51.49%)
Median follow-up 6.03 yr
Recurrence during the follow-up period 17 (16.83%)
Censored 84 (83.17%)
Site of recurrence 1 brain, 9 lungs, 3 pleurae,

3 lymph nodes and 1 bone
Pure GGO lesions 10 (9.9%)
Pure solid 44 (43.56%)
Mixed GGO and solid lesions 47 (46.53%)
Maximum total lesion area in slice (mm2) 158.14±85.31
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F. 1. Distribution of the DFS and censoring times. Time t = 0 corresponds
to tumor resection.

tumor relapse, whereas censoring denotes the time when the
patient left the study. CT scans were reconstructed with slice
thicknesses of 0.625–1.25 mm. The pixel spacings are in the
range of 0.33–0.43 mm. All CT slices were resampled to
have pixel dimensions of 0.33× 0.33 mm2 using bicubic
interpolation. This ensures that the physical dimensions
(i.e., image scales and directions) are comparable between
patients for computerized image analysis on pixel lattices.
A thoracic radiologist with 12 yr of experience separately
delineated regions of interest (ROIs) for GGO and solid
nodule components (see Table II and Fig. 2). The CT slice
with maximum total lesion area (solid and GGO components)
was chosen for the annotation of the lesion.

3. METHODS
3.A. Computational texture models of nodule
components

A texture model that can optimally discriminate between
solid and GGO components was built from a linear combi-
nation of second-order Riesz wavelets.33 Riesz wavelets are
advantageous for characterizing texture compared the meth-
ods used in prior works because they can exhaustively
characterize image directions (i.e., steerable property) and
scales (i.e., multiresolution). Our hypothesis is that the learned
texture models that encompass combinations of image scales
and directions that are very specific to GGO and solid tumor
components on CT can be useful for predicting clinical out-
come. This constitutes an advantage when compared to other
texture attributes (e.g., fractal dimension and Laplacians of
Gaussian or Haralick), which are arbitrarily characterizing
image scales and directions that may be associated to CT noise

T II. ROIs (160 in total).

GGO ROIs 57 (35.62%)
Area of GGO ROI in slice (mm2) 109.25±64.24
Solid ROIs 103 (64.38%)
Area of solid ROI in slice (mm2) 97.07±82.61

F. 2. Example of a lesion with GGO (external boundary) and solid
(internal) components annotated. The CT slice where the total lesion area
was the largest was selected. The GGO region was excluding the two solid
ROIs in this case.

or everything unrelated to the specific properties of GGO and
solid tumor tissue. The weights of the linear combination were
learned using linear SVMs in a classification configuration
opposing GGO versus solid regions. Then, the model obtained
and its additive inverse were locally steered to maximize their
own magnitudes for each scale (see Secs. 3.A.2 and 3.B). This
enabled rotation-covariance,33 where the characterization of
the local texture properties was performed independently from
their orientation. The energies of the maximum magnitudes
of the models were used as input features for predicting the
risk of tumor recurrence using either Cox-LASSO (Ref. 31)
or survival SVMs (Ref. 32) (see Sec. 3.C).

3.A.1. Second-order Riesz wavelets

The wavelet functions were derived from the Riesz singular
kernels.28 For a 2-D signal f (x), the kernels of the second-
order Riesz transform R2 are defined as

R
2{ f }(x)=

*...
,

R(0,2){ f }(x)
R(1,1){ f }(x)
R(2,0){ f }(x)

+///
-

. (1)

The three singular kernels R(n,2−n){ f }(x), n = 0, 1, 2 are
defined in the Fourier domain as

R(n,2−n){ f }(x) F←→ GR(n,2−n){ f }(ω), (2)

where

GR(n,2−n){ f }(ω)=


2
n!(2−n)!

(− jω1)n(− jω2)2−n
∥ω∥2 f̂ (ω), (3)

with ω1,2 corresponding to the frequencies along the two
image axes x1,2. The multiplication with jω1,2 in the numerator
corresponds to partial derivatives of f , and the division by
the norm of ω in the denominator makes that only phase
information (i.e., image directions) is retained. Wavelet filters
can be obtained by convolving the Riesz kernels with isotropic
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F. 3. Expression of GGO and solid regions in terms of their corresponding multiscale and multidirectional Riesz coefficients. The Riesz kernels can decompose
image scales and directions into distinct sub-bands.

band-limited wavelets Gk with k = 1,. . ., K being the number
of decomposition levels (i.e., image scales).28 Simoncelli’s
dyadic multiresolution framework with an undecimated trans-
form (i.e., frames) was used in this work.34

3.A.2. Steerable texture models

A texture model Γ was built from a linear combination of
multiscale Riesz wavelets as

Γ = wTGk ∗R2

= w1G1∗R(0,2)+ · ··+w6GK ∗R(2,0). (4)

The vector w was learned using linear SVMs as the direc-
tion vector of a maximal margin separating hyperplane be-
tween GGO (i.e., treated as the negative class) versus solid
(i.e., positive class) regions. The regions were expressed in
a feature space spanned by the energies E of respective the
wavelet sub-bands as E

�
Gk ∗R(n,2−n){ f }(x)�. The wavelet

coefficients are shown in Fig. 3, and the model learning pro-
cess is illustrated in Fig. 4.

The steerable property of Riesz wavelets was leveraged to
enable the synthesis of any orientation of the model Γθ

k
from

a linear combination of the Riesz wavelets as

Γ
θ
k =wT

kGk ∗ Aθ
R

2, (5)

where wk contains the weights of the wavelet sub-bands from
the decomposition level k. Aθ is a steering matrix depending
only on θ as

Aθ =
*...
,

cos2 θ
√

2cos θsin θ sin2 θ

−
√

2cos θsin θ cos2 θ−sin2 θ
√

2cos θsin θ

sin2 θ −
√

2cos θsin θ cos2 θ

+///
-

. (6)

3.B. Texture features

Two groups of texture features based on Riesz wavelets
were compared. First, the energies of the Riesz wavelets
as E

�
Gk ∗R2{ f }(x)� were used as a baseline. This feature

group is referred to as initial Riesz and had a dimensionality of

3K . Second, rotation-covariant features from locally steered
models were used and are referred to as steered models. The
scalewise models Γk were locally steered to maximize their
magnitude for each decomposition level. This allows, at a fixed
scale, to locally align all wavelet coefficients consistently
based on the directional profiles of the learned models. It
therefore can analyze the local hierarchical organization of
image directions independently from their local orientation,
which proved to outperform approaches that are characterizing
the global distributions of image directions (e.g., initial Riesz,
Haralick, and histogram of gradients). This property is called
“rotation-covariance.”33

The maximum magnitude mmax of the model Γk at the
position xp is

mmax(Γk,xp)= arg max
θ∈[0,π]

�
wT

kGk ∗ (Aθ
R

2){ f }�(xp). (7)

Features from the steered models were defined as the energies
of scalewise magnitude maps: E (mmax(Γk,x)). This resulted in
a dimensionality of 2K while considering the models Γk=1, ...,K
and their additive inverses (i.e., ΓGGO

1 =−Γsolid
1 ).

F. 4. Learning of the multiscale model Γ from a linear combination of
the initial Riesz wavelets. Γ is characterized by the direction vector w [see
Eq. (4)], which was learned using linear SVMs in a classification config-
uration opposing GGO (dots) versus solid (stars) regions. This step allows
identifying the linear combinations of image scales and directions that are
specific to GGO and solid tumor tissue in CT.

Medical Physics, Vol. 42, No. 4, April 2015



2058 Depeursinge et al.: Predicting adenocarcinoma recurrence using nodule texture in CT 2058

3.C. Predictive models

Two types of predictive models were compared for the
classification of patient i into the class yi = 1 (i.e., tumor
recurrence) versus yi = −1 (i.e., no recurrence): LASSO
(Ref. 29) and kernel SVMs.30 We also compared two different
predictive models for mapping of the feature vectors v defined
in Sec. 3.B to relapse rate for a given DFS time t: Cox-LASSO
(Ref. 31) and kernel survival SVMs.32 The survival analysis
paradigm was considered with data in the form (t,v,δ), where
δ is a binary vector, where 1 corresponds to a failure and 0
to censoring.31 In this case, the survival models predict the
patient hazard hi(t), which measures the failure rate for a
fixed DFS time t. A patient a associated with a hazard value
ha(t) > hb(t) is expected to have a tumor recurrence earlier
than patient b. hi(t) provides a better estimate of the risk
of tumor recurrence when compared to the prediction of the
binary class yi because it can be refined with the time elapsed
from surgery.

3.C.1. Cox-LASSO

The Cox proportional hazards model assumes that the
hazard hi(t) of the patient i at the time t is

hi(t)= h0(t)eβTvi, (8)

where h0(t) is a hazard baseline shared by all patients.
β contains the respective weights of each feature and is
estimated by maximizing the partial likelihoods of outcomes
δi for each patient in the training set.31 A l1 penalty of the Cox
model is used to restrict the sum of |β |, hence the Cox-LASSO
denomination.

3.C.2. Survival SVMs

Survival SVMs extend the concept of margin maximiza-
tion to survival data. At every event time t, a hyperplane
is constructed to separate patients with failure from patients
with censoring.32 The model consists of several hyperplanes
(one for each event time) that are parallel and therefore
using an identical direction vector β. This is an analogy to
the Cox model where the same β is used for all events as
well. Using the kernel trick, the kernelized hazard function is
defined as

hi(t)=K(β,vi)−b(t), (9)

where b(t) defines the offsets of the hyperplanes. The Gaussian
kernel K(vi,v j)= exp(−∥vi−v j∥2/2σ2

K)was used in this work.

3.D. Experimental setup

The flow chart of the experimental setup is depicted in
Fig. 5. A total of no more than two decomposition levels
(i.e., K = 2) were used to limit the influence of objects
surrounding the tumor on the local texture properties of the
nodule components (e.g., lung boundary and airways). The
multiscale texture model Γi was learned using linear SVMs for
each fold of a leave-one-patient-out (LOPO) cross-validation

F. 5. Flow chart of the experimental setup, starting from the input ROIs to
the predicted patient class yi or hazard hi(t).

(CV). For each patient i, the steered models features were
therefore obtained using all other patients to learn w. Twenty
histogram bins of the intensity distribution in [−1000, 400]
HU were used as additional features, which we found to be
complementary to the Riesz models in Depeursinge et al.27

This feature group is referred to as HU. In order to build
and evaluate the predictive models, a ten-fold stratified CV
was used to balance class cardinalities and the number of
patients with failures and censoring in the training and test
sets. The data were also separated by patients to ensure that
all instances from the same patient are contained either in the
training or the test set. Twenty repetitions of the CV were
used as it was found to provide a reproducible estimation of
the performance based on preliminary tests. The area under
a receiver operating characteristic (ROC) curve (AUC) was
used to quantify the performance of the binary classification
using LASSO and SVMs. The concordance index (C-index)
was used to measure the performance of the survival models.35

It computes the proportion of all patient pairs with at least
one of whom had recurrence and in which hi(t) and DFS
times are concordant. Concordance was achieved when the
predicted hazard hi(t) was found to be smaller for the
patient with a larger DFS time. The C-index of a model
yielding random predictions is 0.5, and it can be interpreted
as an AUC for continuous (i.e., noncategorical) outcomes.
The glmnet  package was used for the implementation of
Cox-LASSO.29,31 Since the number of features was smaller
than the number of patients, the regularization parameter λ
(i.e., the coefficient of the l1 penalty in LASSO) was chosen to
keep all features in the predictive model. Preliminary testing
revealed that the C-index from the test set was maximum
with smallest values of λ, which suggested that the model
was not overfitting the data. The survpack  package was
used for the implementation survival SVMs.32 LibSVM was
used for the implementation of two-class SVMs.30 For both
two-class and survival SVMs, the cost C of the errors and
the variance σK of the Gaussian kernel were optimized as
C ∈ [100;103] and σK ∈ [10−3;104], respectively. For each fold
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F. 6. Performance of the predictive models using various combination of the feature groups. Using solid components solely, the feature space concatenating
steered models and HU yielded the best estimation of tumor recurrence and patient hazard, allowing an average AUC of 0.8±0.01 (LASSO) and an average
C-index of 0.81±0.02 (survival SVMs).

of the ten-fold CV, the model built with the value couple
(C,σK) that provided best training performance was used to
predict outcomes of the test instances. Statistical analyses
of the comparisons among the predictive performances from
(1) feature groups (i.e., HU vs initial Riesz+HU vs steered
models+HU), (2) tumor components (i.e., entire lesions vs
solid ROIs), and (3) predictive models (i.e., SVMs vs LASSO
and survival SVMs vs Cox-LASSO) were carried out using
paired t-tests based on the distributions of the estimated AUCs
and C-indices (i.e., 200 observations for each model).

4. RESULTS

We compared the performance of the proposed approach
when using either the ROI delineating the entire region, or
using solid components solely. A subset of 91 patients was
used with the exclusion of the 10 patients with pure GGO
(i.e., no solid components). The performance of the predictive
models using various combinations of the feature groups is
shown in Fig. 6. The AUC and C-indices were averaged
over the 20 repetitions of the ten folds of the CV (i.e., 200
observations). The error bars are showing the standard errors.
Predictive performance using entire lesions (hatched bars)
was compared to using solid components solely (plain bars).

The best separation between patients with and without
recurrence (i.e., AUC = 0.8±0.014) was obtained with the
steered models and HU from solid components and LASSO.
However, no statistical difference was found when compared
to using HU solely for this task (p= 0.12). The use of solid
components solely outperformed entire lesions for all image-
based feature groups when using LASSO (p < 5.73×10−28)
or SVMs (p < 5.35× 10−6). The best prediction of the
patient hazard (i.e., C-index of 0.81± 0.02) was obtained
with steered models and HU from solid components and
survival SVMs. The latter outperformed the Cox-LASSO
models for all feature groups (p < 1.65×10−7 when using

solid ROIs). Similarly to the binary classification case, the
use of solid components solely outperformed entire lesions
for all image-based feature groups when using survival
SVMs (p < 3.08×10−5). The performance gain when using
texture information was found to be statistically significant
when using steered models (p= 0.0056 for HU versus steered
models+HU using survival SVMs), but not when using initial
Riesz (p= 0.0646 for HU versus initial Riesz+HU using sur-
vival SVMs).

The decision values and associated ROC of SVMs based
on steered models and HU are shown in Fig. 7. This “score”
can predict patients with recurrence with low specificity but
very high sensitivity. In other words, patients with low values
of this score may be confidently predicted to have disease that
will not recur.

To investigate the importance of texture model learning, we
compared them with the performance obtained with randomly
generated values for w. The associated results are shown in
Fig. 8.

The influence of the slice selection for the annotation
of GGO and solid components was investigated. For one
patient, the regions were identified in each slice containing
tumor tissue. A total of 34 GGO regions and 16 solid regions
were delineated in 34 consecutive slices. The normalized
distributions of the feature values from GGO versus solid
regions across tumor slices are shown in Fig. 9. The interslice
variability of the feature values is found to be small when
compared to the feature differences between GGO and solid
tissue. The vertical lines in Fig. 9 show the feature values
from the slice with maximum tumor area, which suggests that
the latter has feature values within the range of those from
the entire tumor, and close to the mean for most parameters.
The CT intensity (i.e., HU) is higher for solid regions. The
energy of the steered model [i.e., E (mmax(Γk, x))] is found to
be smaller for solid regions for the two scales k = 1, 2, which
demonstrates that the solid regions have a more homogeneous
texture than GGO.
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F. 7. Distribution of the decision values and associated ROC curve using steered models and HU from solid components and SVMs. The prediction of patient
with recurrence is found to have a low specificity but a very high sensitivity. The specificity and sensitivity for a fixed threshold x0 of the decision value are
0.61 and 0.91, respectively. This result could be useful for developing a test that can be used in clinical practice to identify patients for which no recurrence is
expected with very high confidence using a presurgical CT scan only.

The influence of the precision of the contours drawn by the
user to delineate GGO and solid components was investigated.
Random drifts in [−d, d] were added to both coordinates of the
vertices of the polygons defining ROIs to simulate inaccurate
contours. The associated performance for d =±0,. . .,6 mm is
detailed in Fig. 10. The choice for the range of deviations
was based on Mattonen et al.21 and Xu et al.,36 which stated
that interobserver variations in delineation are in the order of
0.1 ·Rmax, where Rmax is the maximum diameter of the lesion.

5. DISCUSSION AND CONCLUSIONS

We used texture-based computational models of GGO
and solid tumor components as well as HU intensity distri-
butions in CT to predict postsurgical tumor recurrence and

F. 8. Performance obtained with random models versus learned models
using steered models+HU from solid ROIs (20 repetitions of the CV). The
null hypothesis that the random models can perform as well as the learned
ones are rejected for survival SVMs (p = 5.72×10−4) and Cox-LASSO
(p = 0.0174).

patient hazards based on DFS times. The cornerstone of our
approach is to separate the analysis of nodule subregions
to prevent the averaging of image properties over the entire
lesions. The best-performing predictive models were based on
a combination of CT intensities and the responses of steered
texture models of GGO and solid components. It allowed a
predictive performance of tumor recurrence associated with
an AUC of 0.8± 0.01. The prediction of the relapse rate
based on DFS times (i.e., patient hazard) is associated with
a C-index of 0.81±0.02. Figure 7 shows that the proposed
approach could identify patients with recurrence with very
high sensitivity. This result could be useful for developing a
test that can be used in clinical practice to identify patients for
which no recurrence is expected with very high confidence
from presurgical CT only. Moreover, the prediction of the
patient hazard using the survival models might be used after
surgery to continuously assess the risk of cancer relapse for a
given time t elapsed from the date of surgery. The latter could
be an important clinical tool for the management of patient
follow-up and postsurgical treatment options.

When compared to using intensities alone (i.e., HU), the
performance gain when adding texture attributes (i.e., steered
models+HU) to the predictive model was not found to be
statistically significant for the prediction of tumor recurrence
with LASSO (p = 0.12). However, the performance gain
was significant for predicting tumor recurrence with SVMs
(p= 8.64×10−6). It was also significant for predicting patient
hazard using Cox-LASSO (p = 0.0074) or survival SVMs
(p = 0.0056). Texture attributes from initial Riesz did not
improve the performance when compared to HU both for
the prediction of tumor recurrence and patient hazard. This
suggests that texture information plays an important role
but should specifically model morphological tissue properties
that are related to adenocarcinoma cancer growth patterns
(i.e., GGO and solid textures). This was also confirmed by
the performance analysis of randomly generated models in
Fig. 8, which isolated the contribution of rotation-covariance
[i.e., local steering of the texture models in Eq. (7)] and
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F. 9. Normalized distributions of the feature values from GGO versus solid regions across tumor slices of one patient. The vertical lines show the feature
value for the slice with maximum total tumor area, which was selected for the analysis. The interslice variability of the features is found to be small, where the
distribution of features from GGO (blue) and solid (red) remain distinct across every axial slice of the tumor.

texture model learning. The null hypothesis that the random
models can perform as well as the learned ones are rejected
for both survival SVMs (p = 5.72×10−4) and Cox-LASSO
(p= 0.0174). These results highlight the importance of using
texture attributes that are specifically designed to model CT
image features of tissue of interest (i.e., GGO and solid),
when compared to other studies based on general purpose
attributes (e.g., fractal dimension and Laplacians of Gaussian
or Haralick).25–27

The predictive models based on solid components solely
outperformed others based on entire ROIs with statistical
significance for all image-based feature groups (p < 3.08
×10−5). This demonstrates the importance of separating the
computerized analyses of CT regions from GGO and solid
components to assess adenocarcinoma cancer aggressive-
ness.24 A majority of studies focused on the ratio of GGO and
solid quantities,5,11,12,14–16 whereas our work provides a novel
perspective on how to interpret imaging information from
CT examinations by suggesting that most of the information
related to adenocarcinoma aggressiveness is located in the
solid components of the tumor.

The analysis of the feature values across tumor CT slices
from one patient suggests that the slice with maximum total

axial tumor area provided feature values that are close to the
mean for most attributes (see Fig. 9). However, the selected
slice may not be representative of the total feature variation
throughout the entire tumor, which we plan to investigate
using 3-D texture attributes in future work. We found our
proposed predictive model to be robust to a contour precision
of 4 mm for the delineation of the GGO and solid nodule
components (see Fig. 10). This is consistent with the findings
of Mattonen et al.21 and suggests that our methods can
provide reproducible results even when there is a moderate
variation in delineation of the lesion boundary. Xu et al.36

suggested that with maximum diameters Rmax in the range
of 30–70 mm for GGO regions and 10–40 mm for solid
components; interobserver variations of 3–7 mm for GGO
and 1–4 mm for solid are expected (i.e., 0.1 ·Rmax). A contour
precision of 4 mm is therefore acceptable for solid but not
for GGO. However, since our model showed to provide
best performance using solid regions only, the clinicians will
need only to delineate solid regions, whereas a separated
high-quality subset can be used to learn the texture models
for GGO and solid.

Our results are aligned with best performance reported
in the literature (see Table III), but yet it is challenging to

F. 10. Influence of the precision of the contours drawn by the user to delineate GGO and solid components using steered models+HU. Random drifts of the
vertices of the polygons defining ROIs were used to simulate inaccurate contours. Only solid ROIs are used for the predictive models in this case, but we recall
that both GGO and solid ROIs are used to learn the texture models (see Fig. 5). The approach showed to be robust to deviations smaller than 4 mm for survival
SVMs.
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T III. Performance comparison with other studies predicting tumor aggressiveness, recurrence, and patient survival.

Study Number of patients Predicted outcome Separation of tumor components Reported performance

Al-Kadi and Watson (Ref. 22) 15 Aggressive vs less aggressive
adenocarinoma

No 0.83 (accuracy)

Ganeshan et al. (Ref. 19) 17 Below vs above stage II No 0.7 (kappa)
Ganeshan et al. (Ref. 20) 54 Low vs high survival No 0.6 (AUC)
Matsuguma et al. (Ref. 16) 383 Aggressive vs less aggressive

adenocarinoma
Yes 0.85 (AUC)

Mattonen et al. (Ref. 21) 46 Tumor recurrence (yes/no) Yes 0.8 (AUC)
This work 91 Tumor recurrence (yes/no) Yes 0.79 (AUC)
This work 91 Tumor recurrence (patient hazard) Yes 0.81 (C-index)

compare the performance between studies that were based on
different case data and/or definition of the outcome variable.
The approaches proposed by Al-Kadi and Watson22 and
Ganeshan et al.19 are based on texture properties measured
over entire 2-D ROIs delineated in the slice with largest
transverse dimension of the tumor. The influence of the
choice of the slice on prediction performance may be larger
when compared to our study since they do not separate GGO
and solid regions. Mixing the two types of tissue may lead
to very large variations of the image attributes from one slice
to another since a larger proportion of solid regions will
result in an increased CT intensity and a decreased texture
heterogeneity (see Fig. 9). Neither of the two studies evaluated
the variation of the image attributes over the different slices of
the tumors. They both also evaluated their methods on a small
number of patients (i.e., 15 in Al-Kadi and Watson22 and 17
in Ganeshan et al.19). Matsuguma et al.16 used the proportion
of GGO and solid areas to differentiate between aggressive
and less aggressive adenocarcinoma. A major limitation of
their study is that they estimated the proportion of tumor
components from a single axial slice, which may strongly
vary from on slice to another. Mattonen et al.21 used 2-D
texture features extracted from every slices of the tumors to
predict tumor recurrence with a high success rate (AUC= 0.8).
However, their approach is based on post-treatment scans
(i.e., 2–5 and 5–8 months after the beginning of stereotactic
ablative radiotherapy), which can be considered as an easier
task when compared to using presurgical scans only.

We recognize several limitations of the current work,
including the choice of the CT slice for tumor delineation
with maximum total tumor area and the use of 2-D texture
descriptors, which can both potentially entail a large reduction
of the information exploited. The patients were not stratified
by lobectomy versus segmentectomy, which could also have
a potential impact on the result obtained. Future work will
include validating our results in an independent data set
with automated volumetric segmentation of homogeneous
nodule components (e.g., using supervoxels37 or voxel-based
classification38) with an increased granularity when compared
to using GGO and solid regions. Multiple readers will be
recruited to evaluate the interobserver variation in drawing
GGO and solid parts of the tumor. 3-D texture analysis will
be used to fully leverage the volumetric data. We also plan
to investigate the ability of this approach to differentiate

between dominant underlying histopathological categories of
cell growth patterns (e.g., lepidic, acinar, papillary, and solid)
from CT data alone.
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