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Abstract

Purpose

Radiomics provides quantitative tissue heterogeneity profiling and is an exciting approach

to developing imaging biomarkers in the context of precision medicine. Normal-appearing

parenchymal tissues surrounding primary tumors can harbor microscopic disease that leads

to increased risk of distant metastasis (DM). This study assesses whether computed-tomog-

raphy (CT) imaging features of such peritumoral tissues can predict DM in locally advanced

non-small cell lung cancer (NSCLC).

Material and methods

200 NSCLC patients of histological adenocarcinoma were included in this study. The inves-

tigated lung tissues were tumor rim, defined to be 3mm of tumor and parenchymal tissue on

either side of the tumor border and the exterior region extended from 3 to 9mm outside of

the tumor. Fifteen stable radiomic features were extracted and evaluated from each of these

regions on pre-treatment CT images. For comparison, features from expert-delineated

tumor contours were similarly prepared. The patient cohort was separated into training and

validation datasets for prognostic power evaluation. Both univariable and multivariable anal-

yses were performed for each region using concordance index (CI).

Results

Univariable analysis reveals that six out of fifteen tumor rim features were significantly prog-

nostic of DM (p-value < 0.05), as were ten features from the visible tumor, and only one of

the exterior features was. Multivariablely, a rim radiomic signature achieved the highest

prognostic performance in the independent validation sub-cohort (CI = 0.64, p-value =

2.4×10−5) significantly over a multivariable clinical model (CI = 0.53), a visible tumor radio-

mics model (CI = 0.59), or an exterior tissue model (CI = 0.55). Furthermore, patient stratifi-

cation by the combined rim signature and clinical predictor led to a significant improvement

on the clinical predictor alone and also outperformed stratification using the combined tumor

signature and clinical predictor.
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Conclusions

We identified peritumoral rim radiomic features significantly associated with DM. This study

demonstrated that peritumoral imaging characteristics may provide additional valuable infor-

mation over the visible tumor features for patient risk stratification due to cancer metastasis.

Introduction

Lung cancer remains the leading cause in cancer-related mortality worldwide [1]. Histologi-

cally, adenocarcinoma represents the most common type of non-small cell lung cancer

(NSCLC). Locally advanced NSCLC patients represent about 30% of newly diagnosed lung

cancer [2]. These patients typically receive a combination of surgery, chemotherapy, and radia-

tion therapy [3]. Despite these treatment approaches, the survival rate of these patients is lim-

ited to ~25% at five years due to disease progression [4, 5]. The limitations of the current

treatment approach necessitate novel prognosticators that allow for further stratification of dif-

ferent risk groups and more refined therapeutic strategies.

Quantitative imaging has been increasingly employed to assess treatment response to can-

cer therapy. Especially for lung cancers, CT imaging remains the modality of choice as it is

noninvasive, renders anatomical details in high resolution and can quickly capture patient tho-

racic anatomy so that artifacts due to respiratory motion can be minimized. Planning CT

images are routinely acquired in lung cancer patients prior to radiation therapy. Recently,

numerous studies have shown imaging-based radiomic features can quantify tumor heteroge-

neity and hold potential for their application as clinical biomarker for patient stratification [6–

23]. In particular, radiomic studies have shown CT-derived image features may be prognostic

for distant metastasis (DM) and treatment responses in NSCLC [13, 14, 17, 24].

Previous studies have predominantly investigated the association between clinical outcomes

and radiomic features within the primary tumor volume [24–27]. However, recent cancer

research has shown evidences that extratumoral lung parenchymal tissues surrounding the pri-

mary tumor can become involved as cancer infiltrates and metastasizes. Pathological studies

have demonstrated that lung tumor can spread through blood and lymphatic vasculature as

well as airspaces in lung parenchyma [28–35] and that extratumoral cancerous presence may

lead to worse clinical performance. In all aforementioned modes of cancer spreading, study

results have consistently found significantly stronger association with distant or local recur-

rences for the extratumoral cancerous presence than their intratumoral counterparts [28, 31,

33]. Thus, we hypothesized that tumor metastatic progression may manifest itself in the

imaged peritumoral tissue characteristics and the underlying relationship may be explored

using radiomics based profiling of the normal-appearing tissue beyond the identified tumor

region. Given the lack of biomarkers for DM in NSCLC, an understanding of the peritumoral

tissue radiomics as an imaging biomarker may provide additional information to the existing

approaches that only quantify characteristics within the visible tumor volume for identifying

patients at higher risk and facilitating improved treatment design.

In this study, we present a radiomics investigation on the association of DM with peritu-

moral tissues in a cohort of 200 adenocarcinoma NSCLC patients. For clinical utilization, their

prognostic performances were compared to the tumor-only radiomic features and clinical

factors.
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Materials and methods

Patient characteristics

This study was conducted under Dana-Farber/Harvard Cancer Center IRB protocol. As the

study was retrospective and involved no more than minimal risks to the subjects, the need for

patient consent was waived. Our study cohort included patients with pathologically-confirmed

lung adenocarcinoma with locally advanced NSCLC (overall stage II-III). Patients treated with

surgery or chemotherapy prior to the CT simulation date were excluded from our analysis.

Patients receiving SBRT treatment were also excluded. For unbiased validation purposes, our

200 cohort was temporally split into two halves, the training Dataset A (n = 100) and the inde-

pendent validation Dataset B (n = 100).

Clinical endpoints

The clinical outcome evaluated for this study was DM. Follow-up CT scans were performed

every three to six months after treatment for tumor progression assessment. DM was consid-

ered as the disease spread to sites outside of the lungs. Time to DM was defined as the time

interval between the start date of radiation therapy and the first scan date of radiographically-

evident DM and censored at the date of last negative scan in patients without recurrence. Time

to OS was defined as the time between radiotherapy start date and date of death, and censored

at the last follow-up date.

CT image acquisition and segmentation

Planning CT images were acquired on GE LightSpeed RT16 CT scanners (GE Medical Sys-

tems, Milwaukee, WI, USA) following clinical imaging protocol which mostly uses 120 kVp

and reconstructed using standard convolution kernel. The most common voxel spacing on the

CT image was 0.93mm, 0.93mm, 2.5mm. Exceptions to this protocol were two cases scanned

using 140 kVp and 6 cases reconstructed using 3.75mm or 5mm slice thickness. All patients

received contrast injection unless there existed contraindication. The primary tumors were

contoured using Eclipse software (Varian Medical Systems, Palo Alto, CA, USA) by an experi-

enced CT imaging researcher. Tumors contours were reviewed by an expert radiation oncolo-

gist (R.H.M). To ensure that the imaged tumor regions are of good quality for our analysis,

cases with motion artifact were excluded.

Peritumoral contour preparation

Based on the proximity to the primary tumor, two peripheral regions of tissue were designed

and termed here as tumor rim and tumor exterior. Tumor rim was defined to be the region

that included the outer 3 mm of the tumor and 3 mm of tumor-adjacent lung tissue on either

side of the tumor contour boundary; tumor exterior the region of lung tissues extending from

3mm to 9mm outside of the tumor contour (Fig 1.1). Rationale for tumor rim tissue inclusion

was to designate a “real invasive front” and account both for the aggressive invading front of

the tumor tissue and the adjacent normal lung layer, where cancerous islets can be frequently

found [34]. The designation for tumor exterior followed from the spatial extent of microscopic

tumor presence as found in pathology studies [28, 36, 37]. The generation of masks for delin-

eating the tumor edge and the exterior tissue was accomplished through mathematical mor-

phology operations of erosion and dilation, implemented using SimpleITK toolbox [38]. Since

we were interested in the lung parenchymal tissue characteristics that may show association to

cancer metastasis, care was taken to only include the tissue contours that are within the lung

masks.
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Fig 1. Schematic representation of the analysis workflow. 1. Generation of the rim and exterior contours based on segmented tumor

contour. 2. Extraction of the radiomic features from each of the tissue contour region. 3. Dimension reduction of the radiomic features

based on feature stability and relevance. 4. Prognostic power of the radiomic features is evaluated through predictive modeling and

validation.

https://doi.org/10.1371/journal.pone.0206108.g001
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Radiomic feature extraction and selection

A comprehensive radiomics computational toolbox, PyRadiomics, was employed for feature

extraction [39] (Fig 1.2). Designed to facilitate data reproducibility, PyRadiomics platform

provided open-source standardized algorithm for radiomic feature computation. Its imple-

mentation included built-in wavelet and Laplacian of Gaussian filters for image processing

and computed a total of 2175 radiomic features, including first order statistics, shape, and tex-

ture classes. Texture classes included gray level co-occurrence matrix (GLCM), gray level run

length matrix (GLRLM), gray level size zone matrix (GLSZM), neighboring gray tone differ-

ence matrix (NGTDM), gray level dependence matrix (GLDM), and gray level distance zone

matrix (GLDZM). Feature computation was performed at resampled voxel dimensions of

3×3×3mm3 and an intensity bin width of 25 Hounsfield units. Radiomic feature extraction

was performed for each of the three regions investigated in this study, i.e., tumor, tumor rim,

and tumor exterior (data in S5–S10 Files). Feature selection followed a two-step procedure,

feature stability and relevance, as shown in Fig 1.3. The selection of stable features was per-

formed on Dataset A for each tissue region using the external test and retest RIDER dataset

[40], subject to the intraclass correlation coefficient criterium (ICC > 0.85) [41] (description

in S1 File). Subsequently, the set of stable features was processed using the minimal redun-

dancy maximal relevance technique (mRMR) for dimension reduction, resulting in fifteen

radiomic features for each region. Based on mutual information (MI), mRMR performed fea-

ture selection sequentially by determining the feature with maximum MI with the target vari-

able and the minimum MI with the already selected features (Bioconductor “survcomp”

package [42]).

The prognostic value of the peritumoral radiomic features was compared to the tumor ones

as well as conventional and clinical parameters. The conventional variables considered for this

study were the maximal 3D tumor diameter, and the volume of gross tumor volume (GTV).

Clinical model included gender, age, overall stage, T-stage, N-stage, performance status, and

tumor size.

Univariable analysis

The prognostic value of the radiomic features was evaluated using concordance index (CI)

from “survcomp” package [43]. Noether’s test was applied to assess the statistical significance

of the computed CI from random chance (CI = 0.5) [42]. To account for multiple testing, a

false-discovery-rate procedure by Benjamin and Hochberg was applied to adjust the p-values

[44]. Univariable analysis was performed using the fifteen features selected using mRMR

method for each of the tumor regions. All analyses were performed using R software (version

3.3.1) [45].

Multivariable model construction and validation

Multivariable models were constructed using Cox regression method, where the model was

trained using Dataset A and the model predictions were validated in Dataset B. The multivari-

able radiomics models were constructed with the mRMR selected features where the feature

complementarity was explored for potential prediction enhancement. Based on the principle

of parsimony, the fifteen features for each tumor region were included to the model incremen-

tally according to their mRMR ranking and 1000 cross-validations were performed on Dataset

A for each intermediate model in order to assess its predictive power. The cross validations

were performed through random subset sampling with balanced event ratios of 70:30 using

caret package [46]. For each tumor region, the optimal feature set was the combination that

rendered the highest mean CI value before decreasing and was termed signature (Fig A in S2
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File). To determine the improvement due to radiomic features, clinical factors were incorpo-

rated to the individual radiomics model to generate combined clinical-radiomics model. The

statistical significance of the model performance between a pair of multivariable models was

assessed using the cindex.comp function (“survcomp” package). To assess clinical efficacy, we

evaluated the statistical significance of our best performing combined clinical and peritumoral

radiomic signature to multivariable clinical model and combined clinical and tumor radiomics

signature.

Assessing patient stratification by peritumoral radiomics model

Finally, to demonstrate the clinical efficacy of our proposed peritumoral radiomics model, a

Kaplan-Meier analysis was performed. We investigated the performance of three models, the

clinical model, the combined clinical and tumor radiomics signature, and the combined clini-

cal and rim radiomics signature, where the cox regression technique was used for combining

separate models. For each model, the median prediction value from training Dataset A was

used for stratifying the patients in Dataset B. A log rank test was performed to determine the

statistical significance of risk to developing DM between the two groups.

Results

Clinical characteristics

A total of 200 NSCLC patients with adenocarcinoma were analyzed in this study. At the time

of diagnosis, the median age was 64 years (range: 35–93 years). The median follow-up was 28.1

months (range: 1.8–142.1 months). The median time to DM was 13.5 months (range: 0.3–

119.1 months), with 128 (64%) patients having developed DM versus 72 (36%) who did not.

Patient characteristics and cancer progression information can be found in Table 1.

Table 1. Patient characteristics, treatment information, and outcomes.

Total Dataset A Dataset B p-value

Age 64 (35–93) 62 (40–85) 64 (35–93) 0.51

Gender (F/M) 127/73 (63.5/36.5) 66/34 (66/34) 61/39 (61/39) 0.56

Overall stage (IIA/IIB/IIIA/IIIB) 5/6/110/79 (2.5/3.0/55.0/39.5) 2/4/55/39 (2.0/4.0/55/39) 3/2/55/40

(3.0/2.0/55/40)

0.83

T stage

(T1a, T1b, T2a, T2b, T3, T4, TX)

21/27/58/19/40/34/1 (10.5/13.5/29/9.5/20/17.0/

0.5)

15/10/30/10/19/16/0 (15/10/30/10/19/

16/0)

6/17/28/9/21/18/1

(6/17/28/9/21/18/

1)

0.32

N stage

(N0, N1, N2, N3)

14/16/108/62

(7/8/54/31)

5/10/54/31

(5/10/54/31)

9/6/54/31

(9/6/54/31)

0.54

Performance status (0/1/2/3) 95/95/8/2 (47.5/47.5/4.0/1.0) 39/56/5/0

(39/56/5/0)

56/39/3/2

(56/39/3/2)

0.04

Treatment modality (cCRT/Trimodality/

other)

113/46/41

(56.5/ 23.0/20.5)

57/ 40/ 3

(57 40 3)

56 38 6

(56 38 6)

0.59

Follow-up [months] 27.7 (1.8–142.1) 28.6 (1.8–142.1) 25.2 (2.2–67.1) 0.07

Survival [months] 28.1 (1.8–142.1) 29.9 (1.8–142.1) 25.5 (2.4–67.1) 0.053

Time to DM [months] 13.5 (0.3–119.1) 13.8 (0.3–119.1) 12.8 (0.7–67.1) 0.51

DM [Yes/No] 128/72 (64/36) 65/35 (65/35) 63/37 (63/37) 0.88

Median (range) is reported for continuous and counts (percentage) for categorical variables. Statistical difference between Dataset A and Dataset B is determined using

Wilcoxon- and Chi-Square tests for continuous and categorical variables, respectively.

https://doi.org/10.1371/journal.pone.0206108.t001
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Radiomics analysis of tumor regions

Fig 2 displays the results of univariable analyses performed on Dataset A. In each tumor

region, the full set of radiomic features was reduced to fifteen features based on relevance to

DM events. In the tumor region (Fig 2A), ten features were significantly predictive of DM, had

a CI range of 0.59–0.64, p-value < 0.05, and were all texture-based except for the 3D firstorder

median, a statistics-type feature (Table B in S3 File). The top tumor feature was GLCM Differ-

ence Entropy, which measures the variability in neighborhood intensity differences. In the rim

region (Fig 2B), six significant features were found with CI range: 0.59–0.63 (Table D in S3

File).

Four of these features were texture-based and two were statistics-based (first-order range

and first-order minimum). The best performing feature in this region was GLRLM RunEn-

tropy, providing a measure for the randomness in the distribution of run lengths and gray lev-

els, with higher value indicating more heterogeneity in the texture pattern. In the exterior

region, the only significantly predictive feature was first-order Kurtosis, which is a descriptor

of the intensity distribution, with higher kurtosis value indicating the distribution is concen-

trated more towards the tails (Table F in S3 File). More detailed description of the selected fea-

tures is provided (Tables A, C, E in S3 File). For comparison, the conventional features of

tumor volume and maximum 2D axial and 3D diameters had CI values of 0.54, 0.55, and 0.54,

respectively and were not statistically significant. In addition, the maximum 3D diameter and

the contour volume of the rim and exterior regions were also not predictive. The feature

expression trends between DM and non-DM cases were shown in Figs A-C in S4 File.

Radiomic signature validation and inter-comparison

Multivariable models were generated based on cox proportional hazard method. The forward

selected radiomic signature from each tumor region was validated using Dataset B. The tumor

radiomic signature was log sigma 0.5mm 3D GLCM DifferenceEntropy, which quantifies the

intensity variability in neighboring voxels, and wavelet HLL GLRLM RunEntropy, which mea-

sures the variation in the distribution of run lengths and gray levels. The tumor rim radiomic

signature consisted of LoG 1.5mm 3D GLRLM RunEntropy and Wavelet LHL NGTDM com-

plexity; these measure, respectively, the entropy of gray level runs and large intensity changes

in neighboring pixels. The radiomic signature of the exterior region includes log sigma 2.5mm

3D firstorder Kurtosis and log sigma 3.0.mm 3D NGTDM Strength, which, respectively, mea-

sures the fourth moment of the intensity distribution and deviation from homogeneity. To

account for the potential confounding effect of tumor size and volume, statistical significance

was tested between our radiomic signatures and these factors. The prognostic performance of

the tumor and rim radiomic signatures were determined to be significantly stronger than

tumor dimension or volume.

The performance of the radiomic signatures was compared to a clinical model constructed

using Cox regression method. In Dataset B, this clinical model achieved a CI value of 0.53 (p-

value < 0.44). In the radiomics models, the multivariable rim signature achieved a CI value of

0.64 (p-value < 2.37×10−5) in Dataset B, compared to the multivariable tumor signature CI

value of 0.59 (p-value < 0.04) and the multivariable exterior model of CI value of 0.55 (p-

value < 0.15). Incorporating the rim multivariable model to the clinical parameters yielded a

CI value of 0.65 (p-value< 7.57×10−6). For comparison, this combined model was found to be

significantly more predictive than the clinical model (p-value < 0.003). A composite radiomics

model including the tumor, rim and exterior regions was also constructed (CI = 0.63), but was

found to be less predictive than the tumor rim signature (p-value< 0.30). The prediction by

combined clinical and tumor radiomics signature was found to be not statistically different
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from the combined clinical and rim predictor (p-value< 0.13), neither was the composite clin-

ical, tumor and rim predictor (p-value < 0.38). The results of multivariable model validation

and inter-model comparison were displayed in Fig 3.

Fig 2. Univariable analysis of the selected radiomic features by region. a. tumor; b. tumor rim; c. tumor exterior.

“Inv.” And “Prop” indicate inversely proportional and directly proportional, respectively. CI of 0.5 indicates equivalent

to random guess. The types of radiomic features are shown by color: red (shape), blue (statistics), and green (texture). �

indicates p-value< 0.05 (Noether’s test, p-value corrected by FDR).

https://doi.org/10.1371/journal.pone.0206108.g002
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Fig 4 showed the patient stratification using the clinical parameters (Fig 4A). Neither

the log rank test showed a significant p-value nor did the hazard ratio show significance

in the validation cohort. Fig 4B showed risk stratification using the combined clinical

and tumor radiomics model, which had a significant log rank p-value of 0.012. Fig 4C

demonstrated the potential stratification that can be achieved using our proposed model

combining clinical and rim radiomic signature. Using the patient risk scores derived

from the training cohort, Kaplan-Meier analysis in validation Dataset B showed statisti-

cally significant difference (p-value < 1×10−3) for metastasis-free probability estimates.

The lower risk group showed a hazard ratio of 0.44 compared to the higher risk group.

Fig 3. Comparison of prognostic performance across the different multivariable models in the validation cohort (n = 100). � indicates statistical significance (“�”

indicates p-value<0.05, “���” indicates p-value<0.0001 from random prediction (Noether test)). From left to right, the compared multivariable models include clinical,

visible tumor, exterior, tumor rim, combined clinical and tumor, combined clinical and rim, and the combined radiomics model. Crossbars indicate the comparison

made between CI of two multivariable models, where � indicates significant difference and ns not statistically significant.

https://doi.org/10.1371/journal.pone.0206108.g003
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Discussion

Advances in cancer biology research have provided insights on how the tumor proliferates

through its interaction with the surrounding normal tissue [47–50]. Tumor invasion into the

peripheral normal tissues on the cellular level may translate to tissue morphological changes,

which, in turn, may inform us about the level of metastatic activity. Here, we leveraged radio-

mics analysis to quantitatively characterize the peritumoral imaging features on planning CT

images and assessed their prognostic power on DM. To our knowledge, this is the first study

that correlates radiomic features from the normal-appearing peritumoral tissues with cancer

metastasis in NSCLC.

The use of radiomic features to predict DM for NSCLC has only been investigated in few

studies [24, 25]. Fried et al [25] extracted 198 tumor features from averaged CT, 4DCT, and

contrast-enhanced CT images; and showed qualitatively through Kaplan-Meier analysis that

the combination of radiomic features with clinical parameters may enable patient stratification

for DM in a 91-patient stage III cohort. Coroller et al [24] investigated intratumoral radiomic

features for DM in a cohort of 182 NSCLC and demonstrated predictive power in a validation

cohort (CI = 0.61). However, these were based on tumor-only radiomic features and did not

account for the cancerous infiltration into the surrounding normal parenchymal tissues. This

study explored the tumor rim and exterior radiomic features as potential DM prognosticator

in a larger cohort of 200 patients with locally advanced NSCLC using a quantitative metric of

CI. Importantly, we discovered a higher prognostic value for the tumor rim radiomic signature

than the tumor-only one, where a comparison between the two showed statistical significance

(p-value = 0.048).

Our data driven approach led us to the discovery of potentially important tumor rim radio-

mics signature for DM prediction and also the finding that the other tumor regions show rela-

tively less prognostic power. In the exterior region, that the multivariable radiomics model was

not significant was consistent with the overall weaker signal as evident in the univariable analy-

sis. As for the visible tumor region, its significant features were similar to the rim region in

terms of feature type and prognostic power. However, while the selected features from the

tumor showed similar performance as the rim features univariablely, the rim radiomic signa-

ture showed the superior performance over the tumor one. This may be due to the comple-

mentary effect accomplished by combining top performing feature, LoG 1.5mm 3D GLRLM

Fig 4. Comparison of Kaplan-Meier curves for DM: a) clinical model, b) the combined clinical and tumor radiomics model, and c) the combined clinical and tumor

rim radiomics model for metastasis-free probability in validation dataset (n = 100). In a, the stratified patient groups did not show statistical significance (p-

value< 0.227). In b, the incorporation of the tumor radiomics signature improved patient stratification (p-value< 0.012). In c, combining clinical and rim radiomics

signature was shown to most significantly stratify patients (p-value< 0.001).

https://doi.org/10.1371/journal.pone.0206108.g004
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RunEntropy, and the moderately performing feature, Wavelet LHL NGTDM complexity.

Interestingly, as larger value from either rim feature suggests reduced risk to developing DM,

i.e. tumor rims with more heterogeneity in run lengths and gray levels as well as more rapid

changes in gray level intensity would be less prone to tumor metastatic activities. Moreover,

despite the fact that the CI of the combined clinical and rim radiomics model prediction was

not shown to be statistically different from that of the combined clinical and tumor radiomics

one, Kaplan-Meier analysis suggested that the former would allow for better risk stratification

in terms of log rank p-value (Fig 4B vs. 4C). Furthermore, our identification of the tumor rim

as the crucial imaging biomarker for DM was consistent with pathology and tumor biology

findings and it was well known that the periphery of the tumor harbored many activities of

cancer invasion and metastasis, e.g. epithelial-mesenchymal transition [51], tumor-associated

macrophages [50, 52], tumor budding [53], and lymphovascular invasion [31, 54]. While a cor-

relation with biological processes at the tumor periphery was beyond the scope of the present

study, ample evidence from tumor biology literature supported our hypothesis that the tissue

features on the tumor-normal interface may indicate tumor aggressiveness towards DM. Thus,

our findings were hypothesis generating and may facilitate new discoveries in the DM prog-

nostication using information originated from tumor rim.

Limitations of this study include the choice of 6mm shell of tissues around the tumor for

our correlation analysis with DM. Given that there may exist individual variation in terms of

the disease spread pattern and location of extratumoral cancer colonies, we attempted to

address this by taking a relatively wide margin of 6mm and expand our region of interest radi-

ally outward from the tumor to mimic the disease spread pattern. Other limiting factor may be

the variation in CT acquisition parameters as patient CT simulation dates spanned from 2001

to 2014. We sought to mitigate this by removing cases of motion artifacts and performed

image resampling at 3×3×3 mm3 to reduce voxel noise. Lastly, our findings may be limited by

our cohort size (n = 200) and patient cases collected in our institution. We had performed tem-

poral split of our data to generate an independent validation cohort, of similar patient and

treatment characteristics, for model testing. Future investigations would involve testing our

hypothesis by expanding our study to include patients of other histology types and evaluating

the generalizability of our findings using multi-institutional image data. In spite of these limi-

tations, our investigation demonstrated differential predictiveness of imaging features between

the tumor and its surrounding tissues for distant metastatic spread.

Conclusion

In conclusion, we have demonstrated strong prognostic value of peritumoral radiomic features

for DM in patients with locally advanced NSCLC. The presented rim radiomic signature was

independently validated and was shown to have better predictive power compared to tumor

radiomic signature. Such pretreatment imaging predictor may benefit patients susceptible to

developing DM in precision medicine approach.
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