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Abstract
Purpose Low-grade gliomas (LGG) are classified into three distinct groups based on their IDH1 mutation and 1p/19q
codeletion status, each of which is associated with a different clinical expression. The genomic sub-classification of LGG
requires tumor sampling via neurosurgical procedures. The aim of this study was to evaluate the radiomics approach for
noninvasive classification of patients with LGG and IDH mutation, based on their 1p/19q codeletion status, by testing
different classifiers and assessing the contribution of the different MR contrasts.
Methods Preoperative MRI scans of 47 patients diagnosed with LGG with IDH1-mutated tumors and a genetic analysis
for 1p/19q deletion status were included in this study. A total of 152 features, including size, location and texture, were
extracted from fluid-attenuated inversion recovery images, T2-weighted images (WI) and post-contrast T1WI. Classification
was performed using 17 machine learning classifiers. Results were evaluated by a fivefold cross-validation analysis.
Results Radiomic analysis differentiated tumors with 1p/19q intact (n = 21; astrocytomas) from those with 1p/19q codeleted
(n = 26; oligodendrogliomas). Best classification was obtained using the Ensemble Bagged Trees classifier, with sensitivity
= 92%, specificity = 83% and accuracy = 87%, and with area under the curve = 0.87. Tumors with 1p/19q intact were larger
than those with 1p/19q codeleted (46.2 ± 30.0 vs. 30.8 ± 16.8 cc, respectively; p = 0.03) and predominantly located to the
left insula (p = 0.04).
Conclusion The proposed method yielded good discrimination between LGG with and without 1p/19q codeletion. Results
from this study demonstrate the great potential of this method to aid decision-making in the clinical management of patients
with LGG.
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Introduction

Diffuse low-grade gliomas (LGG) are grade II tumors
characterized by having a variable clinical course and out-
come according to the revised World Health Organization
(WHO) classification [1]. Most diffuse LGG are asso-
ciated with mutations in the isocitrate dehydrogenase 1
gene (IDH1). Patients with IDH1-mutated tumors typically
have an indolent course and a more favorable outcome
[2–4]. In contrast, wild-type IDH1 LGG tend to rapidly
acquire multiple complex genetic alterations and trans-
form to glioblastomas early in their course [4]. A distinct
subtype of IDH1-mutated diffuse gliomas includes those
associated with deletions in chromosome arms 1p and 19q

7 Department of Neurosurgery, Shaare Zedek Medical Center,
Jerusalem, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-017-1691-5&domain=pdf
http://orcid.org/0000-0001-8396-1031


564 International Journal of Computer Assisted Radiology and Surgery (2018) 13:563–571

(1p/19q codeletion), classically recognized as oligoden-
drogliomas [5,6]. Patients with 1p/19q codeleted tumors
respond better both to chemotherapy and to radiation and
are associated with longer survival compared to patients
with non-codeleted IDH1 mutated tumors [6]. The sig-
nificance of the genetic alterations that occur in diffuse
LGG was further emphasized in the updated brain tumor
classification of the WHO [7]. Tumor types and grades
that have been historically determined by histology are
now defined and treated based on these genetic alterations
[7].

Currently, IDH and 1p/19q status of the tumor cannot
be determined without obtaining tissue samples via inva-
sive surgical procedures. These surgeries usually involve
hospitalization and may be associated with morbidity, mor-
tality and high costs. This has spurred a tremendous interest
in developing alternative methods to noninvasively clas-
sify tumors into different subtypes. Several studies have
aimed to identify IDH mutation status using magnetic res-
onance imaging (MRI). However, very few attempts have
been made to predict the codeletion status of 1p/19q.
Identification of 2-hydroxyglutarate (2HG), the metabo-
lite of mutated IDH1, by MR spectroscopy (MRS) was
suggested as a biomarker for IDH1 mutation by several
groups [8–10]. Despite initial promising results, the need
for special quantitative analysis and a customized in vivo
MRS sequence that is not routinely performed limits the
usefulness of this method. Other researchers used multi-
parametric MRI data to predict the mutation status of IDH1,
such as histogram analysis of diffusion-weighted imag-
ing (DWI), dynamic-susceptibility contrast perfusion MRI
[11], arterial spin-labeling (ASL) MRI [12], and radiomics
approach [13,14]. Only a few studies investigated the use
of quantitative tumor location measurement [15] as well as
application of advanced classification methods [16,17] to

differentiate between LGG based on their 1p/19q codele-
tion.

Radiomics analysis, based on computerized tomography
(CT) and MRI data, was proposed to further character-
ize diseases and their underlying processes beyond what
can be observed by the radiologist’s naked eye. Advanced
image analysis can convert standard medical images into
higher-dimensional quantitative data, potentially reflecting
the underlying pathology [18–20]. Although radiomics can
be potentially applied to a large number of clinical condi-
tions, based on conventional imaging methods, currently the
most widespread use of this approach is in cancer research
[13,18–21]. Radiomics can provide a noninvasive means
of improving decision-making in cancer treatment at lower
cost than current invasive approaches. In this work, we
aimed to apply radiomics analysis to predict the 1p/19q
codeletion status in patients with IDH1-mutated diffuse
LGG while testing different classifiers, and to assess the
contribution of the different MR contrasts and lesion loca-
tion.

Methods

Study participants

This is a retrospective analysis of data obtained from 47
patients with confirmed histological identification of grade
II LGG, positive IDH1-mutated tumors, and genetic anal-
ysis for 1p/19q codeletion status. As a general practice in
our institute, we recommend all patients with IDH1 mutated
tumors to be tested for 1p19q codeletion status. The studywas
approved by the institutional review board. Patients’ charac-
teristics are given in Table 1.

Table 1 Patient’s clinical
characteristics

Variable Total IDH Mutation with
1p/19q codeletion

IDH Mutation without
1p/19q codeletion

p

Number 47 26 21

Age 37.7 ± 10.6 40.3 ± 10.8 36.7 ± 9.7

Female/male 20/27 11/15 9/12

Tumor location

Frontal 53% 52% 55% 0.79

Parietal 16% 15% 17% 0.87

Temporal 30% 23% 38% 0.12

Occipital 2% 2% 2% 0.88

Limbic 48% 44% 52% 0.44

Sub-lobar 43% 33% 55% 0.03

Cerebellum 0% 0% 0% –

Brain stem 3% 0% 7% –
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Immunohistochemistry

Immunohistochemistry for IDH1-R132H was done on 5-
µm-thick formalin-fixed, paraffin-embedded tumor sections.
Antigen retrieval was performed in citrate buffer (pH 6.0)
in a microwave oven. Antibody specific for the mutant
IDH1-R132H protein (H09, dil 1:100; Dianova, Hamburg,
Germany) was used. Secondary antibody labeled with strep-
tavidin biotin kit (Universal) was used as a detection system
(Dako, Denmark). A senior pathologist evaluated the results
of the immunostaining.

Evaluation of 1p/19q codeletion status

Loss of heterozygosity (LOH) in chromosomes 1p and 19q
was assessed by polymerase chain reaction (PCR)-based
microsatellite analysis, detailed elsewhere [22].

Imaging protocol

Preoperative MRI scans were performed as part of the
patients’ clinical assessment. Data were collected from
different MRI systems from different sites and vendors
with various acquisition parameters, including 1.5 and 3.0
Tesla scanners: 10 scans were performed on a Philips sys-
tem, 33 scans were performed on a GE system, and 4
on a Siemens system. The protocol included fluid attenu-
ation inversion recovery (FLAIR): repetition time (TR) =
6000−10,002 ms, echo time (TE) = 85−151 ms, inver-
sion time (IT) = 2000–2750 ms, voxel size = 0.4–4.8 cc;
spin-echo (SE) T2-weighted images (T2WI): TR = 2500–
14820 ms, TE = 84–110 ms, voxel size = 0.7–4.8 cc; post-
contrast T1 WI (T1WIGd) spoiled gradient echo (SPGR):
repetition time (TR) = 7–17 ms, echo time (TE) = 2–4 ms;
voxel size = 0.4–4.8 cc or post-contrast SE T1WI: TR =
400–536 ms, TE= SE= 7–20 ms, voxel size= 0.25–4.4 cc.

Image preprocessing

Figure 1 provides an overview of the data analysis pipeline.

MRI data preprocessing

Preprocessing included realignment of all anatomical images
to the same space using FMRIB Software Library (FSL)
linear image registration tool and affine transformation (12
parameters model), [23] as well as skull stripping using the
FSL brain extraction tool [24]. To overcome heterogeneity in
image intensity caused by the use of different scanners and
acquisition parameters, the intensity of all anatomical images
(FLAIR, T1WIGd and T2WI) was normalized relative to the
mean value of the normal-appearing white matter (NAWM)
area. The NAWMwas extracted from the anatomical images

Fig. 1 Analysis pipeline

using FSL’s automatic segmentation tool (FAST), incorpo-
rating the hidden Markov random field (HMRF) model and
an associated expectation-maximization algorithm [25] after
removal of the predefined lesion areas. The obtained mask
was eroded to minimize partial volume effect and later used
as a reference area for intensity normalization.

Lesion segmentation

The lesion area was defined as the abnormal hyperintensity
area on T2WI/FLAIR images. Segmentation of the lesion
area was performed using AnalyzeDirect software (version
11.0, Mayo Clinic, Rochester, MN, USA). In each patient,
three regions of interest (ROIs) were selected as the middle
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slice (ROI1), middle slice + 1 (ROI2) and middle slice-1
(ROI3), ranked as the slice with minimum, median and max-
imum value, in order to account for tumor heterogeneity and
to increase the amount of available data.

Feature extraction

A total of 152 size, location and textural features were
extracted from the lesion area of each patient using Mat-
lab 2017a (The MathWorks Inc., Natick, MA): Size and
location features included lesion volume (measured for the
entire lesion area) and location calculated by partitioning
the brain into 16 locations: left and right, frontal, parietal,
temporal, occipital, limbic sub-lobar lobes, cerebellum and
brainstem based on the Talairach space anatomy template
(total of 17 features). First-order statistical features included
mean, median, 25th and 75th percentiles, standard devi-
ation, maximum, minimum, variance, kurtosis, skewness.
Second-order statistical features included contrast, correla-
tion, energy, entropy and homogeneity [26]. Each of the
textural features was calculated for the ROIs of the lesions
and for the threeMRI contrasts (FLAIR, T1WIGd and T2WI,
total of 152 features).

Dimension reduction

Dimension reduction was performed on the 152 features in
order to improve classification. Initially, all features were
standardized before classification as follows:

XSDi = [Xi − X̄ ]
σX̄

where xi is the value of individual subject for given feature
and X̄ and σX̄ are mean and standard deviation values of the
entire group for a given parameter.

The one-sample Kolmogorov–Smirnov test was used to
test the distribution of each feature. Significant differences
(p < 0.05) between groups (tumoral versus non-tumoral
components) were tested using the Mann–Whitney U test/t
test (depending on data distribution). Next, principal compo-
nent analysis (PCA) was applied only on features that were
significantly different (p < 0.05) between groups.

Classification

Classification of the LGG tumors based on the MRI images
was performed using the Matlab classification learner tool.
The classification performances were tested by 17 machine
learning algorithms including by support vector machine
(SVM), k-nearest neighbor (kNN), and Ensemble classifiers:
(1) linear SVM, (2) quadratic SVM, (3) cubic SVM, (4) fine
Gaussian SVM (kernel scale set to square root of the num-

ber of features (F)/4), (5) medium Gaussian SVM (kernel
scale set to square root (F)), (6) coarse Gaussian SVM ker-
nel scale set to square root (F)*4, (7) fine kNN (with the
number of neighbors set to 1), (8) coarse kNN (with the num-
ber of neighbors set to 100), (9) medium kNN, (10) cosine
kNN, (11) cubic kNN, (12) weighted kNN (with the num-
ber of neighbors set to 10 for [9–12]), (13) Boosted Trees,
(15) Subspace Discriminant, (16) Subspace kNN and (17)
RUSBoosted Trees.

Evaluation

The results were evaluated using a fivefold cross-validation
schemeof randomly splitting the data into training and testing
sets. Sensitivity, specificity, accuracy and receiver operating
characteristics (ROC) of the classification results were cal-
culated for each tested condition.

Results

Differences between groups

Radiomic analysis significantly (p < 0.05) differentiated
tumors with 1p/19q intact (n = 21; astrocytomas) from
those with 1p/19q codeleted (n = 26; oligodendrogliomas)
by 39/152 imaging features (Table 2). Figure 2 demonstrates
the different radiomics signatures for each group. For loca-
tion features, as expected, the majority of tumors in both
groups were detected in the cerebrum. However, there was a
significant difference (p = 0.041) for the left sub-lobar lobe,
with a larger incidence being detected for the patientswithout
1p/19q codeletion (52%) in comparison with patients with a
1p/19q codeletion (23%). Figure 3a illustrates the distribu-
tion of lesion location across the groups. Thirty nine textural
features showed significant group differences (p < 0.05),
with the majority of differences detected for the T2WI (19
features) and for theT1WIGd (15 features), and only a few for
the FLAIR images (4 features) (Fig. 2; Table 2). No signifi-
cant age or gender differenceswere detected between groups.
Following thePCA,9 componentswere found to explain 95%
of the variance, and were subsequently used for classifica-
tion.

Classification results

Seventeen machine learning algorithms were tested based
on the nine principal components, and their sensitivity,
specificity and accuracy are presented in Table 3. The
best classification results were obtained using the Ensemble
BaggedTrees classifierwith a sensitivity of 92%, a specificity
of 83% and an accuracy of 87%, and with an area under the
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Table 2 Features that showed significant group differences

Image contrast Feature p

Left sub-lobar 0.041

FLAIR Minimum{min} 0.047

FLAIR Entropy{max} 0.047

FLAIR STD{min} 0.033

FLAIR Variance{min} 0.033

T1WI + Gd Max{min} 0.021

T1WI + Gd Mean{min,med} 0.020, 0.017

T1WI + Gd Median{min,med} 0.016, 0.016

T1WI + Gd Prctile25{min,med} 0.020, 0.021

T1WI + Gd Prctile75{min,med} 0.016, 0.013

T1WI + Gd Entropy{mid} 0.047

T1WI + Gd Energy{max} 0.029

T1WI + Gd Kurtosis{med,max} 0.016, 0.039

T1WI + Gd Skewness{max,med} 0.002, 0.014

T2WI Mean{min,med,max} 0.003, 0.004, 0.001

T2WI Median{min,med,max} 0.003, 0.003, 0.001

T2WI Max{min,med,max} 0.0001, 0.020, 0.031

T2WI Min{med,max,min} 0.00003, 0.028,0.048

T2WI Prctile25{min,med,max} 0.001, 0.001, 0.001

T2WI Prctile75{min,med,max} 0.005, 0.002, 0.003

T2WI Skewness{min} 0.009

Slice ranked (min minimum, med median, max maximum)

curve (AUC) of the ROC curve for 1p/19q codeletion predic-
tion of 0.87 (Fig. 3b).

Discussion

In this study, we applied radiomics analysis to MRI data
for noninvasive detection of 1p/19q codeletion in patients
with LGG. Various machine learning classifiers were tested,
with the Ensemble Bagged Trees classifier achieving the best
performance, with an 87.0% accuracy for the detection of
1p/19q codeletion. The classifier was trained on MRI data,
whichwas acquired as part of routine preoperativeMRI scans
of patients with LGG, and can be used without the need for
special imaging sequences.

1p/19q codeletion is an important genetic marker of LGG
since it determines the subtype (oligodendroglioma) and
the derived prognosis and treatment. Patients with 1p/19q-
codeleted tumors have a better response to radiation and
chemotherapy and a longer progression-free and overall sur-
vival [1,5]. Given that follow-upwithout interventionmay be
a valid therapeutic option in 1p/19q-deleted tumors, nonin-
vasive identification of this mutation may be very beneficial
for these patients, potentially sparing themunnecessary inter-
vention.

Radiomics is a rapidly evolving technique in medical
image analysis. It refers to the conversion of imaging data

Fig. 2 Surface chart of all 34 features significantly differentiating between groups by demonstrating the unique radiomics signature obtained for
each group. T1p, T1-weighted image post-contrast agent injection; T2W, T2-weighted image; F, fluid attenuation inversion recovery
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Fig. 3 a Distribution of lesion
location across groups.
(∗ = p < 0.05). b Receiver
operating characteristic (ROC)
curve: IDH Mutation with
1p/19q Codeletion

into a high-dimensional mineable feature space, using a large
number of automatically extracted data-characterization fea-
tures [18,19]. Radiomics analysis was recently used for
noninvasive detection of tumor phenotypes in patients with
lung and head and neck cancer, [18] to predict IDHmutation
[14], and to identify molecular characteristics in high-grade
gliomas [14,27]. It was recently used in LGG to predict IDH
mutation status [13] and 1p/19q codeletion [17]. Promising
results from these studies serve to motivate further devel-
opment of radiomics in brain tumors since preoperative
identification of tumor type may alter the management of
these complex tumors. Results fromour study support the use
of a radiomics approach for 1p/19q codeletion status assess-
ment.

Despite the increasing use of the radiomics approach for
various clinical applications, this technique is not sufficiently
established to be used routinely in clinical settings. This is
partly due to the sensitivity of this analysis to variations in
MR acquisition parameters. In the current study, we used
retrospective data obtained from various MRI scanners and
a large variability of parameters. Despite the considerable
heterogeneity of our data, we achieved a good level of accu-
racy and AUC of the ROC curve values for the prediction
of 1p/19q codeletions, demonstrating the robustness of the
method and its potential clinical transferability for diagnos-
tic classification of molecular alteration in LGG. However,
higher sensitivity, specificity and accuracy are needed in the
setting of personalized medicine and for making safe treat-

123



International Journal of Computer Assisted Radiology and Surgery (2018) 13:563–571 569

Table 3 Sensitivity, specificity
and accuracy of the different
classifier types

Classifier type Specificity (%) Sensitivity (%) Accuracy (%) ROC AUC

Support vector machines (SVM)

Linear SVM 80 81 81 0.88

Quadratic SVM 79 79 79 0.84

Cubic SVM 75 78 77 0.84

Fine Gaussian SVM 0 55 55 0.62

Medium Gaussian SVM 75 87 81 0.85

Coarse Gaussian SVM 50 56 55 0.89

Nearest neighbor classifiers (kNN)

Fine kNN 67 69 68 0.67

Medium kNN 86 63 66 0.85

Coarse kNN 0 55 55 0.47

Cosine kNN 84 83 83 0.88

Cubic kNN 71 60 62 0.86

Weighted kNN 89 66 70 0.87

Ensemble classifiers

Boosted Trees 0 55 55 1.00

Bagged Trees 83 92 87 0.87

Subspace discriminant 83 79 80 0.89

Subspace kNN 68 71 70 0.83

RUSBoosted Trees 75 66 68 0.67

Sensitivity, specificity and accuracy are given in percentages. Bold indicates chosen classifier
AUC area under curve, ROC receiver operating characteristic

ment decisions. Thus, further studies in a prospectivemanner
with larger cohorts are necessary to improve and confirm our
results.

In this study, we extracted location and first- and second-
order statistical features [26]. Texture features enabled the
description of the variations in the surface intensity or
patterns at the lesion area, including some that are indis-
cernible to the human eye [28]. Notably, texture features
had previously been used for brain tumor characterization
and classification [14,28,29], demonstrating the promising
potential of this automated pattern recognition approach
to provide objective information and to support clinical
decision-making. The features that mostly contributed to
the classification were T1WIGd and T2WI, which are fea-
tures that reflected differences in tumor heterogeneity. This
emphasizes the importance of using the radiomics features
that relate to the texture of the tumors. Dimension reduction
was performed on the 152 features using PCA that had been
performed only on features that were significantly different
between groups, in order to improve classification, to reduce
over-fitting error, and to be less impacted by noise or random
error [28].

Tumor location has traditionally been considered as one
of the most important parameters and one that correlates
with lesion growth pattern and prognosis in LGG [30]. The
contribution of information on tumor location in differenti-

ating between molecular genetic subsets has been tested in a
few recent studies. One study found that tumors with 1p/19q
codeletion occurmost frequently in the frontal lobes and have
a tendency for widespread growth across the midline [31].
Two other studies concluded that quantitative tumor loca-
tions are important features and that they should be included
in radiomics analysis to identify IDH mutation in LGG [13].
In line with previous publications [13,31], the majority of
tumors in the current study were detected in the cerebrum.
The location features were defined by dividing the brain into
16 regions based on the Talairach space anatomy template.
This reconstructed template enables automatic localization
of the lesion areas into well-defined regions similar to those
used in traditional radiology, and thus may be superior both
to manual labeling of lesion location—which may have high
intra-observer variability—and to the use of available tem-
plates, such as the automated anatomical labeling atlas,which
is limited to gray matter areas. In our study, location fea-
tures differed significantly between the groups, but they did
not contribute much to the classification results. Future stud-
ies with larger numbers of patients are needed for thorough
examination of the contribution of location characteristics to
classifying cranial lesions.

In conclusion, the current study demonstrates the use of
radiomics analysis to identify 1p/19q codeletion status in
patientswithLGGbased on conventionalMRI. The proposed
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noninvasive method may aid the treating neuro-oncologist in
more accurately predicting prognosis prior to tissue diagnosis
and in personalizing the follow-up and treatment regimen
without the need for or prior to invasive tissue sampling.
This method is also easily translatable to other tumor types
and potentially to other imaging modalities.
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