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Abstract

Purpose

To evaluate the uncertainty of radiomics features from contrast-enhanced breath-hold heli-

cal CT scans of non-small cell lung cancer for both manual and semi-automatic segmenta-

tion due to intra-observer, inter-observer, and inter-software reliability.

Methods

Three radiation oncologists manually delineated lung tumors twice from 10 CT scans using

two software tools (3D-Slicer and MIM Maestro). Additionally, three observers without for-

mal clinical training were instructed to use two semi-automatic segmentation tools, Lesion

Sizing Toolkit (LSTK) and GrowCut, to delineate the same tumor volumes. The accuracy of

the semi-automatic contours was assessed by comparison with physician manual contours

using Dice similarity coefficients and Hausdorff distances. Eighty-three radiomics features

were calculated for each delineated tumor contour. Informative features were identified

based on their dynamic range and correlation to other features. Feature reliability was then

evaluated using intra-class correlation coefficients (ICC). Feature range was used to evalu-

ate the uncertainty of the segmentation methods.

Results

From the initial set of 83 features, 40 radiomics features were found to be informative, and

these 40 features were used in the subsequent analyses. For both intra-observer and inter-

observer reliability, LSTK had higher reliability than GrowCut and the two manual segmenta-

tion tools. All observers achieved consistently high ICC values when using LSTK, but the
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ICC value varied greatly for each observer when using GrowCut and the manual segmenta-

tion tools. For inter-software reliability, features were not reproducible across the software

tools for either manual or semi-automatic segmentation methods. Additionally, no feature

category was found to be more reproducible than another feature category. Feature ranges

of LSTK contours were smaller than those of manual contours for all features.

Conclusion

Radiomics features extracted from LSTK contours were highly reliable across and among

observers. With semi-automatic segmentation tools, observers without formal clinical train-

ing were comparable to physicians in evaluating tumor segmentation.

Introduction

Precision medicine aims to customize cancer treatment for an individual patient by consider-

ing combined knowledge (i.e., conventional factors such as age and sex, genetics, proteins, and

others) [1,2]. Precision medicine seeks to completely characterize the tumor to determine opti-

mal treatment based on patient-specific characteristics. In recent years, studies have shown

that radiomics features have the potential to significantly improve our ability to stratify

patients according to likely treatment response beyond conventional prognostic factors,

thereby leading to truly personalized cancer care [3–7].

The generic workflow of radiomics studies includes four steps: (1) image acquisition, (2)

tumor delineation, (3) feature extraction, and (4) feature analysis [8,9]. The tumor delineation

can be drawn manually or generated with a semi-automatic tool. Once the tumor delineation

has been established, radiomics features are extracted from the tumor-defined region within

the image. Thousands of radiomics features can be calculated for one tumor, and each feature

characterizes the tumor in a different way. For example, roundness is a radiomics feature that

characterizes the tumor shape and can be used to predict how the tumor may spread out to

nearby locations. Lastly, features are evaluated to see whether they correlate with prognostic or

predictive factors. Features that are shown to be predictive are then used to build outcome

models that help predict how a patient will respond to a treatment. For different diseases, dif-

ferent radiomics features can be selected for outcome modeling to predict likely treatment

response.

Before radiomics features can be clinically useful, it is necessary to investigate and under-

stand the uncertainties of radiomics features. One major source of uncertainty comes from the

tumor delineation. To manually delineate the tumor precisely, in general, is difficult. Tumors

often lay adjacent to other organs that share similar characteristics with the tumor, making it

difficult to distinguish the true tumor boundary. Additionally, medical images are far from

perfect, as they have limited resolution (limiting our ability to see very small objects) and can

contain artifacts (features in an image that do not represent a real aspect of the imaged object).

Physicians may interpret the tumor differently, depending on their training and experience

[10]. In addition, the different software tools that physicians use to draw the tumor contours

may also affect the results, depending on user familiarity with the tool. Because radiomics fea-

tures are calculated from the delineated tumor, uncertainty in tumor delineation could propa-

gate to the radiomics features.

Recent advances in computer-aided automatic and semi-automatic segmentation

approaches have been shown to reduce the burden in manual delineation and lessen the
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inconsistency in tumor delineation [11,12]. To date, a small number of studies have been per-

formed to relate this reduced uncertainty in tumor delineation to the quality and reproducibil-

ity of radiomics features [13–17].

In this current study, we examined three specific factors that can influence the uncertainty

of radiomics features for both manual and semi-automatic segmentation methods: (1) intra-

observer, (2) inter-observer, and (3) inter-software. Manual contours were generated by three

independent physicians using MIM MaestroTM (MIM Software Inc., Cleveland, Ohio, USA)

and 3D-Slicer [18]. Semi-automatic contours were generated by three trained observers using

the GrowCut algorithm from 3D-Slicer [11] and the Lesion Sizing Toolkit (LSTK) [19]. While

the segmentation accuracy of LSTK has been evaluated [19,20], to our knowledge the reliability

of radiomics features extracted from LSTK-generated contours has not been studied. Addi-

tionally, we evaluated whether manual software tools and semi-automatic software tools can

be used interchangeably for generating contours for feature extraction. The purpose of this

study can be summarized into two main objectives. The first objective was to identify a reliable

segmentation tool that produces lung tumor segmentations that yield reliable and robust

radiomics features for the same observer, across multiple observers, and across multiple soft-

ware tools. The second objective was to identify a group of reliable radiomics features for non-

small cell lung cancer (NSCLC) primary tumors.

Materials and methods

Patient data and CT image acquisition

For this study, we retrospectively obtained patient data for 10 patients with histologically veri-

fied NSCLC. The Institutional Review Board (IRB) at the University of Texas MD Anderson

Cancer Centers approved the present retrospective study, and the requirement for informed

consent was waived. The lung tumors included in this study had volumes ranging from 1.15

cm3 to 10.53 cm3. For each patient, breath-hold helical computed tomography (CT) scans

were acquired with intravenous contrast. The CT scans were acquired on General Electric

Healthcare CT scanners with a peak tube voltage of 120 kVp and tube currents ranging from

320 mAs to 570 mAs. Each scan was reconstructed with a slice thickness of 2.5 mm and pixel

spacing between 0.635 mm and 0.977 mm. Fig 1 shows a coronal slice of each tumor to display

the variety of tumor presentations and locations of this patient cohort.

Manual segmentation

Manual segmentations were performed by three radiation oncologists using two different soft-

ware tools: MIM MaestroTM (MIM Software Inc., Cleveland, Ohio) and 3D-Slicer (a free

open-source software platform) [18]. Each physician manually segmented each of the 10

tumors using both manual software tools, following the RTOG 1106 contouring guideline

[21,22]. This guideline recommends contouring the primary tumor volume on CT images

using a standard lung window/level for distinguishing lung borders and using a mediastinal

window/level for distinguishing borders adjacent to the mediastinum. This process was

repeated twice at two different times, yielding two sets of contours (Fig 2). The time intervals

between the two sets of contours for each physician were approximately 1 year for the first two

physicians and 1 month for the third physician. In total, 120 manual tumor contours were gen-

erated (2 software tools × 3 observers × 2 contours × 10 tumors). For both manual software

tools, tumors were contoured using a paintbrush tool (thresholding in 3D-Slicer) in a slice-by-

slice fashion in the transverse plane. Physicians could observe and edit the tumor in the coro-

nal and sagittal planes as well, when desired.
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Semi-automatic tumor segmentation

Semi-automatic segmentations were generated using two different software tools: LSTK (a

level-set algorithm available from an open-source toolkit) and GrowCut (a region growing

algorithm implemented in 3D-Slicer). For the semi-automatic segmentations, three observers

without formal clinical training were instructed to use the two semi-automatic tools to

Fig 1. Tumor presentations and locations. A central slice of each tumor in the coronal view is displayed to show the variety in tumor locations, shapes

and appearances of the patients used in this study. A single physician contour is displayed (red) to identify the tumor in each patient scan.

https://doi.org/10.1371/journal.pone.0205003.g001
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generate tumor segmentations. Verbal step-by-step instructions were given to each observer

on using each software tool. After that, observers practiced using each software tool on three

lung tumors (outside the study). The entire process took less than 15 minutes, with instruction

lasting 5 minutes and practice lasting less than 10 minutes. Once observers felt comfortable

with the software tool, the segmentations for this study were collected. The contouring process

that was used for the manual contours was repeated for the semi-automatic contours for the

same 10 tumors (Fig 2). The time interval between the two sets was 1 to 2 months for each

observer to lessen memory effects. Other studies showed that 3 weeks between contouring

runs are enough to mitigate the effects of memory [23].

For GrowCut, observers labeled foreground and background pixels with two clicks (Fig 3)

in each view, totaling in at least six clicks per tumor case. If the tumor was attached to the chest

wall or mediastinum, additional clicks at appropriate location are needed to help the algorithm

differentiate the tumor from the chest wall or mediastinum. Once labels were established, the

GrowCut algorithm was followed by manual editing of the GrowCut-generated contours. The

editing process took up to 2 minutes for some tumor cases.

For LSTK, the only interaction was to pick a seed which is a user-selected voxel within the

tumor (Fig 3). Defining the maximum tumor radius was optional; however, defining an appropri-

ate maximum tumor radius might save computation time in running LSTK. The LSTK algorithm

has several preset parameters that can affect the segmentation result. We used the initial physician

manual contours to guide us in selecting these parameters. Detailed discussions regarding the

algorithms of GrowCut and LSTK can be found in other publications [19,20].

Validating tumor segmentation accuracy

We validated the accuracy of each semi-automatic segmentation. A group-consensus contour

was generated as the ground truth where the group-consensus contour is taken to be the inter-

secting tumor volume shared by a majority of experts [23–25]. In this study, the group-consen-

sus contour consisted of the tumor region where at least four of the initial six manual

Fig 2. Schematic of the collection of manual and semi-automatic contours. Each circle and triangle represent a single tumor contour. The time interval between

contour set 1 and contour set 2 was 1 year for the contours represented by circles and 1 month for the contours represented by triangles.

https://doi.org/10.1371/journal.pone.0205003.g002
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physician contours overlapped. To assess the accuracy of each tumor segmentation, the Dice

similarity coefficient (DSC) and Hausdorff distance (HD) were calculated between the group-

consensus contour and each individual semi-automatic contour. The DSC quantifies the spa-

tial overlap between two contours, while the HD quantifies the longest contour distance

between the boundaries of two contours. While the DSC can detect incorrectly labeled voxels,

the HD metric is better at detecting deviations (sharp spikes or tiny holes) that significantly

alter the contour shape but do not substantially alter the volume.

Feature extraction

Features were calculated for all 240 tumor segmentations (120 manual + 120 semi-automatic).

For this study, feature extraction was performed using the open-source Imaging Biomarker

Explorer (IBEX) software [26]. A total of 83 features were calculated. We stratified the features

into three main categories: geometric shape (SHP), intensity histogram (HIS), and texture

(TXT). Co-occurrence matrix features (a subcategory of texture features) were calculated in

four directions (0, 45, 90, and 135 degrees), and the final value was taken to be an average of

these four directions to avoid directional bias [27]. A common pre-processing step used to

refine contours before feature extraction is to remove voxels with intensity values for normal

lung tissue, bone, or air that might be inside the tumor contour. Since the purpose of this

study is to investigate the segmentation uncertainty on radiomics features, we omitted this

step to adhere to the original segmentation. We also did not correct for pixel size [28] or per-

form smoothing [29] to avoid introducing other uncertainties to this study.

Feature reduction

One common approach for narrowing the feature set is to apply a combination of different

methods in a sequential manner [9,14,15,30,31] to remove features that are non-informative

Fig 3. User inputs for initializing semi-automatic segmentation tools. (A) LSTK requires the user to select a seed within the tumor (red) to

initiate the segmentation algorithm. Defining the maximum tumor radius generates a 3D bounding box (green) centered about the seed, within

which the segmentation result will be confined. (B) GrowCut requires the user to label foreground (blue) and background (yellow) pixels to initiate

the segmentation algorithm. Once labels were established, the GrowCut algorithm was followed by manual editing of the GrowCut-generated

contours. Note that only the transverse view is shown here. Observers also labeled foreground and background pixels in the coronal and sagittal

planes for each tumor case.

https://doi.org/10.1371/journal.pone.0205003.g003
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or redundant. In the current study, we applied two steps to reduce the initial feature set of 83

features to 40 informative and non-redundant features. The first step was to remove features

that did not vary across different patients. For a feature to be informative, it must exhibit a

range of values across different patients [9,14]. In other words, it must have a wide dynamic

range to differentiate patients. Because multiple contours were generated for each patient, the

average feature value was calculated for each patient. Before calculating the normalized

dynamic range (NDR) for each feature, the average values for each feature were rescaled

(across the patients) to have a mean of 0 and a standard deviation of 1 using z-score normaliza-

tion, so that features with values of different scales could be compared. The NDR for each fea-

ture, NDRf, was calculated as:

NDRf ¼ maxðcfavg Þ � minðcfavg Þ

where maxðcfavg Þ is the maximum normalized average feature value across all patients and

minðcfavg Þ is the minimum normalized average feature value across all patients. Once the NDR

is calculated for each feature, a cutoff value is chosen as a means to remove the least informa-

tive features. In general, the cutoff value is chosen arbitrarily and may be set to a higher or

lower value [9,15]. For the second step, highly correlated features were removed. It is well

known that many features are highly correlated [9]. To deal with this issue, we computed a cor-

relation matrix to identify highly correlated features. In this step, Spearman correlation coeffi-

cients were computed to evaluate the correlation between all features.

Feature reliability analysis

In this study, we examined three specific factors that can influence feature reliability: intra-

observer, inter-observer, and inter-software (Table 1). Intra-observer agreement is a reliability

measure of repeatability, while inter-observer and inter-software agreement are reliability

measures of reproducibility [32]. To assess feature reliability, intraclass correlation coefficients

(ICCs) were calculated for each feature. There are ten different forms of the ICC [33] and

selecting the appropriate form depends on the experimental setup. To assess intra-observer

Table 1. ICC formulas used to assess feature reliability.

Reliability

Factor

ICC Descriptiona ICC Equationa, b Explanation of Reliability Factor Being Examined

Intra-

observer

One-way random-effects model, single

measure, absolute-agreement

MSR � MSW
MSRþðkþ1ÞMSW

To determine whether features can be extracted reliably from tumor contours

generated by a single physician/observer using a single software tool at multiple
timepoints

Inter-

observer

Two-way mixed-effects model, single

measure, absolute-agreement

MSR � MSE
MSRþðk� 1ÞMSEþk

nðMSC � MSEÞ
To determine whether features can be extracted reliably from tumor contours

generated by multiple physicians/observers using a single software tool

Inter-

software

Two-way mixed-effects model, single

measure, absolute-agreement

MSR � MSE
MSRþðk� 1ÞMSEþk

nðMSC � MSEÞ
To determine whether features can be extracted reliably from tumor contours

generated by a single physician/observer using multiple software tools

MSR = mean square for rows; MSW = mean square for residual sources of variance; MSE = mean square error; MSC = mean square for columns; n = number of tumors;

k = number of physicians/observers.
a The information and equations in these columns were taken from McGraw and Wong [33].
b Each row represents a different tumor case and each column represents a different measurement (for intra-observer), different judge (for inter-observer), or different

software tool (for inter-software).

https://doi.org/10.1371/journal.pone.0205003.t001
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reliability, we used a one-way random-effects model where the tumor cases are a random

effect. To assess inter-observer and inter-software reliability, we used a two-way mixed-effects

model where the tumor cases are a random effect and the observers (for inter-observer) and

the software tools (for inter-software) are a fixed effect. The specific ICC form used to assess

each reliability relationship is shown in Table 1. The ICC values, which can range from values

of -1 to values of 1, were stratified into four different classifications. ICC values less than 0.4,

between 0.4 and 0.6, between 0.6 and 0.75, and greater than 0.75 represented the ICC bounds

for the classifications of poor, fair, good, and excellent reliability [23].

Correlation between ICC and CCC. Concordance correlation coefficients (CCCs) were

also calculated because other feature reliability studies have used the CCC metric in their anal-

ysis [14,29,34,35]. Spearman rank correlation coefficients and pairwise scatterplots were com-

puted between the ICC and CCC estimates for each reliability relationship.

Identifying reliable feature categories. For this part of the analysis, we wanted to deter-

mine whether a specific feature category (shape, histogram, texture) was significantly more

reproducible than another feature category. For this determination, Wilcoxon rank sum test

(aka Mann-Whitney test) values were computed between each feature category combination

(e.g., shape versus histogram) for each ICC relationship.

Feature range analysis

For segmentations from each software tool, we calculated the feature range (inter-patient vari-

ability) across observers for each radiomics feature. First, we normalized each feature using z-

score normalization. This allowed us to more easily compare and plot features on different

scales. Each normalized feature, bfi , was calculated as:

bfi ¼
fp;i � �f p

sp;f

where fp,i is the feature for contour i from patient p, �f p is the mean value for feature f for all

contours from patient p, and σp,f is the standard deviation for feature f for all contours from

patient p. Then we recorded the minimum and maximum normalized feature values for each

segmentation method to assess the feature range of each segmentation method.

Results

Validating tumor segmentation accuracy

For the semi-automatic tools, the mean DSCs were 0.88 ± 0.06 and 0.88 ± 0.08 for LSTK and

GrowCut, respectively (Fig 4). For the semi-automatic tools, the mean HD values were

0.48 ± 0.17 cm and 0.43 ± 0.20 cm for LSTK and GrowCut, respectively. The DSC and HD

results show that trained observers can achieve comparable contours with these semi-auto-

matic tools to the group-consensus physician contour, and hence these semi-automatically

generated contours can be used for feature extraction.

Feature reduction

To identify non-informative features, the NDR was calculated for each feature. A histogram

showing the number of features within a range of NDR values is shown in Fig 5. All features

had an NDR value greater than 2.4 and hence all features were considered to exhibit large

enough inter-patient variability to remain in the feature set. To evaluate the correlation

between all features, pair-wise Spearman correlation coefficients were computed (Fig 6). Pair-
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wise correlation coefficients with an absolute value larger than 0.95 were regarded as very

redundant [15]. For correlated features, the feature with the largest mean absolute correlation

was removed, reducing the feature set to 40 non-redundant features (Fig 7).

Fig 4. Validating segmentation accuracy of semi-automatic contours. Box plot of the Dice similarity coefficients and Hausdorff

distances by software tool displays the segmentation accuracy for each software tool.

https://doi.org/10.1371/journal.pone.0205003.g004

Fig 5. Histogram distribution of the normalized dynamic range for all 83 radiomics features. The histogram

distribution shows the number of features within a range of NDR values where each bin has a width of 0.05.

https://doi.org/10.1371/journal.pone.0205003.g005
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Feature reliability analysis

Correlation between ICC and CCC. For all reliability relationships, the results for the

Spearman rank correlation coefficients between the CCC and ICC values showed a strong and

Fig 6. Spearman correlation coefficient heat map including all initial 83 features. Spearman correlation coefficients were computed for 83 radiomics features.

Green, white, and red denote positive, random, and negative correlations, respectively. A large number of features were highly correlated.

https://doi.org/10.1371/journal.pone.0205003.g006
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statistically significant positive correlation (ρ>0.965, p<0.0001), indicating that feature reli-

ability ranking was nearly the same for these two reliability metrics. For the pairwise scatter-

plots, all reliability relationships could be modeled with a strong positive linear regression fit

Fig 7. Spearman correlation coefficient heat map including 40 non-redundant features. Feature pairs with Spearman correlation coefficients less than 0.95.

Spearman correlation coefficients larger than 0.95 were regarded as highly redundant and were eliminated from the initial feature set, reducing the feature set to 40

non-redundant features. Green, white, and red denote positive, random, and negative correlations, respectively. Correlation coefficients marked with an x are

insignificant coefficients.

https://doi.org/10.1371/journal.pone.0205003.g007

Segmentation uncertainty for radiomics studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0205003 October 4, 2018 11 / 22

https://doi.org/10.1371/journal.pone.0205003.g007
https://doi.org/10.1371/journal.pone.0205003


line (R2>0.982, p<0.0001). These results indicate that the ICC and CCC metrics will yield sim-

ilar results for analysis.

Feature repeatability: Intra-observer. For intra-observer reliability, we wanted to evalu-

ate whether features could be extracted reliably from tumor contours generated by a single

observer using a single software tool at multiple time points. For each feature, ICC values were

calculated between the features generated from the first and second contour runs for each user

and software tool combination. The results showed that intra-observer reliability was highly

observer dependent (Fig 8, Table 2). For the manual tools, the average ICC values were much

lower for physicians 1 and 2 (MIM: 0.63, 0.17, 3DS: 0.72, 0.83) than the average values for phy-

sician 3 (MIM: 0.96, 3DS: 0.96). This is likely due to the fact that the time between the contour

runs for physicians 1 and 2 was 1 year, whereas for physician 3 the elapsed time between con-

tour runs was 1 month. For the semi-automatic tools, all observers achieved higher average

ICC values with the software tool LSTK (0.97, 0.98, 0.85) than with GrowCut (0.94, 0.85, 0.75).

This shows that LSTK can be used to minimize the effect from intra-observer variability com-

pared with GrowCut, as was shown with observer 3 whose average ICC value improved sub-

stantially from 0.75 (for GrowCut) to 0.95 (for LSTK). LSTK requires less user interaction than

GrowCut, which typically requires manually editing after the segmentation, thus leading to

more consistent feature values and achieving better consistency.

Feature reproducibility: Inter-observer. For inter-observer variability, we wanted to

evaluate whether features could be extracted reliably from tumor contours generated by

Fig 8. Intra-observer reliability. Box plot of ICCs for each intra-observer relationship. ICC values were computed between contour run 1 and contour run

2 for each feature. Each physician/observer and software tool combination is plotted along the x-axis. Intra-observer reliability was observer-dependent. All

observers achieved excellent feature reliability with LSTK.

https://doi.org/10.1371/journal.pone.0205003.g008
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multiple observers using a single software tool. For each feature, ICC values were calculated

between the features generated by multiple users for each contour run and software tool com-

bination. For both manual tools, the average ICC was less than 0.79 for both contour runs (Fig

9, Table 2). For the semi-automatic tools, GrowCut (0.70, 0.85) had inferior feature reliability

compared with LSTK (0.98, 0.96). Moreover, LSTK had average ICC values that fell within the

excellent ICC classification for contour run 1 and contour run 2. This shows that LSTK has

superior feature reliability across observers compared with the other software tools used in this

study.

Table 2. ICCs and confidence intervals.

Intra-Observer

Segmentation Method Contour Run Software Tool Phys./ Obs. Mean ICCa Mean Confidence Intervala

Manual 1 vs. 2 MIM Phys. 1 0.63 (0.17, 0.88)

Manual 1 vs. 2 MIM Phys. 2 0.17 (-0.29, 0.61)

Manual 1 vs. 2 MIM Phys. 3 0.96 (0.86, 0.99)

Manual 1 vs. 2 SLICER Phys. 1 0.72 (0.30, 0.92)

Manual 1 vs. 2 SLICER Phys. 2 0.83 (0.52, 0.96)

Manual 1 vs. 2 SLICER Phys. 3 0.96 (0.84, 0.99)

Auto 1 vs. 2 GrowCut Obs. 1 0.94 (0.79, 0.98)

Auto 1 vs. 2 GrowCut Obs. 2 0.85 (0.55, 0.96)

Auto 1 vs. 2 GrowCut Obs. 3 0.75 (0.36, 0.93)

Auto 1 vs. 2 LSTK Obs. 1 0.97 (0.90, 0.99)

Auto 1 vs. 2 LSTK Obs. 2 0.98 (0.94, 1.00)

Auto 1 vs. 2 LSTK Obs. 3 0.95 (0.82, 0.99)

Inter-Observer

Segmentation Method Contour Run Software Tool Phys./ Obs. Mean ICCa Mean Confidence Intervala

Manual 1 MIM ALL 0.58 (0.30, 0.84)

Manual 1 SLICER ALL 0.67 (0.39, 0.89)

Auto 1 GrowCut ALL 0.70 (0.45, 0.89)

Auto 1 LSTK ALL 0.98 (0.94, 0.99)

Manual 2 MIM ALL 0.53 (0.23, 0.81)

Manual 2 SLICER ALL 0.79 (0.55, 0.94)

Auto 2 GrowCut ALL 0.85 (0.66, 0.96)

Auto 2 LSTK ALL 0.96 (0.89, 0.99)

Inter-Software

Segmentation Method Contour Run Software Tool Phys./ Obs. Mean ICCa Mean Confidence Intervala

Manual 1 MIM-SLICER Phys. 1 0.72 (0.32, 0.92)

Manual 1 MIM-SLICER Phys. 2 0.43 (-0.04, 0.74)

Manual 1 MIM-SLICER Phys. 3 0.75 (0.25, 0.92)

Manual 1 GrowCut-LSTK Obs. 1 0.74 (0.31, 0.93)

Manual 1 GrowCut-LSTK Obs. 2 0.76 (0.37, 0.93)

Manual 1 GrowCut-LSTK Obs. 3 0.56 (0.15, 0.83)

Auto 2 MIM-SLICER Phys. 1 0.52 (0.04, 0.83)

Auto 2 MIM-SLICER Phys. 2 0.61 (0.20, 0.87)

Auto 2 MIM-SLICER Phys. 3 0.72 (0.26, 0.92)

Auto 2 GrowCut-LSTK Obs. 1 0.74 (0.34, 0.93)

Auto 2 GrowCut-LSTK Obs. 2 0.78 (0.35, 0.94)

Auto 2 GrowCut-LSTK Obs. 3 0.72 (0.24, 0.91)

a Reported values are averages of their respective estimate for all 40 features.

https://doi.org/10.1371/journal.pone.0205003.t002
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Feature reproducibility: Inter-software. For inter-software reliability, we sought to eval-

uate whether features could be extracted reliably from tumor contours generated by a single

observer using multiple software tools. For each feature, ICC values were calculated between

the features generated by multiple software tools for each user. For both manual and software

methods, the average ICC was less than 0.78 for all physicians and observers (Fig 10, Table 2).

Although 0.78 falls within the good reproducibility bounds, it is important to note that the

confidence intervals for these results are very large (which could be attributable to the small

sample size used in this study) and that for many features the lower bound of the confidence

interval overlaps with the bounds of the ICC classification for poor reproducibility. These

results indicated that different software tools do not yield reproducible features and should not

be used interchangeably. This has also been concluded by other studies looking specifically at

lung nodule volumes [36,37].

Because the boxplots (Figs 8–10) show only the spread of ICC values for each ICC relation-

ship, Fig 11 allows one to see the ICC classification of each feature for each ICC relationship.

ICC values were sorted into their respective ICC classifications based on the lower bound of

the 95% confidence interval of the ICC value (Fig 11). Koo et al recommends using the 95%

confidence interval to evaluate the level of reliability rather than using the ICC estimate, as the

ICC estimate is merely an expected value of the true ICC [38]. Once more, the results in Fig 11

further support the fact that LSTK has superior feature reproducibility, with 31 of the 40 fea-

tures having lower bound values that fell within the excellent classification for all intra-

Fig 9. Inter-observer reliability. Box plot of ICCs for each inter-observer relationship. The ICC values were computed between all physician/observer

contours for each feature. Each contour run and software tool combination is plotted along the x-axis. Inter-observer reliability was superior with LSTK

compared with all other software tools.

https://doi.org/10.1371/journal.pone.0205003.g009
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observer and inter-observer relationships. These results showed that LSTK helps to improve

feature reliability for many features across observers and for repeat measures performed by a

single observer. Additionally, it can easily be noted that most features, irrespective of the seg-

mentation method, contour run, or physician/observer, fell within the poor classification for

feature reproducibility for all inter-software relationships.

Identifying reliable feature categories. In this part of the analysis, we wanted to evaluate

whether a specific feature category was more reproducible than another feature category. The

results for the Wilcoxon rank sum tests showed that for all ICC relationships, the reproducibil-

ity of shape features did not significantly differ from the reproducibility of histogram features,

and that the reproducibility of histogram features did not significantly differ from the repro-

ducibility of texture features (Fig 12). For assessing whether the reproducibility of shape fea-

tures was significantly different from the reproducibility of texture features, only four ICC

relationships had shape features that were significantly more reproducible than texture fea-

tures, whereas three ICC relationships had shape features that were significantly less reproduc-

ible than texture features. Overall, no feature category was found to be more reproducible than

another.

Feature range analysis

To assess the feature range for each feature, we plotted the minimum and maximum normal-

ized feature values for each segmentation method (Fig 13). The semi-automatic contours had

Fig 10. Inter-software reliability. Box plot of ICCs for each inter-software relationship. The ICC values were computed between contours generated by two

different software tools for each feature. Each contour run and segmentation method combination is plotted along the x-axis. Inter-observer reliability was

relatively low for all inter-software relationships, with the ICC values for many features falling within the poor classification.

https://doi.org/10.1371/journal.pone.0205003.g010
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smaller feature ranges than the manual delineations for most of the features (except 7 features

of a total of 40). Furthermore, when we compared the feature ranges for LSTK, all features had

Fig 11. ICC classification of each radiomics feature for each ICC relationship. Red, orange, yellow, and green cells denote the ICC classifications of poor

(ICC< 0.4), fair (0.4� ICC< 0.60), good (0.60� ICC< 0.75), and excellent (0.75� ICC) reproducibility, respectively [33].

https://doi.org/10.1371/journal.pone.0205003.g011

Segmentation uncertainty for radiomics studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0205003 October 4, 2018 16 / 22

https://doi.org/10.1371/journal.pone.0205003.g011
https://doi.org/10.1371/journal.pone.0205003


smaller feature ranges across observers than the manual delineations. Additionally, all but four

features had ranges that overlapped with the manual ranges.

Discussion

Tumor delineation is an important aspect of the radiomics workflow. Variation in contouring

can affect the extracted feature values, which would undoubtedly influence subsequent steps in

the radiomics workflow. Identifying contouring software tools that improve feature reliability

helps to mitigate feature uncertainties that arise from inconsistent contouring. In this study,

we evaluated the uncertainty of radiomics features from both manual and semi-automatic seg-

mentation due to intra-observer, inter-observer, and inter-software reliability. We found that,

using semi-automatic segmentation such as LSTK, observers without formal clinical training

can generate contours that are comparable to manually drawn contours generated by formally

trained physicians (Fig 4).

In terms of intra-observer reliability, we found that features extracted from LSTK contours

were more reliable than those extracted from contours generated with other software tools for

Fig 12. Wilcoxon rank sum results between intraclass correlation coefficients for different feature categories. Asterisks indicate that the median ICC was

significantly different (p<0.05) between the two feature categories being compared. Blue cells indicate that the reproducibility of texture features was significantly less

than the reproducibility of shape features. Red cells indicate that the reproducibility of texture features was significantly greater than the reproducibility of shape

features.

https://doi.org/10.1371/journal.pone.0205003.g012

Fig 13. Normalized feature range. Comparison of normalized feature range between manual and semi-automatic

methods using z-score normalization. The minimum and maximum values are plotted for each feature and

segmentation method.

https://doi.org/10.1371/journal.pone.0205003.g013
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all observers (Fig 8, Table 2). In both semi-automatic segmentation tools, LSTK showed better

intra-observer reliability than GrowCut because less human interaction was needed to gener-

ate contours with LSTK, which was exemplified by the improvement in intra-observer reliabil-

ity from observer 3 (Table 2). For inter-observer reliability, we found that features extracted

from LSTK contours were more reliable across observers than features extracted with all other

software tools (Fig 9). Regarding inter-software reliability, we found that different software

tools do not yield reproducible features, even when the same observer uses the two tools (Fig

10). In other words, segmentation tools cannot be used interchangeably if the contours will be

used in subsequent radiomics studies. In addition, we also found that the feature range was

smaller across observers for all features generated from LSTK contours than other contours

(Fig 13), implying less uncertainty when the contours were generated with less human interac-

tion. In other words, to minimize the uncertainty in radiomics studies, one should adhere to a

single contouring approach and automate the contouring process as much as possible. Addi-

tionally, for the most part, we found that no feature category was found to be more reproduc-

ible than another (Fig 12).

Our findings agree with a previously conducted study which found that features were less

reliable when extracted from segmentations generated with different algorithms (similar to

our inter-software relationship) compared with features extracted from segmentations from

repeat runs of the same algorithm (similar to our intra-observer relationship) [17]. The differ-

ence between our study and the study by Kalpathy-Cramer et al is that we also looked at the

effect of different observers using the same segmentation tool. This is an important interaction

to assess because different observers, depending on their training and familiarity with the seg-

mentation tool, may use the same tool differently which can affect the final segmentation.

There are three main limitations of this study. The first limitation is that a small patient

population was used. Sample size is an important factor to consider when using inferential sta-

tistics such as the ICC. Small sample sizes lack power and can result in large confidence inter-

vals [39]. The negative ICC values observed in this study could be caused by the insufficient

sample size as well. Future studies with larger sample sizes may help to reduce wide confidence

intervals. Despite the small sample size, however, the width of the confidence intervals was

narrower for all features extracted from LSTK contours compared with the other software

tools for all intra-observer and inter-observer relationships.

The second limitation is that the ICC (as is the case for any reliability measure) depends on

the heterogeneity of the tumors of the patient population in the study [40,41]. Populations that

are more heterogeneous (where the between-subject standard deviation is larger) will yield

higher ICC values than more homogeneous populations. Because of these limitations, we

reported confidence intervals of the ICC averages (Table 2), as well as the tumor volume range

(1.15 cm3 to 10.53 cm3) for this patient population to give an idea of the between-patient

tumor heterogeneity.

The third limitation is that we tested only the most popular radiomics features instead of an

exhaustive list of radiomics features. One group of radiomics features that is worth mentioning

is the edge sharpness features [42]. On the basis of its construction, we expect edge features to

be highly correlated with shape features under test. For example, the shape features sphericity

and compactness would be influenced by the smoothness of the tumor’s boundary, with

smoother boundaries yielding larger feature values and rougher boundaries yielding smaller

feature values. Because both shape and edge features are calculated from the tumor boundary,

we believe that edge features may exhibit similar feature variability due to segmentation differ-

ences as we observed with shape features.

Although we showed that LSTK improves feature reliability (within and across observers),

its effect on outcome modeling has not been evaluated. Radiomics features alone are not very
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meaningful. After feature extraction, features are often evaluated to see if they correlate with

prognostic or predictive factors. An important future study would be to evaluate the effect that

contouring can play in building outcome models. It has been shown from this study and other

studies that semi-automatic tools improve feature reliability [13–16]; however, to the best of

our knowledge the effects of these tools on building outcome models have yet to be studied.

Also, semi-automatic tools that yield accurate segmentations and improve segmentation con-

sistency within and across observers are not only helpful for feature reliability studies but also

can help with subsequent studies that utilize tumor contours in their analysis. Examples of

such studies include but are not limited to longitudinal radiomics studies (delta-radiomics)

and longitudinal clinical studies [7,43] that assess tumor response where contours may be gen-

erated across different observers or at different time points by a given observer.

Conclusion

Our findings showed that radiomics features computed from semi-automatic segmented vol-

umes have better feature reproducibility and reliability than those computed from manual seg-

mented volumes. In semi-automatic segmentation, the tool with less human interaction (i.e.

LSTK) resulted in better feature reliability as well. Our results also showed that with semi-auto-

matic segmentation tools, observers without formal clinical training were comparable to physi-

cians in evaluating tumor segmentation. Our findings suggest the need of developing fully

automatic segmentation tools (without any user input) for radiomics studies in order to mini-

mize the impact from contouring uncertainty and to improve feature reproducibility and

repeatability for subsequent analysis such as radiomics outcome studies or longitudinal clinical

studies that assess tumor response.
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