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In 2015, approximately 137 million patients presented to 
the emergency department (ED) in the United States (43.3 

visits per 100 persons) (1). Respiratory diseases were the sec-
ond most common primary diagnosis in these patients, ac-
counting for 9.8% of all visits (1). Chest radiography is the 
first-line examination for the evaluation of various thoracic 
diseases (2–8). The number of chest radiographs per ED 
visit increased by 81% between 1994 and 2014, suggesting 
an increasing dependency on chest radiographs (9).

The interpretation of chest radiographs is a challenging 
task, requiring experience and expertise. Previous studies 
have reported suboptimal performance in the interpretation 
of chest radiographs by ED physicians compared with expert 
radiologists (10–13). In addition, the American College of 

Radiology recommends that qualified radiologists be avail-
able to interpret all radiographs obtained in the ED (14). 
However, there is a practical limitation with regard to the 
full-time availability of expert radiologists, especially for 
after-hours coverage. In a 2014 survey (15), 73% of the aca-
demic radiology departments in the United States did not 
provide overnight coverage by faculty. Thus, for after-hours 
ED coverage, a computer-aided detection system for clini-
cally relevant findings on chest radiographs may help im-
prove the quality of radiographic interpretation and overall 
turnaround time.

Recently, deep learning (DL) algorithms with medical 
image analysis systems have been evaluated for retinal fun-
dus photographs (16,17), pathologic images (18), and chest 
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Background: The performance of a deep learning (DL) algorithm should be validated in actual clinical situations, before its clinical 
implementation.

Purpose: To evaluate the performance of a DL algorithm for identifying chest radiographs with clinically relevant abnormalities in 
the emergency department (ED) setting.

Materials and Methods: This single-center retrospective study included consecutive patients who visited the ED and underwent initial 
chest radiography between January 1 and March 31, 2017. Chest radiographs were analyzed with a commercially available DL al-
gorithm. The performance of the algorithm was evaluated by determining the area under the receiver operating characteristic curve 
(AUC), sensitivity, and specificity at predefined operating cutoffs (high-sensitivity and high-specificity cutoffs). The sensitivities and 
specificities of the algorithm were compared with those of the on-call radiology residents who interpreted the chest radiographs in 
the actual practice by using McNemar tests. If there were discordant findings between the algorithm and resident, the residents re-
interpreted the chest radiographs by using the algorithm’s output.

Results: A total of 1135 patients (mean age, 53 years 6 18; 582 men) were evaluated. In the identification of abnormal chest ra-
diographs, the algorithm showed an AUC of 0.95 (95% confidence interval [CI]: 0.93, 0.96), a sensitivity of 88.7% (227 of 256 
radiographs; 95% CI: 84.1%, 92.3%), and a specificity of 69.6% (612 of 879 radiographs; 95% CI: 66.5%, 72.7%) at the high-
sensitivity cutoff and a sensitivity of 81.6% (209 of 256 radiographs; 95% CI: 76.3%, 86.2%) and specificity of 90.3% (794 of 
879 radiographs; 95% CI: 88.2%, 92.2%) at the high-specificity cutoff. Radiology residents showed lower sensitivity (65.6% [168 
of 256 radiographs; 95% CI: 59.5%, 71.4%], P , .001) and higher specificity (98.1% [862 of 879 radiographs; 95% CI: 96.9%, 
98.9%], P , .001) compared with the algorithm. After reinterpretation of chest radiographs with use of the algorithm’s outputs, 
the sensitivity of the residents improved (73.4% [188 of 256 radiographs; 95% CI: 68.0%, 78.8%], P = .003), whereas specificity 
was reduced (94.3% [829 of 879 radiographs; 95% CI: 92.8%, 95.8%], P , .001).

Conclusion: A deep learning algorithm used with emergency department chest radiographs showed diagnostic performance for iden-
tifying clinically relevant abnormalities and helped improve the sensitivity of radiology residents’ evaluation.
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Lunit [accessible at https://insight.lunit.io]) (22). The algorithm 
was designed to classify chest radiographs of patients with four 
major thoracic diseases, including pulmonary malignancy, ac-
tive pulmonary tuberculosis, pneumonia, and pneumothorax, 
and was developed with use of 54 221 normal chest radiographs 
and 35 613 chest radiographs in patients with major thoracic 
diseases (prevalence, 39.6%). Given an input chest radiograph, 
the algorithm provided a probability score between 0 and 1 for 
the presence of any of the target diseases, and a heat map was 
overlaid on each input radiograph to show the location of abnor-
malities. For binary classification of positive and negative results, 
we used two different cut-off values of the probability score that 
were developed in a prior study (22). The high-sensitivity cutoff 
was defined as a probability score of 0.16, where the algorithm 
showed a sensitivity of 95% and a specificity of 75% in the held-
out validation data set; the high-specificity cutoff was defined as 
a probability score of 0.46, where the algorithm showed a sensi-
tivity of 92% and a specificity of 95% in the held-out validation 
data set (22).

Data Collection
We included both posteroanterior and bedside anteroposterior 
chest radiographs. All posteroanterior radiographs were obtained 
with a single dedicated radiography unit (Multix FD; Siemens 
Healthineers, Erlangen, Germany), and all anteroposterior ra-
diographs were obtained with a single bedside unit (DRX-Rev-
olution; Carestream Health, Rochester, NY). In addition to the 
radiographic image, the following parameters were recorded: pa-
tient age, sex, chief complaint for the ED visit, clinical diagnosis, 
radiology report made by on-call radiology residents in the actual 
practice, and time between radiograph acquisition and the final 
report (Table 1).

Definition of Reference Standard and Categorization of 
Abnormalities
The reference standard for the presence of a clinically relevant ab-
normality was defined retrospectively and apart from the actual 
practice. First, a junior and senior thoracic radiologist (E.J.H. and 
C.M.P., with 8 and 20 years of experience in the interpretation 
of chest radiographs, respectively) independently reviewed radio-
graphs, medical records (including follow-up records), and results 
of laboratory and any additional radiologic examinations (eg, 
chest CT) to determine whether the radiograph showed any ab-
normality necessitating further diagnostic evaluation or treatment. 
The relevant abnormalities included not only abnormalities in the 
lungs but also those in the mediastinum, pleural space, bones, and 
upper abdomen. In the event of discordant findings between the 
two radiologists, they reanalyzed the radiographs with all the avail-
able clinical information and provided a final reference standard in 
consensus (Table E1 [online]). The time between initial and con-
sensus review was 4 months for the junior thoracic radiologist and 
1 month for the senior thoracic radiologist. Hereafter, the term 
abnormal radiographs indicates radiographs with clinically relevant 
abnormalities, whereas the term normal radiographs indicates those 
without clinically relevant abnormalities.

The abnormal radiographs were categorized into the follow-
ing five classes by the junior thoracic radiologist who defined the 

Abbreviations
AUC = area under the receiver operating characteristic curve, CI = con-
fidence interval, DL = deep learning, ED = emergency department, 
NPV = negative predictive value, PPV = positive predictive value

Summary
Use of a commercially available deep learning algorithm for evaluat-
ing chest radiographs resulted in identification of clinically relevant 
abnormalities on emergency department radiographs and improved 
the sensitivity of radiology residents’ interpretations.

Key Results
 n In 1135 consecutive patients who presented to the emergency 

department, a deep learning (DL) algorithm showed an area under 
the receiver operating characteristic curve of 0.95 in the identifica-
tion of chest radiographs with clinically relevant abnormalities.

 n For clinically relevant abnormalities, the DL algorithm showed a 
sensitivity of 88.7% and specificity of 69.6% at the high-sensitivi-
ty cutoff and a sensitivity of 81.6% and specificity of 90.3% at the 
high-specificity cutoff.

 n After use of the DL algorithm, the sensitivity of the radiology 
residents showed a modest improvement (from 65.6% to 73.4%, 
P = .003); however, this was accompanied by a small reduction in 
specificity (from 98.1% to 94.3%, P , .001).

radiographs (19,20). Most of those studies evaluated the efficacy 
of these algorithms in enriched data sets, which differ from real-
world findings in terms of disease prevalence, spectrum of presen-
tation, and population diversity. For DL algorithms to be clinically 
useful in medical imaging, their performance should be validated 
in a study sample that reflects clinical applications of this new 
technology (21).

Thus, the purpose of our study was to evaluate the performance 
of a DL algorithm in the identification of chest radiographs with 
clinically relevant abnormalities in the ED setting.

Materials and Methods
Lunit (Seoul, Korea) provided technical support for analyzing 
chest radiographs with a DL algorithm and obtaining outputs 
from the algorithm. However, Lunit did not have any role in study 
design, data collection, statistical analysis, data interpretation, or 
manuscript preparation. Two authors (S.P. and K.H.K.) are em-
ployees of Lunit; however, all data and information were con-
trolled by another author (E.J.H.) without any conflict of interest.

The study was approved by the institutional review board of 
Seoul National University Hospital, and the requirement to ob-
tain written informed consent was waived.

Patients
We retrospectively included consecutive patients who presented 
to the ED of a tertiary academic institution between January 1 
and March 31, 2017, and underwent chest radiography. Among 
them, patients for whom previously obtained chest radiographs 
were available were excluded; patients whose initial chest radio-
graphs were obtained in the ED were included in the study.

DL Algorithm
We used a previously reported, commercially available DL algo-
rithm (Lunit INSIGHT for Chest Radiography, version 4.7.2; 
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with the radiographic image, the algorithm’s output, and a brief 
description of the patient (age, sex, chief complaint) and the indi-
cation for radiography. However, they were blinded to their previ-
ous reports. After the repeat interpretation, residents were asked 
to classify radiographs as normal or abnormal. Finally, the sensi-
tivity, specificity, PPV, and NPV after repeat interpretation were 
determined.

Performance Assessment in Different Subgroups
To evaluate the consistency of the algorithm’s performance in dif-
ferent subgroups, patients were classified according to the follow-
ing criteria: (a) patient age of 55 years or younger versus age older 
than 55 years, (b) men versus women, (c) posteroanterior versus 
anteroposterior radiographs, (d) patients with versus patients 
without respiratory symptoms, and (e) radiographs with concor-
dant versus discordant classification by two thoracic radiologists 
in the definition of reference standards. The performances of the 
algorithm and of the radiology residents were evaluated for each 
subgroup.

Statistical Analysis
Software (R version 3.5.1; R Foundation for Statistical Comput-
ing, Vienna, Austria) was used for statistical analyses. The AUCs 
and their 95% confidence intervals (CIs) were calculated with the 
nonparametric method suggested by DeLong et al (23). Sensitivi-
ties and specificities were compared with use of the McNemar test, 
and comparisons of PPVs and NPVs were performed with the 
method suggested by Leisenring et al (24). P , .05 was considered 
indicative of a statistically significant difference.

Results

Patient Characteristics
A total of 1135 patients (one radiograph per patient; 582 men, 
553 women; mean age 6 standard deviation, 53 years 6 18) were 
included in the study (Table 1); 3116 patients with available previ-
ous radiographs were excluded from the study. According to the 
reference standard, 256 of the 1135 radiographs (22.6%) were 
classified as abnormal (Table 2).

reference standards (E.J.H.): (a) focal lung abnormality, (b) diffuse 
lung abnormality, (c) mediastinal abnormality, (d) pleural abnor-
mality, and (e) other abnormality (abnormalities in the bones or 
upper abdomen). In addition, abnormal radiographs were classi-
fied as depicting the algorithm’s target diseases (ie, pulmonary ma-
lignancy, active pulmonary tuberculosis, pneumonia, and pneu-
mothorax) or not depicting the algorithm’s target diseases.

Assessment of Algorithm Performance
After analysis of radiographs with use of the algorithm, the area 
under the receiver operating characteristic curve (AUC) was ob-
tained on the basis of the output probability scores and predefined 
reference standards. Sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) were calcu-
lated at the two predefined operating cutoffs. Subsequently, the 
junior thoracic radiologist (E.J.H.) reviewed heat maps provided 
by the algorithm and determined whether the abnormality had 
been correctly localized. Finally, the sensitivities were recalculated; 
positively classified radiographs with incorrect localization were 
categorized as false-negative findings. Sensitivities calculated from 
the probability scores alone were defined as “crude sensitivity,” and 
sensitivities calculated after review of the heat maps were defined 
as “corrected sensitivity” (Fig E1 [online]).

Radiology Report Evaluation and Reinterpretation
The radiology reports for each radiograph interpreted by an 
on-call radiology resident in the ED (one of seven radiology 
residents: J.G.N., W.H.L., S.J.P., Y.S.J., J.H.K., E.K.H., and 
T.M.K., in their 3rd year of training) during the actual prac-
tice were reviewed by a junior thoracic radiologist (E.J.H.) and 
classified as indicating the presence or absence of any clini-
cally relevant abnormality. The sensitivity, specificity, PPV, and 
NPV of the radiology residents’ evaluations were assessed based 
on the predefined reference standards.

In the case of discordant interpretation between the algorithm 
and radiology reports, either at the high-sensitivity or the high-
specificity cutoff, the residents who initially interpreted each ra-
diograph reinterpreted it, apart from the actual practice, retrospec-
tively. During the repeat interpretation, residents were provided 

Table 1: Summary of Demographic Information

Parameter
All Patients  
(n = 1135)

Patients with Normal  
Radiographs (n = 879)

Patients with Abnormal  
Radiographs (n = 256) P Value

Age (y)* 55 (28) 53 (28) 64 (25) ,.001†

Men 582 (51) 425 (48) 157 (61) ,.001‡

Posteroanterior radiographs 951 (84) 766 (87) 185 (72) ,.001‡

Presence of respiratory symptoms 160 (14) 55 (6) 105 (41) ,.001‡

Acquisition of chest CT 126 (11) 47 (5) 79 (31) ,.001‡

Time to report (min)* 88 (161.5) 81 (156) 114 (175.25) .02†

Discrepant findings between thoracic radiologists 88 (7.8) 17 (2) 71 (28) ,.001‡

Note.—Unless otherwise specified, data are numbers of patients, with percentages in parentheses. P values are for comparison of normal 
and abnormal radiographs.
* Data are medians, with interquartile range in parentheses.
† Obtained with the Mann-Whitney U test.
‡ Obtained with the x2 test.
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Resident Performance after Reviewing Algorithm’s Output
After reinterpretation of the radiographs with the algorithm’s out-
puts, the radiology residents’ sensitivity (73.4% [188 of 256 ra-
diographs; 95% CI: 68.0%, 78.8%]; P = .003) and NPV (92.4% 
[829 of 897 radiographs; 95% CI: 90.7%, 94.2%]; P = .01) im-
proved when compared with that of initial reports. Conversely, 
the specificity (94.3% [829 of 879 radiographs; 95% CI: 92.8%, 
95.8%]; P , .001) and PPV (79.0% [188 of 238 radiographs; 
95% CI: 73.8%, 84.2%]; P , .001) were reduced after repeat 
interpretation (Tables 3, E4 [online]).

Sensitivities Varied according to Pathologic Conditions
The sensitivities of the algorithm and radiology residents’ evalua-
tions varied for each category of abnormal radiographs (Table 4).  
Among the different types of abnormalities, corrected sensitivities 
of the algorithm for focal lung abnormalities (90.4% [85 of 94 
radiographs; 95% CI: 82.6%, 95.5%; P , .001; high-sensitiv-
ity cutoff] and 81.9% [77 of 94 radiographs; 95% CI: 72.6%, 
89.1%; P , .001; high-specificity cutoff] vs 47.9% [45 of 94 
radiographs; 95% CI: 72.6%, 89.1%; radiology residents]) 
and diffuse lung abnormalities (96.9% [95 of 98 radiographs; 
95% CI: 91.3%, 99.4%; P , .001; high-sensitivity cutoff] 
and 88.8% [87 of 98 radiographs; 95% CI: 80.8%, 94.3%; P 
= .03; high-specificity cutoff] vs 76.5% [75 of 98 radiographs; 
95% CI: 66.9%, 84.5%; radiology residents]) were higher 
than those of radiology residents. No differences were observed 
for pleural abnormalities (P = .75 for both high-sensitivity and 
high-specificity cutoffs) and mediastinal abnormalities (P = .63  
and P . .99 for high-sensitivity and high-specificity cutoffs, re-

Comparison of Algorithm and Resident Performance
The algorithm had an AUC of 0.95 (95% CI: 0.93, 0.96) in the 
identification of abnormal radiographs. At the high-sensitivity 
cutoff, the crude sensitivity, corrected sensitivity, and specificity 
were 95.7% (245 of 256 radiographs; 95% CI: 92.4%, 97.8%),  
88.7% (227 of 256 radiographs; 95% CI: 84.1%, 92.3%), and 
69.6% (612 of 879 radiographs; 95% CI: 66.5%, 72.7%), 
respectively. PPV and NPV were 47.9% (245 of 512 radio-
graphs; 95% CI: 43.5%, 52.3%) and 98.2% (612 of 623 
radiographs; 95% CI: 96.9%, 99.1%), respectively. In the 
high-specificity cutoff, the crude sensitivity, corrected sensitiv-
ity, and specificity were 85.9% (220 of 256 radiographs; 95% 
CI: 81.1%, 90.0%), 81.6% (209 of 256 radiographs; 95% CI: 
73.3%, 86.2%), and 90.3% (794 of 879 radiographs; 95% CI:  
88.2%, 92.2%), respectively. PPV and NPV were 72.1% (220 of  
305 radiographs; 95% CI: 66.7%, 77.1%) and 95.7% (794 of 
830 radiographs; 95% CI: 94.0%, 96.9%), respectively (Fig 1;  
Tables 3, E2 [online]). The residents’ radiology reports showed 
lower sensitivity (65.6% [168 of 256 reports; 95% CI: 59.5%, 
71.4%]) and NPV (90.7% [862 of 950 reports; 95% CI: 
88.7%, 92.5%]) but higher specificity (98.1% [862 of 879 
reports; 95% CI: 96.9%, 98.9%]) and PPV (90.8% [168 of 
185 reports; 95% CI: 85.7%, 94.6%]) compared with the al-
gorithm at both cutoffs (P , .001 for all; Tables 3, E3 [online]; 
Figs 1–5). The median time between radiograph acquisition 
and the radiology resident’s report was 88 minutes. The in-
terval was longer for abnormal radiographs than for normal 
radiographs (median interval, 114 vs 81 minutes, respectively; 
P = .02, Mann-Whitney U test).

Table 2: Clinically Relevant Abnormalities on Abnormal Radiographs

Abnormality No. of Patients (n = 256) 
No. of Patients with CT Exami-
nations (n = 79)

Pulmonary parenchymal diseases
 Pneumonia 69 (27) 36
 Pulmonary edema 32 (12) 9
 Parenchymal infiltration with indeterminate nature 30 (12) 6
 Pulmonary nodule or mass with indeterminate nature 18 (7) 0
 Pulmonary tuberculosis suspected from radiographs 15 (6) 2
 Interstitial lung disease 9 (3) 3
 Primary lung cancer 9 (4) 6
 Pulmonary metastasis 8 (4) 3
 Bacteriologically proven pulmonary tuberculosis 7 (3) 2
 Giant bulla 1 (0.4) 0
Pleural diseases
 Pleural effusion without parenchymal abnormality 34 (13) 7
 Pneumothorax 7 (3) 2
Mediastinal diseases
 Clinically significant cardiomegaly 4 (2) 0
 Acute aortic syndrome 4 (2) 2
 Mediastinal mass 2 (1) 1
Other diseases
 Rib fracture without other abnormality 5 (2) 2
 Small bowel obstruction 1 (0.4) 0
 Scoliosis 1 (0.4) 0

Note.—Numbers in parentheses are percentages.
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Figure 1: Graph shows performance of algorithm and radiology residents for 
all consecutive patients. Algorithm showed an area under the receiver operating 
characteristic curve (AUC) of 0.95 in the classification of chest radiographs with 
clinically relevant abnormalities. Blue square and circle indicate corrected per-
formance of algorithm at high-sensitivity (corrected sensitivity, 88.7%; specificity, 
69.6%) and high-specificity (corrected sensitivity, 81.6%; specificity, 90.3%) cutoffs, 
respectively, thus reflecting corrected sensitivity. Radiology residents who initially 
interpreted radiographs in actual clinical practice had a sensitivity of 65.6% and 
specificity of 98.1%. CI = confidence interval.

spectively) between the algorithm and the radiology residents. 
Meanwhile, the algorithm showed higher corrected sensitivities in 
both radiographs with target diseases (93.6% [132 of 141 radio-
graphs; 95% CI: 89.6%, 97.7%; P , .001; high-sensitivity cut-
off] and 87.9% [124 of 141 radiographs; 95% CI: 82.6%, 93.3%; 
P , .001; high-specificity cutoff] vs 71.6% [101 of 141 radio-
graphs; 95% CI: 64.2%, 79.1%, radiology residents]) and non-
target diseases (82.6% [95 of 115 radiographs; 95% CI: 75.7%, 
89.5%; P , .001, high-sensitivity cutoff] and 73.9% [85 of 115 
radiographs; 95% CI: 65.9%, 81.9%; P = .01; high specificity 
cutoff] vs 58.3% [67 of 115 radiographs; 95% CI: 49.2%, 67.3%; 
radiology residents]) compared with radiology residents.

Performances in Different Subgroups
The algorithm showed a higher AUC in patients with respira-
tory symptoms compared with those without respiratory symp-
toms (AUC, 0.99 [95% CI: 0.97, 1.00] vs 0.93 [95% CI: 0.90, 
0.95], respectively; P , .001); it also showed a higher AUC in 
radiographs with concordant classification by thoracic radiologists 
compared with those with discordant classification (AUC, 0.97 
[95% CI: 0.96, 0.98] vs 0.67 [95% CI: 0.52, 0.81], respectively;  
P , .001), without overlapping 95% CIs. In terms of patient age 
(P = .08) and sex (P = .76) and radiographic projection (P = .73), 
the algorithm showed no differences in AUC (Fig E2, Tables E5–
E9 [online]).

Discussion
In our study, we validated the performance of a commercialized 
deep learning (DL) algorithm for the classification of chest radio-

graphs with clinically relevant abnormalities in consecutive pa-
tients in an emergency department (ED). In the identification of 
abnormal chest radiographs, the algorithm showed an area under 
the receiver operating characteristic curve (AUC) of 0.95 (95% 
confidence interval [CI]: 0.93, 0.96), sensitivity of 88.7% (95% 
CI: 84.1%, 92.3%), and specificity of 69.6% (95% CI: 66.5%, 
72.7%) at the high-sensitivity cutoff and a sensitivity of 81.6% 
(95% CI: 76.3%, 86.2%) and specificity of 90.3% (95% CI: 
88.2%, 92.2%) at the high-specificity cutoff. Radiology residents 
showed lower sensitivity (65.6% [95% CI: 59.5%, 71.4%], P , 
.001) and higher specificity (98.1% [95% CI: 96.9%, 98.9%],  
P , .001) than the algorithm. After the residents reinterpreted 
radiographs with discordant classifications by using the algorithm’s 
output, their sensitivity improved (73.4% [95% CI: 68.0%, 
78.8%], P = .003); however, their specificity was slightly reduced 
(94.3% [95% CI: 92.8%, 95.8%], P , .001).

The most important advantage of our study over previ-
ous studies that evaluated the performance of DL algorithms 
(16,18–20,22) was its application in a clinical setting. Previously, 
this algorithm exhibited excellent and consistent performance in 
an enriched data set of normal and abnormal radiographs (22). 
To determine whether any DL algorithm can be used in clinical 
practice, its performance should be validated clinically (21). The 
algorithm showed high efficacy in the classification of radiographs 
with clinically relevant abnormalities from the ED in this ad hoc 
retrospective review. This suggests that this DL algorithm is ready 
for further testing in a controlled real-time ED setting.

In comparison with reports provided by on-call radiology resi-
dents, the algorithm showed a different diagnostic performance. 
In addition, after the reinterpretation of radiographs with discor-
dant classifications between the initial radiology resident’s report 
and the algorithm’s classification, the sensitivity and NPV of the 
residents improved, whereas the specificity and PPV were reduced. 
Although there was a trade-off between sensitivities and specifici-
ties, considering that chest radiographs serve as a screening exami-
nation in various acute thoracic diseases (2–8), sensitivity may be 
a more important measure of performance than specificity—espe-
cially in the ED. Therefore, if this algorithm is used as a computer-
aided diagnosis tool, we believe it has the potential to improve the 
interpretation of radiographs in the ED by reducing the number 
of false-negative interpretations.

Another future application of the algorithm includes use as a 
screening or triage tool. During the study period, the interval be-
tween image acquisition and reporting was paradoxically longer in 
radiographs with relevant abnormalities. In this regard, the algo-
rithm may improve clinical workflow in the ED by screening ra-
diographs before interpretation by ED physicians and radiologists. 
The algorithm can inform physicians and radiologists if there is a 
high probability of relevant disease necessitating timely diagnosis 
and management.

Among the different types of abnormalities, the algorithm 
showed an excellent sensitivity for pulmonary parenchymal ab-
normalities; however, the sensitivity for mediastinal and skeletal 
abnormalities remained suboptimal. This may be attributed to the 
algorithm’s training, which was limited to the detection of paren-
chymal abnormalities (pulmonary malignancy, tuberculosis, and 
pneumonia) and pneumothorax. Considering the low proportion 



Deep Learning Chest Radiograph Diagnosis in Emergency Departments

6 radiology.rsna.org n Radiology: Volume 00: Number 0— 2019

Table 3: Performances of Algorithm and Radiology Residents

Classifier
Crude  
Sensitivity (%)

P  
Value

Corrected  
Sensitivity (%)

P  
Value Specificity (%)

P  
Value PPV (%)

P  
Value NPV (%)

P  
Value

Radiology  
  residents  

(initial report)

65.6 (168/256)  
 [59.5, 71.4]

NA NA NA 98.1 (862/879)  
 [96.9, 98.9]

NA 90.8 (168/185)  
 [85.7, 94.6]

NA 90.7 (862/950)  
 [88.7, 92.5]

NA

Algorithm
High-sensitivity  
 cutoff

95.7 (245/256)  
 [92.4, 97.8]

,.001 88.7 (227/256)  
 [84.1, 92.3]

,.001* 69.6 (612/879)  
 [66.5, 72.7]

,.001 47.9 (245/512)  
 [43.5, 52.3]

,.001 98.2 (612/623)  
 [96.9, 99.1]

,.001

High-specificity  
 cutoff

85.9 (220/256)  
 [81.1, 90.0]

,.001 81.6 (209/256)  
 [76.3, 86.2]

,.001* 90.3 (794/879)  
 [88.2, 92.2]

,.001 72.1 (220/305)  
 [66.7, 77.1]

,.001 95.7 (794/830)  
 [94.0, 96.9]

,.001

Radiology  
  residents (after  

reinterpretation)

73.4 (188/256)  
 [68.0, 78.8]

.003 NA NA 94.3 (829/879)  
 [92.8, 95.8]

,.001 79.0 (188/238)  
 [73.8, 84.2]

,.001 92.4 (829/897)  
 [90.7, 94.2]

.01

Note.—Numbers in parentheses are the raw data (numbers of radiographs). Numbers in brackets are 95% confidence intervals. All P values 
indicate results of comparison with initial reports from radiology residents. NA = not applicable, NPV = negative predictive value, PPV = 
positive predictive value.
* Comparison with crude sensitivity of initial reports from radiology residents.

Figure 2: Images in 65-year-old man with pneumonia who presented to the emergency department with fever and cough. (a) Chest radiograph 
shows focal area of increased opacity at juxtaphrenic right basal lung (arrows). Radiograph was initially misinterpreted as normal by the on-call radi-
ology resident. (b) Corresponding chest CT scan shows patchy consolidation in right lower lobe of lung (arrows), which is suggestive of pneumonia. 
(c) Heat map from algorithm overlaid on chest radiograph shows that algorithm successfully detected the lesion, with probability score of 0.862. 
After reviewing the radiograph with the algorithm’s output, the radiology resident was able to detect the lesion.

Figure 3: Images in 19-year-old man with pneumothorax who presented to the emergency department with pleuritic chest pain and dyspnea. 
(a) Chest radiograph shows pneumothorax in left hemithorax (arrows). Radiograph was initially misinterpreted as normal by the on-call radiology 
resident. (b) Corresponding chest CT scan shows left pneumothorax (*). (c) Heat map from algorithm overlaid on chest radiograph shows that al-
gorithm successfully detected the pneumothorax, with probability score of 0.974. With the algorithm’s output, the radiology resident detected the left 
pneumothorax.
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Figure 4: Images in 37-year-old man with pulmonary edema who presented to the emergency department with dyspnea. (a) Chest radiograph 
shows bilateral patchy increased area of consolidation (arrows). (b) Corresponding chest CT scan shows bilateral consolidations (black arrows), 
interlobular septal line thickening (arrowheads), and bilateral pleural effusion (white arrows). (c) Heat map from algorithm overlaid on chest radio-
graph shows that algorithm correctly classified the radiograph as abnormal with both cutoffs, with probability score of 0.999, although pulmonary 
edema was not included in target diseases of the algorithm.

Figure 5: Images in 76-year-old woman with pulmonary fibrosis who presented to the emergency department with cough and dyspnea. (a) 
Chest radiograph shows reticular opacities of both basal and peripheral lungs (arrows). (b) Corresponding chest CT scan shows bilateral subpleural 
reticular opacities (arrows), a finding suggestive of interstitial fibrosis. (c) Heat map from algorithm overlaid on chest radiograph shows that algorithm 
correctly classified the radiograph as abnormal with both cutoffs, with probability score of 0.958, although pulmonary fibrosis was not included in 
target diseases of the algorithm. 

Table 4: Sensitivities of Algorithm and Radiology Residents according to Category of Abnormal Radiographs

Category
Radiology  
Residents

Algorithm: High-Sensitivity Cutoff Algorithm: High-Specificity Cutoff

Crude  
Sensitivity P Value

Corrected  
Sensitivity P Value

Crude  
Sensitivity P Value

Corrected  
Sensitivity P Value

Focal lung  
 abnormality

47.9 (45/94)  
 [72.6, 89.1]

95.7 (90/94)  
 [89.5, 98.8]

,.001 90.4 (85/94)  
 [82.6, 95.5]

,.001 86.2 (81/94)  
 [77.5, 92.4]

,.001 81.9 (77/94)  
 [72.6, 89.1]

,.001

Diffuse lung  
 abnormality

76.5 (75/98)  
 [66.9, 84.5]

99.0 (97/98)  
 [94.4, 100]

,.001 96.9 (95/98)  
 [91.3, 99.4]

,.001 90.8 (89/98)  
 [83.3, 95.7]

.01 88.8 (87/98)  
 [80.8, 94.3]

.03

Pleural  
 abnormality

85.5 (47/55)  
 [73.3, 93.5]

92.7 (51/55)  
 [82.4, 98.0]

.29 81.8 (45/55)  
 [69.1, 90.9]

.75 85.5 (47/55)  
 [73.3, 93.5]

..99 81.8 (45/55)  
 [69.1, 90.9]

.75

Mediastinal  
 abnormality

53.8 (7/13)  
 [25.1, 80.8]

92.3 (12/13)  
 [64.0, 99.8]

.13 69.2 (9/13)  
 [38.6, 90.9]

.63 61.5 (8/13)  
 [31.6, 86.1]

..99 53.8 (7/13)  
 [25.1, 80.8]

..99

Other  
 abnormality

40.0 (4/10)  
 [12.2, 73.8]

80.0 (8/10)  
 [44.4, 97.5]

.38 0 (0/10)  
 [0, 30.8]

NA 70.0 (7/10)  
 [34.8, 93.3]

.69 0 (0/10)  
 [0, 30.8]

NA

Target disease 71.6 (101/141)  
 [64.2, 79.1]

97.2 (137/141)  
 [94.4, 99.9]

,.001 93.6 (132/141)  
 [89.6, 97.7]

,.001 90.8 (128/141)  
 [86.0, 95.6]

,.001 87.9 (124/141)  
 [82.6, 93.3]

,.001

Nontarget  
 disease

58.3 (67/115)  
 [49.2, 67.3]

93.9 (108/115)  
 [89.5, 98.3]

,.001 82.6 (95/115)  
 [75.7, 89.5]

,.001 80.0 (92/115)  
 [72.7, 87.3]

,.001 73.9 (85/115)  
 [65.9, 81.9]

.008

Note.—Unless otherwise specified, data are percentages. Numbers in parentheses are raw data (numbers of radiographs). Numbers in 
brackets are 95% confidence intervals. All P values indicate results of comparison with radiology residents. NA = not applicable.
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of mediastinal and skeletal abnormalities among abnormal radio-
graphs, these lower sensitivities may not impede the clinical utili-
zation of the algorithm.

In actual clinical situations, the algorithm may encounter vari-
ous types of diseases, including diseases that the algorithm did not 
specifically target. The wider disease spectrum could be an impor-
tant cause of low performance in the clinical setting and a major 
obstacle to its clinical implementation (21). Although the algo-
rithm in our study targeted four specific diseases, it also showed 
excellent sensitivities in nontarget diseases and outperformed 
residents. We believe that the algorithm’s sensitivity in nontarget 
diseases is due to the considerable overlap in their radiographic 
findings with target diseases (ie, increased opacities in the lung 
fields). This result suggests the algorithm’s usefulness in actual 
clinical practice, where various target and nontarget diseases may 
be present.

In the subgroup analyses, the algorithm showed consistent per-
formances regardless of patient age, sex, and radiograph projection,  
thereby indicating its robustness. The algorithm showed slightly 
higher performance in patients with respiratory symptoms com-
pared to patients without respiratory symptoms. This may be at-
tributed to the presence of more obvious abnormal findings on the 
radiographs of patients with respiratory symptoms. In addition, 
the algorithm showed a lower performance for radiographs in 
which thoracic radiologists had discordant findings. Abnormali-
ties in these radiographs may have been very subtle and debat-
able even between expert radiologists. This difficulty in detection 
would also have affected the performance of the algorithm.

This study has several limitations. First, our study was per-
formed at a single institution and thus it is unknown whether the 
performance of the algorithm is reproducible in different institu-
tions. Second, because of the retrospective nature of the study de-
sign, the effect of the algorithm on a real-time clinical workflow in 
the ED was not evaluated. Third, we compared the performance 
of the algorithm with that of on-call radiology residents, rather 
than experienced radiologists, because primary interpretation by 
radiology residents is routine practice in our institution. Finally, 
we evaluated a single frontal chest radiograph per patient in this 
study. The inability to evaluate lateral radiographs or a series of 
radiographs in comparison is a weakness of the algorithm.

In conclusion, we tested a deep learning algorithm in emer-
gency department patients during their first visit for the identifi-
cation of chest radiographs with clinically relevant abnormalities. 
We found that this algorithm improved the sensitivity of radiol-
ogy resident trainee interpretations. Further prospective studies are 
necessary to confirm whether the use of the algorithm can im-
prove clinical workflow and patient outcomes.
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